
14
Transmitting and Receiving Antennas

14.1 Energy Flux and Radiation Intensity

The flux of electromagnetic energy radiated from a current source at far distances is
given by the time-averaged Poynting vector, calculated in terms of the radiation fields
(13.10.4):

PPP = 1

2
Re(E×H∗)= 1

2

(
−jkη e

−jkr

4πr

)(
jk
ejkr

4πr

)
Re
[
(θ̂θθFθ + φ̂φφFφ)×(φ̂φφF∗θ − θ̂θθF∗φ)

]

Noting that θ̂θθ× φ̂φφ = r̂, we have:

(θ̂θθFθ + φ̂φφFφ)×(φ̂φφF∗θ − θ̂θθF∗φ)= r̂
(|Fθ|2 + |Fφ|2) = r̂

∣∣F⊥(θ,φ)
∣∣2

Therefore, the energy flux vector will be:

PPP = r̂Pr = r̂
ηk2

32π2r2

∣∣F⊥(θ,φ)
∣∣2

(14.1.1)

Thus, the radiated energy flows radially away from the current source and attenu-
ates with the square of the distance. The angular distribution of the radiated energy is
described by the radiation pattern factor:

∣∣F⊥(θ,φ)
∣∣2 = ∣∣Fθ(θ,φ)∣∣2 + ∣∣Fφ(θ,φ)∣∣2

(14.1.2)

With reference to Fig. 13.9.1, the power dP intercepting the area element dS = r2dΩ
defines the power per unit area, or the power density of the radiation:

dP
dS

= dP
r2dΩ

= Pr = ηk2

32π2r2

∣∣F⊥(θ,φ)
∣∣2

(power density) (14.1.3)

The radiation intensity U(θ,φ) is defined to be the power radiated per unit solid
angle, that is, the quantity dP/dΩ = r2dP/dS = r2Pr :

U(θ,φ)= dP
dΩ

= r2Pr = ηk2

32π2

∣∣F⊥(θ,φ)
∣∣2

(radiation intensity) (14.1.4)

488

www.ece.rutgers.edu/∼orfanidi/ewa 489

The total radiated power is obtained by integrating Eq. (14.1.4) over all solid angles
dΩ = sinθdθdφ, that is, over 0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π :

Prad =
∫ π

0

∫ 2π

0
U(θ,φ)dΩ (total radiated power) (14.1.5)

A useful concept is that of an isotropic radiator—a radiator whose intensity is the
same in all directions. In this case, the total radiated power Prad will be equally dis-
tributed over all solid angles, that is, over the total solid angle of a sphere Ωsphere = 4π
steradians, and therefore, the isotropic radiation intensity will be:

UI =
(
dP
dΩ

)
I
= Prad

Ωsphere
= Prad

4π
= 1

4π

∫ π
0

∫ 2π

0
U(θ,φ)dΩ (14.1.6)

Thus, UI is the average of the radiation intensity over all solid angles. The corre-
sponding power density of such an isotropic radiator will be:

(
dP
dS

)
I
= UI
r2
= Prad

4πr2
(isotropic power density) (14.1.7)

14.2 Directivity, Gain, and Beamwidth

The directive gain of an antenna system towards a given direction (θ,φ) is the radiation
intensity normalized by the corresponding isotropic intensity, that is,

D(θ,φ)= U(θ,φ)
UI

= U(θ,φ)
Prad/4π

= 4π
Prad

dP
dΩ

(directive gain) (14.2.1)

It measures the ability of the antenna to direct its power towards a given direction.
The maximum value of the directive gain, Dmax, is called the directivity of the antenna
and will be realized towards some particular direction, say (θ0,φ0). The radiation
intensity will be maximum towards that direction, Umax = U(θ0,φ0), so that

Dmax = Umax

UI
(directivity) (14.2.2)

The directivity is often expressed in dB,† that is,DdB = 10 log10Dmax. Re-expressing
the radiation intensity in terms of the directive gain, we have:

dP
dΩ

= U(θ,φ)= D(θ,φ)UI = PradD(θ,φ)
4π

(14.2.3)

and for the power density in the direction of (θ,φ):

dP
dS

= dP
r2dΩ

= PradD(θ,φ)
4πr2

(power density) (14.2.4)

†The term “dBi” is often used as a reminder that the directivity is with respect to the isotropic case.
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Comparing with Eq. (14.1.7), we note that if the amount of power PradD(θ,φ) were
emitted isotropically, then Eq. (14.2.4) would be the corresponding isotropic power den-
sity. Therefore, we will refer to PradD(θ,φ) as the effective isotropic power, or the
effective radiated power (ERP) towards the (θ,φ)-direction.

In the direction of maximum gain, the quantity PradDmax will be referred to as the
effective isotropic radiated power (EIRP). It defines the maximum power density achieved
by the antenna:

(
dP
dS

)
max

= PEIRP

4πr2
, where PEIRP = PradDmax (14.2.5)

Usually, communicating antennas—especially highly directive ones such as dish
antennas—are oriented to point towards the maximum directive gain of each other.

A related concept is that of the power gain, or simply the gain of an antenna. It is
defined as in Eq. (14.2.1), but instead of being normalized by the total radiated power, it
is normalized to the total power PT accepted by the antenna terminals from a connected
transmitter, as shown in Fig. 14.2.1:

G(θ,φ)= U(θ,φ)
PT/4π

= 4π
PT

dP
dΩ

(power gain) (14.2.6)

We will see in Sec. 14.4 that the power PT delivered to the antenna terminals is at
most half the power produced by the generator—the other half being dissipated as heat
in the generator’s internal resistance.

Moreover, the power PT may differ from the power radiated, Prad, because of several
loss mechanisms, such as ohmic losses of the currents flowing on the antenna wires or
losses in the dielectric surrounding the antenna.

Fig. 14.2.1 Power delivered to an antenna versus power radiated.

The definition of power gain does not include any reflection losses arising from
improper matching of the transmission line to the antenna input impedance [95]. The
efficiency factor of the antenna is defined by:

e = Prad

PT
⇒ Prad = ePT (14.2.7)

In general, 0 ≤ e ≤ 1. For a lossless antenna the efficiency factor will be unity and
Prad = PT. In such an ideal case, there is no distinction between directive and power
gain. Using Eq. (14.2.7) in (14.2.1), we find G = 4πU/PT = e4πU/Prad, or,
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G(θ,φ)= eD(θ,φ) (14.2.8)

The maximum gain is related to the directivity by Gmax = eDmax. It follows that
the effective radiated power can be written as PradD(θ,φ)= PTG(θ,φ), and the EIRP,
PEIRP = PradDmax = PTGmax.

The angular distribution functions we defined thus far, that is, G(θ,φ), D(θ,φ),
U(θ,φ) are all proportional to each other. Each brings out a different aspect of the
radiating system. In describing the angular distribution of radiation, it proves conve-
nient to consider it relative to its maximal value. Thus, we define the normalized power
pattern, or normalized gain by:

g(θ,φ)= G(θ,φ)
Gmax

(normalized gain) (14.2.9)

Because of the proportionality of the various angular functions, we have:

g(θ,φ)= G(θ,φ)
Gmax

= D(θ,φ)
Dmax

= U(θ,φ)
Umax

=
∣∣F⊥(θ,φ)

∣∣2

|F⊥|2max
(14.2.10)

Writing PTG(θ,φ)= PTGmax g(θ,φ), we have for the power density:

dP
dS

= PTGmax

4πr2
g(θ,φ)= PEIRP

4πr2
g(θ,φ) (14.2.11)

This form is useful for describing communicating antennas and radar. The normal-
ized gain is usually displayed in a polar plot with polar coordinates (ρ,θ) such that
ρ = g(θ), as shown in Fig. 14.2.2. (This figure depicts the gain of a half-wave dipole
antenna given by g(θ)= cos2(0.5π cosθ)/ sin2 θ.) The 3-dB, or half-power, beamwidth
is defined as the difference ∆θB = θ2 − θ1 of the 3-dB angles at which the normalized
gain is equal to 1/2, or, −3 dB.

Fig. 14.2.2 Polar and regular plots of normalized gain versus angle.

The MATLAB functions dbp, abp, dbz, abz given in Appendix H allow the plotting of
the gain in dB or in absolute units versus the polar angle θ or the azimuthal angle φ.
Their typical usage is as follows:

dbp(theta, g, rays, Rm, width); % polar gain plot in dB

abp(theta, g, rays, width); % polar gain plot in absolute units

dbz(phi, g, rays, Rm, width); % azimuthal gain plot in dB

abz(phi, g, rays, width); % azimuthal gain plot in absolute units



492 Electromagnetic Waves & Antennas – S. J. Orfanidis – June 21, 2004

Example 14.2.1: A TV station is transmitting 10 kW of power with a gain of 15 dB towards a
particular direction. Determine the peak and rms value of the electric field E at a distance
of 5 km from the station.

Solution: The gain in absolute units will be G = 10GdB/10 = 1015/10 = 31.62. It follows that the
radiated EIRP will be PEIRP = PTG = 10× 31.62 = 316.2 kW. The electric field at distance
r = 5 km is obtained from Eq. (14.2.5):

dP
dS

= PEIRP

4πr2
= 1

2η
E2 ⇒ E = 1

r

√
ηPEIRP

2π

This gives E = 0.87 V/m. The rms value is Erms = E/
√

2 = 0.62 V/m. ��

Another useful concept is that of the beam solid angle of an antenna. The definition
is motivated by the case of a highly directive antenna, which concentrates all of its
radiated power Prad into a small solid angle ∆Ω, as illustrated in Fig. 14.2.3.

Fig. 14.2.3 Beam solid angle and beamwidth of a highly directive antenna.

The radiation intensity in the direction of the solid angle will be:

U = ∆P
∆Ω

= Prad

∆Ω
(14.2.12)

where ∆P = Prad by assumption. It follows that: Dmax = 4πU/Prad = 4π/∆Ω, or,

Dmax = 4π
∆Ω

(14.2.13)

Thus, the more concentrated the beam, the higher the directivity. Although (14.2.13)
was derived under the assumption of a highly directive antenna, it may be used as the
definition of the beam solid angle for any antenna, that is,

∆Ω = 4π
Dmax

(beam solid angle) (14.2.14)

Using Dmax = Umax/UI and Eq. (14.1.6), we have

∆Ω = 4πUI
Umax

= 1

Umax

∫ π
0

∫ 2π

0
U(θ,φ)dΩ , or,

∆Ω =
∫ π

0

∫ 2π

0
g(θ,φ)dΩ (beam solid angle) (14.2.15)
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where g(θ,φ) is the normalized gain of Eq. (14.2.10). Writing Prad = 4πUI, we have:

∆Ω = Prad

Umax
⇒ Umax = Prad

∆Ω
(14.2.16)

This is the general case of Eq. (14.2.12). We can also write:

Prad = Umax∆Ω (14.2.17)

This is convenient for the numerical evaluation of Prad. To get a measure of the
beamwidth of a highly directive antenna, we assume that the directive gain is equal to
its maximum uniformly over the entire solid angle ∆Ω in Fig. 14.2.3, that is, D(θ,φ)=
Dmax, for 0 ≤ θ ≤ ∆θB/2. This implies that the normalized gain will be:

g(θ,φ)=
{

1, if 0 ≤ θ ≤ ∆θB/2
0, if ∆θB/2 < θ ≤ π

Then, it follows from the definition (14.2.15) that:

∆Ω =
∫ ∆θB/2

0

∫ 2π

0
dΩ =

∫ ∆θB/2
0

∫ 2π

0
sinθdθdφ = 2π

(
1− cos

∆θB
2

)
(14.2.18)

Using the approximation cosx 	 1− x2/2, we obtain for small beamwidths:

∆Ω = π
4
(∆θB)2 (14.2.19)

and therefore the directivity can be expressed in terms of the beamwidth:

Dmax = 16

∆θ2
B

(14.2.20)

Example 14.2.2: Find the beamwidth in degrees of a lossless dish antenna with gain of 15
dB. The directivity and gain are equal in this case, therefore, Eq. (14.2.20) can be used
to calculate the beamwidth: ∆θB =

√
16/D, where D = G = 1015/10 = 31.62. We find

∆θB = 0.71 rads, or ∆θB = 40.76o.

For an antenna with 40 dB gain/directivity, we would have D = 104 and find ∆θB =
0.04 rads = 2.29o. ��

Example 14.2.3: A satellite in a geosynchronous orbit of 36,000 km is required to have com-
plete earth coverage. What is its antenna gain in dB and its beamwidth? Repeat if the
satellite is required to have coverage of an area equal the size of continental US.

Solution: The radius of the earth is R = 6400 km. Looking down from the satellite the earth
appears as a flat disk of area ∆S = πR2. It follows that the subtended solid angle and the
corresponding directivity/gain will be:

∆Ω = ∆S
r2

= πR2

r2
⇒ D = 4π

∆Ω
= 4r2

R2

With r = 36,000 km and R = 6400 km, we find D = 126.56 and in dB, DdB = 10 log10D
= 21.02 dB. The corresponding beamwidth will be ∆θB =

√
16/D = 0.36 rad = 20.37o.
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For the continental US, the coast-to-coast distance of 3000 mi, or 4800 km, translates to an
area of radius R = 2400 km, which leads to D = 900 and DdB = 29.54 dB. The beamwidth
is in this case ∆θB = 7.64o.

Viewing the earth as a flat disk overestimates the required angle ∆θB for earth coverage.
Looking down from a satellite at a height r, the angle between the vertical and the tangent
to the earth’s surface is given by sinθ = R/(r + R), which gives for r = 36,000 km,
θ = 8.68o. The subtended angle will be then ∆θB = 2θ = 0.303 rad = 17.36o. It follows
that the required antenna gain should be G = 16/∆θ2

B = 174.22 = 22.41 dB. The flat-disk
approximation is more accurate for smaller areas on the earth’s surface that lie directly
under the satellite. ��

Example 14.2.4: The radial distance of a geosynchronous orbit can be calculated by equating
centripetal and gravitational accelerations, and requiring that the angular velocity of the
satellite corresponds to the period of 1 day, that is,ω = 2π/T, where T = 24 hr = 86 400
sec. Let m be the mass of the satellite and M⊕ the mass of the earth (see Appendix A):

GmM⊕
r2

=mω2r =m
(

2π
T

)2

r ⇒ r =
(
GM⊕T2

4π2

)1/3

The distance r is measured from the Earth’s center. The corresponding height from the
surface of the Earth is h = r−R. For the more precise value ofR = 6378 km, the calculated
values are:

r = 42 237 km = 26 399 mi
h = 35 860 km = 22 414 mi

14.3 Effective Area

When an antenna is operating as a receiving antenna, it extracts a certain amount of
power from an incident electromagnetic wave. As shown in Fig. 14.3.1, an incident wave
coming from a far distance may be thought of as a uniform plane wave being intercepted
by the antenna.

Fig. 14.3.1 Effective area of an antenna.

The incident electric field sets up currents on the antenna. Such currents may be
represented by a Thévenin-equivalent generator, which delivers power to any connected
receiving load impedance.

The induced currents also re-radiate an electric field (referred to as the scattered
field), which interferes with the incident field causing a shadow region behind the an-
tenna, as shown in Fig. 14.3.1.
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The total electric field outside the antenna will be the sum of the incident and re-
radiated fields. For a perfectly conducting antenna, the boundary conditions are that the
tangential part of the total electric field vanish on the antenna surface. In Chap. 20, we
apply these boundary conditions to obtain and solve Hallén’s and Pocklington’s integral
equations satisfied by the induced current.

The power density of the incident wave at the location of the receiving antenna can
be expressed in terms of the electric field of the wave, Pinc = E2/2η.

The effective area or effective aperture A of the antenna is defined to be that area
which when intercepted by the incident power densityPinc gives the amount of received
power PR available at the antenna output terminals [95]:

PR = APinc (14.3.1)

For a lossy antenna, the available power at the terminals will be somewhat less than
the extracted radiated power Prad, by the efficiency factor PR = ePrad. Thus, we may
also define the maximum effective aperture Am as the area which extracts the power
Prad from the incident wave, that is, Prad = AmPinc. It follows that:

A = eAm (14.3.2)

The effective area depends on the direction of arrival (θ,φ) of the incident wave.
For all antennas, it can be shown that the effective area A(θ,φ) is related to the power
gain G(θ,φ) and the wavelength λ = c/f as follows:

G(θ,φ)= 4πA(θ,φ)
λ2

(14.3.3)

Similarly, because G(θ,φ)= eD(θ,φ), the maximum effective aperture will be re-
lated to the directive gain by:

D(θ,φ)= 4πAm(θ,φ)
λ2

(14.3.4)

In practice, the quoted effective area A of an antenna is the value corresponding to
the direction of maximal gain Gmax. We write in this case:

Gmax = 4πA
λ2

(14.3.5)

Similarly, we have for the directivity Dmax = 4πAm/λ2. Because Dmax is related to
the beam solid angle by Dmax = 4π/∆Ω, it follows that

Dmax = 4π
∆Ω

= 4πAm
λ2

⇒ Am∆Ω = λ2 (14.3.6)

Writing λ = c/f , we may express Eq. (14.3.5) in terms of frequency:

Gmax = 4πf2A
c2

(14.3.7)
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The effective area is not equal to the physical area of an antenna. For example, linear
antennas do not even have any characteristic physical area. For dish or horn antennas,
on the other hand, the effective area is typically a fraction of the physical area (about
55–65 percent for dishes and 60–80 percent for horns.) For example, if the dish has a
diameter of d meters, then we have:

A = ea 1

4
πd2 (effective area of dish antenna) (14.3.8)

where ea is the aperture efficiency factor, typically ea = 0.55–0.65. Combining Eqs.
(14.3.5) and (14.3.8), we obtain:

Gmax = ea
(
πd
λ

)2

(14.3.9)

Antennas fall into two classes: fixed-area antennas, such as dish antennas, for
which A is independent of frequency, and fixed-gain antennas, such as linear antennas,
for which G is independent of frequency. For fixed-area antennas, the gain increases
quadratically with f . For fixed-gain antennas, A decreases quadratically with f .

Example 14.3.1: Linear antennas are fixed-gain antennas. For example, we will see in Sec. 15.1
that the gains of a (lossless) Hertzian dipole, a halfwave dipole, and a monopole antenna
are the constants:

Ghertz = 1.5, Gdipole = 1.64, Gmonopole = 3.28

Eq. (14.3.5) gives the effective areas A = Gλ2/4π:

Ahertz = 0.1194λ2, Adipole = 0.1305λ2, Amonopole = 0.2610λ2

In all cases the effective area is proportional to λ2 and decreases with f2. In the case of the
commonly used monopole antenna, the effective area is approximately equal to a rectangle
of sides λ and λ/4, the latter being the physical length of the monopole. ��

Example 14.3.2: Determine the gain in dB of a dish antenna of diameter of 0.5 m operating at
a satellite downlink frequency of 4 GHz and having 60% aperture efficiency. Repeat if the
downlink frequency is 11 GHz. Repeat if the diameter is doubled to 1 m.

Solution: The effective area and gain of a dish antenna with diameter d is:

A = ea 1

4
πd2 ⇒ G = 4πA

λ2
= ea

(
πd
λ

)2

= ea
(
πfd
c

)2

The calculated gains G in absolute and dB units are in the four cases:

d = 0.5 m d = 1 m

f = 4 GHz 263 = 24 dB 1052 = 30 dB

f = 11 GHz 1990 = 33 dB 7960 = 39 dB

Doubling the diameter (or the frequency) increases the gain by 6 dB, or a factor of 4.
Conversely, if a dish antenna is to have a desired gain G (for example, to achieve a desired
beamwidth), the above equation can be solved for the required diameter d in terms of G
and f . ��
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The beamwidth of a dish antenna can be estimated by combining the approximate ex-
pression (14.2.20) with (14.3.5) and (14.3.8). Assuming a lossless antenna with diameter
d and 100% aperture efficiency, and taking Eq. (14.2.20) literally, we have:

Gmax = 4πA
λ2

=
(
πd
λ

)2

= Dmax = 16

∆θ2
B

Solving for ∆θB, we obtain the expression in radians and in degrees:

∆θB = 4

π
λ
d
= 1.27

λ
d
, ∆θB = 73o λ

d
(14.3.10)

Thus, the beamwidth depends inversely on the antenna diameter. In practice, quick
estimates of the 3-dB beamwidth in degrees are obtained by replacing Eq. (14.3.10) by
the formula [757]:

∆θB = 1.22
λ
d
= 70o λ

d
(3-dB beamwidth of dish antenna) (14.3.11)

The constant 70o represents only a rough approximation (other choices are in the
range 65–75o.) Solving for the ratio d/λ = 1.22/∆θB (here, ∆θB is in radians), we may
express the maximal gain inversely with ∆θ2

B as follows:

Gmax = ea
(
πd
λ

)2

= eaπ2(1.22)2

∆θ2
B

For a typical aperture efficiency of 60%, this expression can be written in the following
approximate form, with ∆θB given in degrees:

Gmax = 30 000

∆θ2
B

(14.3.12)

Equations (14.3.11) and (14.3.12) must be viewed as approximate design guidelines,
or rules of thumb [757], for the beamwidth and gain of a dish antenna.

Example 14.3.3: For the 0.5-m antenna of the previous example, estimate its beamwidth for
the two downlink frequencies of 4 GHz and 11 GHz.

The operating wavelengths are in the two cases: λ = 7.5 cm and λ = 2.73 cm. Using
Eq. (14.3.11), we find ∆θB = 10.5o and ∆θB = 3.8o. ��

Example 14.3.4: A geostationary satellite at height of 36,000 km is required to have earth cov-
erage. Using the approximate design equations, determine the gain in dB and the diameter
of the satellite antenna for a downlink frequency of 4 GHz. Repeat for 11 GHz.

Solution: This problem was considered in Example 14.2.3. The beamwidth angle for earth cov-
erage was found to be ∆θB = 17.36o. From Eq. (14.3.11), we find:

d = λ 70o

∆θB
= 7.5

70o

17.36o
= 30 cm

From Eq. (14.3.12), we find:

G = 30 000

∆θ2
B
= 30 000

17.362
= 100 = 20 dB

For 11 GHz, we find d = 11 cm, and G remains the same. ��
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In Eqs. (14.2.20) and (14.3.12), we implicitly assumed that the radiation pattern was
independent of the azimuthal angle φ. When the pattern is not azimuthally symmetric,
we may define two orthogonal polar directions parametrized, say, by angles θ1 and θ2,
as shown in Fig. 14.3.2.

Fig. 14.3.2 Half-power beamwidths in two principal polar directions.

In this case dΩ = dθ1 dθ2 and we may approximate the beam solid angle by the
product of the corresponding 3-dB beamwidths in these two directions, ∆Ω = ∆θ1∆θ2.
Then, the directivity takes the form (with the angles in radians and in degrees):

Dmax = 4π
∆Ω

= 4π
∆θ1∆θ2

= 41 253

∆θo
1∆θ

o
2

(14.3.13)

Equations (14.3.12) and (14.3.13) are examples of a more general expression that
relates directivity or gain to the 3-dB beamwidths for aperture antennas [661,673]:

Gmax = p
∆θ1∆θ2

(14.3.14)

where p is a gain-beamwidth constant whose value depends on the particular aperture
antenna. We will see several examples of this relationship in Chapters 16 and 17. Prac-
tical values of p fall in the range 25 000–35 000 (with the beamwidth angles in degrees.)

14.4 Antenna Equivalent Circuits

To a generator feeding a transmitting antenna as in Fig. 14.2.1, the antenna appears as
a load. Similarly, a receiver connected to a receiving antenna’s output terminals will ap-
pear to the antenna as a load impedance. Such simple equivalent circuit representations
of transmitting and receiving antennas are shown in Fig. 14.4.1, where in both cases V
is the equivalent open-circuit Thévenin voltage.

In the transmitting antenna case, the antenna is represented by a load impedance
ZA, which in general will have both a resistive and a reactive part, ZA = RA + jXA.
The reactive part represents energy stored in the fields near the antenna, whereas the
resistive part represents the power losses which arise because (a) power is radiated
away from the antenna and (b) power is lost into heat in the antenna circuits and in the
medium surrounding the antenna.

The generator has its own internal impedance ZG = RG + jXG. The current at the
antenna input terminals will be Iin = V/(ZG+ZA), which allows us to determine (a) the
total power Ptot produced by the generator, (b) the power PT delivered to the antenna
terminals, and (c) the power PG lost in the generator’s internal resistance RG. These are:
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Fig. 14.4.1 Circuit equivalents of transmitting and receiving antennas.

Ptot = 1

2
Re(VI∗in)=

1

2

|V|2(RG +RA)
|ZG + ZA|2

PT = 1

2
|Iin|2RA = 1

2

|V|2RA
|ZG + ZA|2 , PG = 1

2
|Iin|2RG = 1

2

|V|2RG
|ZG + ZA|2

(14.4.1)

It is evident that Ptot = PT+PG. A portion of the power PT delivered to the antenna
is radiated away, say an amount Prad, and the rest is dissipated as ohmic losses, say
Pohm. Thus, PT = Prad + Pohm. These two parts can be represented conveniently by
equivalent resistances by writing RA = Rrad + Rohm, where Rrad is referred to as the
radiation resistance. Thus, we have,

PT = 1

2
|Iin|2RA = 1

2
|Iin|2Rrad + 1

2
|Iin|2Rohm = Prad + Pohm (14.4.2)

The efficiency factor of Eq. (14.2.7) is evidently:

e = Prad

PT
= Rrad

RA
= Rrad

Rrad +Rohm

To maximize the amount of power PT delivered to the antenna (and thus minimize
the power lost in the generator’s internal resistance), the load impedance must satisfy
the usual conjugate matching condition:

ZA = Z∗G � RA = RG, XA = −XG
In this case, |ZG + ZA|2 = (RG + RA)2+(XG +XA)2= 4R2

G, and it follows that the
maximum power transferred to the load will be one-half the total—the other half being
lost in RG, that is,

PT,max = 1

2
Ptot = |V|2

8RG
(14.4.3)

In the notation of Chap. 12, this is the available power from the generator. If the
generator and antenna are mismatched, we have:

PT = |V|2
8RG

4RARG
|ZA + ZG|2 = PT,max

(
1− |Γgen|2

)
, Γgen = ZA − Z∗G

ZA + ZG (14.4.4)
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Eq. (14.4.3) is often written in terms of the rms value of the source, that is, Vrms =
|V|/√2, which leads to PT,max = V2

rms/4RG.
The case of a receiving antenna is similar. The induced currents on the antenna can

be represented by a Thévenin-equivalent generator (the open-circuit voltage at the an-
tenna output terminals) and an internal impedanceZA. A consequence of the reciprocity
principle is that ZA is the same whether the antenna is transmitting or receiving.

The current into the load is IL = V/(ZA + ZL), where the load impedance is ZL =
RL + jXL. As before, we can determine the total power Ptot produced by the generator
(i.e., intercepted by the antenna) and the power PR delivered to the receiving load:

Ptot = 1

2
Re(VI∗L )=

1

2

|V|2(RL +RA)
|ZL + ZA|2 , PR = 1

2
|IL|2RL = 1

2

|V|2RL
|ZL + ZA|2 (14.4.5)

Under conjugate matching, ZL = Z∗A, we find the maximum power delivered to the load:

PR,max = |V|2
8RA

(14.4.6)

If the load and antenna are mismatched, we have:

PR = |V|2
8RA

4RARL
|ZL + ZA|2 = PR,max

(
1− |Γload|2

)
, Γload = ZL − Z∗A

ZL + ZA (14.4.7)

It is tempting to interpret the power dissipated in the internal impedance of the
Thévenin circuit of the receiving antenna (that is, in ZA) as representing the amount
of power re-radiated or scattered by the antenna. However, with the exception of the
so-called minimum-scattering antennas, such interpretation is not correct.

The issue has been discussed by Silver [21] and more recently in Refs. [634–637]. See
also Refs. [610–633] for further discussion of the transmitting, receiving, and scattering
properties of antennas.

14.5 Effective Length

The polarization properties of the electric field radiated by an antenna depend on the
transverse component of the radiation vector F⊥ according to Eq. (13.10.5):

E = −jkη e
−jkr

4πr
F⊥ = −jkη e

−jkr

4πr
(Fθ θ̂θθ+ Fφ φ̂φφ)

The vector effective length, or effective height of a transmitting antenna is defined
in terms of F⊥ and the input current to the antenna terminals Iin as follows [602]:†

h = −F⊥
Iin

(effective length) (14.5.1)

In general, h is a function of θ,φ. The electric field is, then, written as:

E = jkη e
−jkr

4πr
Iin h (14.5.2)

†Often, it is defined with a positive sign h = F⊥/Iin.
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The definition of h is motivated by the case of a z-directed Hertzian dipole antenna,
which can be shown to have h = l sinθθ̂θθ. More generally, for a z-directed linear antenna
with current I(z), it follows from Eq. (15.1.5) that:

h(θ)= h(θ)θ̂θθ , h(θ)= sinθ
1

Iin

∫ l/2
−l/2

I(z′)ejkz
′ cosθdz′ (14.5.3)

As a consequence of the reciprocity principle, it can be shown [602] that the open-
circuit voltage V at the terminals of a receiving antenna is given in terms of the effective
length and the incident field E i by:

V = E i · h (14.5.4)

The normal definition of the effective area of an antenna and the resultG = 4πA/λ2

depend on the assumptions that the receiving antenna is conjugate-matched to its load
and that the polarization of the incident wave matches that of the antenna.

The effective length helps to characterize the degree of polarization mismatch that
may exist between the incident field and the antenna. To see how the gain-area relation-
ship must be modified, we start with the definition (14.3.1) and use (14.4.5):

A(θ,φ)= PR
Pinc

=
1

2
RL|IL|2
1

2η
|Ei|2

= ηRL|V|2
|ZL + ZA|2|Ei|2 =

ηRL|Ei · h|2
|ZL + ZA|2|Ei|2

Next, we define the polarization and load mismatch factors by:

epol = |E i · h|2
|E i|2 |h|2

eload = 4RLRA
|ZL + ZA|2 = 1− |Γload|2 , where Γload = ZL − Z∗A

ZL + ZA

(14.5.5)

The effective area can be written then in the form:

A(θ,φ)= η|h|2
4RA

eload epol (14.5.6)

On the other hand, using (14.1.4) and (14.4.1), the power gain may be written as:

G(θ,φ)= 4πU(θ,φ)
PT

=
4π
ηk2|F⊥|2

32π2

1

2
RA|Iin|2

= πη|h|2
λ2RA

⇒ η|h|2
4RA

= λ2

4π
G(θ,φ)

Inserting this in Eq. (14.5.6), we obtain the modified area-gain relationship [603]:

A(θ,φ)= eload epol
λ2

4π
G(θ,φ) (14.5.7)

Assuming that the incident field originates at some antenna with its own effective
length hi, then E i will be proportional to hi and we may write the polarization mismatch
factor in the following form:

epol = |hi · h|2
|hi|2 |h|2 = |ĥi · ĥ|2 , where ĥi = hi

|hi| , ĥ = h

|h|
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When the load is conjugate-matched, we have eload = 1, and when the incident field
has matching polarization with the antenna, that is, ĥi = ĥ

∗
, then, epol = 1.

14.6 Communicating Antennas

The communication between a transmitting and a receiving antenna can be analyzed
with the help of the concept of gain and effective area. Consider two antennas oriented
towards the maximal gain of each other and separated by a distance r, as shown in
Fig. 14.6.1.

Fig. 14.6.1 Transmitting and receiving antennas.

Let {PT,GT,AT} be the power, gain, and effective area of the transmitting antenna,
and {PR,GR,AR} be the same quantities for the receiving antenna. In the direction of
the receiving antenna, the transmitting antenna has PEIRP = PTGT and establishes a
power density at distance r:

PT = dPT
dS

= PEIRP

4πr2
= PTGT

4πr2
(14.6.1)

From the incident power density PT, the receiving antenna extracts power PR given
in terms of the effective area AR as follows:

PR = ARPT = PTGTAR
4πr2

(Friis formula) (14.6.2)

This is known as the Friis formula for communicating antennas and can be written in
several different equivalent forms. Replacing GT in terms of the transmitting antenna’s
effective area AT, that is, GT = 4πAT/λ2, Eq. (14.6.2) becomes:

PR = PTATAR
λ2r2

(14.6.3)

A better way of rewriting Eq. (14.6.2) is as a product of gain factors. Replacing
AR = λ2GR/4π, we obtain:

PR = PTGTGRλ2

(4πr)2
(14.6.4)
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The effect of the propagation path, which causes PR to attenuate with the square of
the distance r, can be quantified by defining the free-space loss and gain by

Lf =
(

4πr
λ

)2

, Gf = 1

Lf
=
(
λ

4πr

)2

(free-space loss and gain) (14.6.5)

Then, Eq. (14.6.4) can be written as the product of the transmit and receive gains
and the propagation loss factor:

PR = PTGT
(
λ

4πr

)2

GR = PTGT 1

Lf
GR = PTGTGfGR (14.6.6)

Such a gain model for communicating antennas is illustrated in Fig. 14.6.1. An ad-
ditional loss factor, Gother = 1/Lother, may be introduced, if necessary, representing
other losses, such as atmospheric absorption and scattering. It is customary to express
Eq. (14.6.6) additively in dB, where (PR)dB= 10 log10 PR, (GT)dB= 10 log10GT, etc.:

(PR)dB= (PT)dB+(GT)dB−(Lf)dB+(GR)dB (14.6.7)

Example 14.6.1: A geosynchronous satellite is transmitting a TV signal to an earth-based sta-
tion at a distance of 40,000 km. Assume that the dish antennas of the satellite and the
earth station have diameters of 0.5 m and 5 m, and aperture efficiencies of 60%. If the satel-
lite’s transmitter power is 6 W and the downlink frequency 4 GHz, calculate the antenna
gains in dB and the amount of received power.

Solution: The wavelength at 4 GHz is λ = 7.5 cm. The antenna gains are calculated by:

G = ea
(
πd
λ

)2

⇒ Gsat = 263.2 = 24 dB, Gearth = 26320 = 44 dB

Because the ratio of the earth and satellite antenna diameters is 10, the corresponding
gains will differ by a ratio of 100, or 20 dB. The satellite’s transmitter power is in dB,
PT = 10 log10(6)= 8 dBW, and the free-space loss and gain:

Lf =
(

4πr
λ

)2

= 4× 1019 ⇒ Lf = 196 dB, Gf = −196 dB

It follows that the received power will be in dB:

PR = PT +GT − Lf +GR = 8+ 24− 196+ 44 = −120 dBW ⇒ PR = 10−12 W

or, PR = 1 pW (pico-watt). Thus, the received power is extremely small. ��

When the two antennas are mismatched in their polarization with a mismatch factor
epol = |ĥR · ĥT|2, and the receiving antenna is mismatched to its load with eload =
1−|Γload|2, then the Friis formula (14.6.2) is still valid, but replacingAR using Eq. (14.5.7),
leads to a modified form of Eq. (14.6.4):

PR = PTGTGRλ2

(4πr)2
|ĥR · ĥT|2

(
1− |Γload|2

)
(14.6.8)
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14.7 Antenna Noise Temperature

We saw in the above example that the received signal from a geosynchronous satellite
is extremely weak, of the order of picowatts, because of the large free-space loss which
is typically of the order of 200 dB.

To be able to detect such a weak signal, the receiving system must maintain a noise
level that is lower than the received signal. Noise is introduced into the receiving system
by several sources.

In addition to the desired signal, the receiving antenna picks up noisy signals from
the sky, the ground, the weather, and other natural or man-made noise sources. These
noise signals, coming from different directions, are weighted according to the antenna
gain and result into a weighted average noise power at the output terminals of the
antenna. For example, if the antenna is pointing straight up into the sky, it will still
pick up through its sidelobes some reflected signals as well as thermal noise from the
ground. Ohmic losses in the antenna itself will be another source of noise.

The antenna output is sent over a feed line (such as a waveguide or transmission
line) to the receiver circuits. The lossy feed line will attenuate the signal further and
also introduce its own thermal noise.

The output of the feed line is then sent into a low-noise-amplifier (LNA), which pre-
amplifies the signal and introduces only a small amount of thermal noise. The low-noise
nature of the LNA is a critical property of the receiving system.

The output of the LNA is then passed on to the rest of the receiving system, consisting
of downconverters, IF amplifiers, and so on. These subsystems will also introduce their
own gain factors and thermal noise.

Such a cascade of receiver components is depicted in Fig. 14.7.1. The sum total of
all the noises introduced by these components must be maintained at acceptably low
levels (relative to the amplified desired signal.)

Fig. 14.7.1 Typical receiving antenna system.

The average power N (in Watts) of a noise source within a certain bandwidth of B
Hz can be quantified by means of an equivalent temperature T defined through:

N = kTB (noise power within bandwidth B) (14.7.1)

where k is Boltzmann’s constant k = 1.3803×10−23 W/Hz K and T is in degrees Kelvin.
The temperature T is not necessarily the physical temperature of the source, it only
provides a convenient way to express the noise power. (For a thermal source, T is
indeed the physical temperature.) Eq. (14.7.1) is commonly expressed in dB as:

NdB = TdB + BdB + kdB (14.7.2)
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where TdB = 10 log10T, BdB = 10 log10 B, and kdB = 10 log10 k is Boltzmann’s constant
in dB: kdB = −228.6 dB. Somewhat incorrectly, but very suggestively, the following units
are used in practice for the various terms in Eq. (14.7.2):

dB W = dB K+ dB Hz+ dB W/Hz K

The bandwidth B depends on the application. For example, satellite transmissions
of TV signals require a bandwidth of about 30 MHz. Terrestrial microwave links may
have B of 60 MHz. Cellular systems may have B of the order of 30 kHz for AMPS or 200
kHz for GSM.

Example 14.7.1: Assuming a 30-MHz bandwidth, we give below some examples of noise powers
and temperatures and compute the corresponding signal-to-noise ratio S/N, relative to a
1 pW reference signal (S = 1 pW).

T TdB N = kTB NdB S/N

50 K 17.0 dBK 0.0207 pW −136.8 dBW 16.8 dB

100 K 20.0 dBK 0.0414 pW −133.8 dBW 13.8 dB

200 K 23.0 dBK 0.0828 pW −130.8 dBW 10.8 dB

290 K 24.6 dBK 0.1201 pW −129.2 dBW 9.2 dB

500 K 27.0 dBK 0.2070 pW −126.8 dBW 6.8 dB

1000 K 30.0 dBK 0.4141 pW −123.8 dBW 3.8 dB

2400 K 33.8 dBK 1.0000 pW −120.0 dBW 0.0 dB

The last example shows that 2400 K corresponds to 1 pW noise. ��

The average noise powerNant at the antenna terminals is characterized by an equiv-
alent antenna noise temperature Tant, such that Nant = kTantB.

The temperatureTant represents the weighted contributions of all the radiating noise
sources picked up by the antenna through its mainlobe and sidelobes. The value of Tant

depends primarily on the orientation and elevation angle of the antenna, and what the
antenna is looking at.

Example 14.7.2: An earth antenna looking at the sky “sees” a noise temperature Tant of the
order of 30–60 K. Of that, about 10 K arises from the mainlobe and sidelobes pointing
towards the sky and 20–40 K from sidelobes pointing backwards towards the earth [5,650–
654]. In rainy weather, Tant might increase by 60 K or more.

The sky noise temperature depends on the elevation angle of the antenna. For example,
at an elevations of 5o, 10o, and 30o, the sky temperature is about 20 K, 10 K, and 4 K at 4
GHz, and 25 K, 12 K, and 5 K at 6 GHz [650]. ��

Example 14.7.3: The noise temperature of the earth viewed from space, such as from a satellite,
is about 254 K. This is obtained by equating the sun’s energy that is absorbed by the earth
to the thermal radiation from the earth [650]. ��

Example 14.7.4: For a base station cellular antenna looking horizontally, atmospheric noise
temperature contributes about 70–100 K at the cellular frequency of 1 GHz, and man-made
noise contributes another 10–120 K depending on the area (rural or urban). The total value
of Tant for cellular systems is in the range of 100–200 K [655,656]. ��
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In general, a noise source in some direction (θ,φ) will be characterized by an ef-
fective noise temperature T(θ,φ), known as the brightness temperature, such that the
radiated noise power in that direction will be N(θ,φ)= kT(θ,φ)B. The antenna tem-
peratureTant will be given by the average over all such sources weighted by the receiving
gain of the antenna:

Tant = 1

∆Ω

∫ π
0

∫ 2π

0
T(θ,φ)g(θ,φ)dΩ (14.7.3)

where ∆Ω is the beam solid angle of the antenna. It follows from Eq. (14.2.15) that ∆Ω
serves as a normalization factor for this average:

∆Ω =
∫ π

0

∫ 2π

0
g(θ,φ)dΩ (14.7.4)

Eq. (14.7.3) can also be written in the following equivalent forms, in terms of the
directive gain or the effective area of the antenna:

Tant = 1

4π

∫ π
0

∫ 2π

0
T(θ,φ)D(θ,φ)dΩ = 1

λ2

∫ π
0

∫ 2π

0
T(θ,φ)A(θ,φ)dΩ

As an example of Eq. (14.7.3), we consider the case of a point source, such as the
sun, the moon, a planet, or a radio star. Then, Eq. (14.7.3) gives:

Tant = Tpoint
gpoint∆Ωpoint

∆Ω

where gpoint and∆Ωpoint are the antenna gain in the direction of the source and the small
solid angle subtended by the source. If the antenna’s mainlobe is pointing towards that
source then, gpoint = 1.

As another example, consider the case of a spatially extended noise source, such as
the sky, which is assumed to have a constant temperature Text over its angular width.
Then, Eq. (14.7.3) becomes:

Tant = Text
∆Ωext

∆Ω
, where ∆Ωext =

∫
ext
g(θ,φ)dΩ

The quantity ∆Ωext is the portion of the antenna’s beam solid angle occupied by the
extended source.

As a third example, consider the case of an antenna pointing towards the sky and
picking up the atmospheric sky noise through its mainlobe and partly through its side-
lobes, and also picking up noise from the ground through the rest of its sidelobes. As-
suming the sky and ground noise temperatures are uniform over their spatial extents,
Eq. (14.7.3) will give approximately:

Tant = Tsky
∆Ωsky

∆Ω
+Tground

∆Ωground

∆Ω

where ∆Ωsky and ∆Ωground are the portions of the beam solid angle occupied by the sky
and ground:

∆Ωsky =
∫

sky
g(θ,φ)dΩ , ∆Ωground =

∫
ground

g(θ,φ)dΩ
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Assuming that the sky and ground beam solid angles account for the total beam
solid angle, we have

∆Ω = ∆Ωsky +∆Ωground

The sky and ground beam efficiency ratios may be defined by:

esky = ∆Ωsky

∆Ω
, eground = ∆Ωground

∆Ω
, esky + eground = 1

Then, the antenna noise temperature can be written in the form:

Tant = eskyTsky + egroundTground (14.7.5)

Example 14.7.5: At 4 GHz and elevation angle of 30o, the sky noise temperature is about 4 K.
Assuming a ground temperature of 290 K and that 90% of the beam solid angle of an earth-
based antenna is pointing towards the sky and 10% towards the ground, we calculate the
effective antenna temperature:

Tant = eskyTsky + egroundTground = 0.9× 4+ 0.1× 290 = 32.6 K

If the beam efficiency towards the sky changes to 85%, then esky = 0.85, eground = 0.15 and
we find Tant = 46.9 K. ��

The mainlobe and sidelobe beam efficiencies of an antenna represent the proportions
of the beam solid angle occupied by the mainlobe and sidelobe of the antenna. The
corresponding beam solid angles are defined by:

∆Ω =
∫

tot
g(θ,φ)dΩ =

∫
main

g(θ,φ)dΩ+
∫

side
g(θ,φ)dΩ = ∆Ωmain +∆Ωside

Thus, the beam efficiencies will be:

emain = ∆Ωmain

∆Ω
, eside = ∆Ωside

∆Ω
, emain + eside = 1

Assuming that the entire mainlobe and a fraction, say α, of the sidelobes point
towards the sky, and therefore, a fraction (1 − α) of the sidelobes will point towards
the ground, we may express the sky and ground beam solid angles as follows:

∆Ωsky = ∆Ωmain +α∆Ωside

∆Ωground = (1−α)∆Ωside

or, in terms of the efficiency factors:

esky = emain +αeside = emain +α(1− emain)

eground = (1−α)eside = (1−α)(1− emain)

Example 14.7.6: Assuming an 80% mainlobe beam efficiency and that half of the sidelobes
point towards the sky and the other half towards the ground, we have emain = 0.8 and
α = 0.5, which lead to the sky beam efficiency esky = 0.9. ��
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14.8 System Noise Temperature

In a receiving antenna system, the signal-to-noise ratio at the receiver must take into
account not only the noise picked up by the antenna, and quantified by Tant, but also all
the internal noises introduced by the various components of the receiver.

Every device, passive or active, is a source of noise generated internally. Such noise
may be modeled as an internal noise source acting at the input of the device, as shown
in Fig. 14.8.1. (Alternatively, the noise source can be added at the output, but the input
convention is more common.)

Fig. 14.8.1 Noise model of a device.

The amount of added noise power is expressed in terms of the effective noise tem-
perature Te of the device:

Ne = kTeB (effective internal noise) (14.8.1)

The sum of Ne and the noise power of the input signal Nin will be the total noise
power, or the system noise power at the input to the device. If the input noise is expressed
in terms of its own noise temperature, Nin = kTinB, we will have:

Nsys = Nin +Ne = k(Tin +Te)B = kTsysB (total input noise) (14.8.2)

where we introduced the system noise temperature† at the device input:

Tsys = Tin +Te (system noise temperature) (14.8.3)

If the device has power gain G,‡ then the noise power at the output of the device
and its equivalent temperature, Nout = kToutB, can be expressed as follows:

Nout = G(Nin +Ne)= GNsys

Tout = G(Tin +Te)= GTsys

(14.8.4)

One interpretation of the system noise powerNsys = kTsysB is that it represents the
required input power to an equivalent noiseless system (with the same gain) that will
produce the same output power as the actual noisy system.

If a desired signal with noise power Sin is also input to the device, then the signal
power at the output will be Sout = GSin. The system signal-to-noise ratio is defined to be
the ratio of the input signal power to total system noise power:

†Also called the operating noise temperature.
‡More precisely, G is the available power gain of the device, in the notation of Sec. 12.6.
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SNRsys = Sin

Nsys
= Sin

kTsysB
= Sin

k(Tin +Te)B (system SNR) (14.8.5)

The SNR is the same whether it is measured at the input or the output of the device;
indeed, multiplying numerator and denominator by G and using (14.8.4), we have:

SNRsys = Sin

Nsys
= Sout

Nout
(14.8.6)

A related concept is that of the noise figure of the device, which also characterizes
the internally generated noise. It is related to the effective noise temperature Te by:

F = 1+ Te
T0

� Te = (F − 1)T0 (14.8.7)

where T0 is the standardized constant temperature T0 = 290 K.
The device of Fig. 14.8.1 can be passive or active. The case of a passive attenuator,

such as a lossy transmission line or waveguide connecting the antenna to the receiver,
deserves special treatment.

In this case, the gain G will be less than unity G < 1, representing a power loss.
For a line of length l and attenuation constant α (nepers per meter), we will have G =
e−2αl. The corresponding loss factor will be L = G−1 = e2αl. If αl � 1, we can write
approximately G = 1− 2αl and L = 1+ 2αl.

If the physical temperature of the line is Tphys then, from either the input or output
end, the line will appear as a thermal noise source of power kTphysB. Therefore, the
condition Nin = Nout = kTphysB implies that kTphysB = Gk(Tphys +Te)B, which gives:

Te = 1

G
(1−G)Tphys = (L− 1)Tphys (attenuator) (14.8.8)

If the physical temperature is Tphys = T0 = 290 K, then, by comparing to Eq. (14.8.7)
it follows that the noise figure of the attenuator will be equal to its loss:

Te = (L− 1)T0 = (F − 1)T0 ⇒ F = L = 1

G

When the input to the attenuator is an external noise source of power Nin = kTinB,
the system noise temperature at the input and at the output of the attenuator will be:

Tsys = Tin +Te = Tin + (L− 1)Tphys

Tout = GTsys = GTin + (1−G)Tphys = 1

L
Tin +

(
1− 1

L

)
Tphys

(14.8.9)

The last equation can be expressed in terms of the input and output powers Nin =
kTinB and Nout = kToutB:

Nout = 1

L
Nin +

(
1− 1

L

)
kTphysB (14.8.10)
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Thus, the input power is attenuated as expected, but the attenuator also adds its
own thermal noise power. More generally, if the input power arises from signal plus
noise Pin = Sin +Nin, the power at the output will be Pout = Sout +Nout = GSin +Nout:

Pout = 1

L
Pin +

(
1− 1

L

)
kTphysB (14.8.11)

When two or more devices are cascaded, each will contribute its own internal noise.
Fig. 14.8.2 shows two such devices with available power gains G1 and G2 and effec-
tive noise temperatures T1 and T2. The cascade combination can be replaced by an
equivalent device with gain G1G2 and effective noise temperature T12.

Fig. 14.8.2 Equivalent noise model of two cascaded devices.

The equivalent temperature T12 can be determined by superposition. The internal
noise power added by the first device, N1 = kT1B, will go through the gains G1 and
G2 and will contribute an amount G1G2N1 to the output. The noise generated by the
second device, N2 = kT2B, will contribute an amount G2N2. The sum of these two
powers will be equivalent to the amount contributed to the output by the combined
system, G1G2N12 = G1G2kT12B. Thus,

G1G2kT12B = G1G2kT1B+G2kT2B ⇒ G1G2T12 = G1G2T1 +G2T2

It follows that:

T12 = T1 + 1

G1
T2 (equivalent noise temperature) (14.8.12)

If G1 is a large gain, G1  1, then the contribution of the second device is reduced
drastically. On the other hand, if the first device is an attenuator, such as a transmission
line, then the contribution of T2 will be amplified because G1 < 1.

According to Eqs. (14.8.3) and (14.8.4), the system noise temperatures at the overall
input, at the output of G1, and at the overall output will be:

Tsys = Tsa = Tin +T12 = Tin +T1 + 1

G1
T2

Tsb = G1Tsa = G1(Tin +T1)+T2

Tout = G2Tsb = G1G2Tsys = G1G2(Tin +T1)+G2T2

(14.8.13)
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The system SNR will be:

SNRsys = Sin

kTsysB
= Sin

k(Tin +T12)B

The signal powers at points a, b, and at the output will be Sa = Sin, Sb = G1Sa,
and Sout = G2Sb = G1G2Sa. It follows from Eq. (14.8.13) that the system SNR will be
the same, regardless of whether it is referred to the point a, the point b, or the overall
output:

SNRsys = SNRa = SNRb = SNRout

For three cascaded devices, shown in Fig. 14.8.3, any pair of two consecutive ones can
be replaced by its equivalent, according to Eq. (14.8.12). For example, the first two can be
replaced by T12 and then combined with T3 to give the overall equivalent temperature:

T12 = T1 + 1

G1
T2 , T123 = T12 + 1

G1G2
T3

Fig. 14.8.3 Equivalent noise temperatures of three cascaded devices.

Alternatively, we can replace the last two with an equivalent temperature T23 and
then combine with the first to get:

T23 = T2 + 1

G2
T3 , T123 = T1 + 1

G1
T23

From either point of view, we obtain the equivalent temperature:

T123 = T1 + 1

G1
T2 + 1

G1G2
T3 (14.8.14)

The system SNR will be:

SNRsys = Sin

kTsysB
= Sin

k(Tin +T123)B

It is invariant with respect to its reference point:

SNRsys = SNRa = SNRb = SNRc = SNRout
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When expressed in terms of noise figures, Eqs. (14.8.12) and (14.8.14) are also known
as Friis’s formulas [643], for example, defining the equivalent noise figure as F123 =
1+T123/T0, we have:

F123 = F1 + F2 − 1

G1
+ F3 − 1

G1G2
(14.8.15)

We apply now these results to the antenna receiver shown in Fig. 14.7.1, identifying
the three cascaded components as the feed line, the LNA amplifier, and the rest of the
receiver circuits. The corresponding noise temperatures are Tfeed, TLNA, and Trec. The
effective noise temperature Teff of the combined system will be:

Teff = Tfeed + 1

Gfeed
TLNA + 1

GfeedGLNA
Trec (14.8.16)

Using Eq. (14.8.8), we may replace Tfeed in terms of the physical temperature:

Teff = 1

Gfeed
(1−Gfeed)Tphys + 1

Gfeed
TLNA + 1

GfeedGLNA
Trec (14.8.17)

The input noise temperatureTin to this combined system is the antenna temperature
Tant. It follows that system noise temperature, referred to either the antenna output
terminals (point a), or to the LNA input (point b), will be:

Tsys = Tsa = Tant +Teff = Tant +
(

1

Gfeed
− 1

)
Tphys + 1

Gfeed
TLNA + 1

GfeedGLNA
Trec

Tsb = GfeedTsa = GfeedTant + (1−Gfeed)Tphys +TLNA + 1

GLNA
Trec

The importance of a high-gain low-noise amplifier is evident from Eq. (14.8.17). The
high value of GLNA will minimize the effect of the remaining components of the receiver
system, while the small value of TLNA will add only a small amount of noise. Typical
values of TLNA can range from 20 K for cooled amplifiers to 100 K at room temperatures.

The feed line can have a major impact. If the line is too lossy or too long, the quantity
Gfeed = e−2αl will be small, or 1/Gfeed large, contributing a significant amount to the
system noise temperature. Often, the LNA is mounted before the feed line, near the focal
point of the receiving antenna, so that the effect of the feed line will be suppressed by
the factor GLNA.

Similar benefits arise in base station antennas for wireless communications, where
high-gain amplifiers can be placed on top of the antenna towers, instead of at the base
station, which can be fairly far from the towers [656]. Cable losses in such applications
can be in the range 2–4 dB (with gain factors Gf = 0.63–0.40.)

The signal to system-noise ratio of the receiving system (referred to point a of
Fig. 14.7.1) will be the ratio of the received power PR to the system noiseNsys = kTsysB.
Using the Friis formula (for power transmission), we have:

SNR = PR
Nsys

= PR
kTsysB

= (PTGT) 1

Lf

(
GR
Tsys

)
1

kB
(14.8.18)
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This ratio is also called the carrier-to-system-noise ratio and is denoted byC/N. For a
given transmitting EIRP, PTGT, the receiver performance depends critically on the ratio
GR/Tsys, referred to as the G/T ratio of the receiving antenna, or the figure of merit. It
is usually measured in dB/K. In dB, Eq. (14.8.18) reads as:

(SNR)dB= (PTGT)dB−(Lf)dB+
(
GR
Tsys

)
dB

− kdB − BdB (14.8.19)

The receiver SNR can be also be referred to LNA input (point b). The G/T ratio will
not change in value, but it will be the ratio of the signal gain after the feed line divided
by the system temperature Tsb, that is,

SNR = (PTGT) 1

Lf

(
GR
Tsys

)
1

kB
= (PTGT) 1

Lf

(
GRGfeed

Tsb

)
1

kB
(14.8.20)

Example 14.8.1: Typical earth-based antennas for satellite communications have G/T ratios
of the order of 40 dB/K, whereas satellite receiving antennas can have G/T = −7 dB/K or
less. The negative sign arises from the smaller satellite antenna gain and the much higher
temperature, since the satellite is looking down at a warm earth. ��

Example 14.8.2: Consider a receiving antenna system as shown in Fig. 14.7.1, with antenna
temperature of 40 K, feed line loss of 0.1 dB, feed line physical temperature of 290 K, LNA
gain and effective noise temperature of 50 dB and 80 K. The rest of the receiver circuits
have effective noise temperature of 2000 K.

Assuming the receiving antenna has a gain of 45 dB, calculate the system noise temperature
and the G/T ratio at point a and point b of Fig. 14.7.1. Repeat if the feed line loss is 1 dB.

Solution: The feed line has gain Gfeed = 10−0.1/10 = 10−0.01 = 0.9772, and the LNA has, GLNA

= 1050/10 = 105. Thus, the system noise temperature at point a will be:

Tsys = Tant +
(

1

Gfeed
− 1

)
Tphys + 1

Gfeed
TLNA + 1

GfeedGLNA
Trec

= 40+
(

1

10−0.01
− 1

)
290+ 80

10−0.01
+ 2000

10−0.01 · 105

= 40+ 6.77+ 81.87+ 0.02 = 128.62 K = 21.09 dBK

At point b, we have Tsb = GfeedTsys = 0.9772 × 128.62 = 125.69 K = 20.99 dBK. The
G/T ratio will be at point a, GR/Tsys = 45 − 21.09 = 23.91 dB/K. At point b the gain is
GRGfeed = 45− 0.1 = 44.9 dB, and therefore, G/T = GRGfeed/Tsb = 44.9− 20.99 = 23.91
dB/K, which is the same as at point a.

For a feed line loss of 1 dB, we find Tsys = 215.80 K = 23.34 dB. The corresponding G/T
ratio will be 45− 23.34 = 21.66 dB. ��

Example 14.8.3: Suppose the LNA were to be placed in front of the feed line of the above
example. Calculate the system noise temperature in this case when the feed line loss is
0.1 dB and 1 dB.
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Solution: Interchanging the roles of the feed line and the LNA in Eq. (14.8.16), we have for the
system noise temperature:

Tsys = Tant +TLNA + 1

GLNA
Tfeed + 1

GfeedGLNA
Trec

WithGfeed = 10−0.1/10 = 0.9772, we findTfeed = 6.75 K, and withGfeed = 10−1/10 = 0.7943,
Tfeed = 75.1 K. Because of the large LNA gain, the value of Tsys will be essentially equal to
Tant +TLNA; indeed, we find in the two cases:

Tsys = 120.0205 K and Tsys = 120.0259 K

The G/T will be 45− 10 log10(120)= 20.8 dB/K. ��

14.9 Data Rate Limits

The system SNR limits the data rate between the two antennas. According to Shannon’s
theorem, the maximum data rate (in bits/sec) that can be achieved is:

C = B log2(1+ SNR) (Shannon’s channel capacity) (14.9.1)

where SNR is in absolute units. For data rates R ≤ C, Shannon’s theorem states that
there is an ideal coding scheme that would guarantee error-free transmission.

In a practical digital communication system, the bit-error probability or bit-error rate
(BER), Pe, is small but not zero. The key performance parameter from which Pe can be
calculated is the ratio Eb/N0, where Eb is the energy per bit and N0 is the system noise
spectral density N0 = kTsys.

The functional relationship between Pe and Eb/N0 depends on the particular digital
modulation scheme used. For example, in binary and quadrature phase-shift keying
(BPSK and QPSK), Pe and its inverse are given by [653]:

Pe = 1

2
erfc

(√
Eb
N0

)
�

Eb
N0

= [erfinv(1− 2Pe)
]2

(14.9.2)

where erfc(x) is the complementary error function, and erf(x) and erfinv(x) are the
error function and its inverse as defined in MATLAB:

erfc(x)= 1− erf(x)= 2√
π

∫∞
x
e−t

2
dt , y = erf(x) � x = erfinv(y) (14.9.3)

The relationships (14.9.2) are plotted in Fig. 14.9.1. The left graph also shows the
ideal Shannon limit Eb/N0 = ln 2 = 0.6931 ≡ −1.5917 dB, which is obtained by taking
the limit of Eq. (14.9.1) for infinite bandwidth.

If Tb is the time it takes to transmit one bit, then the data rate will be R = 1/Tb, and
the required power, P = Eb/Tb = EbR. It follows that the SNR will be:

SNR = P
Nsys

= P
kTsysB

= Eb
N0

R
B
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Fig. 14.9.1 Pe versus Eb/N0, and its inverse, for a BPSK system.

Using the small-x expansion, log2(1+x)	 x/ ln 2, Shannon’s condition for error-free
transmission becomes in the limit B→∞:

R ≤ C = B log2

(
1+ Eb

N0

R
B

)
→ B

EbR
N0B ln 2

= R
ln 2

Eb
N0

⇒ Eb
N0

≥ ln 2 = −1.5917 dB

For a pair of communicating antennas, the received power will be related to the
energy per bit by PR = Eb/Tb = EbR. Using Friis’s formula, we find:

R
Eb
N0

= PR
N0

= PEIRPGf GR
kTsys

= (PTGT) GRkTsys

(
λ

4πr

)2

(14.9.4)

which may be solved for the maximum achievable data rate (in bits/sec):

R = 1

Eb/N0

PEIRPGf GR
kTsys

= 1

Eb/N0
(PTGT)

GR
kTsys

(
λ

4πr

)2

(14.9.5)

An overall gain factor, Gother = 1/Lother, may be introduced representing other
losses, such as atmospheric losses.

Example 14.9.1: The Voyager spacecrafts have antenna diameter and aperture efficiency of
d = 3.66 m (12 ft) and ea = 0.6. The operating frequency is f = 8.415 GHz and the
transmitter powerPT = 18 W. Assuming the same efficiency for the 70-m receiving antenna
at NASA’s deep-space network at Goldstone, CA, we calculate the antenna gains using the
formula G = ea(πd/λ)2, with λ = c/f = 0.0357 m:

GT = 47.95 dB, GR = 73.58 dB, PT = 13.62 dBW

Assuming a system noise temperature of Tsys = 25 K = 13.98 dBK for the receiving
antenna, we find for the noise spectral density N0 = kTs = −214.62 dBW/Hz, where we
used k = −228.6 dB. Assuming a bit-error rate of Pe = 5×10−3, we find from Eq. (14.9.2)
the required ratio Eb/N0 = 3.317 = 5.208 dB.

Voyager 1 was at Jupiter in 1977, at Saturn in 1980, and at Neptune in 1989. In 2002 it was
at a distance of about r = 12×109 km. It is expected to be at r = 22×109 km in the year
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2020. We calculate the corresponding free-space gain Gf = (λ/4πr)2 and the expected
data rates R from Eq. (14.9.5), where r is in units of 109 km:

location r Gf (dB) R (dB) R (bits/sec)

Jupiter 0.78 −288.78 50.78 119,757
Saturn 1.43 −294.05 45.52 35,630

Neptune 4.50 −304.01 35.56 3,598
2002 12.00 −312.53 27.04 506
2020 22.00 −317.79 21.78 150

where we assumed an overall loss factor of Gother = −5 dB. More information on the
Voyager mission and NASA’s deep-space network antennas can be obtained from the web
sites [852] and [853]. ��

14.10 Satellite Links

Consider an earth-satellite-earth system, as shown in Fig. 14.10.1. We wish to establish
the total link budget and signal to system-noise ratio between the two earth antennas
communicating via the satellite.

Fig. 14.10.1 Uplink and downlink in satellite communications.

In a geosynchronous satellite system, the uplink/downlink frequencies fu, fd are
typically 6/4 GHz or 14/11 GHz. The distances ru, rd are of the order of 40000 km. Let
λu = c/fu and λd = c/fd be the uplink/downlink wavelengths. The free-space gain/loss
factors will be from Eq. (14.6.5):

Gfu = 1

Lfu
=
(
λu

4πru

)2

, Gfd = 1

Lfd
=
(
λd

4πrd

)2

(14.10.1)

The satellite has an on-board amplifier with gain G, which could be as high as 100–
120 dB. Using Friis formula in its gain form, Eq. (14.6.6), the link equations for the uplink,
the satellite amplification, and the downlink stages can be written as follows:

PEIRP = PTE GTE (EIRP of transmitting earth antenna)
PRS = PTE GTE Gfu GRS (received power by satellite antenna)
PTS = GPRS (transmitted power by satellite antenna)
PRE = PTS GTS Gfd GRE (received power by earth antenna)
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Expressing PRE in terms of PTE, we have:

PRE = PRS GGTS Gfd GRE = PTE GTE Gfu GRS GGTS Gfd GRE (14.10.2)

or, showing the free-space loss factors explicitly:

PRE = PTE GTE GRS GGTSGRE
(
λu

4πru

)2 ( λd
4πrd

)2

(14.10.3)

Because there are two receiving antennas, there will be two different system noise
temperatures, say TRS and TRE, for the satellite and earth receiving antennas. They
incorporate the antenna noise temperatures as well as the receiver components. The
corresponding figures of merit will be the quantities GRS/TRS and GRE/TRE. We may
define the uplink and downlink SNR’s as the signal-to-system-noise ratios for the indi-
vidual antennas:

SNRu = PRS
kTRSB

, SNRd = PRE
kTREB

(14.10.4)

The system noise TRS generated by the receiving satellite antenna will get amplified
by G and then transmitted down to the earth antenna, where it will contribute to the
system noise temperature. By the time it reaches the earth antenna it will have picked
up the gain factors GGTS Gfd GRE. Thus, the net system noise temperature measured
at the receiving earth antenna will be:

Tsys = TRE +GGTS Gfd GRETRS (14.10.5)

The SNR of the total link will be therefore,

SNRtot = PRE
kTsysB

(14.10.6)

SNR−1
tot =

k(TRE +GGTS Gfd GRETRS)B
PRE

= kTREB
PRE

+ kGGTS Gfd GRE TRSB
PRE

= kTREB
PRE

+ kGGTS Gfd GRETRSB
GGTS Gfd GREPRS

= kTREB
PRE

+ kTRSB
PRS

= SNR−1
d + SNR−1

u

where we used Eq. (14.10.2). It follows that:

SNRtot = 1

SNR−1
u + SNR−1

d
(14.10.7)

This is also written in the form:(
C
N

)
tot
= 1(

C
N

)−1

u
+
(
C
N

)−1

d



518 Electromagnetic Waves & Antennas – S. J. Orfanidis – June 21, 2004

Example 14.10.1: As an example of a link budget calculation, assume the following data: The
uplink/downlink distances are 36000 km. The uplink/downlink frequencies are 6/4 GHz.
The diameters of the earth and satellite antennas are 15 m and 0.5 m with 60% aperture
efficiencies. The earth antenna transmits power of 1 kW and the satellite transponder
gain is 90 dB. The satellite receiving antenna is looking down at an earth temperature of
300 K and has a noisy receiver of effective noise temperature of 2700 K, whereas the earth
receiving antenna is looking up at a sky temperature of 50 K and uses a high-gain LNA
amplifier of 80 K (feedline losses may be ignored.) The bandwidth is 30 MHz.

The uplink and downlink wavelengths are λu = 0.05 m and λd = 0.075 m, corresponding
to 6 and 4 GHz. The up and down free-space gains and losses are:

Gfu = −Lfu = −199.13 dB, Gfd = −Lfd = −195.61 dB

The antenna gains are calculated to be:

GTE = 57.27 dB, GRS = 27.72 dB, GTS = 24.20 dB, GRE = 53.75 dB

With PTE = 1 kW = 30 dBW, the EIRP of the transmitting earth antenna will be: PEIRP

= 30+ 57.27 = 87.27 dBW. The power received by the satellite antenna will be:

PRS = 87.27− 199.13+ 27.72 = −84.14 dBW

After boosting this up by the transponder gain of 90 dB, the power transmitted down to
the receiving earth antenna will be:

PTS = 90− 84.14 = 5.86 dBW

The EIRP of the transmitting satellite antenna will be (PTSGTS)dB= 5.86+ 24.20 = 30.06
dBW. The downlink power received by the earth antenna will be:

PRE = 30.06− 195.61+ 53.75 = −111.80 dBW

The system noise temperatures are: TRS = 300 + 2700 = 3000 K and TRE = 50 + 80 =
130 K, and in dBK: TRS = 34.77 and TRE = 21.14. The 30 MHz bandwidth is in dB: BdB =
10 log10(30×106)= 74.77 dB Hz. Using the Boltzmann constant k in dB, kdB = −228.6, we
calculate the receiver system noise powers in dB, using N = kdB +TdB + BdB:

NRS = −228.6+ 34.77+ 74.77 = −119.06 dBW
NRS = −228.6+ 21.14+ 74.77 = −132.69 dBW

It follows that the G/T ratios and system SNR’s for the receiving antennas will be:

(G/T)u= GRS −TRS = 27.72− 34.77 = −7.05 dB/K

(G/T)d= GRE −TRE = 53.75− 21.14 = 32.61 dB/K

SNRu = PRS −NRS = −84.14+ 119.06 = 34.92 dB = 3103.44

SNRd = PRE −NRE = −111.80+ 132.69 = 20.89 dB = 122.72

The overall system SNR is calculated from Eq. (14.10.7) using absolute units:

SNRtot = 1

SNR−1
u + SNR−1

d
= 1

(3103.44)−1+(122.72)−1
= 118.05 = 20.72 dB

The overall SNR is essentially equal to the downlink SNR. ��
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14.11 Radar Equation

Another example of the application of the concepts of gain and effective area and the
use of Friis formulas is radar. Fig. 14.11.1 shows a radar antenna, which illuminates a
target at distance r in the direction of its maximal gain. The incident wave on the target
will be reflected and a portion of it will be intercepted back at the antenna.

Fig. 14.11.1 Radar antenna and target.

The concept of radar cross section σ provides a measure of the effective area of the
target and the re-radiated power. If the radar antenna transmits power PT with gainGT,
the power density of the transmitted field at the location of the target will be:

PT = PTGT
4πr2

(14.11.1)

From the definition of σ, the power intercepted by the target and re-radiated is:

Ptarget = σPT = PTGTσ
4πr2

(14.11.2)

By definition of the radar cross section, the power Ptarget will be re-radiated isotropically
and establish a power density back at the location of the radar antenna:

Ptarget = Ptarget

4πr2
= PTGTσ
(4πr2)2

(14.11.3)

The amount of power received by the radar antenna will be given in terms of its
effective area AR as follows:

PR = ARPtarget = PTGTARσ
(4π)2r4

(radar equation) (14.11.4)

This is also known as Friis’ formula. Using AR = AT and GT = 4πAT/λ2, we may
express Eq. (14.11.4) in the alternative forms:

PR = PTA2
Tσ

4πλ2r4
= PTG2

Tλ2σ
(4π)3r4

= PTG2
T

(
λ

4πr

)4 (4πσ
λ2

)
(14.11.5)

Introducing the equivalent target gain corresponding to the radar cross section, that
is, Gσ = 4πσ/λ2, we may also write Eq. (14.11.5) as the product of gains:

PR = PTG2
TG

2
fGσ (14.11.6)
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Fig. 14.11.2 Gain model of radar equation.

Fig. 14.11.2 shows this gain model. There are two free-space paths and two antenna
gains, acting as transmit and receive gains.

The minimum detectable received power, PR,min, defines the maximum distance rmax

at which the target can be detected:

PR,min = PTGTARσ
(4π)2r4

max

Solving for rmax, we obtain:

rmax =
[
PTGTATσ
(4π)2PR,min

]1/4

(radar range) (14.11.7)

If the target is not in the direction of maximal gain GT of the antenna, but in some
other direction, say (θ,φ), then the maximal gain GT in Eq. (14.11.5) must be replaced
with GTg(θ,φ), where g(θ,φ) is the antenna’s normalized gain. The received power
can be expressed then as:

PR = PTG2
Tg2(θ,φ)λ2σ
(4π)3r4

(14.11.8)

In ground-based air search radars trying to detect approaching aircraft flying at a
fixed height h, the power received by the radar can be made to be independent of the
distance r, within a certain distance range, by choosing the gain g(θ,φ) appropriately.
As shown in Fig. 14.11.3, the height h is related to r by h = r cosθ.

Fig. 14.11.3 Secant antenna gain.

If the gain is designed to have the secant-squared shape g(θ,φ)= K/ cos2 θ, where
K is a constant, then the power will become independent of r. Indeed,

PR = PTG2
Tg2(θ,φ)λ2σ
(4π)3r4

= PTG2
TK2λ2σ

(4π)3r4 cos4 θ
= PTG2

TK2λ2σ
(4π)3h4
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The secant behavior is not valid over all polar angles θ, but only over a certain range,
such as 0 ≤ θ ≤ θmax, where θmax corresponds to the maximum range of the radar
rmax = h/ cosθmax. The desired secant shape can be achieved by appropriate feeds of
the radar dish antenna, or by an antenna array with properly designed array factor. In
Sec. 19.5, we present such a design for an array.

14.12 Problems


