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Prof. Dr. C.A. Dartora

Teoria de Drude dos Metais

⇒ É um modelo dos metais baseado na Mecânica Clássica.

⇒ Proposto por Paul Drude em 1900, 3 anos após a descoberta
do elétron por J.J. Thomson.

⇒ Trata o metal como um gás de elétrons livres movendo-se sobre
um fundo de carga positiva, que deve-se aos ı́ons positivos e muito
mais pesados.

⇒ Não leva em conta detalhes da estrutura cristalina do material
e do tipo de átomo que compõe o metal.
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• O metal é constitúıdo de ı́ons com carga Q = +Zae, onde Za é
o número atômico do átomo que constitui o material.

• Cada átomo tem Za elétrons porém apenas Z elétrons das cama-
das de valência formam a banda de condução, estando relativamente
livres para se mover. Esses elétrons de valência vão constituir o gás
de elétrons.

• Dada a densidade de massa do metal ρm e a massa de um único
átomo mA, obtém-se a densidade do gás de elétrons n:

n = Z
ρm

mA
.

02 - Teorias de Drude e Sommerfeld 4/41



Prof. Dr. C.A. Dartora

Além disso o volume ocupado por um elétron é dado por:

V
N
=

1
n
=

4πr3
s

3

onde V é o volume total do sólido, N o número total de elétrons
livres e rs o raio da esfera cujo volume é equivalente ao volume
ocupado por um único elétron.

• Invertendo a última relação, obtemos:

rs =

(
3

4πn

)1/3

. (1)
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; É comum normalizar rs com relação ao raio atômico de Bohr

a0 =
h̄2

me2 = 0.529×10−10m .

.

; Na maioria dos metais rs/a0 fica na faixa de 2 a 3.

Em metais alcalinos rs/a0 está entre 3 e 6 e para alguns compostos
pode ir até 10.
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Densidades Eletrônicas de Alguns Metais (A 300K exceto quando indicado.Fonte: Asch-

croft/Mermin SSP)

Elemento Z n(1028/m3) rs(Å) rs/a0

Li (78K) 1 4.70 1.72 3.25
Na (5K) 1 2.65 2.08 3.93
K (5K) 1 1.40 2.57 4.86

Cu 1 8.47 1.41 2.67
Ag 1 5.86 1.60 3.02
Au 1 5.90 1.59 3.01
Mg 2 8.61 1.41 2.67
Ca 2 4.61 1.73 3.27
Fe 2 17.0 1.12 2.12
Mn 2 16.5 1.13 2.14
Zn 2 13.2 1.22 2.30
Al 3 18.1 1.10 2.07
Sn 4 14.8 1.17 2.22
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⇒ O modelo de Drude usa a teoria cinética de um gás de part́ıculas
dilutas neutras:

1- No intervalo entre colisões as interações de um dado elétron com
os outros elétrons e com os ı́ons é negligenciada. Os elétrons
movem-se sob a ação dos campos eletromagnéticos externamente
aplicados.

2- Colisões são eventos instantâneos. No modelo original os elétrons
são espalhados pelos ı́ons considerados esferas ŕıgidas e impe-
netráveis, embora uma análise mais realista deva considerar in-
terações elétron-elétron, etc.

02 - Teorias de Drude e Sommerfeld 8/41



Prof. Dr. C.A. Dartora

3- A probabilidade dP de um elétron sofrer uma colisão em um in-
tervalo de tempo dt é dada por

dP =
dt
τ

.

τ é denominado tempo de relaxação e não depende da posição e
velocidade do elétron.

4- Elétrons estão em equiĺıbrio termodinâmico com o ambiente ape-
nas devido a colisões. Desse modo os elétrons não tem “memória”.
Após cada colisão a velocidade não é correlacionada ao movimento
anterior. A velocidade após a colisão é orientada randômicamente
e depende apenas da temperatura.
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Colisões no Modelo de Drude

02 - Teorias de Drude e Sommerfeld 10/41



Prof. Dr. C.A. Dartora

Modelo de Drude para Condutividade Elétrica
Considere a lei de Ohm vetorial:

J = σE .

Além disso, a densidade de corrente de um gás de elétrons é dada
por:

J = nqv

onde n é a densidade eletrônica, q =−e é a carga eletrônica e v a
velocidade dos elétrons. Igualando as equações obtém-se a conduti-
vidade:

σ =
J
E
= nq

v
E

• A relação v/E = µq é denominada mobilidade.
02 - Teorias de Drude e Sommerfeld 11/41



Prof. Dr. C.A. Dartora

⇒ A equação de movimento para uma carga q na presença de um
campo elétrico E é dada pela 2a. Lei de Newton:

dv
dt

+
1
τ

v =
q
m

E

A força que o campo magnético realiza na carga é desprezada em 1a aprox. já

que em regime de baixas velocidades v << c temos |E|>> |v×B|.

• Resolvendo a eq. diferencial acima no regime harmônico, E =
E0e−iωt, podemos supor v = v0e−iωt para obter:

v0 =
qτ

m(1− iωτ)
E0 ,

Tem-se então para a condutividade elétrica do material:

σ =
ne2τ

m(1+ iωτ)
. (2)
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• Para ω = 0 temos a condutividade DC do material:

σ0 =
ne2τ

m
, (3)

e por ela é posśıvel medir o valor do tempo de relaxação τ.

⇒ O valor de τ depende da temperatura.

⇒ Para metais o valor situa-se tipicamente entre 10−14s e 10−15s.
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⇒ Utilizando o livre caminho médio como

l = v0τ

e da teoria cinética do gás não-interagente:

1
2

mv2
0 =

3
2

kBT

com v0 ∼ 105m/s, obtém-se um livre caminho médio de 1 a 10
angstroms.

• Este valor é compat́ıvel com a distância interatômica e a visão
de Drude de que os elétrons colidem com os ı́ons da rede.
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Condutividade Elétrica σ(107S/m) de Alguns Metais

(Fonte: Aschcroft/Mermin SSP)

Elemento 77K 273K 373K
Li 9.62 1.17 0.81
Cu 50.0 6.41 4.46
Ag 33.3 6.62 4.69
Au 20.0 4.90 3.52
Mg 16.1 2.56 1.79
Ca 2.91 2.00
Fe 15.2 1.12 0.68
Zn 9.09 1.82 1.28
Al 33.3 4.08 2.82
Sn 4.76 0.94 0.63

02 - Teorias de Drude e Sommerfeld 15/41



Prof. Dr. C.A. Dartora

Efeito Hall e Coeficiente de Hall

• Pode ocorrer em qualquer material mas tem maior importância na
F́ısica do Semicondutores para determinar o tipo e a densidade efe-
tiva de portador majoritário de uma certa amostra de semicondutor
dopado.

• É utilizado em sensores de campo magnético(do tipo chave, usu-
almente).

• Sabemos que a densidade de força de Lorentz, considerando ape-
nas um tipo de portador de carga cuja densidade vale ρ, é dada
por:

F = ρE+J×B .
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; O aparato experimental básico para medir o efeito Hall é esboçado
na figura abaixo:

• O volt́ımetro VH mede uma tensão denominada tensão de Hall,
enquanto V0 é a tensão aplicada capaz de gerar uma corrente elétrica
perpendicular à direção do campo magnético aplicado.
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; VH > 0 se os portadores tem carga positiva e serão defletidos
para cima.

; VH < 0 se as cargas negativas são majoritárias e a corrente está
no mesmo sentido.

; Para os materiais em que apenas um tipo de portador de carga
ocorre, como é o caso dos metais, podemos escrever, para a densi-
dade de corrente, a seguinte equação:

Jx = nqqvx ,

• nq é a densidade de portadores de carga q.

• Em geral q=−e é a carga do elétron nos metais, embora existam
metais onde o portador é um buraco q =+e.
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• A componente magnética da densidade de Força de Lorentz será
dada por:

F m
z = JxBy .

; Essa força será contrabalanceada por uma outra de origem ele-
trostática de igual magnitude e sinal contrário, quando as cargas
defletidas efeito de F m

z se acumulam nas superf́ıcies do material.

• No equiĺıbrio a densidade de força de Lorentz total será nula:

Fz = ρEz+ JxBy = 0⇒ Ez =−
JxBy

ρ
,

O fator 1/ρ é denominado coeficiente de Hall RH, sendo ρ = nqq:

RH =
1

nqq
. (4)
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• Lembrando que Jx = Ix/A, onde Ix é a corrente gerada pela tensão
V0 aplicada aos terminais do material e A = L ·d é a área de seção
transversal.

Além disso, o campo eletrostático está associado à tensão Hall,
Ez =−VH/d, e podemos reescrever:

VH = RH
IxBy

L
⇒ RH =

VHL
IxBy

=
1

nq
. (5)

• Se os portadores de carga são positivos RH > 0, ao passo que
para portadores de carga negativos RH < 0, permitindo determinar
o sinal da carga do portador, bem como a sua densidade efetiva.
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Coeficiente de Hall de alguns metais

Elemento RH ( ×10−10 m3/C) Portador
Li -1.7 -e
Na -2.1 -e
Cu -0.54 -e
Ag -0.9 -e
Au -0.72 -e
Al +1.02 +e

• Fonte: C. Kittel, Introduction to Solid State Theory, pg 167.

• Para o Al o portador é um buraco, em contraste com a grande
maioria dos metais, onde o portador é o elétron.

• O Al admite um estado supercondutor em temperaturas baixas,
ao contrário de alguns dos metais mais nobres como Ouro, Prata e
Cobre.
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Propriedades Térmicas dos Metais no Modelo de Drude

⇒ Metais são bons condutores de eletricidade e também de calor.
É natural associar o transporte de calor ao mesmo mecanismo que
conduz eletricidade.

⇒ O transporte de calor é dado pela lei de Fourier:

JQ =−κ∇T (6)

onde κ é a condutividade térmica do material e T a temperatura.
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⇒ A corrente térmica JQ corresponde, por outro lado à densidade
de fluxo de calor que vai de um ponto para outro.

Considerando apenas a direção x: a troca de energia se dá por meio
de colisões entre os pontos x− vxτ e x+ vxτ:

Jx
Q = nvx

E[T (x− vxτ)−E[T (x+ vτ)]]

2
≈−nv2

xτ
dE
dT

dT
dx

⇒ Uma vez que o processo de colisão é randômico podemos subs-
tituir v2

x pelo seu valor médio, sendo que 〈v2
x〉 = v2/3 em três di-

mensões.

• Utilizando a definção para o calor espećıfico a volume constante
cv = ndE/dT obtemos:

κ =
1
3

v2
τcv .
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• Utilizando as relações do gás ideal:

cv =
3
2

nkB , E =
1
2

mv2 =
3
2

kBT

podemos obter a famosa lei de Wiedermann-Franz:

κ

σT
=

3
2

k2
B

e2 ≈ 1.116×10−8[J2/(K2C2)] .

⇒ O valor acima é metade do valor experimental dado pela lei de
WF. Por um erro de cálculo Drude obteve o valor correto e isso foi
considerado inicialmente um sucesso enorme da teoria de Drude.
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Fonte: Aschcroft/Mermin Solid State Physics
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• Nos cálculos originais de Drude para κ, há dois erros de ordem
de grandeza, que fortuitamente se cancelam.

κ =
1
3

v2
τcv .

• O valor de v2 é estimada em 100 vezes menor do que realmente
é, enquanto o calor espećıfico em 100 vezes maior.

• Além disso, em nenhum metal foi encontrado o valor para o calor
espećıfico da ordem de 3

2nkB.

• Mostra-se ainda que a contribuição eletrônica para cv é des-
preźıvel.
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O Modelo de Sommerfeld

⇒ Incorpora o prinćıpio de exclusão de Pauli, aplicando ao modelo
de gás de elétrons livres a estat́ıstica de Fermi-Dirac.

⇒ Corrige algumas deficiências do modelo de Drude, como a con-
tribuição eletrônica para o calor espećıfico dos metais, mostrando-a
quase despreźıvel.

⇒ Ainda assim, não leva em conta a verdadeira estrutura do cristal.

→ A acurácia do modelo do gás de elétrons livres fica restrita aos
metais alcalinos.
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Para um elétron livre em um metal, p = m∗v e H0 = p2/(2m∗),
onde m∗ é a massa efetiva, podendo diferir do elétron no vácuo,
temos:

E(k) =
h̄2k2

2m∗
.

Nesse caso é fácil mostrar que p = h̄k, a velocidade e a massa
serão dadas por:

v =
1
h̄

∇kE

m∗ =
h̄2

∂2E/∂k2 .
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; Alguns parâmetros importantes nesse modelo do gás de elétrons
livres:

1) Densidade de Estados D(E) = dN/dE

Primeiro queremos determinar dN no intervalo entre k e k+ dk.
Considere a figura, para o caso em três dimensões:
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; Lembre-se que do ponto de vista ondulatório, o número de onda
ḿınimo de um elétron, ∆k, em uma cavidade cúbica de lado L deve
valer 2π/L. O volume infinitesimal ocupado no espaço rećıproco é
dado por (∆k)3 = (2π/L)3.

; Já o número de estados no intervalo entre k e k+ dk corres-
ponderá ao volume ocupado pela camada esférica contida entre as
superf́ıcies k e k+ dk, dividido pelo volume infinitesimal (∆k)3, ou
seja:

dN =
4π

3 [(k+dk)3− k3]

(2π/L)3 =
4πL3

(2π)3k2dk ,
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; Para estados de energia degenerados em spin o resultado acima
deverá ser multiplicado por 2, pois cada estado pode ser preenchido
por dois elétrons de spins contrários.

; Dessa forma temos o resultado desejado em três dimensões:

D(ε) =
Vol
π2

k2

dε/dk
=

Vol
2π2

(
2m∗

h̄2

)3/2√
ε

• Utilizando o resultado anterior podemos determinar o número de
elétrons total em um certo volume de sólido, uma vez que dN =
D(ε) f (ε)dε é o número de elétrons com energia ε no intervalo dε.
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Temos então:

N =
∫

∞

−∞

D(ε) f (ε)dε . (7)

→ Para o gás de elétrons livres D(ε) está limitada a ε ≥ 0, e em
T = 0 a função de Fermi-Dirac é um degrau de valor unitário para
ε < εF e anula-se para energias maiores do que a energia de Fermi,
então:

N =
Vol
2π2

(
2m∗

h̄2

)3/2∫ εF

0
ε

1/2dε . (8)
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• Realizando a integração obtemos a densidade de elétrons n =
N/Vol:

n =
1

3π2

(
2m∗

h̄2

)3/2

ε
3/2
F (9)

A energia total do gás de elétrons em T = 0K,

ET =
∫

εD(ε) f (ε)dε,

é dada por:

ET =
Vol
2π2

(
2m∗

h̄2

)3/2∫ εF

0
ε

3/2dε =
Vol
5π2

(
2m∗

h̄2

)3/2

ε
5/2
F =

3
5

NεF .
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Fonte: Aschcroft/Mermin Solid State Physics
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; Consideremos agora condutividade DC em um metal. Se ne-
nhum campo elétrico externo está aplicado, então:

j = ρv =− e
m∗

1
Vol ∑k

h̄k = 0

A aplicação de um campo elétrico produz uma força que desloca a
esfera de Fermi, em relação ao centro simétrico, conforme pode-se
observar na figura:
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Observando que o momento de um elétron é dado por p = h̄k e
dp/dt = F obtemos:

h̄
dδk
dt

=−eE− h̄
τ

δk ,

onde τ é o tempo de relaxação que leva em conta colisões.

Na condição de equiĺıbrio dp/dt→ 0 e temos

δk =−e
h̄

Eτ ,

fazendo surgir uma densidade de corrente efetiva no metal:

j =− e
m∗

1
Vol ∑

h̄δk =
e2τ

m∗Vol
E
∫

εF

0
D(ε)dε =

ne2τ

m∗
E
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Tem-se então a condutividade de Boltzmann nessa análise simpli-
ficada:

σ =
ne2τ

m∗

; Nos metais n∼ 1028m−3. Mesmo em semimetais como o grafite
esse valor chega a 1024m−3

; Já o calor espećıfico a volume constante é calculado a partir da
seguinte fórmula:

cv =
1
V

∂E
∂T

∣∣∣
N,V

02 - Teorias de Drude e Sommerfeld 37/41



Prof. Dr. C.A. Dartora

Para gás ideal clássico o resultado seria cv = (3/2)nkB, enquanto
a teoria quântica prevê para o gás de elétrons:

cv =
π2

2
nkB

kBT
εF

. (10)

→ cv depende linearmente de T e difere muito do valor clássico
pois em temperatura ambiente kBT << εF nos metais.

→ O gás de elétrons pouco contribui para cv a partir de uns pou-
cos kelvins. cv deve-se sobretudo aos fônons(vibrações da rede cris-
talina). Todavia utilizando κ = v2τcv/3 o modelo de Sommerfeld
produz a lei de Wiedermann-Franz verificada experimentalmente:

κ

σT
=

π2

3
k2

B

e2 ≈ 2.45×10−8J2/(K2C2) . (11)
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Comparação entre a contribuição eletrônica e da rede para cv a
baixas temperaturas.
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Falhas do Modelo do Gás de Elétrons

• Não explica adequadamente os coeficientes de transporte: o coe-
ficiente Hall em alguns casos tem o sinal e valor de RH previsto pelo
modelo incompat́ıvel com o valor medido

• Falha em descrever a Magnetorresistência e dependência de σ

com a temperatura, anisotropia de σ, condutividade AC e proprie-
dades ópticas;

• Não permite fazer boas estimativas das energias de coesão

• Nâo explica o número de elétrons de condução, nem porque
alguns materiais tem comportamento não-metálico.
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