TE814-Comunicações Ópticas I

PARTE 3: PROPAGAÇÃO DE ONDAS E A FIBRA ÓPTICA -EFEITOS DISPERSIVOS

PROF. CÉSAR AUGUSTO DARTORA - UFPR

E-MAIL: CADARTORA@ELETRICA.UFPR.BR

CURITIBA-PR

Roteiro da Aula:

• A equação de ondas paraxial.

• Dispersão e difração. Atenuação de sinal.

• Algumas propriedades da Transformada de Fourier.

• Efeitos dispersivos na fibra

A equação paraxial

 \rightsquigarrow Conforme já foi visto anteriormente, a propagação de ondas na fibra óptica pode ser descrita a partir da teoria dos modos LP. Um modo LP pode ser descrito através de uma componente transversal do campo elétrico, que deve satisfazer a equação de ondas de Helmholtz na forma:

$$(\nabla^2 + k_0^2 n^2)\mathbf{E} = 0 , \qquad (1)$$

para o vetor campo elétrico.

Assumindo uma onda propagante na direção de z podemos escrever uma solução na forma:

$$E_x = \Psi(x, y, z) = \Phi(x, y, z)e^{i(\omega t - \beta z)} , \qquad (2)$$

que permite remover a variação rápida na direção z.

 \sim Observe que ao contrário do que fizemos na análise modal anterior, aqui a amplitude $\Phi(x, y, z)$ pode variar com z. Essa função $\Phi(x, y, z)$ assume o papel de uma envoltória do sinal, que varia rapidamente ao longo de z, através da dependência $e^{-i\beta z}$. \sim Calculando a segunda derivada da função Ψ , que corresponde a uma componente de campo, vale lembrar, e sabendo que a variação rápida em z está contida em $e^{-i\beta z}$, temos:

$$\frac{\partial^2 \Psi}{\partial z^2} = \left[\frac{\partial^2 \Phi}{\partial z^2} - 2i\beta \frac{\partial \Phi}{\partial z} - \beta^2 \Phi\right] e^{-i\beta z}$$

Se a variação rápida está no termo e^{-ikz} , então a condição abaixo será naturalmente satisfeita:

$$\left|\frac{\partial^2 \Phi}{\partial z^2}\right| << 2\beta \left|\frac{\partial \Phi}{\partial z}\right| \;,$$

permitindo negligenciar a derivada de segunda ordem de Φ em relação à variável z.

Podemos reescrever a equação de ondas em uma forma conhecida como equação de propagação paraxial:

$$i\frac{\partial\Phi}{\partial z} = \frac{1}{2\beta} \left[\nabla_{\perp}^2 \Phi + (k_0^2 n^2 - \beta^2)\Phi\right] , \qquad (3)$$

onde $\nabla_{\perp}^2 = \partial_{xx} + \partial_{yy}$ corresponde à parte transversal do operador laplaciano, dependendo somente das segundas derivadas em relação às variáveis (x, y). \sim Vamos repetir aqui a equação para identificar alguns efeitos:

$$i\frac{\partial\Phi}{\partial z} = \frac{1}{2\beta} [\nabla_{\perp}^2 \Phi + (k_0^2 n^2 - \beta^2)\Phi] ,$$

 \rightarrow 0 termo

contém o efeito de difração na propagação de ondas. Este efeito ocorre em espaço livre, sobretudo. Na condição de guiamento temos simplesmente $\nabla_{\perp}^2 \Phi = -k_{\perp}^2 \Phi$, onde k_{\perp} é uma constante e a forma $\Phi(x, y, z)$ não se altera com respeito a (x, y) à medida em que propaga ao longo de z - a onda é guiada e se acomoda a um modo possível do guia!!!

 $\frac{1}{2\beta}\nabla_{\perp}^{2}\Phi$

 \sim A dispersão e a atenuação devem estar contidas no termo

$$(k_0^2n^2-\beta^2)\Phi \ ,$$

conforme veremos mais adiante.

Difração e a óptica de Fourier

 \rightsquigarrow Para fins de simplicidade e compreensão, vamos considerar uma onda monocromática se propagando em um meio de índice *n* homogêneo infinito, e vamos fazer $\beta = k_0 n$ para obter a equação de propagação paraxial:

$$\frac{\partial \Phi}{\partial z} = -\frac{i}{2\beta} \nabla_{\perp}^2 \Phi , \qquad (4)$$

 \rightsquigarrow A equação acima tem a mesma forma de uma equação de Schroedinger para uma partícula livre, mas aqui a variável z faz o papel do tempo t.

Podemos definir agora um par de transformadas de Fourier, na forma que segue:

$$\Phi(x,y,z) = \frac{1}{(2\pi)^2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \tilde{\Phi}(k_x,k_y,z) e^{-ik_x z} e^{-ik_y y} dk_x dk_y , \qquad (5)$$

$$\tilde{\Phi}(k_x,k_y,z) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \Phi(x,y,z) e^{ik_x x} e^{ik_y y} dx dy , \qquad (6)$$

e aplicar essas relações à equação (4). Observando as propriedades matemáticas das transformadas, é fácil ver que a seguinte substituição é possível:

$$\nabla_{\perp}^2 \to -(k_x^2 + k_y^2)$$

Reescrevendo a equação, no domínio (k_x, k_y) temos:

$$\frac{d}{dz}\tilde{\Phi}(k_x, k_y, z) = \frac{i}{2k}(k_x^2 + k_y^2)\tilde{\Phi}(k_x, k_y, z) .$$
 (7)

Dada a condição inicial $\tilde{\Phi}(k_x, k_y, 0)$ encontrada a partir da distribuição espacial $\Phi(x, y, 0)$ no plano z = 0 podemos escrever a solução da equação acima:

$$\tilde{\Phi}(k_x,k_y,z) = \tilde{\Phi}(k_x,k_y,0) \exp\left[\frac{i}{2k}(k_x^2+k_y^2)z\right] ,$$

e finalmente obtém-se o conjunto de equações que descreve a teoria conhecida com óptica de Fourier:

$$\Phi(x, y, z) = \frac{1}{(2\pi)^2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \tilde{\Phi}(k_x, k_y, 0) \exp\left[\frac{iz}{2k}(k_x^2 + k_y^2)\right] e^{-ik_x x} e^{-ik_y y} dk_x dk_y 8,$$

$$\tilde{\Phi}(k_x, k_y, 0) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \Phi(x, y, 0) e^{ik_x x} e^{ik_y y} dx dy .$$
(9)

Observe $\Psi(x, y, z) = \Phi(x, y, z)e^{-ikz}$ é uma superposição de ondas planas uniformes, $e^{-i\mathbf{k}\cdot\mathbf{x}} = e^{-i(k_xx+k_yy+k_zz)}$ com diferentes vetores de onda $\mathbf{k} = (k_x, k_y, k_z)$ de mesma freq. ω e mesmo valor para o produto $\mathbf{k} \cdot \mathbf{k} = k_0^2 n^2$, mas onde assumimos que $k_z \approx k >> k_x, k_y$ - aproximação paraxial. É importante lembrar que Ψ representa uma das componentes do campo elétrico e podemos então escrever:

$$\mathbf{E} = \Phi(x, y, z) e^{i(\omega t - kz)} \mathbf{\hat{a}}_{\mathbf{x}} , \qquad (10)$$

sendo a densidade de potência calculada pelo vetor de Poynting, que tem como resultado na aproximação paraxial o seguinte resultado:

$$\mathbf{S}_{\text{med}} \approx \frac{1}{2} \sqrt{\frac{\varepsilon}{\mu}} |\mathbf{E}|^2 \mathbf{\hat{a}}_{\mathbf{z}} = \frac{1}{2} \sqrt{\frac{\varepsilon}{\mu}} |\Phi(x, y, z)|^2 \mathbf{\hat{a}}_{\mathbf{z}} .$$
(11)

 \sim Exemplo Importante: A fenda retangular.

Considere uma fenda de lados $L_x = d \ll L_y$ localizada no plano z = 0 e sendo iluminada por uma onda plana uniforme. Nesse caso, podemos assumir para todos os fins práticos que a condição inicial é dada por $\Phi(x, y, 0) = \Phi_0$ constante para toda a região definida pela fenda, $-\infty \ll y \ll \infty = -d/2 \le x \le d/2$.

Fazendo a transformada de Fourier de $\Phi(x, y, 0)$ obtemos facilmente:

$$ilde{\Phi}(k_x,k_y,0) = 2\pi d\Phi_0 rac{\sin\left[k_x d/2
ight]}{k_x d/2} \, \delta(k_y) \; ,$$

sendo $\delta(k_y)$ a função delta de Dirac. Inserindo a expressão acima em (8) tem-se:

$$\Phi(x, y, z) = \frac{\Phi_0 d}{2\pi} \int_{-\infty}^{\infty} \frac{\sin[k_x d/2]}{k_x d/2} \exp\left[\frac{ik_x^2 z}{2k}\right] e^{-ik_x x} dk_x , \qquad (12)$$

Figure 1: Perfil transversal da densidade de potência $S = |\Psi|^2$, em unidades arbitrárias, à medida em que a onda difratada se propaga. Observe que para grandes distâncias formam-se as franjas de interferência.

O Método da Fase Estacionária:

Note que para grande z mais oscilações ocorrem devido ao termo de fase $\exp\left[\frac{ik_x^2z}{2k} - ik_xx\right]$ na integral anterior.

Nesse caso a maior contribuição para a integral em valores grandes de z ocorre para valores de fase estacionária, ou seja, na condição em que:

$$\frac{d}{dk_x}\left[\frac{k_x^2z}{2k}-k_xx\right]=0 \;,$$

que corresponde ao valor $k_x = k \cdot x/z$ e produz uma solução aproximada na forma abaixo:

$$\Phi(x, y, z) = \frac{\Phi_0 d}{2\pi\sqrt{z}} \frac{\sin\left[\frac{kdx}{2z}\right]}{\frac{kdx}{2z}} .$$
(13)

OBS.: o fator de decaimento do campo com \sqrt{z} decorre do fato de a situação ser considerada bidimensional (x,z), ou invariante em y, garantindo assim a conservação da potência total da onda. Em 3-DIM o fator correto seria de z e não de \sqrt{z} .

Fazendo uso das definições $k = 2\pi/\lambda$ e $x/z = \tan \theta$ e ainda aproximando $\tan \theta \approx \sin \theta$, quando $x \ll z$, podemos reescrever esta última expressão na forma abaixo:

$$\Phi(z,\theta) = \frac{\Phi_0 d}{2\pi\sqrt{z}} \frac{\sin\left[\pi d\sin\theta/\lambda\right]}{\pi d\sin\theta/\lambda} .$$
(14)

O resultado acima é bem conhecido da teoria da difração: padrão de interferências característico do experimento da fenda simples. Os valores de máxima intensidade da onda dependem do ângulo θ , de tal forma que o primeiro valor de máxima ocorre em $\theta = 0$ e os outros para

$$\sin\theta = (2m+1)\frac{\lambda}{2d} ,$$

com $m = 0, \pm 1, \pm 2...$ Para m = 0 obtém-se o valor $\sin \theta = \frac{\lambda}{2d}$, o que permite através da medida o ângulo θ formado entre o primeiro e o segundo máximo e da largura da abertura d, determinar o comprimento de onda λ .

Exercício na Lista: O feixe gaussiano.

Lá você terá que demonstrar que o comprimento de difração, para o qual um feixe gaussiano de largura inicial x_0 dobra a largura espacial em uma distância conhecida como comprimento de difração, L_{diff} dado por:

$$L_{dif} = 2\pi\sqrt{3}\frac{x_0^2}{\lambda}.$$
(15)

→ Embora obtido com o feixe gaussiano e sendo que alguns fatores numéricos diferem ligeriamente devido à definição e forma do feixe inicial, é possível constatar que em um comprimento

$$L_{dif} \sim rac{x_0^2}{\lambda} \; ,$$

qualquer onda propagando-se sem guiamento sofrerá mudanças mensuráveis no seu perfil transversal, como franjas de interferência e alargamento espacial. Efeitos de degradação de sinais na fibra óptica

 \rightsquigarrow A utilização de guias de ondas evita o principal efeito da propagação não guiada: a difração.

→ Na propagação guiada a onda propagante se propaga através de um ou mais modos possíveis dentro do guia. Assumindo-se que este seja conhecido, deseja-se determinar quais efeitos ocorrem com um sinal à medida em que se propaga ao longo da fibra.

 \rightsquigarrow São estes efeitos principais:

- Dispersão;
- Atenuação;
- Não-linearidades;

Temos então para a DISPERSÃO:

1) Dispersão Intermodal - ocorre na propagação Multimodo;

2) Dispersão Intramodal - tanto monomodo quanto multimodo, mas é mais relevante no caso monomodo, pois a dispersão intermodal usualmente domina no caso multimodal. Podemos separar em:

2.1) GVD - Group Velocity Dispersion - ocorre devido à geometria do guia de ondas, bem como devido ao material.

2.2) PMD - Polarization Mode Dispersion - devido à defeitos, birrefringência e anisotropia.

A Equação de Propagação: Efeitos Dispersivos

Antes de prosseguirmos na análise de efeitos de dispersão é conveniente escrever a forma geral das transformadas de Fourier e algumas das propriedades importantes que serão utilizadas:

$$f(\alpha) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\beta) e^{-i\alpha\beta} d\beta , \qquad (16)$$

$$F(\beta) = \int_{-\infty}^{\infty} f(\alpha) e^{i\alpha\beta} d\alpha , \qquad (17)$$

onde as relações entre dois espações matemáticos, ditos recíprocos, α e β permitem o mapeamento das funções $f(\alpha)$ para o seu recíproco $F(\beta)$ e vice-versa.

As transformadas de Fourier são de grande valor para sistemas lineares.

São propriedades das transformadas, facilmente demonstráveis:

$$\mathcal{F}\left[\frac{d^n f(\alpha)}{d\alpha^n}\right] = (-i\beta)^n F(\beta) , \qquad (18)$$

$$\mathcal{F}[f(\alpha) \star g(\alpha)] = F(\beta)G(\beta) , \qquad (19)$$

$$\mathcal{F}[f(\alpha - \alpha_0)] = F(\beta)e^{i\alpha_0\beta} , \qquad (20)$$

o símbolo \mathcal{F} denota transformação de Fourier da equação entre colchetes, correspondendo às operações (17) e o símbolo \star denota convolução:

$$f(\alpha) \star g(\alpha) = \int_{-\infty}^{\infty} f(\alpha')g(\alpha - \alpha')d\alpha' .$$
 (21)

 \rightsquigarrow Vamos reescrever a equação paraxial, acrescentando novamente o termo que foi negligenciado anteriormente, ou seja, a derivada segunda de Φ em relação à variável *z*:

$$i \frac{\partial \Phi}{\partial z} = \frac{1}{2\beta_0} [\nabla_{\perp}^2 \Phi + \frac{\partial^2 \Phi}{\partial z^2} + (k^2 - \beta_0^2) \Phi] ,$$

 \rightsquigarrow Nesse sentido, até aqui não há aproximação alguma sendo feita!! Trocamos β por β_0 , por motivos que seguirão.

 \sim Cabe lembrar que a constante $k(\omega) = k_0 n(\omega)$ é uma função da frequência, definido em outros termos como $k^2(\omega) = \omega^2 \mu_0 \varepsilon_c(\omega)$.

 \rightsquigarrow Um sinal eletromagnético usualmente tem largura de banda $\Delta \omega$ e é montado sobre uma onda portadora de frequência ω_0 . Geralmente, e especialmente no domínio óptico tem-se a condição $\Delta \omega << \omega_0$.

Lembrando que no modelo de Lorentz:

$$\frac{\varepsilon_c}{\varepsilon_0} = \varepsilon_r - i \frac{\sigma}{\omega \varepsilon_0} = 1 + \frac{\omega_p^2}{\omega_r^2 - \omega^2 + i\omega\nu} , \qquad (22)$$

sendo ε_r a parcela real da constante dielétrica relativa, σ a condutividade do material, ω a frequência de operação, $\omega_p^2 = N_q q^2 / (m \varepsilon_0)$ a frequência de plasma do material, ω_r uma frequência característica de ressonância do material e v a frequência de colisões, N_q é a densidade de cargas q no material e m a massa das mesmas.

$$n(\mathbf{\omega}) = \sqrt{\frac{\varepsilon_c}{\varepsilon_0}} \tag{23}$$

→ A parte imaginária está associada à absorção, enquanto a parte real corresponde à caracteristicas de fase/dispersão na propagação.

 \rightsquigarrow Meios condutores - elétrons quase livres, o que corresponde a $\omega_r \rightarrow 0$ e geralmente satisfazem a condição $\nu >> \omega$ para frequências abaixo do ultra-violeta, o que nos dá:

$$\frac{\varepsilon_c}{\varepsilon_0} = \varepsilon_r - i \frac{\sigma}{\omega \varepsilon_0} \approx 1 - i \frac{\omega_p^2}{\omega \nu} , \qquad (24)$$

 \rightsquigarrow Materiais dielétricos de poucas perdas, categoria na qual podemos enquadrar as fibras ópticas - linha de ressonância estreita. O caso extremo desse tipo de material corresponde a levar a expressão (22) ao limite $\nu \rightarrow 0$ e nesse caso obtém-se:

$$\frac{\varepsilon_c}{\varepsilon_0} = \varepsilon_r - i\frac{\sigma}{\omega\varepsilon_0} \approx 1 + \frac{\omega_p^2}{\omega_r^2 - \omega^2} - i\pi\frac{\omega_p^2}{2\omega}[\delta(\omega - \omega_r) + \delta(\omega + \omega_r)] . \quad (25)$$

 \rightarrow Em $\omega = \omega_r$, um meio dielétrico de poucas perdas tem comportamento de um condutor, com alta condutividade efetiva.

 \sim O limite para longe da ressonância nos dá a chamada equação de Sellmeier.

$$n^2(\omega) = 1 + \sum_r \frac{\omega_p^2}{\omega_r^2 - \omega^2}$$

 \sim Dado que a comunicação óptica geralmente satisfaz a condição $\omega_0 >> \Delta \omega$ ($\omega_0 \sim 10^{15}$ rad/s, $\Delta \omega \sim 10^{13}$ rad/s para comunicações em Tb/s), podemos expandir k em séries de Taylor em torno de ω_0 :

$$k(\boldsymbol{\omega}) = \sum_{m=0}^{\infty} \frac{1}{m!} \frac{d^m k(\boldsymbol{\omega})}{d\boldsymbol{\omega}^m} \Big|_{\boldsymbol{\omega} = \boldsymbol{\omega}_0} (\boldsymbol{\omega} - \boldsymbol{\omega}_0)^m .$$
(26)

Definindo os coeficientes a seguir:

$$\Gamma_m = \frac{d^m k(\omega)}{d\omega^m} \Big|_{\omega = \omega_0} , \qquad (27)$$

com $\Gamma_0 = k_0 n(\omega_0)$, podemos expressar $k^2(\omega)$ na forma:

$$k^{2}(\boldsymbol{\omega}) = \sum_{r} \sum_{s} \frac{1}{r!s!} \Gamma_{r} \Gamma_{s} (\boldsymbol{\omega} - \boldsymbol{\omega}_{0})^{r+s} ,$$

Inserindo a expansão na equação paraxial, obtemos:

$$i\frac{\partial\Phi}{\partial z} = -\frac{1}{2\beta_0} \left[\nabla_{\perp}^2 \Phi + \frac{\partial^2 \Phi}{\partial z^2} + \left(\sum_r \sum_s \frac{1}{r!s!} \Gamma_r \Gamma_s (\omega - \omega_0)^{r+s} - \beta_0^2 \right) \Phi \right] ,$$

 \rightarrow Expandir $k(\omega)$ em torno de ω_0 corresponde à eliminação da variação temporal rápida na forma $e^{i\omega_0 t}$, assim como removemos a variação rápida em relação à z com o termo $e^{-i\beta_0 z}$.

 \rightsquigarrow A prova desse argumento se dá passando do domínio $\omega - \omega_0$ para o domínio t, fazendo uso das propriedades das transformadas de Fourier: $(i)^n (\omega - \omega_0)^n \leftrightarrow e^{i\omega_0 t} \partial^n / \partial t^n$

Obtemos então a equação de propagação paraxial no domínio do tempo:

$$i\frac{\partial\Phi}{\partial z} = \frac{1}{2\beta_0} \left[\nabla_{\perp}^2 \Phi + \frac{\partial^2 \Phi}{\partial z^2} + \left(\sum_r \sum_s \frac{1}{r!s!} i^{r+s} \Gamma_r \Gamma_s \frac{\partial^{r+s}}{\partial t^{r+s}} \Phi - \beta_0^2 \Phi \right) \right] , \quad (28)$$

onde $\Psi(x, y, z, t)$ é dado por

$$\Psi(x, y, z, t) = \Phi(x, y, z, t)e^{i(\omega_0 t - \beta_0 z)} .$$
⁽²⁹⁾

 \rightsquigarrow Variações rápidas estão em $e^{-i(\omega_0 t - \beta_0 z)}$ e o comportamento de envoltória é descrito por $\Phi(x, y, z, t)$.

Parte 3: Propagação de Ondas e a Fibra Óptica - Efeitos Dispersivos

Restringindo atenção à ondas guiadas propagantes: um modo deve satisfazer uma equação da forma $\nabla^2_{\perp} \Phi = -k^2_{\perp 0} \Phi$ então podemos substituir este resultado na equação anterior, para obter

$$i\frac{\partial\Phi}{\partial z} = \frac{1}{2\beta_0} \left[\frac{\partial^2\Phi}{\partial z^2} + \left(\sum_r \sum_s \frac{1}{r!s!} (-i)^{r+s} \Gamma_r \Gamma_s \frac{\partial^{r+s}}{\partial t^{r+s}} \Phi - (\beta_0^2 + k_{\perp 0}^2) \Phi \right) \right].$$
(30)

Negligenciando derivadas temporais de ordem maior do que $\partial^2/\partial t^2$ pode-se reescrever a equação acima:

$$i\frac{\partial\Phi}{\partial z} = \frac{1}{2\beta_0} \left[\frac{\partial^2\Phi}{\partial z^2} + \Gamma_0^2\Phi - 2i\Gamma_0\Gamma_1\frac{\partial\Phi}{\partial t} - (\Gamma_0\Gamma_2 + \Gamma_1^2)\frac{\partial^2\Phi}{\partial t^2} - (\beta_0^2 + k_\perp^2)\Phi \right].$$
(31)

Fazendo $\Gamma_0^2 = \beta_0^2 + k_{\perp}^2$ e utilizando a regra da cadeia de derivadas podemos mostrar que:

$$\Gamma_1(\omega_0) = \frac{dk}{d\omega}(\omega_0) = \frac{dk}{d\beta}\frac{d\beta}{d\omega} = \frac{\beta_0\beta_1}{\Gamma_0},$$

onde os parâmetros β_0 , β_1 e β_2 são definidos na forma

$$\beta_0 = \beta(\omega_0) , \qquad (32)$$

$$\beta_1 = \frac{\partial \mathbf{p}}{\partial \boldsymbol{\omega}}\Big|_{\boldsymbol{\omega}_0} , \qquad (33)$$

$$\beta_2 = \frac{\partial^2 \beta}{\partial \omega^2} \Big|_{\omega_0} , \qquad (34)$$

permitindo escrever a constante $\beta(\omega)$ em séries de Taylor:

$$\beta(\boldsymbol{\omega}) = \beta(\boldsymbol{\omega}_0) + \frac{\partial \beta}{\partial \boldsymbol{\omega}} \Big|_{\boldsymbol{\omega}_0} (\boldsymbol{\omega} - \boldsymbol{\omega}_0) + \frac{1}{2} \frac{\partial^2 \beta}{\partial \boldsymbol{\omega}^2} \Big|_{\boldsymbol{\omega}_0} (\boldsymbol{\omega} - \boldsymbol{\omega}_0)^2 + \dots, \quad (35)$$

Reescrevemos a equação na forma:

$$i\frac{\partial\Phi}{\partial z} = \frac{1}{2\beta_0} \left[\frac{\partial^2\Phi}{\partial z^2} - 2i\beta_0\beta_1\frac{\partial\Phi}{\partial t} - (\beta_0\beta_2 + \beta_1^2)\frac{\partial^2\Phi}{\partial t^2} \right] .$$
(36)

Utilizando a relação:

$$\frac{\partial^2 \Phi}{\partial z^2} - \beta_1^2 \frac{\partial^2 \Phi}{\partial t^2} = 0$$

e fazendo uma transformação galileana de coordenadas:

$$egin{array}{rcl} z' &=& z \ , \ T &=& t - eta_1 z \ . \end{array}$$

podemos reescrever (36) nas coordenadas (z, T), na forma abaixo:

$$i\frac{\partial\Phi}{\partial z} = -\frac{\beta_2}{2}\frac{\partial^2\Phi}{\partial T^2} . \tag{37}$$

 \rightsquigarrow Novamente, tema forma de uma equação de Schroedinger.

Por analogia com a Mecânica Quântica de uma partícula livre tem-se

$$\Delta k_z = \frac{\beta_2}{2} \Delta \omega^2$$

A transformada de Fourier demanda que um pulso de duração τ satisfaz uma relação de incerteza na forma

 $\tau \ge 1/(2\Delta\omega)$

assim como

$$L_{\rm disp} = \Delta z \ge 1/(2\Delta k_z)$$

É fácil mostrar dessas relações, portanto que

$$L_{
m disp} pprox 4 au^2/eta_2$$

o que está de acordo como resultados bem conhecidos obtidos de forma exata.

Parte 3: Propagação de Ondas e a Fibra Óptica - Efeitos Dispersivos

Solução Exata: sendo conhecido o formato do sinal em z = 0 podemos obter facilmente

$$\Phi(x, y, z, T) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \tilde{\Phi}(x, y, z = 0, \omega) \exp\left[i\frac{\beta_2 z\omega^2}{2}\right] e^{i\omega T} d\omega \qquad (38)$$

$$\tilde{\Phi}(x, y, z = 0, \omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \Phi(x, y, z = 0, T = t) e^{-i\omega T} dT .$$
(39)

 $\rightarrow \Phi(x, y, z, T)$ é o envelope da função $\Psi(x, y, z, t) = \Phi(x, y, z, t)e^{-i(\omega_0 t - \beta_0 z)}$, que contém um termo de oscilação rápida $e^{-i(\omega_0 t - \beta_0 z)}$.

Para um espectro gaussiano na forma

$$\tilde{\Phi}(x, y, z = 0, \omega) = \Phi_{\perp}(x, y) \exp\left(-\frac{\omega^2 \tau_0^2}{2}\right)$$

pode-se obter de maneira relativamente fácil, nas coordenadas (z,t) a seguinte solução:

$$\Psi(x, y, z, t) = \Phi_{\perp}(x, y) \sqrt{\frac{2\pi}{\tau_0^2 + i\beta_2 z}} \exp\left[-\frac{(t - \beta_1 z)^2 (1 - i\beta_2 z / \tau_0^2)}{2(\tau_0^2 + \beta_2^2 z^2 / \tau_0^2)}\right] e^{i(\omega_0 t - \beta_0 z)}$$
(40)

 \rightsquigarrow A frequência ω_0 é denominada frequência portadora e o termo exponencial é o termo de fase relacionado a esta frequência, $e^{i(\omega_0 t - \beta_0 z)}$, que podemos escrever na forma $e^{-i\beta_0(z-v_p t)}$.

Dessa forma definimos a chamada velocidade de fase

$$v_p = \omega_0 / \beta_0$$

que é a velocidade com que a fase da onda portadora se propaga.

 \rightsquigarrow Já a velocidade

$$v_g = 1/\beta_1$$

é aquela com a qual o envelope se propaga ao longo de z.

Existe uma relação formal que diz que

$$v_g \cdot v_p = c^2$$

 \rightsquigarrow Finalmente, o termo β_2 é responsável pela dispersão, ou seja, pelo alargamento temporal do pulso à medida em que propaga ao longo de z. Definindo uma largura temporal $\tau(z)$ na forma

$$\tau(z) = \sqrt{\tau_0^2 + \frac{\beta_2^2 z^2}{\tau_0^2}} , \qquad (41)$$

e calculando a densidade de potência transportada pela onda

$$\mathbf{S}_{\text{med}} = \frac{1}{2} \sqrt{\frac{\varepsilon}{\mu}} |\phi_{\perp}(x,y)|^2 \frac{2\pi}{\sqrt{\tau_0^2 \tau^2(z)}} \exp\left[-\frac{(t-\beta_1 z)^2}{\tau^2(z)}\right] , \qquad (42)$$

podemos obter o comprimento de dispersão Ldisp,

$$L_{\rm disp} = \sqrt{3} \ \frac{\tau^2}{\beta_2} \ , \tag{43}$$

como a distância para a qual o pulso gaussiano dobra sua largura temporal. Se $\beta_2 = 0$ não há dispersão, pois $L_{\text{disp}} \rightarrow \infty$.

 \sim O parâmetro β_2 produz alargamento do pulso gaussiano mas não muda sua forma - ele continua gaussiano.

 \rightsquigarrow Podemos levar em conta mais termos na expansão em séries de Taylor para $\beta(\omega)$, mas nesse caso à medida que propaga até mesmo o pulso gaussiano muda sua forma.

 \rightsquigarrow Incluindo β_3 é a aproximação seguinte:

$$i\frac{\partial\Phi}{\partial z} = -\frac{\beta_2}{2}\frac{\partial^2\Phi}{\partial T^2} + i\frac{\beta_3}{6}\frac{\partial^3\Phi}{\partial T^3} .$$
(44)

 \rightsquigarrow Existe uma região de operação da fibra para a qual $\beta_2 = 0$, denominada de região de dispersão zero. Nesse caso, para obter os efeitos dispersivos se faz absolutamente necessário levar em conta o efeito de β_3 e termos de ordem maior.

 \rightsquigarrow É também possível combinar os efeitos de β_2 e β_3 para obter, após uma certa distância propagada, dispersão nula, ou quase, se os efeitos combinados se cancelam.

Análise quantitativa da dispersão

 \rightarrow Observe que em uma fibra de comprimento *L*, o tempo *T* necessário para um grupo de ondas percorrer essa distância é dado simplesmente por:

$$T = \frac{L}{v_g} = L\beta_1$$

 \sim Para calcular as diferenças de tempo entre as componentes de frequência dentro desse pacote de ondas, podemos simplesmente derivar a expressão acima em relação a ω :

$$\Delta T = L \frac{\partial \beta_1}{\partial \omega} d\omega = L \beta_2 d\omega . \qquad (45)$$

Para que um sinal possa ser recuperado, a largura de bit τ deve satisfazer a condição:

$$\tau > \Delta T$$
 ,

Assumindo a largura de banda na forma $B = 1/\tau$, obtemos:

$$BL < \frac{1}{\beta_2 \Delta \omega}$$

Lembrando que:

$$c = \lambda f$$

e $\omega = 2\pi f$ temos

$$d\omega = -rac{2\pi c}{\lambda^2} d\lambda \; ,$$

e portanto:

$$BL < \frac{1}{D\Delta\lambda}$$
,

sendo definido o parâmetro de dispersão:

$$D = -\frac{2\pi c}{\lambda^2} \beta_2 \tag{46}$$

 \rightsquigarrow A largura $\Delta\lambda$ não está associada a banda da informação e sim deve-se geralmente à largura de banda do laser. Tipicamente lasers semicondutores multimodo tem $\Delta\lambda = 2$ nm.

 \rightarrow Em fibras de silica padrão o valor do parâmetro de dispersão gira em torno de $D = 1 \text{ps}/(\text{km} \cdot \text{nm}) \text{ em } \lambda = 1.3 \mu \text{m}$. Isto nos dá $BL \sim 1(\text{Tb/s}).\text{km}$.

É interessante notar algumas relações que seguem de definições anteriores:

$$n_{eff} = \frac{\beta}{k_0} = c \frac{\beta}{\omega} ,$$

dessa forma

$$\beta_1 = \frac{1}{c} \left[n_{eff} + \omega \frac{\partial n_{eff}}{\partial \omega} \right] ,$$

mas uma vez que $v_g = 1/\beta_1$, podemos definir o índice de refração do grupo, n_g , na forma

$$n_g = \frac{c}{v_g} = c\beta_1 = n_{eff} + \omega \frac{\partial n_{eff}}{\partial \omega} , \qquad (47)$$

 \sim Lembrando que $D = -\frac{2\pi c}{\lambda^2}\beta_2$ e $\beta_2 = \partial\beta_1/\partial\omega$, temos finalmente:

$$D = -\frac{2\pi}{\lambda^2} \left[2 \frac{\partial n_{eff}}{\partial \omega} + \omega \frac{\partial^2 n_{eff}}{\partial \omega^2} \right]$$
(48)

 \rightsquigarrow Na verdade $D = D_M + D_W$ onde D_M é uma parcela que só depende do material, enquanto que D_W é a variação do índice efetivo do guia com a frequência. \sim Tipos de Fibra Quanto à dispersão:

A) Fibras de Silica Padrão: em geral a dispersão depende de β_2 , exceto no ponto de dispersão nulo, onde $\beta_2 = 0$ e tem-se que levar em conta o efeito de β_3 . O parâmetro *D* geralmente é baixo próximo de $\lambda = 1.3\mu$ m.

B) Fibras de Dispersão Deslocada: É construída de tal forma que $\beta_2 = 0$ na frequência de operação desejada, usualmente através do material e geometria do guia de ondas. Os parâmetros que podem ser modificados são a, $n_1 \in \Delta$. Essas modificações fazem um valor muito pequeno em $D = 1.55 \mu$ m

C) Fibras com Perfil de Dispersão Plana: Para operar em um amplo espectro $1.3\mu m \le \lambda \le 1.6\mu m$, a fibra é construída de tal forma a tornar a dispersão plana nessa região de interesse, com o mais baixo valor de *D* possível.

Atenuação: Perdas na Fibra

 \rightsquigarrow A atenuação em uma fibra óptica pode ser separada em vários termos específicos:

1) Absorção/Atenuação:

- Intrínseca: deve-se às características do próprio material com o qual a fibra óptica é construída, no caso a sílica. Do ponto de vista físico corresponde a uma contribuição imaginária do material para a constante dielétrica ε_c. Longe das ressonâncias esse termo é usualmente menosprezado.
- Extrínseca: deve-se a ressonâncias e outros efeitos produzidos por impurezas na fibra. Um exemplo típico de impureze extrinseca na fibra é a água e moléculas *OH*, devido à umidade, que são capazes de produzir alta atenuação. Na verdade a melhoria da propagação nas fibras ópticas passou pela técnica de eliminação de impurezas, sobretudo a umidade.

2) Perdas por espalhamento:

A onda propagante encontra centros de impureza, nos quais ela é espalhada. Um exemplo de fenômeno de espalhamento bem conhecido é o espalhamento sofrido pela radiação solar, dando a tonalidade azulada à atmosfera.

Existem três tipos principais de espalhamento:

 Espalhamento Rayleigh: este fenômeno ocorre devido a pequenas inhomogeneidades no índice de refração da fibra, devido a flutuações da densidade da mesma. Ocorre até mesmo devido a efeitos de temperatura. A perda por espalhamento Rayleigh tem uma lei da forma:

$$\alpha_R = \frac{C}{\lambda^4} \ . \tag{49}$$

A frequência da onda espalhada é a mesma da onda incidente, nesse caso.

- Espalhamento Brillouin: espalhamento de ondas eletromagn. com o auxílio de ondas de som no material interação fônon-fóton na fibra. Pode haver absorção ou emissão de fônons, a onda resultante tem frequência ligeiramente diferente da onda incidente.
- Espalhamento Raman: transições atômicas no material. A onda incidente e a onda espalhada tem frequências diferentes.

→ Os fenômenos de Brillouin e Raman só podem ser compreendidos inteiramente através da Mecânica Quântica.

 \rightsquigarrow Ambos geralmente são não-lineares.

 \sim O efeito Raman pode ser utilizado em amplificadores ópticos.

 \rightsquigarrow Não linearidades importantes são:

1) Three and Four-Wave Mixing: ocorre geralmente em sistemas WDM, onde duas ou mais ondas se combinam de forma não linear, para gerar uma terceira. Exemplo:

 $\omega_1 + \omega_2 - \omega_3 = \omega_4$.

2) Propagação Solitônica: corresponde à propagação de pulsos ópticos que não se dispersam e nem difratam, na presença de meios não-lineares. Proposta de propagação a longas distâncias.