15

Linear and Loop Antennas

15.1 Linear Antennas

The radiation angular pattern of antennas is completely determined by the transverse
component F, = or 0+ <2>F ¢ of the radiation vector F, which in turn is determined by
the current density J. Here, we consider some examples of current densities describing
various antenna types, such as linear antennas, loop antennas, and linear arrays.

For linear antennas, we may choose the z-axis to be along the direction of the an-
tenna. Assuming an infinitely thin antenna, the current density will have the form:

Z

12

1(z
© Jr)=21(z)6(x)o(y) (thin linear antenna)  (15.1.1)

0 y

x -2

where I (z) is the current distribution along the antenna element. It is shown in Sec. 20.4
that I (z) satisfies approximately the Helmholtz equation along the antenna:

d’1(z)

4z TKI@=0 (15.1.2)

Some examples of current distributions I(z) are as follows:

I1(z)=116(2) Hertzian dipole

I(z)=1 Uniform line element
I(z)=1(1-2|z|/]) Small linear dipole
I(z)=1Isin(k(l/2 - |z|)) Standing-wave antenna
I(z)=1Icos(kz) Half-wave antenna (I = A/2)
I(z)=IeJkz Traveling-wave antenna

where [ is the length of the antenna element and the expressions are assumed to be valid
for —1/2 < z < 1/2, so that the antenna element straddles the xy-plane.
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The Hertzian dipole, uniform line element, and small linear dipole examples do not
satisfy Eq. (15.1.2), except when the antenna length is electrically short, that is, | < A.

For loop antennas, we may take the loop to lie on the xy-plane and be centered at the
origin. Again, we may assume a thin wire. For a circular loop of radius a, the current
flows azimuthally. The corresponding current density can be expressed in cylindrical
coordinates r = (p, ¢, z) as:

Z

g o ) y ‘J(r)= PIS(p—a)d(z) (circular loop) (15.1.3)
a
1

X

The delta functions confine the current on the p = a circle on the xy-plane. We will
discuss loop antennas in Sec. 15.8.

Antenna arrays may be formed by considering a group of antenna elements, such as
Hertzian or half-wave dipoles, arranged in particular geometrical configurations, such
as along a particular direction. Some examples of antenna arrays that are made up from
identical antenna elements are as follows:

Jr) =12 Z anl (z)6(x —xn)0(y) array along x-direction
n

J(r) =12 Z anl (z)6(y —yn)o(x) array along y-direction
n

array along z-direction

J@) =2 > anl(z-2n)5(X)5(y)

Jr) =12 Z Amnl (2) 6 (X — Xm) 0 (Y — Yn) 2D planar array

mn

The weights a,, amn are chosen appropriately to achieve desired directivity proper-
ties for the array. We discuss arrays in Sec. 18.1.

It is evident now from Eq. (15.1.1) that the radiation vector F will have only a z-
component. Indeed, we have from the definition Eq. (13.7.5):

F= j Ja)elkr @By =3 j I(Z)8(X) 8 (") el kX +hyy +ka) gx' gy’ d 7'
\4

The x" and y’ integrations are done trivially, whereas the z’ integration extends over
the length I of the antenna. Thus,

1/2 y
F=2F, = zj 1(Z') e dz’
-1/2
Using Eq. (13.8.3), the wave vector k can be resolved in cartesian components as:
k=kt=%xkcos¢sin® +yksingsin6 + zkcos 0 = Xky +Vky, + 2k,

Thus,
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kx = k cos ¢ sin 0
ky = ksin¢ sin @ (15.1.4)
k; = kcos 0

It follows that the radiation vector F, will only depend on the polar angle 9:

1/2 - 1/2 .
F,(0)= J I1(z)elkZ d7" = J I(z7')eikz cos0 g, (15.1.5)
-1/2 -1/2

Using Eq. (13.8.2) we may resolve Z into its spherical coordinates and identify the
radial and transverse components of the radiation vector:

F=2%F, = (fcos® —0sin0)F,(0)=#F,(0)cos 0 — @ F,(0)sin O
Thus, the transverse component of F will be have only a 6-component:
F.(0)=0Fg(0)= -0 F,(0)sin0

It follows that the electric and magnetic radiation fields (13.10.5) generated by a
linear antenna will have the form:

R . e—jkr
E=0Ep=0jkn—F,(0)sin0
4ttr
. (15.1.6)
} bk F,(0)sin0
H=¢Hy = ¢ jk yp— F,(0)sin

The fields are omnidirectional, that is, independent of the azimuthal angle ¢. The
factor sin @ arises from the cartesian to spherical coordinate transformation, whereas
the factor F (0) incorporates the dependence on the assumed current distribution I (z).
The radiation intensity U (9, ¢b) has 0-dependence only and is given by Eq. (14.1.4):

nk?

VO=3om

|F,(60)|?sin® 0 (radiation intensity of linear antenna)  (15.1.7)

To summarize, the radiated fields, the total radiated power, and the angular distri-
bution of radiation from a linear antenna are completely determined by the quantity
F,(0) defined in Eq. (15.1.5).

15.2 Hertzian Dipole

The simplest linear antenna example is the Hertzian dipole that has a current distri-
bution I(z)= 116 (z) corresponding to an infinitesimally small antenna located at the
origin. Eq. (15.1.5) yields:

12 o 12 o
F,(0)= J 1k dy - J 115 (2 ) k7 0304, g
-1/2 /2
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Thus, F; is a constant independent of 6. The radiation intensity is obtained from
Eq. (15.1.7):

_ nk? 2 win2
Uo)= 3072 |I1]< sin“ O
Its maximum occurs at 8 = 71/2, that is, broadside to the antenna:

nk?
32772

111

Unmax =

It follows that the normalized power gain will be:

uw) _

sin® 0 (Hertzian dipole gain) (15.2.1)
UmaX

g(0)=

The gain g (0) is plotted in absolute and dB units in Fig. 15.2.1. Note that the 3-dB
or half-power circle intersects the gain curve at 45° angles. Therefore, the half-power
beam width (HPBW) will be 90°—not a very narrow beam. We note also that there is no
radiated power along the direction of the antenna element, that is, the z-direction, or
6 =0.

Hertzian dipole gain Gain in dB
0° 0°
0 0 0 0
457 45° 45° 45°
05 1 SN e o6 -3
90° +1 90° 90° - B 90
135° 135° 135° 135°
180° 180°

Fig. 15.2.1 Gain of Hertzian dipole in absolute and dB units.

In these plots, the gain was computed by the function dipoTe and plotted with abp
and dbp. For example the left figure was generated by:

[g, th, c] = dipole(0, 200);
abp(th, g, 45);

Next, we calculate the beam solid angle from:
T 2T ™ ™
AQ=J J g(6)3m9d9d¢=2nj g(G)sin9d9=27TJ sin® 0d0, o,
o Jo 0 0

a0 ="
3

It follows that the directivity will be:
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4T 4Tt
—=——=1.5=1.76dB
AQ  81m/3 > 6d

The total radiated power is then found from Eq. (14.2.17):

Drax =

LU
3272 3 121

Because of the proportionality to |I|2, we are led to define the radiation resistance
of the antenna, R,,q, as the resistance that would dissipate the same amount of power
as the power radiated, that is, we define it through:

Prag = UnmaxAQ =

(15.2.2)

1 ,
Praa = ERradulz (15.2.3)

Comparing the two expressions for Pr,q, we find:

_ nk?PF 2mn (l)z
Ryaa = 6w 3 A (15.2.4)

where we replaced k = 271/A. Because we assumed an infinitesimally small antenna,
| < A, the radiation resistance will be very small.

A related antenna example is the finite Hertzian, or uniform line element, which has
a constant current I flowing along its entire length I, thatis, I (z)=I,for -1/2 < z < 1/2.
We can write I (z) more formally with the help of the unit-step function u (z) as follows:

I(z)=1[u(z+1/2)-u(z-1/2)]

The Hertzian dipole may be thought of as the limiting case of this example in the limit
I — 0. Indeed, multiplying and dividing by I/, and using the property that the derivative
of the unit-step is u’ (z) = 6 (z), we have
u(z+1/2)-u(z-1/2) du(z)
-1l
1 dz

and we must assume, of course, that the product Il remains finite in that limit.

I(z)=11

=116(z)

15.3 Standing-Wave Antennas

A very practical antenna is the center-fed standing-wave antenna, and in particular, the
half-wave dipole whose length is I = A/2. The current distribution along the antenna
length is assumed to be a standing wave, much like the case of an open-ended parallel
wire transmission line. Indeed, as suggested by the figure below, the center-fed dipole
may be thought of as an open-ended transmission line whose ends have been bent up
and down. The current distribution is:

12
1(z)

e——— I(z)=1Isin(k(1/2 - |z])) (standing-wave antenna)  (15.3.1)
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The radiation vector z-component F (0) is:

kl kl

172 ez cos0 g 21 COS(? cos8) — COS(?)
. 1 J ==

I/ZIsm(k(l/Z 1z']))e z =% sin? 0

F0)- |

A more convenient way to write this expression is by defining L = I/A, which is the
antenna length in units of A, and recognizing that kl/2 = 1tl/A = 1tL. Inserting F,(0)
into Eq. (15.1.7), and canceling some common factors, we obtain:

2 _ 2
U0)= niI| COS(‘ITLCOS.Q) cos(1TL) (15.3.2)
812 sin 0
It follows that the normalized power gain g (0) will have a similar form:
2
g(0)=cy cos (1L CO:ii)Q cos(mL) (normalized gain) (15.3.3)

where ¢, is a normalization constant chosen to make the maximum of g (6) equal to
unity. Depending on the value of I, this maximum may not occur at 0 = 71/2.

In the limit L — 0, we obtain the gain of the Hertzian dipole, g (0) = sin® 6. For
small values of L, we obtain the linear-current case. Indeed, using the approximation
sin X = X, the current (15.3.1) becomes:

1 1 1

= - = —— <z < —

1(z) Ik(2 \zl), 2_2_2
For a general dipole of length I, the current at the input terminals of the antenna is
not necessarily equal to the peak amplitude I. Indeed, setting z = 0 in (15.3.1) we have:

Iin = 1(0)=TIsin(kl/2) (15.3.4)

The radiation resistance may be defined either in terms of the peak current or in
terms of the input current through the definitions:

1 1
Prag = ERpeak‘Hz = ERinHin'Z

When [ is a half-multiple of A, the input and peak currents are equal and the two defi-
nitions of the radiation resistance are the same. But when [ is a multiple of A, Eq. (15.3.4)
gives zero for the input current, which would imply an infinite input resistance Rj,. In
practice, the current distribution is only approximately sinusoidal and the input current
is not exactly zero.

The input impedance of an antenna has in general both a resistive part Rj, and a
reactive part Xj,, so that Zj, = R, + jXin. The relevant theory is discussed in Sec. 21.2.
Assuming a sinusoidal current, Zj, can be computed by Eq. (21.2.10), implemented by
the MATLAB function imped:

Zin = imped(1,a); % input impedance of standing-wave antenna
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Fig. 15.3.1 Input impedance of standing-wave dipole antenna.

where I, a are the length and radius of the antenna in units of A. For example, a half-wave
dipole (I = A/2) with zero radius has Zj, = imped (0.5,0) = 73.1 + j42.5 Q.

For I > a, the input resistance remains largely independent of the radius a. The
reactance has a stronger dependence on a. Fig. 15.3.1 shows a plot of R, and Xj, versus
the antenna length I plotted over the interval 0.3A < I < 0.7A, for the three choices of
the radius: a = 0, a = 0.0005A, and a = 0.005A.

We observe that the reactance Xj, vanishes for lengths that are a little shorter than
1 = A/2. Such antennas are called resonant antennas in analogy with a resonant RLC
circuit whose input impedance Z = R + j(wL — 1/wC) has a vanishing reactance at its
resonant frequency w = 1/+/LC.

For the three choices of the radius a, we find the following resonant lengths and
corresponding input resistances:

a=0, 1=10.4857A, Rin=67.2Q
a = 0.0005A, [=0.4801A, Rij; =65.0Q
a =0.005A, [=0.4681A, Rj; =60.5Q

15.4 Half-Wave Dipole

The half-wave dipole corresponding to Il = A/2 or L = 0.5 is one of the most popular
antennas. In this case, the current distribution along the antenna takes the form:

t Iz
A4 \\1(")
D_T_%“' ] I(z)=Icos(kz) (half-wave dipole) (15.4.1)
%

with —A/4 < z < A/4. The normalized gain is:

cos?(0.57T cos 0)

9(0)= sin® 0

(half-wave dipole gain) (15.4.2)
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Note that the maximum does occur at @ = 11/2 and the normalization constant is
cnp = 1. Fig. 15.4.1 shows the gain in absolute and dB units. The 3-dB or half-power
circle intersects the gain at an angle of 0345 = 50.96°, which leads to a half-power beam
width of HPBW = 180° — 20345 = 78.08°, that is, somewhat narrower than the Hertzian
dipole. The beam solid angle can be evaluated numerically using MATLAB, and we find:

Half-wave dipole Gain in dB
o o

6 9 o o9 o
45° 45° 45°, 45°
: \ 05 1 SN 9 6 3

90° o 90° 90° —— ) 90°
135° 135° 135° 135°
180° 180°

Fig. 15.4.1 Gain of half-wave dipole in absolute and dB units.

™ 27T
AQ:f J 9(0)dQ = 7.6581
o Jo

The directivity is:
4Tt
Dmax = E =1.64 =2.15dB
Noting that the radiation intensity maximum occurs at 0 = 11/2, we have Upax =

n|I1%/87?, and we find for the radiated power:

nlI?

Prag = UnmaxAQ = 8772

1 ,
7.6581 = ERmdmZ

and for the radiation resistance:

7.6581n

R =
rad 4772

=73.1Q (15.4.3)

In practice, this value can be matched easily to the characteristic impedance of the
feed line. The MATLAB code used to calculate the gain function g(0), as well as the
constant ¢, and the beam solid angle, is as follows:

N = 200; % divide [0,pi] in N angle bins
dth = pi / N; % bin width

th = (1:N-1) * dth; % excludes th=0

g = ((cos(pi*L*cos(th)) - cos(pi*L)) ./ sin(th)).A2;

th = [0, th]; % N equally-spaced angles in [0,pi)
g = [0, gl; % avoids division by 0

cn =1 / max(g);

g =c¢cn * g; % normalized to unity maximum
Om =2 * pi * sum(g .* sin(th)) * dth; % beam solid angle
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where the beam solid angle is computed by the approximation to the integral:
™ N-1
AQ=2T(J g(@)sin@d@:ZTng(@i)sinGi A0
0 i=0

where AO = 11/N and 0; = iA0,i = 0,1,...,N — 1. These operations are carried out by
the functions dipoTle and dmax. For example, the right graph in Fig. 15.4.1 and Dpaxand
AQ were generated by the MATLAB code:

[g, th, c] = dipole(0.5, 200);
dbp(th, g, 45, 12);
[D, Omega] = dmax(th, g);

Fig. 15.4.2 shows the gains of a variety of dipoles of different lengths. The corresponding
directivities are indicated on each plot.

15.5 Monopole Antennas

A monopole antenna is half of a dipole antenna placed on top of a ground plane, as
shown in Fig. 15.5.1. Assuming the plane is infinite and perfectly conducting, the
monopole antenna will be equivalent to a dipole whose lower half is the image of the
upper half.

Thus, the radiation pattern (in the upper hemisphere) will be identical to that of a
dipole. Because the fields are radiated only in the upper hemisphere, the total radiated
power will be half that of a dipole, and hence the corresponding radiation resistance
will also be halved:

1 1
P monopole = EP dipole » Rmonopole = ERdipole

Similarly, the directivity doubles because the isotropic radiation intensity in the de-
nominator of Eq. (14.2.2) becomes half its dipole value:

Dmonopole = 2Ddipole

The quarter-wave monopole antenna whose length is A/4 is perhaps the most pop-
ular antenna. For AM transmitting antennas operating in the 300 m or 1 MHz band, the
antenna height will be large, A/4 = 75 m, requiring special supporting cables.

In mobile applications in the 30 cm or 1 GHz band, the antenna length will be fairly
small, A/4 = 7.5 cm. The roof of a car plays the role of the conducting plane in this
case.

We note also in Fig. 15.4.2 that the [ = 1.25A = 10A/8 dipole has the largest gain. It
can be used as a monopole in mobile applications requiring higher gains. Such antennas
are called 5/8-wave monopoles because their length is 1/2 = 5A/8.
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Fig. 15.4.2 Standing-wave dipole antenna patterns and directivities.

15.6 Traveling-Wave Antennas

The standing-wave antenna current may be thought of as the linear superposition of a
forward and a backward moving current. For example, the half-wave dipole current can
be written in the form:

I(z)=Icos(kz)= é(e*jkz + elk?)

The backward-moving component may be eliminated by terminating the linear an-
tenna at an appropriate matched load resistance, as shown in Fig. 15.6.1. The resulting
antenna is called a traveling-wave antenna or a Beverage antenna. The current along its
length has the form:
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1 1 G

A/4 ground A4

.~ plane \
~_coaxial /
feed /
image el %

/

’

Fig. 15.5.1 Quarter-wave monopole above ground plane and the equivalent half-wave dipole.

I(z)=Ie 7% 0<z<lI (15.6.1)

The corresponding radiation vector becomes:

F=2J11efjkz’ejkcosez'dzf =iiﬂ (15.6.2)
0 jk  1-cos@ e
The transverse 0-component is:
I 1 — e—2mjiL(1-cos 0) 1
Fo(0)=—-F;(0)sin0 = —— sin ——— = —— F(0) (15.6.3)
Jjk 1-cosf Jjk

where as before, L = I/A and kI = 2ml/A = 27mL. The radiation intensity, given by
Eq. (14.1.4) or (15.1.7), becomes now:

2
_ nlI? o NnMI* |sin@ sin(rrL(1 — cos 0))
U(0)= 5, 2 IFO)1" = 1~ cos (15.6.4)
Therefore, the normalized power gain will be:
. . 2
3(0)=cy sin @ sin(7rL (1 — cos 0)) (15.6.5)
1—cos@

where ¢, is a normalization constant. Fig. 15.6.2 shows the power gains and directivities
for the cases I = 5A and [ = 10A, or L = 5 and L = 10.

The MATLAB function travel calculates the gain (15.6.5). For example, the left
graph in Fig. 15.6.2 was generated by the MATLAB code:

[g, th, c, th0] = travel(5, 400);

dbp(th, g, 45, 12);
addray(90-th0,’-’); addray(90+th0,’-’);

© gzn .

l

Fig. 15.6.1 Traveling-wave antenna with matched termination.
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L =5, D=10.7dB, 6, =22.2°

L =10, D=13.1dB, 6,=15.7°
)

Fig. 15.6.2 Traveling-wave antenna gain examples.

The longer the length I, the more the main lobes tilt towards the traveling direction
of the antenna. The main lobes occur approximately at the polar angle (in radians) [5-7]:

0y = arccos (1 — 0'3171)\) = arccos (1 - %) (15.6.6)

For the two examples of Fig. 15.6.2, this expression gives for L = 5 and L = 10,
0o = 22.2° and 6y = 15.7°. As L increases, the angle 8, tends to zero.

There are other antenna structures that act as traveling-wave antennas, as shown
in Fig. 15.6.3. For example, a waveguide with a long slit along its length will radiate
continuously along the slit. Another example is a corrugated conducting surface along
which a surface wave travels and gets radiated when it reaches the discontinuity at the
end of the structure.

—»Z

. 000000,

currugated surface-wave antenna leaky waveguide antenna

Fig. 15.6.3 Surface-wave and leaky-wave antennas.

In all of these examples, the radiation pattern has an angular dependence similar to
that of a linear antenna with a traveling-wave current of the form:

I(z)=1Ie /B2 = [e=IPkz o<z <] (15.6.7)

where § is the wavenumber along the guiding structure and p = B/k = ¢/Vphase is
the ratio of the speed of light in vacuum to the phase velocity along the guide. The
corresponding radiation power pattern will now have the form:
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(15.6.8)

9(0)= ¢, sin @ sin(1tL (p — cos 0)) ’2

p —cos O

For long lengths L (and for p < 1), it peaks along the direction 8, = arccos(p).
Note that p can take the values: (a) p > 1 (slow waves), as in the case of the corrugated
plane structure or the case of a Beverage antenna wrapped in a dielectric, (b) p < 1 (fast

waves), as in the case of the leaky waveguide, where p = /1 — w2/w?, and (c) p = 1,
for the Beverage antenna.

15.7 Vee and Rhombic Antennas

A vee antenna consists of two traveling-wave antennas forming an angle 2 with each
other, as shown in Fig. 15.7.1. It may be constructed by opening up the matched ends
of a transmission line at an angle of 2« (each of the terminating resistances is Ry /2 for
atotal of Ry.)

[

-
90

—» 2

resultant pattern

Fig. 15.7.1 Traveling-wave vee antenna with I = 5A, 0y = 22.2°, and &« = 0.850, = 18.9°.

By choosing the angle & to be approximately equal to the main lobe angle 6, of
Eg. (15.6.6), the two inner main lobes align with each other along the middle direction
and produce a stronger main lobe, thus increasing the directivity of the antenna. The
outer main lobes will also be present, but smaller.

The optimum angle « of the arms of the vee depends on the length I and is related
to main lobe angle 0y via @« = a6y, where the factor a typically falls in the range
a = 0.80-1.00. Figure 15.7.2 shows the optimum angle factor a that corresponds to
maximum directivity (in the plane of the vee) as a function of the length I.

Figure 15.7.3 shows the actual power patterns for the cases I = 5A and I = 10A. The
main lobe angles were 0y = 22.2° and 0y = 15.7°. The optimum vee angles were found
to be approximately (see Fig. 15.7.2), & = 0.850¢ = 18.9° and & = 0.9560 = 14.9° in
the two cases.

The combined radiation pattern can be obtained with the help of Fig. 15.7.4. Let
7, and Z, be the two unit vectors along the two arms of the vee, and let 81, 8, be the
two polar angles of the observation point P with respect to the directions Z,Z,. The
assumed currents along the two arms have opposite amplitudes and are:

Il(Z1)=Ieijkzl, 12(22)=—I€7jk22, for OSZhZzsl
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Fig. 15.7.2 Optimum angle factor as a function of antenna length.

L=5,0=189° L =10,0=14.9°
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Fig. 15.7.3 Traveling-wave vee antenna gains in dB.

Fig. 15.7.4 Radiation vectors of traveling-wave vee antenna.

Applying the result of Eq. (15.6.2), the radiation vectors of the two arms will be:

1 I 1- —jkl(1—cos 01)
~ s , . e
F, = le Ie ‘]kzle‘]kcosglzldzll = Z1 - —
0 Jjk 1 — cos 0,
1 I 1- —jkl(1—cos 02)
~ s , . e
F, = —sz Ie ‘]kZZQ‘]kCOSQZszZé =—Zp 7 —
0 Jjk 1 —cos 0>
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Therefore, the 0-components will be as in Eq. (15.6.3):
1 I
F19=—.*F(91), F29=.*F(92)
Jk Jk

where the function F (0) was defined in Eq. (15.6.3). From Fig. 15.7.4, we may express
01, 0> in terms of the polar angle € with respect to the z-axis as:

0,=0-«, 0, =0+«
Adding the 0-components, we obtain the resultant:

I I
Fog=Fig+ Fap = j—k[F(Qz)—F(91)] = j—k[F(G +x)-F(0-x)]

Thus, the radiation intensity will be:

_ nk? o _ nlIP? _ _ 2
Uu)= 32TrZ\F@(Q)I —321T2|F(9+0() F(0 - )|
and the normalized power pattern:
g(0)=ca|F(0 + x)—F(0 — ) |* (15.7.1)

This is the gain plotted in Fig. 15.7.3 and can be computed by the MATLAB function
vee. Finally, we consider briefly a rhombic antenna made up of two concatenated vee
antennas, as shown in Fig. 15.7.5. Now the two inner main lobes of the first vee (lobes
a,b) and the two outer lobes of the second vee (lobes ¢, d) align with each other, thus
increasing the directivity of the antenna system.

Fig. 15.7.5 Traveling-wave rhombic antenna.

The radiation vectors F; and F; of arms 3 and 4 may be obtained by noting that
these arms are the translations of arms 1 and 2, and therefore, the radiation vectors are
changed by the appropriate translational phase shift factors, as discussed in Sec. 18.2.

Arm-3 is the translation of arm-1 by the vector d, = I Z, and arm-4 is the translation
of arm-2 by the vector d; = [Z;. Thus, the corresponding radiation vectors will be:

F; = —e/k®Fp ~ F, = _e/kdF, (15.7.2)

where the negative signs arise because the currents in those arms have opposite signs
with their parallel counterparts. The phase shift factors are:

elkde _ pikli2o _ pjklcos0z ekdi _ pikli-zy _ ojklcos 0y
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It follows that the 0-components of F; and F, are:

F30 _ —ejklcosnglg _ Lejklcosezl:(gl)

Jjk
Fi = _ejklcosé)lee _ _Lejklcosell:(gz)
Jjk
Thus, the resultant 8-component will be:
— _ i _ Jjklcos 0> _ ,Jklcos 6,
Fog =Fig + Fag + F3p +F49—jk[F(92) F(61)+e F(0,)—e F(6,)]

The corresponding normalized power pattern will be:

9(0)=cn|F(0 + ) ~F(0 — ) +&/M SO0 F (9 — ) —e/M OO0 (9 4 ) |?

Figure 15.7.6 shows the power gain g(60) for the cases L = 5 and L = 10. The
optimum vee angle in both cases was found to be & = 60y, that is, & = 22.2° and
o = 15.7°. The function rhombic may be used to evaluate this expression.

L=50=222° L=10,0=15.7°
o O ¢ o O o

90°

135°

180° 180°

Fig. 15.7.6 Rhombic antenna gains in dB.

15.8 Loop Antennas

Figure 15.8.1 shows a circular and a square loop antenna. The feed points are not
shown. The main oversimplifying assumption here is that the current is constant around
the loop. We will mainly consider the case when the dimension of the loop (e.g., its
circumference) is small relative to the wavelength.

For such small loops, the radiation pattern turns out to be independent of the shape
of the loop and the radiation vector takes the simple form:

F=jmxk (15.8.1)

where m is the loop’s magnetic moment defined with respect to Fig. 15.8.1 as follows:
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m=2IS, (magnetic moment) (15.8.2)

where S is the area of the loop. Writing k = k  and noting that Z Xt = ci) sin 8, we have:

F=jmxk=jmksin0¢ =Fy(0)d (15.8.3)
Z Z
A £ R A £ R
b d frd
A A A
0 6
r
0
™
1
m 3

A

¢’ é L e
) b ) b %
P

Fig. 15.8.1 Circular and square loop antennas.

Thus, F is fully transverse to t, so that F, = F. It follows from Eq. (13.10.4) that the
produced radiation fields will be:

N e—Jkr N ) e—Jkr
E=¢Ey = —jk F = k< sin 0
¢ ¢ JKn 4ttr ¢¢ fme-sin 4Tmtr
‘ , (15.8.4)
) e 8 K2sing & g
H=0Hy = jk = - i
6=J 4ttr ¢ e sin 4Tty
The radiation intensity of Eq. (14.1.4) is in this case:
k2 ] k4 m|2 )
U,d)= 327 |F¢|z = % sin® 0 (loop intensity) (15.8.5)

Thus, it has the same sin? @ angular dependence, normalized power gain, and direc-
tivity as the Hertzian dipole. We may call such small loop antennas “Hertzian loops”,
referring to their infinitesimal size. The total radiated power can be computed as in
Sec. 15.2. We have:

nk*lm|® 8w _ nk*lm|?

Praa = Um0 = 70 3 = o

Replacing m by IS, we may obtain the loop’s radiation resistance from the definition:

nkAIIS2 nkis?
1211 = Rraa = 61T

1
Prag = §Rrad|1|2 =
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Comparing Eq. (15.8.4) to the Hertzian dipole, the loop’s electric field is in the ¢-
direction, whereas the Hertzian dipole’s is in the 0-direction. The relative amplitudes
of the electric fields are: .

Eglpole I

loop =J
Eg mk

If we choose Il = mk, then the electric fields are off by a 90°-degree phase. If
such a Hertzian dipole and loop are placed at the origin, the produced net electric field
will be circularly polarized. We note finally that the loop may have several turns, thus
increasing its radiation resistance and radiated power. For a loop with n turns, we must
make the replacement m — nm.

15.9 Circular Loops

Next, we consider the circular loop in more detail, and derive Eq. (15.8.3). Assuming an
infinitely thin wire loop of radius a, the assumed current density can be expressed in
cylindrical coordinates as in Eq. (15.1.3):

Ja)=1¢'8(p —a)5(2)
The radiation vector will be:
F= J J) ek @y = JI{b'eﬂ"f’a(p' —a)s(z)p'dp'dep'dz’ (15.9.1)
1%
Using Eq. (13.8.2), we have:
k-r =k(zcosO +psind)- (2’2 +p'p’)
=kz cosO +kp'sin@(p - p)
=kz' cos 0 + kp’ sin 0 cos(Pp’ — ¢P)

where we set p’ - p = cos(¢p’ — ¢), as seen in Fig. 15.8.1. The integration in Eq. (15.9.1)
confines r’ to the xy-plane and sets p’ = a and z’ = 0. Thus, we have in the integrand:

k-1 =kasin0cos(¢p’ — )

Then, the radiation vector (15.9.1) becomes:
2,
F=1Ia J ¢ elkasinOcos(d'=¢) g4 (15.9.2)
0

~ !
We note in Fig. 15.8.1 that the unit vector ¢ varies in direction with ¢’. Therefore, it
proves convenient to express it in terms of the unit vectors ¢, p of the fixed observation
~ ~ ~
point P. Resolving ¢ into the directions ¢, p, we have:

¢ = dcos(d’ — p)—psin(d’ — P)

Changing integration variables from ¢’ to ¢ = ¢’ — ¢, we write Eq. (15.9.2) as:
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2 ) )
F=Iaj (¢>COSLI/—i)sinqj)eJk“m"COWd(p
0

The second term is odd in ¢ and vanishes. Thus,
~ ZTr . :
F=Ia¢J cos elkasmocosw gy, (15.9.3)
0

Using the integral representation of the Bessel function J; (x),

1 21 . 9
— JX cos
J1(x) 2m1j .[0 cos e dy

we may replace the -integral by 277jJ; (kasin @) and write Eq. (15.9.3) as:
F=Fy¢ =2mjla ], (kasin0)¢p (15.9.4)

This gives the radiation vector for any loop radius. If the loop is electrically small,
that is, ka < 1, we may use the first-order approximation J; (X) =~ x/2, to get

N 1 N i R
F=F¢¢p =2mjla Eka sin ¢ = jIa’ksin @ ¢ (15.9.5)

which agrees with Eq. (15.8.3), with m = IS = Ira®.

15.10 Square Loops

The square loop of Fig. 15.8.1 may be thought of as four separate linear antennas repre-
senting the four sides. Assuming that each side is a Hertzian dipole and that the sides
are at distances +I/2 from the origin, we can write the current densities of the sides
1,2, 3,4 as follows:

Jix) = yII6(x—=1/2)6(y)6(2)

L) =-XI16(x)0(y —1/2)6(2)

J(@) =-yIIs(x+1/2)5(y)6(2)

Ji(r) = XI16(x)6(y +1/2)0(z)
The currents on the parallel sides 1 and 3 combine to give:

S(x+1/2)-6(x—1/2)
1

Ji (0 +J5 (1) = —sty[ ] 5()5(2)

where we multiplied and divided by a factor of I. In the limit of small I, we may replace
the quantity in the bracket by the derivative 6’ (x) of the delta function 6 (x):

L@+l @)= -1Py5 (x)8()5(2)

Similarly, we find for sides 2 and 4:
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B (1) +J3 (1) = IPXE(X) 6 ()6 (2)
Thus, the net current density of all sides is:
JO)=IP[x5(x)8" ()-8 (X8 () ]8(2) (15.10.1)
The corresponding radiation vector will be:
F=1IP J[ﬁé (X)) (V)98 (X)S(Y)]6(2) el kX +hy +ka2') g’ gy’ d 7'
The delta-function integrations can be done easily yielding:
F =11 (—jkyX + jkx¥)

Using Eq. (15.1.4), we obtain

F = jII’k sin O (—Xsin ¢ + y cos ¢p) = jII’k sin O <i> (15.10.2)

which agrees with Eq. (15.8.3), with m = IS = II°.

15.11 Dipole and Quadrupole Radiation

The radiation vector F of a current/charge distribution can be evaluated approximately
by expanding the exponential e/ 1o successive powers of k:

F= J J) ek Py = J [1+jk-1 + i(jk )24 I dr
\% v 2!

=J JaHdr + J Jk-v)Ja)d ' +--- (15.11.1)
v v

~- ~
elec. dipole magn. dipole & elec. quadrupole

The first term is the electric dipole radiation term and corresponds to the Hertzian
dipole antenna. The second term incorporates both the magnetic dipole (corresponding
to a Hertzian loop antenna) and the electric quadrupole terms.

Higher multipoles arise from the higher-order terms in the above expansion. A sys-
tematic discussion of all multipole radiation terms requires the use of spherical har-
monics.

Keeping only a few terms in the above expansion is a good approximation to F pro-
vided kr'" <« 1, or I < A, where [ is the typical dimension of the current source. In
general, any radiating system will emit radiation of various multipole types.

The electric dipole and electric quadrupole moments of a charge distribution are de-
fined in terms of the following first- and second-order moments of the charge density:

p= J rp)d’r (electric dipole moment) (15.11.2)
v

Djj = j rrip(r') d’r (electric quadrupole moment) (15.11.3)
v
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The identity of Problem 13.2 is useful here in manipulating the successive expansion
terms of F. Applying the identity with the two choices: g(r')= r; and g (1) = r;] rj, we
obtain the relationships:

J Jidr’ =jwj rip') d’r' = jowp;
Y ’ (15.11.4)
JV(”{JJ +riJ) dr' = jw ,[v ririp(r') dr’ = jwDj;
Thus, the lowest-order term in Eq. (15.11.1) is the electric dipole:
JVJ(r') &t = jwp = Fa
In the second term of Eq. (15.11.1), we may apply the vectorial identity:
, 1 ; 1 2 ’
(k-1)J= i(r X J) Xk + E[(k-r YJ+ (k- J)r']
and in integrated form:
’ 7 1 ’ ’ 1 ’ ’ !/
J (k-1)Jdr = —J (' x J)xkdr + —J [(k-¥)J+ (k- Dr']1d’r (15.11.5)
% 2 )y 2 Jv
The magnetic moment of a current distribution is defined in general by

]- ’ ’ 3.7 .
m= > I r x J(r') d®r (magnetic moment) (15.11.6)
1%

Therefore, the first term in Eq. (15.11.5) may be written as m X k. With the help of
the second identity of Eq. (15.11.4), the last term of (15.11.5) may be written in terms of
the quadrupole matrix D acting on the vector k. We have then for the second term in
the expansion (15.11.1):

, ;. 1
Jj(k-r)]aﬁr =Jm><k—Eka=Fmag+Fquad (15.11.7)
\%

Thus, the three lowest-order terms of F are:

1
F = Fo + Fag + Fquad = jWp + jm X k—ngk (15.11.8)

We briefly discuss each term. For a Hertzian dipole antenna with J(r')= 21163 ('),
only the first term of (15.11.8) is non-zero and is the same as that of Sec. 15.2:

Fy = J Ja)d’r =zIl = jwp
v

The relationship Il = jwp may be understood by thinking of the Hertzian dipole as
two opposite time-varying charges +q separated by a distance I (along the z-direction),
so that p = gl. Tt follows that jwp = p = gl = I1.

The result p = gl may also be applied to the case of an accelerated charge. Now g is
constant but I varies with time. We have p = qi =qv and p = qv = qa, where a is the
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acceleration a = V. For harmonic time dependence, we have (jw)?p = ga. The total
radiated power from a dipole was obtained in Eq. (15.2.2). Setting k?|II|2 = k?|qv|? =
g*w?|v|?/c? = g%lal?/c?, we can rewrite Eq. (15.2.2) in the form:

_ng*lal’® _ ng*ai.

127172 61TC?

where ayms = |a|/+/2 is the rms value of the acceleration. This is Larmor’s classical
expression for the radiated power from a nonrelativistic accelerated charge.

For a Hertzian loop, only the magnetic moment term is present in F. We may verify
the result that m = 2 IS using the definition (15.11.6). Indeed, for a circular loop:

m= % Jr’ X [I&),é(p’ —a)s(z')]p'dp'ddp’'dz

The integrations over z’ and p’ force z’ = 0 and p’ = a, and therefore, r' = ap’.
Noting that p’ x (i)l = 7 and that the ¢b’-integration contributes a factor of 271, we obtain:
m = %a[)' x @ la2m = z1(ma?)

Similarly, inserting Eq. (15.10.1) into (15.11.6), we find for the square loop:
m = % I(xf( +yy+z2)X[IP (XS5 (X)8' ()98 (X)6(y))6(z) |dxdy dz = 211>

For the electric quadrupole term, the matrix D is sometimes replaced by its traceless
version defined by

Qjj = 3Dj; — 6jtr(D) = J (Brirj=6yr' -r)p)d’r = Q=3D-It(D)
v
so that tr(Q) = 0. In this case, the vector Dk may be expressed as
1 1
Dk = §Qk+ §tr(D) k

The second term may be ignored because it does not contribute to the radiation
fields, which depend only on the part of F transverse to k. Thus, without loss of gener-
ality we may also write:

1
F=jwp+jm><k—6ka

The electric and magnetic dipoles have angular gain patterns that are identical to
the Hertzian dipole and Hertzian loop antennas, that is, sin® 0. The quadrupole term,
on the other hand, can have a complicated angular pattern as can be seen by expressing
the vector Qk = kQF explicitly in terms of the angles 0, ¢:

Qxx Qxy Qx; sin 0 cos (]5
Qf = Qux Qyy Qy: sin @ sin ¢
sz sz sz cos 0

15.12 Problems



