

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

INTRODUCTION

ABOUT THE AUTHOR

CHAPTER 1—A FIRST LOOL AT OOP AND C++
Session 1: Why Do We Need OOP?

Procedural Languages

Division into Functions

Problems with Structured Programming

Data Is Undervalued

Relationship to the Real World

New Data Types

The Object-Oriented Approach

The Corporate Analogy

The Dinner Table Analogy

OOP: An Approach to Organization, Not
Details

Quiz 1

Session 2: Features of Object-Oriented Languages

Real-World Objects

States and Abilities

Classes

Inheritance

Reusability

Creating New Data Types

Polymorphism and Overloading

C++ and C

OOP in a Nutshell

Quiz

Session 3: Hot Dog Stands as Objects

Interaction with the Hot Dog Stand Program

Inputting the Data

Recording a Sale

Displaying the Data

Designing the Hot Dog Stand Program

What Are the Objects?

What’s in a Hot Dog Stand Object?

Specifying the Class of Hot Dog Stand Objects

Syntax of the Class Specification

Variable Declarations

Functions

Public and Private

Quiz 3

Session 4: Basic C++ Data Types

Characters

Assignment Operator

Escape Sequences

Integers

Unsigned Integers

Floating Point

Whitespace

Comments

Quiz 4

Exercise 1

Exercise 2

Midchapter Discussion

Session 5: Introduction to Input/Output

Output to the Screen

String Constants

Formatting Output

New Lines Not Automatic

Escape Sequences

The endl Manipulator

Input from the Keyboard

Stream I/O

Old-Style C I/O

Quiz 5

Exercise 1

Exercise 2

Exercise 3

Session 6: Member Functions

Initializing the Data

Recording a Sale

Displaying Data

Arithmetic Operators

Increment and Decrement Operators

Quiz 6

Exercise 1

Exercise 2

Session 7: Specifying a Class

Quiz 7

Exercise 1

Exercise 2

Session 8: Creating and Interacting with Objects

Creating Objects from a Class Specification

Sending Messages to Objects

Quiz 8

Exercise 1

Exercise 2

Summary: Chapter 1

End-Of-Chapter Discussion

CHAPTER 2—WRITING COMPLETE OOP
PROGRAMS

Session 1: The Complete Hot Dog Stand Program

Listing for the Hot Dog Stand Program

The IOSTREAM.H Header File

Preprocessor Directives

Other Header Files

The main() Function

Interaction with the Hot Dog Stand Program

Program Organization

Quiz 1

Exercise 1

Exercise 2

Session 2: Loops

True and False Values

Relational Operators

while Loops

do Loops

for Loops

Nested Loops

Logical Operators

Precedence

Quiz 2

Exercise 1

Exercise 2

Session 3: Simple Decisions

The if Statement

The if…else Statement

Test Expression

Nested if…else Statements

Improving the Hot Dog Program with if

A Glimpse of Reusability

Quiz 3

Exercise 1

Exercise 2

Session 4: Advanced Decisions

The else if Construction

Fine-Tuning Loops

The break Statement

The continue Statement

The switch Statement

Improving the Hot Dog Program with switch

The Conditional Operator

Quiz 4

Exercise 1

Exercise 2

Midchapter Discussion

Session 5: A class to Represent Time Values

New Data Types

A Simple Version of the airtime Class

Assignment Statements with Objects

What’s Really in an Object?

More Manipulators: Formatting Leading Zeros

Quiz 5

Exercise 1

Exercise 2

Session 6: Function Arguments

Adding Hours to an airtime Value

Sending a Message with an Argument

Writing the Member Function

Listing for houradd.cpp

The set() Member Function with Arguments

Arguments of Any Type

Other Uses for Functions

Passing by Value

Quiz 6

Exercise 1

Exercise 2

Session 7: Arithmetic For User-defined Types

Adding airtime Values

Arithmetic Is Not for All Classes

Access to Private Data

Converting Minutes to airtime

Nonautomatic Conversions

Multiplying an airtime Value

Calling Each Other

Quiz 7

Exercise 1

Exercise 2

Session 8: Function Return Values

Converting airtime to Minutes

The return Statement

Creating Automatic Variables

The Stack

Nameless Automatic Variables

Returning a Value from add()

Returning by Value

Library Functions

Quiz 8

Exercise 1

Exercise 2

Summary: Chapter 2

End-Of-Chapter Discussion

CHAPTER 3—ARRAYS AND STRINGS
Session 1: Array Fundamentals

Defining an Array

Array Elements

Accessing Array Elements

Initializing Array Elements

Multidimensional Arrays

Danger: Index Out of Range

Quiz 1

Session 2: Arrays as Instance Data

The employee Class

Library Function getche()

The Key

Postfix Increment Operators

The Stack Class

Pushing and Popping

An Array Disguised as a Stack

Not a Constructor

Quiz 2

Exercise 1

Exercise 2

Session 3: Arrays of Objects

Defining an Array of Objects

New Syntax for Access

Array of airtime Objects

Array of employee Objects

Quiz 3

Exercise 1

Exercise 2

Session 4: Strings

String Variables

String Constants

Improved String I/O

Using const Variables

Eating Extra Characters

Real Strings for the employee Class

String I/O

External Variables

Quiz 4

Exercise 1

Exercise 2

Midchapter Discussion

Session 5: String Library Functions

Library Functions for Strings

Finding String Lengths

Copying Strings

Appending Strings

Comparing Strings

A Homemade String Class

Library Functions

Clean Format

Data Conversions

Appending

Assignment

Overflow Protection

Wrapping

Quiz 5

Exercise 1

Exercise 2

Session 6: Arrays of Strings

Syntax of Arrays of Strings

Arrays of Empty Strings

Arrays of Initialized Strings

The weekday Class

The stricmp() Function

Arithmetic Assignment Operators

Quiz 6

Exercise 1

Exercuse 2

Session 7: Structures

Specifying a Structure

Defining Structure Variables

Accessing Structure Members

Initializing Structure Variables

Structure Usage

Structures versus Classes

Quiz 7

Exercise 1

Exercise 2

Session 8: enum and bool

Enumerated Data Types

Specifying an Enumerated Type

Creating and Using Enumerated Variables

They’re Really Integers

A Card Game Program

The bool Keyword

Quiz 8

Exercise 1

Exercise 2

Summary: Chapter 3

End-of-Chapter Discussion

CHAPTER 4—FUNCTIONS
Session 1: Function Review and Function Declaration

Review

Function Calls

Function Definitions

Arguments

Return Values

Function Declarations

Arguments

Functions Called from main()

Functions Called from Member Functions

Library Functions

The Rule

Quiz 1

Session 2: Standalone Member Functions

Inline Functions

Specifying an Inline Function

When Should You Inline a Function?

Member Functions Defined Within a Class

Member Functions Defined Outside a Class

The Scope Resolution Operator

The Compiler Has Its Own Ideas

Revised weekdays Program

Move ’em Out?

Macros

Quiz 2

Exercise 1

Exercise 2

Session 3: Overloaded Functions

Need for Function Overloading

How Does It Know?

A Member Function Example

Quiz 3

Exercise 1

Exercise 2

Session 4: Default Arguments

A Power Example

A Member Function Example

The cin.getline() Function

Limitations

When to Do What

Quiz 4

Exercise 1

Exercise 2

Midchapter Discussion

Session 5: Storage Classes

Declarations and Definitions

Two Kinds of Declarations

Lifetime and Visibility

Automatic Variables

Register Variables

Blocks

External Variables

External Variables and Multiple Files

External Variables in the Doghouse

Local Static Variables

The Storage Class Table

Objects

Visiblity of Instance Data

Lifetime of Instance Data

Quiz 5

Session 6: Static Members

Static Member Data

Creating Static Data

Accessing Static Data

Static Functions

Count-the-Objects Example

Quiz 6

Exercise 1

Exercise 2

Session 7: Reference Arguments

Swapping Integers

Passing by Value

Passing by Reference

A Reference Is a Different Name

Swapping Objects

Standalone References

Behind the Scenes

Advantages of Passing by Reference

Quiz 7

Exercise 1

Exercise 2

Session 8: Returning by Reference

Setting an Object to a Value

Cautions

What’s It For?

Quiz 8

Summary: Chapter 4

End-of-Chapter Discussion

CHAPTER 5—CONSTRUCTORS
Session 1: Introducing Constructors

Initialization

Creation

Destructors

Constructors and Destructors in Action

Same Name as the Class

No Return Value

What They Do

Initializing Variables

Initialization List

Default Constructor

Quiz 1

Exercise 1

Exercise 2

Session 2: Constructor Arguments

A Two-Argument Constructor

The Wrong Way

The Right Way

“Calling” the Constructor

A No-Argument Constructor

Quiz 2

Exercise 1

Exercise 2

Session 3: The One-Argument Constructor

Conversions

Converting Strings to xStrings

Converting Meters to English Distances

Meters to English Objects

Escape Characters

Not Always Appropriate

More Conversions to Come

Quiz 3

Exercise 1

Exercise 2

Session 4: Arrays as Instance Data

Array Sized with Constant

Array Sized with External const

Initializing Member Variables

Instance Data Initialization

Initialization Is Not Assignment

Arrays Sized at Compile Time

The enum Hack

Static Constant Variables

The Improved STACK Program

Initializing a Member Array

Quiz 4

Exercise 1

Exercise 2

Midchapter Discussion

Session 5: Copy Constructors

Copying Variables

Equivalent Syntax

Copying Objects

Not the Normal Constructor

The Default Copy Constructor

const for Function Arguments

Passing by Reference

Passing by Value

A Simple Example of a Copy Constructor

Just Another Constructor

Argument Must Be Passed by Reference

Argument Should Be const

Quiz 5

Exercise 1

Exercise 2

Session 6: Copy Constructors at Work

Numbering the Objects

An Intelligent Copy Constructor

Initialization List

A Variation on strcpy()

Other Reasons for Using Copy Constructors

Copy Constructor Invoked in Pass by Value

Passing by Value Creates a Copy

Why the Copy Constructor Must Use a
Reference Argument

Copy Constructor Invoked in Return by Value

Quiz 6

Exercise 1

Exercise 2

Session 7: const Objects

The Wandering Noon

const Functions

The Fixed Noon

Quiz 7

Exercise 1

Exercise 2

Session 8: Visualizing Construction and Destruction

Two Kinds of Total

Program Features

External Variables

Variables in main()

Passing by Value

Local Variables

Quiz 8

Exercise 1

Exercise 2

Summary: Chapter 5

End-of-Chapter Discussion

CHAPTER 6—OPERATOR OVERLOADING
Session 1: Overloading Binary Arithmetic Operators

Why Overload Operators?

You Could Do It with Functions

Not for All Classes

You Can’t Overload Everything

The operatorX() Function

Adding airtime Objects

Arguments

Return Value

Adding xString Objects

Other Binary Arithmetic Operators

Quiz 1

Exercise 1

Exercise 2

Session 2: Overloading Other Binary Operators

Relational Operators

How It Works

Passing the Argument by const Reference

Assignment Operators

Avoiding Temporary Objects

Quiz 2

Exercise 1

Exercise 2

Session 3: Overloading Unary Operators

Prefix Version of Operator ++

Postfix Version of Operator ++

The Unary Minus Operator

Quiz 3

Exercise 1

Exercise 2

Session 4: Conversion from Objects to Basic Types

Type Casting: Conversion for Basic Types

Conversion from English to float

Conversion Function Invoked Automatically

Casting for Clarity

A Static Constant

Conversion from xString to String

The static_cast Approach

Quiz 4

Exercise 1

Exercise 2

Midchapter Discussion

Session 5: Conversions Between Classes

A Short Example

The FracFeet Class

The FracFeet Program

The English() Operator

The One-Argument Constructor

Quiz 5

Exercise 1

Exercise 2

Session 6: Overloading the Assignment Operator (=)

Syntax of the Overloaded Assignment Operator

A Simple Assignment Operator Example

An Assignment Operator That Allows Chaining

Future Improvement

Quiz 6

Exercise 1

Exercise 2

Session 7: Overloading the [] Operator

Access with access() Function

One Size Fits All

Errors Are Reported

Access with Overloaded [] Operator

Quiz 7

Exercise 1

Exercise 2

Fine-Tuning Overloaded Operators

Constant Arguments

Constant Functions

Constant Overloaded Operators

Adding Constant airtime Objects

Return Values

Returns from Assignment Operators

The Amazing *this Object

The += Operator Revisited

The Increment Operator Revisited

Summary of Fine-Tuning for Overloaded Operators

Quiz 8

Exercise 1

Exercise 2

Summary: Chapter 6

End-of-Chapter Discussion

CHAPTER 7—INHERITANCE
Session 1: Introduction to Inheritance

Reusability

Rewriting Code

Function Libraries

Class Libraries

Inheritance and Program Design

Composition: A “Has a” Relationship

Inheritance: A “Kind of” Relationship

Not Exactly a Family Tree

Inheritance Syntax

Inheriting Attributes

Accessing Base Class Data

Calling a Base Class Function

Function Overloading in Base and Derived Classes

Quiz 1

Program Design: The employee Class

Class Hierarchy

The EMPINH Program

Abstract Classes

Interaction with EMPINH

Quiz 2

Exercise 1

Exercise 2

Session 3: Reusability: An Improved Stack Class

Reusability

The STACKINH Program

A Smarter Object

The Base Class Constructor

The protected Access Specifier

Functions That Aren’t Inherited

Quiz 3

Exercise 1

Exercise 2

Session 4: Constructors and Inheritance

The Great Chain of Constructors

When Are Derived Class Constructors Necessary?

No Arguments

Arguments

The Initializer List

Adding Functionality to the Derived Class
Constructor

Quiz 4

Exercise 1

Exercise

Midchapter Discussion

Session 5: Access Control

Access Review

Keeping Data Private

A Stack Example

A Graphics Example

A Hierarchy of Shapes

The Classes

Public and Private Inheritance

The Compiler and Public Inheritance

Private Inheritance

The Compiler and Private Inheritance

Protected Inheritance

Access Summary

Quiz 5

Exercise 1

Exercise 2

Session 6: Grandparents

Deriving foreman from laborer

Constructors

Summary

Quiz 6

Exercise 1

Exercise 2

Session 7: Composition

A safearay Object in a Stack Class

Should a scientist “Have an” employee?

Summary

Quiz 7

Exercise 1

Exercise 2

Session 8: Multiple Inheritance

Two Base Classes: employee and student

Repeated Base Classes

It’s Controversial

C++ Interactive Course - Table of Contents

http://www.itknowledge.com/reference/archive/1571690638/ewtoc.html (1 of 2) [21-03-2000 18:47:00]

Ambiguous Subobjects

Virtual Base Classes

Composition to the Rescue

Chapter

Exercise 1

Exercise 2

Summary: Chapter 7

End-of-Chapter Discussion

CHAPTER 8—POINTERS
Session 1: Addresses and Pointers

Addresses (Pointer Constants)

The Address of Operator &

Pointer Variables

Pointers to Basic Types

Syntax Quibbles

Pointers Must Have a Value

Pointers to Objects

Accessing the Variable Pointed To

Pointer to void

Quiz 1

Session 2: Pointers, Arrays, and Functions

Pointers and Arrays

Array Elements and Pointer Notation

Pointer Constants and Pointer Variables

Pointers and Functions

Passing Simple Variables

Passing Arrays as Arguments

Quiz 2

Exercise 1

Exercise 2

Session 3: Pointers and Strings

Pointers to String Constants

Strings as Function Arguments

Copying a String Using Pointers

Library String Functions

Arrays of Pointers to Strings

Membership Access Operator (->)

Quiz 3

Exercise 1

Exercise 2

Session 4: Memory Management with new and delete

The new Operator

The delete Operator

A String Class That Uses new

Constructor in NEWSTR

Destructor in NEWSTR

Glitch in xString Class

Creating Objects with new

An Array of Pointers to Objects

Program Operation

Accessing Member Functions

Quiz 4

Exercise 1

Exercise 2

Midchapter Discussion

Session 5: this and const

The this Pointer

Accessing Member Data with this

Using this for Returning Values

Pointers and the const Modifier

const Variables

Two Places for const

Function Arguments and const

Returning const Values

Quiz 5

Session 6: A Memory-Efficient String Class

To Copy or Not to Copy?

A String Counter Class

The strCount Class

The xString Class

Returning *this by Reference

Quiz 6

Exercise 1

Exercise 2

Session 7: A Linked List Class

A Chain of Pointers

Adding an Item to the List

Displaying the List Contents

Self-Containing Classes

Augmenting the linklist Program

Containers

Quiz 7

Exercise 1

Exercise 2

Session 8: A Sorted Array Class

Inserting Objects in Sorted Order

The employee Class

The SortedArray Class

In main()

Searching for a Specific Element

The Binary Search

Constructors Used to Initialize Array

Quiz 8

Exercise 1

Exercise 2

Summary: Chapter 8

End-Of-Chapter Discussion

CHAPTER 9—VIRTUAL FUNCTIONS AND
FRIEND FUNCTIONS

Session 1: Introduction to Virtual Functions

Polymorphism

Normal Member Functions Accessed with
Pointers

Virtual Member Functions Accessed with
Pointers

Late Binding

How It Works

Arrays of Pointers to Objects

Don’t Try This with Objects

Quiz 1

Session 2: Examples of Virtual Functions

A Personnel Example

The main() Program

The Classes

Virtual Functions

The isOutstanding() Function

Virtual Functions in Other Classes

A Graphics Example

No shape Objects, Please

Initializing the Array

Virtual Functions and Constructors

Quiz 2

Exercise 1

Exercise 2

Session 3: Decoupling with Polymorphism

Passing References

Passing Pointers

A person Class Example

Quiz 3

Exercise 1

Exercise 2

Session 4: Abstract Classes and Virtual Destructors

Abstract Classes

Pure Virtual Functions

A Short Example

The shape Example

The Compiler on Watch

Abstract Classes and Pure Virtual Functions

Pure Virtual Functions with Bodies

Virtual Destructors

Is the Derived Class Destructor Executed?

Not Unless It’s Virtual

A More Realistic Example

When Do You Use Virtual Functions?

Quiz 4

Exercise 1

Exercise 2

Midchapter Discussion

Session 5: Runtime Type Identification

A Simple Example

A More Realistic Example

Quiz 5

Exercise 1

Session 6: Friend Functions

The “Left-Side” Problem

No Problem on the Right

Not So Easy on the Left

Friends to the Rescue

Breaching the Walls

Friends for Functional Notation

Friends as Bridges

Quiz 6

Exercise 1

Exercise 2

Session 7: Friend Classes

Interclass Communication

Accessing Private Members in a Previously
Defined Class

Accessing Private Members in a Not Yet
Defined Class

Pointers in Interclass Communication

A Horse Race Example

Operation of FRIHORSE

Designing the Horse Race

Creating the Horses

Keeping Time

Quiz 7

Exercise 1

Exercise 2

Session 8: Nested Classes and Static Member Data

Nested Classes

Communication Between Nested Classes

Horse Racing and Nested Classes

Horse Racing and Static Data

Quiz 8

Exercise 1

Exercise 2

Summary: Chapter 9

End-of-Chapter Discussion

CHAPTER 10—STERAMS AND FILES
SESSION 1: Stream Classes

Advantages of Streams

The Stream Class Hierarchy

The ios Class

Formatting Flags

Manipulators

Functions

The istream Class

The ostream Class

The iostream and the _withassign Classes

Predefined Stream Objects

Stream Errors

Error-Status Bits

Inputting Numbers

Too Many Characters

No-Input Input

Inputting Strings and Characters

Error-Free Distances

All-Character Input

Quiz 2

Exercise 1

Exercise 2

Session 3: Disk File I/O with Streams

Formatted File I/O

Writing Data

Reading Data

Strings with Embedded Blanks

Detecting End-of-File

Character I/O

Direct Access to the streambuf Object

Binary I/O

Object I/O

Writing an Object to Disk

Reading an Object from Disk

Compatible Data Structures

I/O with Multiple Objects

The fstream Class

The open() Function

The Mode Bits

Quiz 3

Exercise 1

Exercise 2

Session 4: File Errors and File Pointers

Error Handling in File I/O

Reacting to Errors

Analyzing Errors

File Pointers

Specifying the Position

Specifying the Offset

The tellg() Function

Quiz 4

Exercise 1

Exercise 2

MidChapter Discussion

Session 5: File I/O Using Member Functions

Objects That Read and Write Themselves

Classes That Read and Write Themselves

Static Functions

Size of Derived Objects

Using the typeid() Function

Code Number for Object Type

No Homemade Objects, Please

Interaction with empl_io

Quiz 5

Exercise 1

Exercise 2

Session 6: Overloading the << and >> Operators

Overloading for cout and cin

Overloading for Files

Overloading for Binary I/O

Quiz 6

Exercise 1

Exercise 2

Session 7: Memory as a Stream Object

Fixed Buffer Size

The ostrstream Object

Input Memory Streams

Universality

File Pointers

Dynamic Buffer Size

Quiz 7

Exercise 1

Exercise 2

Session 8: Printer Output and Other Refinements

Command-Line Arguments

Printer Output

Redirection

Using the redir Program

Redirecting Output

Redirecting Input

Redirecting Input and Output

Redirection and the _withassign Classes

Quiz 8

Exercise 1

Exercise 2

Summary: Chapter 10

End-of-Chapter Discussion

CHAPTER 11—TEMPLATES, EXCEPTIONS,
AND MORE

Session 1: Function Templates

A Simple Function Template

Function Template Syntax

What the Compiler Does

Function Templates with Multiple Arguments

Template Arguments Must Match

More Than One Template Argument

Why Not Macros?

What Works?

Start with a Normal Function

Quiz 1

Exercise 1

Exercise 2

Session 2: Class Templates

Class Name Depends on Context

A Linked List Class Using Templates

Storing User-Defined Data Types

Employees in a Linked List

What Can You Store?

Quiz 2

Exercise 1

Exercise 2

Session 3: Exceptions

Why Do We Need Exceptions?

Exception Syntax

A Simple Exception Example

Specifying the Exception Class

Throwing an Exception

The try Block

The Exception Handler (catch Block)

The Sequence of Events

Quiz 3

Exercise 1

Exercise 2

Session 4: Exceptions Continued

Multiple Exceptions

Exceptions with the Distance Class

Exceptions with Arguments

Specifying Data in an Exception Class

Initializing an Exception Object

Extracting Data from the Exception Object

The xalloc Class

Exception Notes

Destructors Called Automatically

Termination Oriented

Function Nesting

Can’t Return to Throw Point

Quiz 4

Exercise 1

Exercise 2

Midchapter Discussion

Session 5: Explicit Casts, typedef, and the Operator

Explicit Casts

Static Casts

Dynamic Casts

Const Casts

Reinterpret Casts

The typedef Specifier

Pointers and typedef

Classes and typedef

More Portable Code

Templates and typedef

Overloading the Function Operator

Quiz 5

Exercise 1

Exercise 2

Session 6: The Standard string Class

Header Files

Constructors and Operators

Member Functions

The insert(), remove(), and replace() Member
Functions

The find() Member Function

The find_first_of() Member Function

The substr() Member Function

Passing string Objects as Arguments

The copy() Member Function

The c_str() Member Function

Arrays of string Objects

The compare() Member Function

Get Ready for the STL

Quiz 6

Exercise 1

Exercise 2

Session 7: Multifile Programs

Reasons for Multifile Programs

Class Libraries

Public Components

Private Components

Organization and Conceptualization

How to Create a Multifile Program

Header Files

Directory

Multiple Files

Namespaces

Declaring Namespaces

Accessing Elements from Another Namespace

Quiz 7

Exercise 1

Exercise 2

Session 8: A Very-Long-Numbers Example

Numbers as Strings

The Class Specifier

The Member Functions

The Application Program

Subtraction and Division

Exercise 1

Summary: Chapter 11

End-of-Chapter Discussion

CHAPTER 12—THE STANDARD TEMPLATE
LIBRARY

Session 1: Introduction to the STL

Containers

Sequence Containers

Associative Containers

Member Functions

Abstract Data Types

Algorithms

Iterators

Potential Problems with the STL

Quiz 1

Session 2: Algorithms

The find() Algorithm

Header Files

Ranges

The count() Algorithm

The sort() Algorithm

The search() Algorithm

The merge() Algorithm

Function Objects

User-Written Functions in Place of Function
Objects

Boolean Type

Adding _if to Algorithms

The for_each() Algorithm

The transform() Algorithm

Quiz 2

Exercise 1

Session 3: Sequential Containers

Vectors

Member Functions push_back(), size(), and
Operator []

Member Functions swap(), empty() back(), and
pop_back()

Member Functions insert() and erase()

Lists

Member Functions push_front(), front(), and
pop_front

Member Functions reverse(), merge(), and
unique()

Deques

Quiz 3

Exercise 1

Exercise 2

Session 4: Iterators

Iterators as Smart Pointers

Ordinary Pointers Underpowered

Whose Responsibility?

Iterators as an Interface

Matching Algorithms with Containers

Plugging the Cable into a Container

Plugging the Cables into the Algorithm

The Tables Tell the Story

Overlapping Member Functions and
Algorithms

Iterators at Work

Data Access

Data Insertion

Algorithms and Iterators

Quiz 4

Exercise 1

Exercise 2

Midchapter Discussion

Session 5: Specialized Iterators

Iterator Adapters

Reverse Iterators

Insert Iterators

Stream Iterators

The ostream_iterator Class

The istream_iterator Class

Quiz 5

Exercise 1

Exercise 2

Session 6: Associative Containers

Sets and Multisets

Maps and Multimaps

Iterating Through Maps

Pairs

The [] Operator

Hash Table Versions

Quiz 6

Exercise 1

Exercise 2

Session 7: Storing User-Defined Objects

A Set of person Objects

Necessary Member Functions

Ordering

Just Like Basic Types

A List of person Objects

Finding All persons with a Specified Name

Finding All persons with a Specified Phone
Number

A List of airtime Objects

Quiz 7

Exercise 1

Exercise 2

Session 8: Function Objects

Predefined Function Objects

Writing Your Own Function Objects

Different Criteria for Sorting

Binding: Providing Values to Function Objects

Quiz 8

Exercise 1

Exercise 2

Summary: Chapter 12

End-of-Chapter Discussion

APPENDIX A

APPENDIX B

APPENDIX C

APPENDIX D

APPENDIX E

APPEBDIX F

INDEX

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course - Table of Contents

http://www.itknowledge.com/reference/archive/1571690638/ewtoc.html (2 of 2) [21-03-2000 18:47:00]

http://www.itknowledge.com/reference/archive/1571690638/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Table of Contents

Introduction
If you want to know whether you should buy this book, read this
introduction!

First question: Why learn C++ at all? That's easy: It’s today’s dominant
computer language. When the going gets tough, the professionals turn to
C++. There are many other languages, of course, but they lack the
universality and power of C++. For example, Visual Basic is useful for
quickly putting together applications that aren’t too large or demanding,
assembly language is good if you’re writing a device driver, and Java is
great for the World Wide Web. (Java is derived from C++ anyway.) But for
a major standalone application, C++ is the most popular language that has
the power and flexibility to produce the fastest, best-performing code. For
these reasons, C++ is a major part of the Computer Science curriculum at
almost every school and university. If you’re a programmer, chances are
that sooner or later you’ll need to know it.

What’s Different About This Book?

This book is a C++ tutorial. But there are a lot of C++ tutorials on the
market. How is this one different? Three ways: It’s easy to understand, it’s
organized in a better and unique way, and it comes with a free backup
system if there’s anything that’s giving you trouble. Let’s look at these
features in detail.

Easy to Understand

This book starts off with very easy examples; we don’t assume you’re a
rocket scientist. We try to explain everything with no assumptions about
what you may already know. We use plenty of figures and analogies to
clarify the text. The program examples are heavily commented to make
everything as clear as possible.

As you progress further into the book, the examples become more
challenging, but we try to keep the increase in difficulty gradual, so you’re
always ready for what comes next. Ultimately we cover all the main
features of C++.

Unique Organization

Unlike most other C++ books, this one uses, from the very first example,
real object-oriented programs. Most books, in an attempt to stick with the
familiar, start with old-fashioned procedural examples and work up to full
object-based examples half-way through. This may seem easier, but in the
long run it’s counter-productive, because it encourages bad thinking habits.
The whole point of C++ is to write object-oriented programs. If they don’t
do that from the beginning, they’re missing the point. And, as it turns out,
object-oriented programs aren’t that hard anyway.

The Waite Group Interactive Series

The third way this book differs from other C++ books is that it’s a Waite
Group Interactive book. This isn't just publisher’s hype: By connecting you
to the Waite Group via the World Wide Web, this new approach can
actually play a significant role in helping you to learn C++. There are many
aspects to the Interactive Series. We won’t dwell on them here, since the
details are presented elsewhere. We should note, however, that this book
was written from the ground up to work as part of the Interactive Series.

First, each chapter is divided into short, easily digestible lessons. Each
lesson is devoted to a specific topic and requires only an hour
(approximately) to read and understand. This makes it easy to sit down with
the book and learn something, even if your time is limited.

Each lesson is followed by a quiz to ensure that you’ve understood the
material. You can answer the quizzes by yourself, or you can do them on
the Web, which will grade them automatically. There are almost 500 quiz
questions in the book, so you'll really find out how well you understand the
subject.

The Waite Group Web site offers many other advantages. A principle one is
mentoring, which is the ability to ask questions and get answers back, just
as you would if you were taking a class at a university and could talk to the
professor.

As a final plus, this book includes a full chapter on the Standard Template
Library (STL), which is fast becoming an essential part of every C++
programmer’s bag of tricks, but which has not yet made its way into many
C++ books.

What Do You Need to Know?

This book is intended for anyone who wants to learn C++ from the ground
up. That is, it does not assume any previous knowledge of C (or any other
specific programming language). It’s nice if you’ve had some exposure to
another language, but even that is not essential. In fact, it may be better not
to have bad old (procedural) habits to unlearn.

If you already know the C language, you’ll find that perhaps a third of the
material in this book is familiar to you. You’ll know the basic syntax of
for loops, switch statements, and pointers, for example. However,
you’ll be surprised by how much of the material is new. Almost all the
examples, including those that explain basic syntax, use the object-oriented
approach, so you’ll find you’re learning OOP even when you’re reading
about syntax you already know.

What Hardware and Software Do You Need?

You should have some kind of C++ compiler at your disposal. The example
programs in this book are—for the most part—generic: That is, they will
work with most compilers. Thus, you aren’t constrained to use any
particular system.

In a few instances we wrote compiler-specific code so we could use more
sophisticated screen displays. This applies to only a half-dozen examples
out of more than 200 programs in the book. For these, the code in the book
is specific to Borland C++ (and Turbo C++, which is similar). These are
probably the most popular compilers and among the easiest to use.

However, if you're using Microsoft Visual C++, Appendix C shows you
how, by inserting a special header file (provided on the CD-ROM) into the
example’s source code, you can easily convert these few programs to work
with your compiler.

Go For It!

Learning C++ has never been easier. With its short lessons,
easy-to-understand writing style, and the support of Waite Group Press via
their Web site, you should be on your way to C++ mastery in less time than
you thought possible.

Installation

The companion CD-ROM contains all of the source code and the
executables from the lessons in the book, as well as the NetManage
Chameleon installer. Since all of the code for the lessons in this book are on
the companion CD-ROM, there is no need to type the code if you want to
use it for your own projects. We will illustrate how to copy the files from
the companion CD-ROM to your hard drive.

This section will walk you through the steps necessary to install the source
code from the CD-ROM to your hard drive for DOS/Windows 3.x and
Windows 95. To install the NetManage Chameleon, please see the section
The Chameleon Sampler.

Note: For the following examples, we are going to assume that the
CD-ROM drive you want to copy files from is the D: drive and the hard
drive you want to copy files to is the C: drive. If your system is set up
differently, please substitute the appropriate drive letters for your system.

DOS

These instructions for DOS assume you have no familiarity with DOS
commands. If you feel uncomfortable with DOS and are using these
instructions from the Windows DOS Prompt, please exit and follow the
instructions for your version of Windows.

1. Move to the drive that you want to copy the files to. If you want to
copy the files onto the C: drive, type

C:

and press ENTER. Ensure you are at the root directory by typing

CD \

and pressing ENTER.

2. Create the directory you would like to store your files into. If you
want to store the files into the CPPIC directory, type

MD CPPIC

and press ENTER.

3. Move to that directory. If you created a directory called CPPIC,
move to that directory by typing

CD CPPIC

and press ENTER.

4. To copy all of the files to your hard drive, simply type

XCOPY D:*.* /V /S

and press ENTER. To copy individual subdirectories from the
CD-ROM to the CPPIC directory on your hard drive, you must create
the chapter directories before you copy the contents. For example, if
you wanted to copy the code for Chapters 2, 5, and 7, you would type

MD CHAP_02
MD CHAP_05
MD CHAP_07

and press ENTER after each line. Then you would type

CD \CPPIC\CHAP_02
XCOPY D:\CHAP_02 /V /S

CD \CPPIC\CHAP_05
XCOPY D:\CHAP_05 /V /S

CD \CPPIC\CHAP_07
XCOPY D:\CHAP_07 /V /S

and press ENTER after each line. The /V is a DOS switch to verify
files while copying and /S is a DOS switch to copy the
subdirectories. Depending on the configuration and performance of
your system, these steps may take from a few moments to a few
minutes.

Windows 3.x

The following steps are for the use of Windows 3.x with short file names.

1. Open the File Manager.

2. In File Manager, locate the drive you want to copy to and click on
it.

3. If you have a directory to copy the files to, skip to Step 4.
Otherwise, create a new directory by selecting File, Create Directory.
Type

CPPIC

or a directory name of your choice and press ENTER or click on the
OK button.

4. Click on CPPIC or the directory you created.

5. Select the drive letter of your CD-ROM drive.

6. Double-click on the D: drive icon. You should see the following
directory structure:

APP_C
CHAP_02
CHAP_03
CHAP_04
CHAP_05
CHAP_06
CHAP_07
CHAP_08
CHAP_09
CHAP_10
CHAP_11
CHAP_12
NTMANAGE

Control-click on the directories that you want to copy and drag the
selection to the destination drive. Depending on how fast your
computer is and also depending on the options set for your computer,
the copying process may take a few moments to a few minutes.

Note: When Windows copies a CD-ROM, it does not change the
Read-only attribute for the files it copies. You can view the files, but you
cannot edit them until you remove this attribute. To change it on all of the
files, select the top-most directory with the files in it. In File Manager,
select File, Properties and click on the Read-only checkbox to deselect it
and click on OK.

Windows 95

The easiest way to copy files using Windows 95 is by using the Desktop.

1. Double-click on the My Computer icon. Your drives will appear
in a window on the desktop.

2. Double-click on your hard drive and create a new folder, such as
C++ Interactive Course, by selecting File, New, Folder from the
window menu. A folder called New Folder will be created on your
hard drive with the name highlighted. Type in the name you want and
press the ENTER key.

3. Go back to your drive window and double-click on the icon that
represents your CD-ROM. You will see a window that has 11 chapter
folders, one appendix folder, and one Program folder.

4. Select the directories you want to copy (control-click on the
folders if you’re not copying all of them) and drag your selection to
the directory you created on your hard drive. You might need to
reposition your windows to make the window for your hard drive
visible. Depending on your system’s performance, this may take a
few moments to a few minutes

Note: When Windows (any version) copies a CD-ROM, it does not
change the Read-only attribute for the files it copies. You can view the
files, but you cannot edit them until you remove this attribute. To change
it on all of the files, select the top-most directory with the files in it. In
Explorer, select File, Properties and click on the Read-only checkbox to
deselect it and click on OK.

The Chameleon Sampler

The NetManage Internet Chameleon is one of the most versatile and
easy-to-use set of Internet tools in the world. Chameleon helps you sign up
with an Internet provider, connect cleanly to the Internet, and access a
variety of resources—including a pretty cool Web browser. The Chameleon
package includes

• Custom, for connecting to the Internet

• WebSurfer, a full-featured World Wide Web browser

• Gopher, which lets you access any gopher menu worldwide

• NEWTNews, a Usenet newsreader

• Mail, a convenient way to send and receive e-mail

• Archie, which lets you search for a file over the Internet

• Telnet, for connecting to a remote computer

• FTP, for transferring files over the Internet

• FTP Server, which lets you allow others to download or upload
files to your PC

• Mail Utilities, programs that help you compact or organize your
mailbox files to save space

• Ping, to test if you’re connected to a remote computer

• Finger, to check if a friend is connected to the Internet

• Whois, to get information about people registered in the NIC
(Network Information Center) database

You can sample the Chameleon tools for 30 days at no charge. If you like
what you see, you can register everything for 50 bucks.

Installing the Chameleon

Note: In the installation directions here, we assume that your hard disk is
the C: drive and your CD-ROM is the D: drive. If this doesn’t match your
computer, substitute C: or D: with the correct drive designation.

To copy the sampler software onto your hard disk, run the Setup program.
While under Windows, select File, Run in the Program Manager. In the
Run dialog box, type

d:\windows\browsers\ntmanage\disk_1\setup.exe

and then press the OK button.

The Setup program will ask you where to install the NetManage program.
The default suggested is fine for most people. If you want it installed
elsewhere, type in the drive and directory of your choosing and select
Continue.

After a few moments, the Setup program will ask you to type in the path of
the second batch of files. Select the 1 in DISK_1 and change it to 2, and
select Continue.

After another few moments, the Setup program will ask you to type in the
path of the third batch of files. Select the 2 in DISK_2 and change it to 3,
and select Continue.

Click OK when Setup tells you that installation is complete. You are now
ready to setup your Internet account!

Signing Up for an Internet Provider Account

If you don’t already have one, the Chameleon package makes it easy to sign
up with one of several popular Internet providers. Read Chapter 1 for more
information about what services are offered by Internet providers.

If you’d like to sign up using the Chameleon software, run the Automatic
Internet-Click to Start icon.

To learn about a particular Internet provider, click one of the tabs (other
than NetManage) in the Select Internet Provider window. Most providers
give you several hours (or even a month) of free trial time. To read about
the locations an Internet provider can cover, the monthly price, and other
important information, click the More Info button at the bottom of the
screen. If you have specific questions, contact the provider directly.

When you’re ready to begin the sign-up procedure, click the Signup button.
You’ll see a registration screen similar to the one in Figure I-1. Fill in your
name (as it appears on your credit card), address, phone number, and credit
card information.

Figure I-1 The easiest way to sign up for an Internet provider

Note: You will not actually be charged any provider fees until you
officially register with the service. You can cancel the registration
transaction at any time during the sign-on process. If you do decide to
register, your credit card number will be sent over a secure phone line.

As you work through the sign-up process, there may be other tabs asking
for additional information. If so, click these tabs and fill in the forms.

Select the Phone List button at the bottom of the screen. The Phone List
dialog appears, listing possible phone numbers you can use to register. If
one of the numbers is in your area code, select it. Otherwise, select the
toll-free 800 number.

Note: If necessary, you can edit the registration phone number. Some
systems, for example, require you to dial a 9 to reach an outside line. Just
type in this 9.

When you’ve typed in all your vital stats, return to the first registration tab.
Click Send to dial the toll-free number and begin the registration process.
The icons to the right will light up as each stage of the dialing process is
completed. The set of traffic lights tell you if each stage—initializing the
modem, dialing, connecting, and communicating—has worked.

Note: You may need to click the Advanced button to specify special
modem ports or commands.

Follow the instructions that appear as the registration proceeds. You will be
given the option to select from various service and pricing plans. Your
account information (username, e-mail address, password, dial-up number,
and IP address) will automatically be configured into the Chameleon
package. An interface will be created for the Custom program, which
quickly and flawlessly connects you to the Internet.

That’s it! You can now reboot your system to kick-start everything.

Registering the Chameleon Software

If you already have an Internet account, you can set up the Internet
Chameleon software (shown in Figure I-2) and start using it within minutes.
Run the Automatic Internet-Click to Start program.

Figure I-2 The full Chameleon package in the Internet Chameleon
program group

Make sure the NetManage tab is selected, and then click the Signup button.
You can now activate the software for a free 30-day demonstration period.
After this period, the Chameleon software will no longer work. If you
decide to register the Chameleon package (for $50), your credit card will be
charged and your software will be activated permanently.

Fill in all the information on both forms, as shown in Figure I-1, including
your credit card number (it won’t be charged unless you complete the
registration). You may need to contact your Internet provider for the
Internet information on the second form.

Select the Phone button, and choose a local or toll-free phone number. Then
click the Send button to dial in to NetManage and get your software
activated.

Once you connect, you are given the following choices:

• Activate your software for a free 30-day demonstration.

• Purchase your software to activate it permanently.

• Configure your connection (if your Chameleon software has
already been activated).

Connecting to the Internet

Now that you have selected a provider and registered your software, you
can actually get hooked in to the Internet. To do this, you need to run the
Custom program (Figure I-3) from Windows File Manager.

Figure I-3 Your customized on-ramp onto the Information Superhighway

If you used the Chameleon package to sign up with your Internet provider,
an automatic configuration file should have already been written for you.
Otherwise, Chameleon comes with the configurations for most popular
Internet providers. Select File, Open and look for the configuration file for
your provider. If your provider is not listed, you’ll need to contact them and
ask what the proper settings are. They may even be able to send you a
prewritten Chameleon configuration file.

If you do need to enter the connection settings yourself, use the appropriate
values you have obtained from your Internet provider. You can verify or
edit the following information under the Setup menu:

• IP Address

• Subnet Mask

• Host Name

• Domain Name

• Port

• Modem

• Dial

• Login

• Interface Name

• BOOTP
You may also need to fill in the following under the Services menu:

• Default Gateway

• Domain Servers

Read Chapter 1 for more information about these terms.

Logging In

Once your configuration settings are in place, simply click the Connect
menu to dial up your Internet provider and get connected. If all goes well,
you should hear a small beep, and a program known as Newt will run. This
program lets Windows communicate with the Internet. You can then
minimize the Custom program and run the Internet application of your
choice.

Logging Out

When you’re done using the Internet, call up the Custom program and click
the Disconnect menu.

Web Browsing with Websurfer

WebSurfer is a full-featured World Wide Web browser similar to Mosaic.
You can read all about browsers in Chapter 2 and about Mosaic in Chapter
5. To start exploring the Web, first use the Chameleon Custom program to
connect to the Internet. Then run the WebSurfer program.

Like Mosaic, WebSurfer has a toolbar (see the top of Figure I-4) that acts as
a shortcut for most commands. The toolbar contains

Figure I-4 The WebSurfer browser in all its glory

• Show Connection Status: Shows you which links are currently
being loaded.

• Go to URL: Opens a specific Web URL (defined in Chapter 1).

• Get URL: Reloads the current document.

• Hotlist: Shows the list of your favorite Web pages for you to
choose from. To go to a page, just double-click on it. You can also
delete pages from the list by selecting the page and clicking Remove.

• Make Hot: Adds the current Web page to your hotlist.

• Back: Revisits the Web page you just came from.

• Forward: Goes to the next Web page in the series, if applicable.

• Home: Returns to the Web page you started from.

• Cancel All: Stops the loading of the current Web page.

Loading a Web Page from the Internet

Like Mosaic, WebSurfer combines text and graphics on the same page. Any
text in blue or graphics with a blue border are hypertext links to other Web
pages, multimedia files, or Internet areas. To load a link, just click on it.

You can also load up a document directly. Just select Retrieve, Go To URL
and type in the document’s exact URL. Alternatively, you can type a

document’s URL in the Dialog bar’s URL box and press to load
it.

If the document is a Web page, it will be displayed. If the document is a
graphic, sound, or movie, the WebSurfer program will attempt to call up a
viewer program to display/play it. If the document is any other type of
multimedia file, WebSurfer allows you to save the document directly to
your hard disk.

To find out more about the current Web document, select Retrieve,
Properties.

Loading a Web Page from Your Hard Disk

If you have any Web pages on your hard disk (perhaps ones that you’ve
created yourself), you can easily use WebSurfer to view them. Select
Retrieve, Open Local File. Choose the file you want to view and click OK.

You can even edit the current Web document—a very handy capability for
Web developers. Select Retrieve, Edit HTML. Then access the Retrieve,
Refresh From Disk menu item to reload the page in a flash and see what
your edits look like.

Other Internet Tools

The Chameleon package contains software for every Internet resource you
could possibly want. To use FTP, e-mail, telnet, gopher, or any other
Internet program, first connect to the Internet using the Custom application.
Then you can communicate with friends across the world using Mail, read
or post messages to thousands of newsgroups using NEWTNews, browse
menus of data using gopher, download tons of cool software using FTP, and
much more

Table of Contents

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Introduction

http://www.itknowledge.com/reference/archive/1571690638/index.html [21-03-2000 18:54:05]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
javascript:displayWindow('images/in-01.jpg',751,465)
javascript:displayWindow('images/in-01.jpg',751,465)
javascript:displayWindow('images/in-02.jpg',638,266)
javascript:displayWindow('images/in-02.jpg',638,266)
javascript:displayWindow('images/in-03.jpg',481,328)
javascript:displayWindow('images/in-03.jpg',481,328)
javascript:displayWindow('images/in-04.jpg',927,627)
javascript:displayWindow('images/in-04.jpg',927,627)
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Table of Contents

About the Author
Robert Lafore has been writing books about computer programming since
1982. His bestselling titles include Assembly Language Programming for
the IBM PC and XT, C Programming Using Turbo C++, Microsoft C
Programming for the PC, and Object-Oriented Programming in C++. Mr.
Lafore holds degrees in mathematics and electrical engineering, and has
been active in programming since the days of the PDP-5, when 4K of main
memory was considered luxurious. His interests include hiking,
windsurfing, and recreational mathematics.

Dedication

This book is dedicated to the memory of my father, who got me started with
superheterodyne circuits and the 6SJ7. And everything else, for that matter.

Acknowledgments

This book has taken so long to write that it's gone through a whole series of
Waite Group managing editors. My thanks to Andrea Rosenberg, John
Crudo, and–in the distant past—Scott Calamar.

Special thanks also to Mitch Waite, who—once again—is dragging me
kicking and screaming into today's technology.

Lyn Cordell, in her dual role as a content editor plus copy editor, is the best.
If she says change it, I change it; I know she's right. Mike Radtke, technical
editor, pulled the fat out of the fire on more occasions than I care to think
about. (Any remaining problems are, of course, entirely my fault.)

Table of Contents

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:About the Author

http://www.itknowledge.com/reference/archive/1571690638/about_author.html [21-03-2000 18:54:18]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Previous Table of Contents Next

CHAPTER 1
A FIRST LOOL AT OOP AND C++

Welcome to the exciting world of object-oriented programming! In this
first chapter, I’ll start by discussing why object-oriented programming
(OOP) was invented and why it offers advantages to the programmer. I’ll
also provide a quick overview of the main features of object-oriented
languages. You’ll learn about the two most fundamental aspects of OOP,
objects and classes. Then I’ll focus on a particular kind of object—hot dog
stand—and show how real hot dog stands on the street relate to hot dog
stand objects in a program. You’ll see how to use C++ to describe a class of
hot dog stand objects and how to make these objects carry out tasks.

This approach goes to the very heart of OOP. Most books begin by
skittering around the edges of C++, talking about old-fashioned procedural
details. This one attacks objects and classes head-on. If you think of OOP
as a fierce fire-breathing dragon, then you’re going to walk right up to it,
look it squarely in the eye, and tell it you want answers, now!

Session 1: Why Do We Need OOP?

In this session, I’ll discuss, in a general way, how object-oriented
programming arrived on the scene. OOP was developed because limitations
were discovered in earlier approaches to programming. To appreciate what
OOP does, you need to understand what these limitations are and how they
arose from traditional programming languages.

Procedural Languages

Pascal, C, BASIC, Fortran, and similar traditional programming languages
are procedural languages. That is, each statement in the language tells the
computer to do something: Get some input, add these numbers, divide by 6,
display that output. A program in a procedural language is a list of
instructions.

For very small programs, no other organizing principle (often called a
paradigm) is needed. The programmer creates the list of instructions and
the computer carries them out.

Division into Functions

When programs become larger, a single list of instructions becomes
unwieldy. Few programmers can comprehend a program of more than a few
hundred statements unless it is broken down into smaller units. For this
reason, the function was adopted as a way to make programs more
comprehensible to their human creators. (The term function is used in C++
and C. In other languages, the same concept may be called a subroutine, a
subprogram, or a procedure.) A program is divided into functions
and—ideally, at least—each function has a clearly defined purpose and a
clearly defined interface to the other functions in the program.

The idea of breaking a program into functions can be extended by grouping
a number of functions together into a larger entity called a module, but the
principle is similar: a grouping of instructions that carry out specific tasks.

Dividing a program into functions and modules is one of the cornerstones
of structured programming, the somewhat loosely defined discipline that
has influenced programming design for several decades.

Problems with Structured Programming

As programs grow ever larger and more complex, even the structured
programming approach begins to show signs of strain. You may have heard
about, or been involved in, horror stories of program development. The
project is too complex, the schedule slips, more programmers are added,
complexity increases, costs skyrocket, the schedule slips further, and
disaster ensues (see The Mythical Man-Month, by Frederick P. Brooks, Jr.,
Addison-Wesley, 1982, for a vivid description of this scenario).

Analyzing the reasons for these failures reveals weaknesses in the
procedural paradigm itself. No matter how well the structured programming
approach is implemented, large programs become excessively complex.

What are the reasons for this failure of procedural languages? One of the
most crucial is the role played by data.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:A First Look at OOP and C++

http://www.itknowledge.com/reference/archive/1571690638/ch01/001-003.html [21-03-2000 18:54:24]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch01/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Previous Table of Contents Next

Data Is Undervalued

In a procedural language, the emphasis is on doing things—read the
keyboard, invert the vector, check for errors, and so on. The subdivision of
a program into functions continues this emphasis. Functions do things, just
as single program statements do. What they do may be more complex or
abstract, but the emphasis is still on the action.

What happens to the data in this paradigm? Data is, after all, the reason for
a program’s existence. The important part of an inventory program isn’t a
function that displays the data or a function that checks for correct input;
it’s the inventory data itself. Yet data is given second-class status in the
organization of procedural languages.

For example, in an inventory program, the data that makes up the inventory
is probably read from a disk file into memory, where it is treated as a global
variable. By global, I mean that the variables that constitute the data are
declared outside of any function so they are accessible to all functions.
These functions perform various operations on the data. They read it,
analyze it, update it, rearrange it, display it, write it back to the disk, and so
on.

I should note that most languages, such as Pascal and C, also support local
variables, which are hidden within a single function. But local variables are
not useful for important data that must be accessed by many different
functions. Figure 1-1 shows the relationship between global and local
variables.

Figure 1-1 Global and local variables

Suppose a new programmer is hired to write a function to analyze this
inventory data in a certain way. Unfamiliar with the subtleties of the
program, the programmer creates a function that accidentally corrupts the
data. This is easy to do, because every function has complete access to the
data. It’s like leaving your personal papers in the lobby of your apartment
building: Anyone can change or destroy them. In the same way, global data
can be corrupted by functions that have no business changing it.

Another problem is that, because many functions access the same data, the
way the data is stored becomes critical. The arrangement of the data can’t
be changed without modifying all the functions that access it. If you add
new data items, for example, you’ll need to modify all the functions that
access the data so that they can also access these new items. It will be hard
to find all such functions and even harder to modify all of them correctly.
It’s similar to what happens when your local supermarket moves the bread
from aisle 4 to aisle 12. Everyone who patronizes the supermarket must
figure out where the bread has gone and adjust their shopping habits
accordingly. The relationship of functions and data in procedural programs
is shown in Figure 1-2.

Figure 1-2 The procedural paradigm

What is needed is a way to restrict access to the data, to hide it from all but
a few critical functions. This will protect the data, simplify maintenance,
and offer other benefits, as you’ll see.

Relationship to the Real World

Procedural programs are often difficult to design. The problem is that their
chief components—functions and data structures—don’t model the real
world very well. For example, suppose you are writing code to create the
elements of a graphics user interface: menus, windows, and so on. Quick
now, what functions will you need? What data structures? The answers are
not obvious, to say the least. It would be better if windows and menus
corresponded more closely to actual program elements.

New Data Types

There are other problems with traditional languages. One is the difficulty of
creating new data types. Computer languages typically have several built-in
data types: integers, floating-point numbers, characters, and so on. What if
you want to invent your own data type? Perhaps you want to work with
complex numbers, or two-dimensional coordinates, or dates—quantities the
built-in data types don’t handle easily. Being able to create your own types
is called extensibility because you can extend the capabilities of the
language. Traditional languages are not usually extensible. Without
unnatural convolutions, you can’t bundle both x and y coordinates into a
single variable called Point and then add and subtract values of this type.
Traditional programs are more complex to write and maintain.

The Object-Oriented Approach

The fundamental idea behind object-oriented languages is to combine into a
single program entity both data and the functions that operate on that data.
Such an entity is called an object.

An object’s functions, called member functions in C++ (because they
belong to a particular class of objects), typically provide the only way to
access its data. If you want to read a data item in an object, you call a
member function in the object. It will read the item and return the value to
you. You can’t access the data directly. The data is hidden, so it is safe from
accidental alteration. Data and its functions are said to be encapsulated into
a single entity. Encapsulation and data hiding are key terms in the
description of object-oriented languages.

If you want to modify the data in an object, you know exactly what
functions interact with it: the member functions in the object. No other
functions can access the data. This simplifies writing, debugging, and
maintaining the program.

A C++ program typically consists of a number of objects that communicate
with each other by calling one another’s member functions. Figure 1-3
shows the organization of a C++ program.

Figure 1-3 The object-oriented paradigm

I should mention that what are called member functions in C++ are called
methods in some other object-oriented (OO) languages such as Smalltalk,
one of the first OO languages. Also, data items may be called instance
variables. Calling an object’s member function is often referred to as
sending a message to the object. These terms are often used by C++ writers.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:A First Look at OOP and C++

http://www.itknowledge.com/reference/archive/1571690638/ch01/003-005.html [21-03-2000 18:54:36]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
javascript:displayWindow('images/01-01.jpg',416,299)
javascript:displayWindow('images/01-01.jpg',416,299)
javascript:displayWindow('images/01-02.jpg',483,236)
javascript:displayWindow('images/01-02.jpg',483,236)
javascript:displayWindow('images/01-03.jpg',494,506)
javascript:displayWindow('images/01-03.jpg',494,506)
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch01/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Previous Table of Contents Next

The Corporate Analogy

You might want to think of objects as departments—such as sales,
accounting, personnel, and so on—in a company. Departments provide an
important approach to corporate organization. In most companies (except
very small ones), people don’t work on personnel problems one day,
payroll the next, and then go out in the field as salespeople the following
week. Each department has its own personnel, with clearly assigned duties.
It also has its own data: payroll, sales figures, personnel records, inventory,
or whatever, depending on the department.

The people in each department control and operate on that department’s
data. Dividing the company into departments makes it easier to comprehend
and control the company’s activities and helps maintain the integrity of the
information used by the company. The payroll department, for instance, is
responsible for payroll data. If you work in the sales department and you
need to know the total of all the salaries paid in the southern region in July,
you don’t just walk into the payroll department and start rummaging
through file cabinets. You send a memo to the appropriate person in the
department and then wait for that person to access the data and send you a
reply with the information you want. This ensures that the data is accessed
accurately and it is not corrupted by inept outsiders. This view of corporate
organization is shown in Figure 1-4. In the same way, objects provide an
approach to program organization while helping to maintain the integrity of
the program’s data.

Figure 1-4 The corporate paradigm

The Dinner Table Analogy

Here’s another analogy. Let’s compare an old-fashioned procedural
program with a table set for—let’s say—Thanksgiving dinner. The guests
seated around the table—Uncle Harry, Aunt Beatrice, and so on—represent
functions and the dishes of food on the table—turkey, cranberry sauce,
sweet potatoes—are the data. Let’s further assume that the guests never ask
their neighbors to pass any of the dishes; they just reach across the table for
the food. This corresponds to a procedural program, in which functions
access global data directly.

This approach works all right as long as there aren’t too many guests at the
table. Six or eight guests is probably the maximum. In a larger party—20
guests, say—people must reach too far, their sleeves dip into the gravy,
dishes collide midtable, several guests reach for the same dish at the same
time, things are spilled, fights break out—you get the picture. This sort of
chaos is what happens in large procedural programs where the only form of
organization is data and functions. The organizational paradigm can’t
support the complexity.

What’s needed is a more powerful organizational unit. For the dinner party,
several smaller tables might be used rather than one large one. Each table
has its own supply of food and guests; it’s the new organization unit. The
guests at these small tables can easily reach the food on their own table. If
someone wants something from another table—the pepper, perhaps—she
asks a guest at that table to bring it to her.

Each of the small tables corresponds to an object. Each object has its own
functions and data. Most of the interaction between functions and data takes
place within the objects, but it’s also possible for one object to exchange
data with another. By using a larger organizational unit, the object, which
combines functions and data, we’ve restored order to a chaotic situation.

OOP: An Approach to Organization, Not Details

Keep in mind that object-oriented programming is not primarily concerned
with the details of program operation. Instead, it deals with the overall
organization of the program. Most individual program statements in C++
are similar to statements in procedural languages and many are identical to
statements in C. Indeed, an entire member function in a C++ program may
be very similar to a procedural function in C. It is only when you look at the
larger context that you can determine whether a statement or a function is
part of a procedural C program or an object-oriented C++ program.

Quiz 1

(Note: In this—and all quizzes in this book—a question may have more
than one correct answer.)

1. Pascal, BASIC, and C are __________ languages, whereas C++ is
___________.

a. object-oriented, traditional

b. interpreted, compiled

c. traditional, procedural

d. procedural, compiled

e. procedural, object-oriented

2. Which of the following are weaknesses of traditional languages
such as C?

a. Important data is vulnerable to accidental modification.

b. Such languages are hard to use for small programs.

c. Functions don’t correspond neatly to real-world entities.

d. It is difficult to extend such languages by adding new data
types.

e. The syntax is excessively complex.

3. In C++, you will typically access an object’s data using

a. member functions of other objects in that class.

b. member functions of any class.

c. any function with that object’s password.

d. member functions associated with that particular object.

e. any function outside of the object’s class.

4. The two major components of an object are __________ and
____________.

a. a class, its data

b. data, functions that may act on that data

c. messages, member functions

d. encapsulation, polymorphism

e. hidden data, ordinary data

5. Asking the sales manager of a company to get you data from the
sales department is like

a. calling the member function of an object to access the
object’s data.

b. creating a class of objects with data hidden inside.

c. programming a member function that can insert data in an
object.

d. creating an object with a member function that can access
its own data.

e. sending a message to a class.

Session 2: Features of Object-Oriented
Languages

Now that you have some idea why OOP languages were invented, let’s
briefly examine a few of the major elements of object-oriented languages in
general and C++ in particular. This lesson serves as a quick overview of
things to come. Don’t worry if everything I say here isn’t crystal clear; I’ll
be discussing these topics in more detail later.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:A First Look at OOP and C++

http://www.itknowledge.com/reference/archive/1571690638/ch01/005-009.html [21-03-2000 18:54:43]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
javascript:displayWindow('images/01-04.jpg',494,508)
javascript:displayWindow('images/01-04.jpg',494,508)
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch01/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Previous Table of Contents Next

Real-World Objects

When you approach a programming problem in an object-oriented
language, you no longer ask how the problem will be divided into
functions, but how it will be divided into objects. Thinking in terms of
objects rather than functions has a surprisingly helpful effect on how easily
you can design programs. This results from the close match between objects
in the programming sense and objects in the real world.

What kinds of things become objects in object-oriented programs? The
answer is limited only by your imagination, but here are some typical
categories to start you thinking:

• Physical objects

Elevators in an elevator control program

Automobiles in a traffic flow simulation

Countries in an economics model

Aircraft in an air traffic control system

• Elements of the computer user environment

Windows

Menus

Graphics objects (lines, rectangles, circles)

The mouse, keyboard, disk drives, printer

• Data-storage constructs

Customized arrays

Stacks

Linked lists

Binary trees

• Human entities

Employees

Students

Customers

Salespeople

• Collections of data

An inventory

A personnel file

A dictionary

A table of the latitudes and longitudes of world cities

• User-defined data types

Time

Angles

Complex numbers

Points on the plane

• Components in computer games

Ghosts in a maze game

Positions in a board game (chess, checkers)

Animals in an ecological simulation

Opponents and friends in adventure games

States and Abilities

The match between programming objects and real-world objects is the
happy result of combining data and member functions. This is an important
concept, so let’s look at it another way. Many real-world objects, at least
the interesting ones, have both a state (characteristics that can change) and
abilities (things they can do).

For example, an elevator could be in the following state: It’s on the 3rd
floor, it contains four passengers, and the passengers have pushed buttons
for the 7th, 11th, and 15th floors. The elevator might also have the
following abilities: It can go down, it can go up, it can open and close its
doors, it can query other elevators to see where they are, and it can calculate
where it should go next.

In C++, an object’s data records its state and its member functions
correspond to its abilities. For an elevator object, the data might be

• Current_floor_number

• Number_of_passengers_aboard

• List_of_buttons_pushed

The member functions might be

• GoDown()

• GoUp()

• OpenDoors()

• CloseDoors()

• GetInfo()

• CalculateWhereToGo()

The underscore character (_) is often used to separate words in C++ names,
as is the technique of running words together but capitalizing the first
letters. Parentheses (()) after a name indicate a function. Incidentally,
most C++ compilers allow names (variable names, function names, and so
on) to be as long as you want, but only the first 32 characters are
meaningful to the compiler. Upper- and lowercase letters, the underscore,
and the digits from 0 to 9 are permissible characters, but a name cannot
start with a digit.

Object-oriented programming combines the programming equivalent of
states and abilities—which are represented in a program by data and
functions—into a single entity called an object. The result is a programming
entity that corresponds neatly with many real-world objects.

Making objects the central feature of program design constitutes a
revolution in programming. No such close match between programming
constructs and the items being modeled exists in procedural languages.

Classes

In OOP, objects are instances of classes. What does this mean? Let’s look
at an analogy. Almost all computer languages have built-in data types. For
instance, a data type int, meaning integer, is predefined in C++. You can
declare as many variables of type int as you need in your program:

int day;
int count;
int divisor;
int answer;

In a similar way, you can define many objects of the same class, as shown
in Figure 1-5. A class serves as a plan, or a template. It specifies what data
and what functions will be included in objects of that class. Defining the
class doesn’t create any objects, just as the mere existence of a type int
doesn’t create any variables of type int.

Figure 1-5 A class and its objects

A class is thus a description of a number of similar objects. This fits your
nontechnical understanding of the word class. Sting, Madonna, and the
artist formerly known as Prince, are members of the class of rock
musicians. There is no one person called “rock musician,” but specific
people with specific names are members of this class if they possess certain
characteristics.

An object can be called an instance or an instantiation of a class because
the object is a “real” example or an instance of the specifications provided
by the class. This leads to a name commonly used for an object’s data:
instance data. It is called this because there is separate data for each object;
that is, for each instance of the class.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:A First Look at OOP and C++

http://www.itknowledge.com/reference/archive/1571690638/ch01/009-011.html [21-03-2000 18:54:53]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
javascript:displayWindow('images/01-05.jpg',484,478)
javascript:displayWindow('images/01-05.jpg',484,478)
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch01/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Previous Table of Contents Next

Inheritance

The idea of classes leads to the idea of inheritance. In our daily lives, we
use the concept of classes being divided into subclasses. You know that the
class of animals is divided into mammals, amphibians, insects, birds, and so
on. The class of vehicles is divided into cars, trucks, buses, and
motorcycles.

The principle in this sort of division is that each subclass shares common
characteristics with the class from which it’s derived. Cars, trucks, buses,
and motorcycles all have wheels and a motor and are used to transport
people or goods; these are the defining characteristics of vehicles. In
addition to the characteristics shared with other members of the class, each
subclass also has its own particular characteristics: Buses, for instance, have
seats for many people, whereas trucks have space for hauling heavy loads.

This idea is shown in Figure 1-6. Notice in the figure that features A and B,
which are part of the base class, are common to all the derived classes, but
that each derived class also has features of its own.

Figure 1-6 Inheritance

In a similar way, an OOP class can be used as the basis for one or more
different subclasses. In C++, the original class is called the base class; other
classes can be defined that share its characteristics, but add their own as
well. These are called derived classes.

Inheritance is somewhat analogous to using functions to simplify a
traditional procedural program. If you find that three different sections of a
procedural program do almost exactly the same thing, you can recognize an
opportunity to extract the common elements of these three sections and put
them into a single function. The three sections of the program can call the
function to execute the common actions and they can perform their own
individual processing as well. Similarly, a base class contains elements
common to a group of derived classes. As functions do in a procedural
program, inheritance shortens an object-oriented program and clarifies the
relationship among program elements.

Reusability

Once a class has been written, created, and debugged, it can be distributed
to other programmers for use in their own programs. This is called
reusability. It is similar to the way a library of functions in a procedural
language can be incorporated into different programs.

However, in OOP, the concept of inheritance provides an important
extension to the idea of reusability. A programmer can take an existing
class and, without modifying it, add features and capabilities to it. This is
done by deriving a new class from the existing one. The new class will
inherit all the capabilities of the old one, but may also include new features
of its own.

For example, you might have written (or purchased from someone else) a
class that creates a menu system, such as that used in the Turbo C++
Integrated Development System (IDE). This class works fine and you don’t
want to change it, but you want to add the capability to make some menu
entries flash on and off. To do this, simply create a new class that inherits
all the capabilities of the existing one but adds flashing menu entries.

The ease with which existing software can be reused is a major
benefit—possibly the major benefit—of OOP. Many companies find that
reusing classes on a second project provides a major return on their original
investment. I’ll have more to say about this as I go along.

Creating New Data Types

One of the benefits of objects is that they give the programmer a convenient
way to construct new data types. Suppose you work with two-dimensional
positions (such as x and y coordinates or latitude and longitude) in your
program. You would like to express operations on these positional values
with normal arithmetic operations, such as

position1 = position2 + origin;

where the variables position1, position2, and origin each
represent a pair of independent numerical quantities. By creating a class
that incorporates these two values and declaring position1,
position2, and origin to be objects of this class, you can, in effect,
create a new data type. Many features of C++ are intended to facilitate the
creation of new data types in this manner.

Polymorphism and Overloading

Note that the = (equal) and + (plus) operators, used in the position
arithmetic shown above, don’t act the same way they do in operations on
built-in types such as int. The objects position1 and so on are not
predefined in C++, but are programmer-defined objects of class
Position. How do the = and + operators know how to operate on
objects? We must define new operations for these operators. These
operators will be member functions of the Position class.

Using operators or functions in different ways, depending on what they are
operating on, is called polymorphism (one thing with several distinct
forms). When an existing operator, such as + or =, is given the capability to
operate on additional data types, it is said to be overloaded. Functions are
overloaded when multiple functions have the same name but different
arguments. Overloading can make programs easier to write and to
understand. It’s a kind of polymorphism; it is also an important feature of
OOP.

C++ and C

Although this book assumes no knowledge of the C language, you may be
curious about how C and C++ are related. C++ is derived from the C
language. Strictly speaking, it is a superset of C: Almost every correct
statement in C is also a correct statement in C++, although the reverse is not
true. The most important elements added to C to create C++ are concerned
with classes, objects, and object-oriented programming. (C++ was
originally called “C with classes.”) However, C++ has many other features
as well, including an improved approach to I/O and a new way to write
comments. Figure 1-7 shows the relationship between C and C++.

Figure 1-7 The relationship between C and C++

In fact, the practical differences between C and C++ are larger than you
might think. You can write a program in C++ that looks like a program in
C, but doing so misses the whole point of object-oriented programming.

If you already know C, you will have a head start in learning C++ (although
you may also have some habits to unlearn), but much of the material will be
new.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:A First Look at OOP and C++

http://www.itknowledge.com/reference/archive/1571690638/ch01/011-015.html [21-03-2000 18:55:05]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
javascript:displayWindow('images/01-06.jpg',465,394)
javascript:displayWindow('images/01-06.jpg',465,394)
javascript:displayWindow('images/01-07.jpg',492,333)
javascript:displayWindow('images/01-07.jpg',492,333)
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch01/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Previous Table of Contents Next

OOP in a Nutshell

In summary, OOP is a way of organizing programs. Object orientation has to do with how
programs are designed, not the details of individual program statements. In particular, OOP
programs are organized around objects, which contain both data and functions. These
functions, which act on the data, are called member functions. A class is the specification for
a number of similar objects.

C++ is a superset of C. It adds to the C language the capability to implement OOP. It also
adds a variety of other features. In addition, the emphasis is changed in C++ so that some
features common to C, although still available in C++, are seldom used, whereas others are
used far more frequently. The result is a surprisingly different language.

The general concepts discussed in this chapter will become more concrete as you learn more
about the details of C++. You may want to refer back to this chapter as you progress further
into this book.

Quiz

1. When you design a program for an object-oriented language, you look first for
_________ in real life that will correspond to __________ in the program.

a. organizations, data types

b. information, data

c. things, objects

d. actions, functions

e. categories, classes

2. A widget is to the blueprint for a widget as an object is to

a. a member function.

b. a class.

c. an operator.

d. a data item.

e. a program.

3. Inheritance allows you to start with ___________ and derive ___________ from it,
which will share common characteristics with it.

a. a class, objects

b. an object, classes

c. a member function, other member functions

d. an object, other objects

e. a class, other classes

4. Which of the following would probably make reasonable objects in an OOP
program?

a. The 4:30 flight to Dallas.

b. The alphabet.

c. A document.

d. Happiness.

e. Bill Jones.

5. Overloading an operator in C++ involves

a. giving an operator different meanings depending on the context.

b. writing new member functions.

c. allowing an operator to work on a different data type.

d. causing the operator to carry out several operations at once.

e. making the operator carry out an operation on user-defined objects.

Session 3: Hot Dog Stands as Objects

There’s no better way to get a feel for what objects and classes are all about than to look at
actual examples. For the next few sessions, you’ll look in detail at a particular class of
objects. This class models a hot dog stand. This is the kind of hot dog stand that one sees on
street corners or at ball games. It has only one item for sale: hot dogs. (I’m not talking here
about some kind of effete gourmet deli.) Figure 1-8 shows such a stand.

Figure 1-8 Hot dog stand

Actually, an object in this program is not going to model an entire hot dog stand. It will model
only the data necessary to run the stand. These objects don’t cook the hot dogs or make
change. Their job is to keep track of an important aspect of the stand’s operation: how many
hot dogs and buns are on hand at the stand. It would be more accurate to say that an object
will model the hot dog stand’s inventory.

Let’s say an entrepreneur named Sally owns six hot dog stands, located in different parts of
town. She has hired someone to operate each stand while she remains at the central office
with her computer. Each stand has a telephone, so she can stay in touch with the operators.
The stands are numbered from 1 to 6. Sally has hired you to write a program that she can use
to keep track of the supplies on hand at each stand.

At the beginning of the day, each stand’s operator calls Sally and tells her the number of buns
and hot dogs on hand. Also, each time a hot dog is sold, the operator calls to inform her of
this fact. (This may not sound too realistic but remember, these are not high-volume
locations.) With this input and the output of the hot dog stand program, Sally can keep track
of how many buns and hot dogs remain in each stand. This information enables her to call the
supplier to order more hot dogs and buns at appropriate times.

Interaction with the Hot Dog Stand Program

What do you want the hot dog stand program to do? Let’s say three kinds of interaction are
desirable. You want Sally to be able to

1. enter the number of hot dogs and buns on hand at the beginning of the day

2. record each hot dog sale (which decreases the number of buns and hot dogs by 1)

3. ask the program how many hot dogs and buns remain at any given time

Figure 1-9 shows how Sally interacts with some of her hot dog stands.

Figure 1-9 Data flow between Sally and her hot dog stands

For the moment, don’t worry about the part of the program that asks you which of these three
options you want to choose. Instead, concentrate on designing the class of hot dog stands. I’ll
present the overall program in the next chapter.

Inputting the Data

Here’s how the first step, inputting the data, might look as Sally interacts with the program:

Stand number: 3 <--user enters stand number
Number of hot dogs on hand: 347 <--user enters quantity
Number of buns on hand: 298 <--user enters quantity

The program prints the prompts and Sally fills in the data, starting with the stand number.

Incidentally, you might expect the number of buns and hot dogs always to be equal because
the operator always sells a bun and hot dog together, but reality doesn’t always conform to
logic. Some operators accidentally drop hot dogs through the grill into the fire; others burn the
buns. Hot dogs are stolen by cats and go bad if there’s a power failure; buns, stored in a
cardboard box, are likely to be nibbled by mice. Thus, over time the number of hot dogs and
the number of buns differ more and more.

Recording a Sale

When an operator calls Sally and tells her a hot dog has been sold, she simply enters the stand
number:

Enter stand number: 3 <--user enters stand number

The program then subtracts one hot dog and one bun from its data.

Displaying the Data

Sally can ask the program what the situation is at any given hot dog stand.

Enter stand number: 2 <--user enters stand number
Hot dogs on hand = 30 <--program displays data
Buns on hand = 52

Here Sally enters the stand number and the program reports the buns and hot dogs remaining
at that stand.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:A First Look at OOP and C++

http://www.itknowledge.com/reference/archive/1571690638/ch01/015-019.html [21-03-2000 18:55:15]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
javascript:displayWindow('images/01-08.jpg',478,370)
javascript:displayWindow('images/01-08.jpg',478,370)
javascript:displayWindow('images/01-09.jpg',719,678)
javascript:displayWindow('images/01-09.jpg',719,678)
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch01/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Previous Table of Contents Next

Designing the Hot Dog Stand Program

You’ve seen the kind of desired interaction with the hot dog stand program. How do you go
about designing an object-oriented program that will allow this interaction?

What Are the Objects?

The first question an OOP programmer asks is, what are the program’s objects going to be?
Sometimes the answer isn’t easy. However, whenever you find a number of similar items in
the real world, they are candidates to be made into objects in the program.

But there are several categories of similar objects in the hot dog stand situation. There are hot
dogs, there are buns, there are hot dog stands, there are operators. Which should be the
objects?

The hot dogs and the buns are probably too simple. They don’t do much except get sold. The
hot dog stands, on the other hand, are more interesting. They contain a variable number of hot
dogs, a variable number of buns, and you can imagine asking them how many buns and hot
dogs they have on hand and telling them you’ve made a sale. The operators aren’t really
connected with the inventory of buns and hot dogs; if Sally fires Joe and hires Alphonse, that
doesn’t affect the inventory. (But if you were writing a program that dealt with employees, the
operators would be an obvious candidate for objects.)

In more complex situations, you sometimes need to experiment a bit in choosing what entities
to make into objects. You may guess wrong the first time and find your initial program too
awkward. However, with experience you will become increasingly able to select appropriate
objects on the first try.

What’s in a Hot Dog Stand Object?

What kinds of things should go in each hot dog stand object? You can deduce that its data
should include the number of buns and the number of hot dogs on hand:

• Hot dogs on hand

• Buns on hand

These two kinds of data will be the same for each object. That is, every stand must store the
number of buns and the number of hot dogs. Of course the actual quantities of these items
will vary from stand to stand. Stand 1 has 101 hot dogs and stand 2 has 30, but they both must
have a variable that stores this quantity, whatever it is.

To interact with the stand, you need some member functions as well. Member functions will
interact with the data in specific ways. Looking at the kinds of interaction you want with the
program, you see that you need functions to

• Initialize the number of buns and hot dogs in each stand at the beginning of the day

• Tell the stand that a sale has been made

• Ask the stand for the number of buns and hot dogs remaining

The two data items and the three member functions will be the same for each object.

Specifying the Class of Hot Dog Stand Objects

When many objects in a program are the same, it doesn’t make sense to describe each one
separately. It’s more efficient to develop a single specification for all such objects. You could
call this specification a plan or a blueprint. Once you’ve designed the specification, you can
use it to create however many objects you actually need.

In OOP, this specification for creating objects is called a class. Let’s see how such a class
specification would look in C++. Create a HotDogStand class that can be used to make
HotDogStand objects. Many aspects of this specification won’t be clear yet, but you should
see that it embodies two data items and three member functions. I’ll get to the details soon.

class HotDogStand <-- a class called HotDogStand
 { <-- beginning of class specification
 private:
 int HotDogsOnHand; <-- instance data
 int BunsOnHand;
 public:
 void initData() <-- member function to set data
 {
 <-- (function body will go here)
 }
 void SoldOneDog() <-- member function to adjust data
 {
 <-- (function body will go here)
 }
 void displayData() <-- member function to display data
 {
 <-- (function body will go here)
 }
 }; <-- end of class specification

This class specification is divided into two parts, with data in one part and functions in the
other. This is a common approach, although you can mix up the data and functions if you
want.

This class specification embodies many of the essential elements of C++ syntax. Besides the
class specification itself, there are also variable declarations and member functions. Let’s
examine these program elements.

Syntax of the Class Specification

The class specification consists of the keyword class, the name of the class (here it’s
HotDogStand), an opening brace, a closing brace, and a semicolon:

class HotDogStand <-- keyword “class” and class name
 { <-- opening brace
 <-- other program lines go here
 }; <-- closing brace and semicolon

The braces (sometimes called curly brackets) are delimiters. They enclose the body of the
class specification so you (and your C++ compiler) can see where it begins and ends. They
serve the same purpose as the BEGIN and END keywords in Pascal and BASIC. Paired braces
are the standard delimiters in C++ and you’ll encounter them in many other situations as well.

Notice how the opening brace is aligned vertically over the closing brace. This makes it easier
to tell which brace goes where when you read a listing.

The semicolon ends the entire specification. Semicolons are used to end program statements,
data declarations, and class specifications (but not functions). In the case of classes, both a
closing brace and a semicolon are necessary.

Remember that the class specification does not create any hot dog stand objects; it merely
specifies how they will look when (and if) they are created. You’ll see later how to create the
objects themselves.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:A First Look at OOP and C++

http://www.itknowledge.com/reference/archive/1571690638/ch01/020-022.html [21-03-2000 18:55:21]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch01/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Previous Table of Contents Next

Variable Declarations

Two variables, HotDogsOnHand and BunsOnHand, are declared and specified to be integers (type
int). This is one of several basic data types available in C++. I’ll discuss data types in detail in the next
session.

int HotDogsOnHand;
int BunsOnHand;

Notice that these declarations don’t give values (such as 47) to these variables, they merely give them
names and specify that they will require a certain space in memory (although memory space is not
actually set aside until an object is created).

Functions

There are three functions in the class specification: initData(), SoldOneDog(), and
displayData(). Tell the C++ compiler that these names apply to functions (and not variables or
something else) by appending parentheses to the name:

void initData() <--parentheses designate a function
 {

 }

The keyword preceding the function name indicates the type of data returned by the function. None of
the hot dog stand functions returns a value, so the void keyword is used. Later you’ll see that functions
may return a value of any data type. If a function returns an int, for example, you can write

int someFunc()
 {
 }

You could also add parameters to the function by placing values or variable names within the
parentheses. Arguments convey values to the function, like this:

void anotherFunc(float temperature, float humidity)
 {
 }

However, I’ll postpone a discussion of return types and parameters until later.

As with the class specification itself, the body of the function is delimited with braces:

void initData() <-- function named initData with no return type, no
 arguments
 { <-- start of function body
 <-- other statements would go here
 } <-- end of function body (NO semicolon)

For simplicity, I haven’t inserted any statements into the function bodies. You’ll need to learn a little
more before we’re ready for that.

Remember that whereas a class specification is terminated by a semicolon, a function is not.

Public and Private

The idea behind public and private is to allow some parts of an object to be accessed by program
statements outside the object while other parts can be accessed only from within the object itself, as
shown in Figure 1-10.

Figure 1-10 Public and private access

The public and private keywords, followed by colons, are used to designate these parts. Here all
the data is private and all the member functions are public. This is the usual situation: You want to hide
the data from the outside world so it is protected from accidental alteration. However, you want the
member functions to be public so other parts of the program can call them to tell the object to do
something. To work with the data, don’t access it directly; instead, ask a member function to access it
for you.

Quiz 3

1. An object in our hot dog stand program will correspond to what entity in the real world?

a. An entire hot dog stand, including the operator.

b. All relevant data for all the hot dog stands.

c. The inventory data for a particular hot dog stand.

d. The physical hot dogs and buns at a particular stand.

e. A hot dog.

2. What items will be part of a HotDogStand object?

a. A function to initialize the number of hot dogs and buns to zero.

b. The number of buns.

c. The number of hot dogs.

d. A function to increment the number of buns and hot dogs.

e. A function to display the number of hot dogs and buns on hand.

3. Data is often private and member functions are often public because

a. data is not accessed as often as functions.

b. an object’s data should be hidden for safety but its member functions should be
accessible so the rest of the program can interact with the object.

c. data must be accessed only by objects of the same class, whereas member functions can
be accessed by any object.

d. data must not be changed, whereas member functions may be.

e. data takes up less memory space than member functions do.

4. An object’s member functions usually operate on

a. data within the functions themselves.

b. global data.

c. data in another specified object.

d. data in that object.

e. data in any object of the same class.

5. Which item is not always part of a class specification?

a. Braces.

b. A semicolon.

c. The keyword class.

d. A class name.

e. The definition of an object.

Session 4: Basic C++ Data Types

As you’ve seen, objects are composed of two major elements: instance data and member functions. In
this lesson, I’ll talk about data. More specifically, I’ll show the basic data types that are built into C++.
Then I’ll show member functions in more detail.

As you’ll see later, you can use C++ to define any data type you want, but the built-in types save you
from going to this trouble in most common situations.

There are seven basic types built into C++. Of these basic types, one represents characters, three
represent whole numbers (integers), and three represent real (floating-point) numbers. Table 1-1
summarizes the C++ data types.

Table 1-1 C++ data types
Type Name Used to Store Examples of Values Stored

char Characters ‘a’, ‘B’, ‘$’, ‘3’, ‘?’
short Small whole numbers 7, 30,000, -222
int Normal-sized whole numbers (same as

short or same as long)
long Large whole numbers 1,000,000,000, -123,456,789
float Small real numbers 3.7, 199.99, -16.2, 0.000125
double Large real numbers 7,553.393.95,47,

-0.048512934
long double Extra-large real numbers 9,123,456,789,012,345.666

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:A First Look at OOP and C++

http://www.itknowledge.com/reference/archive/1571690638/ch01/022-025.html [21-03-2000 18:55:31]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
javascript:displayWindow('images/01-10.jpg',449,499)
javascript:displayWindow('images/01-10.jpg',449,499)
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch01/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Previous Table of Contents Next

Characters

Let’s look at each of these data types in turn. Characters are stored in
variables of type char. The statement

char ch3;

creates space in memory for a character and names it ch3. To store a
particular character in this variable, use a statement like

ch3 = ‘a’;

Character constants, such as ‘a’, ‘B’, ‘&’ or ‘4’, are surrounded by
single quotes.

Assignment Operator

The equal sign (=) causes the value on its right to be assigned to (placed in)
the variable on its left; that is, following this statement, the variable ch3
will have the value ‘a’. The equal sign is called the assignment operator
because it assigns the value on the right to the variable on the left.

All characters are actually stored as numbers (which, as you know, is all a
computer understands). The ASCII code is used to translate characters into
numbers. Thus ‘A’ is 65, ‘B’ is 66, and so on. The ASCII code is shown
in Appendix E.

Escape Sequences

Various special characters are represented by letters preceded by a
backslash. This is called an escape sequence because the backslash causes
the interpretation of the next character to “escape” from the normal ASCII
code and indicate something different. Table 1-2 shows the most common
escape sequences.

Table 1-2 Common escape sequence
Escape Sequence Character Represented

‘\n’ New line. Causes the cursor to move to the start of
the next line. (Same as a carriage return plus a line
feed.)

‘\t’ Tab character.
‘\b’ Backspace.
‘\r’ Carriage return. Causes the cursor to move to the

start of this line. Also generated by the
key.

Variables of type char are occasionally used to store whole numbers
rather than characters. You can say

ch3 = 44;

However, the range of numerical values that can be stored in type char is
from -128 to 127, so this works only for very small numbers. Whole
numbers are usually stored in variables of type int, which is faster for the
computer to process than type char.

A variable of type char occupies 1 byte, or 8 bits, of memory.

Integers

Integers represent whole numbers, that is, values that can be counted, such
as the number of people living in Thomasville (12,348) or lines of text on a
page (33). Integers cannot represent numbers with decimal points or
fractional parts, such as 2.3 or 4/7. Integers can be negative: -7, -413.

There are three integer types in C++: short, int, and long. They are
similar but occupy different amounts of memory and can handle numbers in
different numerical ranges, as Table 1-3 shows. I also include type char in
this table, even though it is mostly used for characters, because it can be
used to store small whole numbers as well.

Table 1-3 Integer types in C++
Type
Name Size Range

char 1 byte (8 bits) -128 to 127
short 2 bytes (16 bits) -32,768 to 32,767

int
Same as short on 16-bit systems, same as long on 32-bit
systems

long 4 bytes (32 bits) -2,147,483,648 to 2,147,483,647

Type short always occupies 2 bytes. It can store numbers in the range of
-32,768 to 32,767. Type long always occupies 4 bytes and can store
numbers in the range of -2,147,483,648 to 2,147,483,647.

In 16-bit systems, type int occupies 2 bytes, the same as short. In 32-bit
systems, it occupies 4 bytes, the same as long, and can therefore handle a
larger range of values. Older operating systems, such as DOS and Windows
3.1, are 16-bit systems. Newer systems, such as Windows 95, OS/2, and
Windows NT, are 32-bit systems. Unix has always been a 32-bit system.

The int type is the most commonly used integer type and operates the
most efficiently whatever system you use. However, if you want to
guarantee a 2-byte variable even in a 32-bit system (to save space), you
must use short; if you want to guarantee a 4-byte variable on a 16-bit
system (to hold large values), you must use long.

Here’s an example of defining some integer variables and giving them
values:

int MilesDriven; <-- declare variables
long population;

MilesDriven = 1024; <-- give the values
population = 1405836L;

The L is used to designate a type long constant, one that won’t fit in an
integer (in a 16-bit system).

Unsigned Integers

All the integer types have unsigned versions. Unsigned variables can’t hold
negative numbers, but their range of positive values is twice as large as that
of their signed brothers. Table 1-4 shows how this looks.

Table 1-4 Unsigned integers
Type Name Size Range

unsigned char 1 byte (8 bits) 0 to 255
unsigned short 2 bytes (16 bits) 0 to 65,535
unsigned int or
unsigned

Same as unsigned short on 16-bit systems

Same as unsigned long on 32-bit systems
unsigned long 4 bytes (32 bits) 0 to 4,294,967,295

Ordinary integers, without the unsigned designation, are signed by
default. You can use the keyword signed, but it’s not necessary.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:A First Look at OOP and C++

http://www.itknowledge.com/reference/archive/1571690638/ch01/025-027.html [21-03-2000 18:55:40]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch01/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Previous Table of Contents Next

Floating Point

Floating-point numbers are used to represent values that can be measured, such as the length of a room
(which might be 5.32 meters) or the weight of a rock (124.65 pounds). Floating-point values are normally
expressed with a whole number to the left of a decimal point and a fraction to the right.

Instead of a decimal point, you can use exponential notation for floating-point numbers. Thus, 124.65 in
normal notation is 1.2465e2 in exponential notation, where the number following the e indicates the number
of digits the decimal point must be moved to the right to restore the number to normal notation. Exponential
notation is commonly used to display numbers that are inconveniently long in decimal notation. Thus,
9,876,000,000,000,000,000 in normal notation is 9.876e18 in exponential notation.

There are three kinds of floating-point numbers in popular operating systems, as shown in Table 1-5. (Some
systems don’t have long double.)

Table 1-5 Floating-point numbers
Type Name Size Range Precision

float 4 bytes (32 bits) 10e-38 to 10e38 5 digits
double 8 bytes (64 bits) 10e-308 to 10e308 15 digits
long double 10 bytes (80 bits) 10e-4932 to 10e4932 19 digits

The most common floating-point type is probably type double, which is used for most C++ mathematical
library functions. Type float requires less memory than double and may speed up your calculations.
Type long double is used in the floating-point processor in Intel microprocessors and is useful for very
large numbers.

Here’s an example of defining and using variables of the various floating-point types:

float pi_float;
double pi_double;
long double pi_long_double;

pi_float = 3.1415;
pi_double = 3.14159265358979;
pi_long_double = 3.141592653589793238;

Here I’ve assigned constants representing the mathematical constant pi to variables of the three types, using
as many digits of precision as each type will allow.

Figure 1-11 shows the amounts of memory required for all the data types except long double. You can
initialize variables to specific values when they are first declared. Thus the six statements above could be
condensed into

float pi_float = 3.1415;
double pi_double = 3.14159265358979;
long double pi_long_double = 3.141592653589793238;

Figure 1-11 Variables of basic data types in memory initialization

Whitespace

C++ doesn’t mind if you put extra spaces into a program line. You can use them to align things so they’re
easier to read. You could say

float pi_float = 3.1415;
double pi_double = 3.14159265358979;
long double pi_long_double = 3.141592653589793238;

You can put as many spaces, tabs, and new lines as you want in your program. These characters constitute
whitespace, and the C++ compiler ignores whitespace in almost all situations. Programmers use whitespace
to make the program easier for humans to follow.

Comments

You can add comments to your program listing to help yourself—and anyone else who might need to look at
your listing—understand what it does. Comments are preceded with a double slash: //.

Here’s a code fragment, taken from the previous section, that uses a full-line comment and comments
following each of three statements:

// these variables are declared and initialized at the same time
float pi_float = 3.1415; // 5-digit precision
double pi_double = 3.14159265358979; // 15-digit precision
long double pi_long_double = 3.141592653589793238; // 19-digit precision

Any text following the // symbol until the end of the line is ignored by the compiler.

Another kind of comment allows you to write comments that span multiple lines. Here’s an example:

/*
if you have a really long multiline
comment it is easier to
use this arrangement than to write
the double-slash symbol before
every line
*/

The /* symbol starts the comment and the */ ends it. The end of a line does not automatically end a
comment that starts with /* (as it does with those starting with //), so you can write as many comment lines
as you want before terminating with the */ symbol. This comment style is harder to type and requires two
symbols per comment instead of one, so it is not usually used for single-line comments.

As you know, adding numerous comments to your code makes it far more comprehensible to anyone else
who must understand your program. And, difficult as it may be to believe, you yourself may find comments
helpful if you try to read a listing you haven’t seen for some time.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:A First Look at OOP and C++

http://www.itknowledge.com/reference/archive/1571690638/ch01/028-030.html [21-03-2000 18:55:51]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
javascript:displayWindow('images/01-11.jpg',472,567)
javascript:displayWindow('images/01-11.jpg',472,567)
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch01/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Previous Table of Contents Next

Quiz 4

1. To represent a 4-digit employee serial number, you would most
likely use type

a. unsigned int.

b. long.

c. char.

d. float.

e. double.

2. Several different integer types (and also several different
floating-point types) are necessary because

a. there is a trade-off between operating speed and memory
storage space.

b. there is a trade-off between speed and memory space, on
the one hand, and the size of the numbers that can be stored, on
the other.

c. there is a trade-off between the number of significant digits
that can be used and the size of the exponent.

d. different computer systems have different storage
requirements.

e. different computer languages have different storage
requirements.

3. To represent the atomic weights of elements (e.g., iodine is
126.932) you would most likely use type

a. double.

b. long double.

c. unsigned long.

d. unsigned char.

e. int.

4. The assignment operator

a. asserts that one variable is equal to another.

b. places the value on the right into the variable on the left.

c. sets the constant on the right equal to the constant on the
left.

d. places the constant on the left into the variable on the right.

e. makes an equivalence between the names of two variables.

5. The term whitespace in a source file is related to

a. the margins of the paper.

b. the characters ‘’, ‘\t’, ‘\n’ and perhaps a few others.

c. formatting used in a program listing to make it easier for
humans to read.

d. program statements that don’t change any data.

e. symbols that are ignored by the compiler.

Now that you know enough about C++ to write actual program statements,
I’ll include exercises at the end of each lesson.

Exercise 1

Write statements to create variables called LetterCode, SalePrice,
and Quantity of types char double, and long.

Exercise 2

Write statements to set the three variables in Exercise 1 to ‘V’, 67.95, and
1,000,000, respectively.

Midchapter Discussion

Imagine that this book is being used in a programming class and that the
students get together from time to time to discuss how the course is going.
The following is an example of one such discussion. I’ll include two
discussions per chapter: one halfway through the chapter and one at the
end.

George: Oh, boy, I’m in trouble. The only thing I understood at all was
about data types, because they’re the same as C.

Estelle: You know C? Then this course should be a pushover for you.
George: Are you kidding? Everything but the data types was over my

head. Objects? Classes? I don’t have a clue.
Estelle: I know what you mean; it’s not totally clear to me either. I

think I have to take it on faith that all this will lead to
something useful.

Don: But you get the main idea, don’t you? About needing a better
way to design programs because the old procedural approach
just got too out of control?

Estelle: Well, I guess I understand it in theory. But I’ve never written
such a huge program. Just what I took in my Pascal class.

Don: I was involved in a big project in C at work, and it certainly got
complicated. If there’s some way to make working with huge
programs easier, I’m all for it.

George: Yeah, but how does this object stuff lead to anything practical?
I’m not learning how to write program statements that actually
do things, like adding two numbers or whatever.

Estelle: But C++ isn’t a procedural language. It’s based on objects, so
I’ve got to learn to make objects before I can do anything
useful.

Don: Right. In a procedural language, the programmer gives
instructions to the computer to do things but in an OOP
language, the programmer tells objects to do things. And you
can’t tell an object something if you don’t have any objects.

Estelle: And to create objects you need a class to tell you what the
objects will look like.

Don: But to specify the class you need to know how to declare data
variables, which I just learned about, and write functions,
which I bet I get to this afternoon.

George: Well, I want to display some numbers! Do some arithmetic! I
want a complete program!

Estelle: Patience, George, patience.

Session 5: Introduction to Input/Output

Before I talk about the second component of objects—member
functions—let’s examine one of the most important things that member
functions do: performing input and output. If you can’t put data into objects
and get it out again, they’re not going to be too useful. In this lesson, I’m
going to explore some basics of performing input/output (I/O) in C++.

In this lesson, I’ll show I/O statements by themselves; in the next lesson,
you’ll see how they look in member functions, where they would ordinarily
appear.

Output to the Screen

Here’s a statement that causes a line of text to be displayed on the screen:

cout << “This text will appear on the screen.”;

The name cout, pronounced “C out,” represents a C++ object that is
associated with the screen display. The << operator, called the put to
operator, causes whatever is on its right to be sent to whatever is on its left.
The cout object and the << operator are part of the C++ standard stream
library, so you don’t need to define them yourself or even worry too much
about how they work. (You will need to insert a header file into your
program to declare them, as you’ll see in the next chapter.) Figure 1-12
shows how cout works.

Figure 1-12 Output with cout

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:A First Look at OOP and C++

http://www.itknowledge.com/reference/archive/1571690638/ch01/030-033.html [21-03-2000 18:55:59]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
javascript:displayWindow('images/01-12.jpg',496,129)
javascript:displayWindow('images/01-12.jpg',496,129)
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch01/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Previous Table of Contents Next

String Constants

The text “This text will appear on the screen.” is called a string constant. A
string constant is surrounded by double quotes (unlike a character constant, which is surrounded
by single quotes). The entire statement, as with all C++ statements, is terminated with a
semicolon.

You can output numerical constants the same way. The statement

cout << 27;

causes a 27 to appear on the screen, whereas

cout << 123.45;

displays 123.45.

You can display the values of variables as well as numbers. For example, this code displays 2.7:

float fvar1 = 2.7;
cout << fvar1;

More than one value can be displayed with a single cout statement, using multiple put to
operators:

float height = 2.7;
cout << “It is ” << height << “ meters high.”;

This would produce the output

It is 2.7 meters high.

You can also reformat such a statement so that the put to operators line up vertically, thus making
the statement easier to read:

cout << “It is”
 << height
 << “meters high.”;

Or you could use three separate cout statements to produce the same output.

Formatting Output

It’s nice to have some control over the way output is formatted. In C++ stream I/O, a variety of
techniques are available for this purpose. I’ll show two examples here.

New Lines Not Automatic

Some languages, such as BASIC, automatically move to a new line at the end of every output
statement, but C++ does not. Nor are different variables in the same statement placed on separate
lines. New lines are not created automatically by the cout object or the put to operator. For
example, the statements

cout << 6.25;
cout << 30.9 << 2.5;

produce the output

6.2530.92.5

where all the output is run together. This is probably not what you want.

Escape Sequences

One of the easiest ways to format data is to insert a character called an escape sequence into a
string constant. For example, you can use the ‘\n’ escape sequence to start a new line:

cout << “\nNow I'll ask you some questions about yourself.”;
cout << “\nFirst, enter your age: ”;

produces the display

Now I'll ask you some questions about yourself.
First, enter your age:

The ‘\n’ before “First” causes the second string constant to be displayed on a separate line from
the first. (The '\n’ before “Now” ensures that the first line begins on a new line as well, even if
something else has already been printed by a preceding statement.)

You can use the escape sequence '\t’ to generate tab characters. The code

cout << “\nJoe\tFred\tSally”;
cout << “\nGeorge\tBud\tSandy”;

lines up the names in columns.

Joe Fred Sally
George Bud Sandy

The endl Manipulator

There’s another approach to starting new lines in C++. An object called a manipulator can be
inserted into an output stream, just like a data item. Manipulators can be used to format output,
among other purposes. Probably the most common manipulator is endl (a contraction of “end
line”). Inserted into a cout statement, endl causes the cursor to move to the start of the next
line, just as '\n’ does. (Also, endl flushes any output that may be waiting in the output buffer
to the display.)

Earlier, I showed two lines that used the ‘\n’ escape sequence to start text on a new line. Here’s
how to achieve the same result using endl:

cout << endl;
cout << “Now I'll ask you some questions about yourself.” << endl;
cout << “First, enter your age: ”;

The first statement ensures you start on a new line and the endl at the end of the second
statement causes the text beginning with “First” to start on a new line.

Input from the Keyboard

Here’s how to input a number, entered by the user from the keyboard, and store it in a variable
intvar:

int intvar;
cin >> intvar;

The cin object (for “C in”) represents the keyboard, and the get from operator (>>) takes
whatever is on the left and puts it in the variable on the right. When this statement is executed, the

program waits for the user to type a number and press . Figure 1-13 shows how this
looks.

Figure 1-13 Input with cin

Usually, of course, you want to prompt the user before waiting for input:

int age;
cout << “Enter your age: ”;
cin >> age;

This produces the following interaction:

Enter your age: 34

where the user enters the 34.

You can use the get from operator multiple times in the same statement:

int age;
float height;
cout << “Enter your age and height:”;
cin >> age >> height;

Here the user presses , , or after each value before entering the next
one. However, it’s usually better to prompt the user for only one value at a time, to avoid any
possibility of confusion.

Stream I/O

The techniques for input and output I’ve shown here are called stream I/O. A stream is a general
term for a flow of data. As you’ll see when you write a complete program, to use stream I/O, you
need to include a file of declarations in your program. This file, IOSTREAM.H, is called a header or
include file.

There is much more to be said about stream I/O in C++. I’ll return to this topic in Chapter 10.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:A First Look at OOP and C++

http://www.itknowledge.com/reference/archive/1571690638/ch01/033-036.html [21-03-2000 18:56:16]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
javascript:displayWindow('images/01-13.jpg',486,149)
javascript:displayWindow('images/01-13.jpg',486,149)
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch01/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Old-Style C I/O

If you are a C programmer, you are familiar with a completely different style of input and output
using printf(), scanf(), and similar library functions (declared in STDIO.H). You can use
these functions in C++ as well, but the preferred approach is to use stream I/O. Why? First, it’s
easier to avoid mistakes. Have you ever used the wrong format specifier in printf() (e.g., %d
instead of %f), so that data is displayed incorrectly? It’s easy to do, and in scanf(), the wrong
specifier can crash your program as well. Second, the stream I/O approach lets you use cout and
cin with classes you write yourself. This allows you to perform I/O on any programming object
the same way it’s performed on basic data types. This is a very powerful technique, which is
unavailable with standard C I/O. Some old-time C programmers can’t get the hang of stream I/O
and persist in using standard I/O, but they are missing out on some powerful and important
features of C++.

Quiz 5

1. Which of the following are true?

a. >> means “get in.”

b. << means “get out.”

c. cfile transfers data to files.

d. cout represents the screen.

e. cout represents the keyboard.

2. Which of the following will display “Nancy is 27” on the screen (assuming the variables
have appropriate values)?

a. cin >> “Nancy is ” >> 27;
b. cin >> “Nancy is ”
cin >> age;

c. cout << “Nancy is ”; cout << age;
d. cout << “Nancy is ” << 27;
e. cout >> “Nancy is ”;
cout >> age;

3. The statement cin >> name >> age >> height; will

a. potentially confuse the user.

b. display name, age, and height.

c. probably accept input of different types.

d. require the user to separate constants with spaces or similar characters.

e. display prompts.

4. Which statement or statements will create the display

 1 2
 3 4

a. cout << “1\t2\n3\t4\n”;
b. cout <<‘1’<<‘\t’<<‘2’<<‘\n’<<‘3’<<‘\t’<<‘4’<<‘\n’;
c. cout << “1\n2\t3\n4\t”;
d. cout <<1<<‘\t’<<2<<‘\n’<<3<<‘\t’<<4<<‘\n’;
e. cout << ‘1’ << ‘\n’ << ‘2’ ‘\t’; cout << ‘3’ ‘\n’ ‘4’
‘\t’;

5. In a comparison of C++ I/O (stream I/O) and old-fashioned C I/O (standard I/O), which
of the following is true?

a. Stream I/O is faster.

b. You can modify almost any object to use stream I/O but not standard I/O.

c. All objects know how to display themselves automatically in stream I/O.

d. Standard I/O is more intuitive.

e. Standard I/O allows you to avoid format specifiers.

Exercise 1

Thinking about the hot dog program, write a program fragment that displays the number of hot
dogs and buns on hand. The output might look like this:

Hot dogs on hand = 125
Buns on hand = 133

Exercise 2

Write a program fragment that asks the user for the initial values of hot dogs and buns on hand,
gets responses from the user, and then sets appropriately named variables to these values.

Exercise 3

Write a program fragment that does the following:

• Creates two variables, num and denom, that represent the numerator (top) and
denominator (bottom) of a fraction.

• Asks the user to supply values for the numerator and denominator.

• Puts the values supplied into the variables.

• Displays the fraction in the format 2/3, with a slash between the two numbers.

Some sample interaction with this program fragment might look like this:

Enter the numerator: 4
Enter the denominator: 7
Fraction = 4/7

Session 6: Member Functions

Earlier in this chapter, I talked about basic data types. Data is one of the two parts of objects. Now
I’ll discuss the second part: member functions. Typically a program calls an object’s member
functions to tell the object to do something. This is why calling an object’s member function is
also called sending a message to the object.

In the hot dog stand example, there are three member functions: initData(),
SoldOneDog(), and displayData(). Earlier, for simplicity, I showed these functions with
empty function bodies. Now it’s time to fill in these functions and see what they can actually do.

Initializing the Data

At the start of each day, you want to initialize the number of hot dogs and buns at a stand. Use the
initData() function for this. This requires both cout (for the prompts) and cin statements.
Here’s how it looks:

void initData()
 {
 cout << “Enter dogs on hand:”;
 cin >> HotDogsOnHand;
 cout << “Enter buns on hand:”;
 cin >> BunsOnHand;
 }

An example of interaction with this function would be

Enter dogs on hand: 30
Enter buns on hand: 52

where the program displays the prompts and the user enters 30 and 52.

Recording a Sale

When a hot dog is sold, the stand operator calls Sally to tell her this fact. When she receives such a
call, she wants the program to decrease both the number of hot dogs and the number of buns by
one. Here’s a member function that does the job:

void SoldOneDog()
 {
 HotDogsOnHand = HotDogsOnHand - 1; // subtract 1 from variable
 BunsOnHand = BunsOnHand - 1; // subtract 1 from variable
 }

Here there’s no interaction with the user, only a little arithmetic.

Figure 1-14 shows how Sally interacts with an object of class HotDogStand, using its member
functions.

Figure 1-14 Interaction with HotDogStand object member functions

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:A First Look at OOP and C++

http://www.itknowledge.com/reference/archive/1571690638/ch01/036-040.html [21-03-2000 18:56:27]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
javascript:displayWindow('images/01-14.jpg',497,507)
javascript:displayWindow('images/01-14.jpg',497,507)
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch01/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Displaying Data

Remember that a HotDogStand object records the numbers of hot dogs and
buns on hand, in the variables HotDogsOnHand and BunsOnHand. You can
use cout statements to display these values. The resulting displayData()
function looks like this:

void displayData()
 {
 cout << “Hot dogs on hand = ”
 << HotDogsOnHand << endl;
 cout << “Buns on hand = ”
 << BunsOnHand << endl;
 }

The output from this function will be something like this:

Hot dogs on hand = 347
Buns on hand = 298

You’ve simply inserted two statements into the function. These statements make
up the function body. (As you’ve seen, you could produce the same output with
four cout statements or with only one.)

Arithmetic Operators

In the SoldOneDog() function, shown above, you used the subtraction
operator (-) to subtract one from two values. C++ includes the usual four
arithmetic operators plus a fifth, less common one, as shown in Table 1-6.

Table 1-6 Arithmetic operators
Operator Purpose

+ Addition
- Subtraction
* Multiplication
/ Division
% Remainder

The first four operators perform familiar operations. The remainder operator, %
(also called the modulus operator), is used to calculate the remainder when one
integer is divided by another. Thus the expression

20 % 3

evaluates to 2, because 20 divided by 3 is 6, with a remainder of 2.

You can use any of the arithmetic operators just as you would in normal
arithmetic or algebra or most other programming languages. They are called
binary operators because they operate on two quantities. That is, expressions
involving them have the form alpha+beta, where the + operates on alpha
and beta.

Of course, you can make arithmetic expressions as complicated as you want. For
example,

c = (f-32) * 5 / 9;

converts a temperature in Celsius to one in Fahrenheit. Note that I use
parentheses so the subtraction will be carried out first, despite its lower
precedence. (The term precedence refers to the order in which operations are
carried out. The * and / operators have higher precedence than the + and -
operators.)

In C++, it’s perfectly all right to mix different arithmetic types in the same
expression. For example, in the above statements, f might be type int and c
might be type float. The compiler would not complain. Instead, it would
automatically convert the types appropriately before carrying out the arithmetic.

Increment and Decrement Operators

In programming, there always seems to be a need either to add 1 to something or
to subtract 1 from something, just as there was in the example above. These
situations are so common that C++ includes two special operators that perform
the task in a much more compact form than using the normal addition and
subtraction operators. The decrement operator subtracts 1 from a variable and
the increment operator adds 1 to it.

Here’s the SoldOneDog() function, rewritten to use the decrement operator:

void SoldOneDog()
 {
 --HotDogsOnHand; // subtract 1 from HotDogsOnHand
 --BunsOnHand; // subtract 1 from BunsOnHand
 }

The decrement operator consists of two minus signs together: —. If
HotDogsOnHand were 30 and BunsOnHand were 52, then after executing
this function, these two variables would be 29 and 51.

Similarly, the increment operator, ++, increases the variable it’s applied to by 1.
The increment and decrement operators are called unary operators because they
operate on only one variable. Their priority is higher than that of arithmetic
operators, so in the expression ++x + 3, the value of x will be incremented
before the addition is carried out.

Now that I’ve defined some member functions, you may be wondering how I get
them to do something; that is, how I call them or cause them to be executed. Be
patient. You’ll learn all about that in the next chapter.

Quiz 6

1. The proper role of member functions is limited to

a. performing stream I/O.

b. allowing a class to alter its data.

c. allowing a class to interact with the outside world.

d. allowing objects to carry out any appropriate activity.

e. performing arithmetic operations on instance data.

2. The member functions of the HotDogStand class can

a. report to the user the number of buns and the number of hot
dogs at a stand.

b. calculate the profit made at each stand.

c. record the sale of any number of hot dogs with a single function
call.

d. make change.

e. carry out an arithmetic operation on a stand’s inventory.

3. To what entities can the five basic C++ arithmetic operators be
applied, assuming you don’t overload these operators?

a. objects

b. integer variables

c. floating-point constants

d. characters

e. classes

4. The expression 41 % 7 evaluates to

a. 7
b. 6
c. 5
d. 4
e. 1

5. If the value of age is 21, what statement (or statements) will change it
to 23?

a. ++age;
b. age = ++age + 1;
c. age = 2 + --age;
d. ++age; ++age;
e. --age; --age;

Exercise 1

Start with the code fragment of Exercise 3 in Session 5, which sets values for the
numerator and denominator of a fraction and displays them. Create two
functions: one, setFrac(), to get values for num and denom from the user;
the other, showFrac(), to display the fraction in the form 7/12.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:A First Look at OOP and C++

http://www.itknowledge.com/reference/archive/1571690638/ch01/040-043.html [21-03-2000 18:56:36]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch01/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Exercise 2

Imagine a class called Employee with two data items, employee_number and
employee_salary, which record an employee’s ID number and salary. Write statements to
create these variables, the first type int and the second type double. Write a function,
get_emp(), to get values for these variables from the user and another function, put_emp(),
to display the values.

Session 7: Specifying a Class

You now have all the pieces to write a complete class specification. You know how to declare
variables of basic types, how to create member functions that interact with this data, and how to
perform I/O so you can do something useful with these functions.

Here’s a complete specification for the HotDogStand class:

class HotDogStand
 {
 private:
 int HotDogsOnHand; // dogs remaining
 int BunsOnHand; // buns remaining
 public:
 void displayData() // display data
 {
 cout << “Hot dogs on hand = ”
 << HotDogsOnHand << endl;
 cout << “Buns on hand = ”
 << BunsOnHand << endl;
 }
 void initData() // get initial data from user
 {
 cout << “Enter dogs on hand: ”;
 cin >> HotDogsOnHand;
 cout << “Enter buns on hand: ”;
 cin >> BunsOnHand;
 }
 void SoldOneDog() // adjust data to reflect sale
 {
 --HotDogsOnHand;
 --BunsOnHand;
 }
 }; // end of class HotDogStand

All I’ve done is to fill in the function bodies to complete the specification. However, it’s easier
now to see the relation between the class data and its member functions. The member functions
all operate on the data, but in different ways. The displayData() function sends the values
of the data (HotDogsOnHand and BunsOnHand) to cout so they will be displayed. The
initData() function asks the user for values and inserts these values in to the data variables.
The SoldOneDog() function decrements both data items by 1 to reflect the sale of a hot dog
(with bun).

I’ll devote the remainder of this lesson to the exercises, which will do more than anything to
solidify your understanding of class specifications.

Quiz 7

1. The HotDogStand class specification

a. creates a number of HotDogStand objects.

b. provides data and functions that will be accessed from main().

c. serves as part of an inventory program for hot dog stands.

d. allows the creation of a number of hot dog stand objects.

e. accomplishes nothing useful until other parts of the program are written.

2. The SoldOneDog() function

a. hands the hot dog to the customer and makes change.

b. decrements the number of buns and hot dogs.

c. displays the number of buns and hot dogs.

d. obtains the number of buns and hot dogs from the user.

e. calculates the number of buns and hot dogs remaining.

3. When a member function in the HotDogStand class performs I/O with cout or
cin, it is interacting with the user on behalf of

a. a class.

b. an object.

c. a function.

d. data.

e. main().

4. If you created a class where each object represented an aircraft, this class would likely
include

a. airport runway data.

b. a function to change the aircraft’s direction.

c. the positions of other aircraft.

d. the aircraft’s altitude.

e. luggage-handling capability.

5. In a traffic simulation program, it’s most likely there would be a class of

a. yellow school buses.

b. highways.

c. vehicles.

d. acceleration characteristics of various vehicles.

e. speeds.

Exercise 1

Rewrite the class specification for the HotDogStand class to include a data item for the cash
on hand (you can call it CashOnHand), stored in dollars and cents format (e.g., 198.95).
Assume the retail price of a hot dog (including the bun) is $1.95. Modify the member functions
as follows:

• Add statements to initData() so the user can specify the initial amount of cash on
hand at the beginning of the day.

• Add statements to SoldOneDog() that subtract the price of a hot dog from
CashOnHand when a sale is made.

• Add statements to displayData() that display the cash on hand along with the
number of dogs and buns.

Exercise 2

Write a complete class specification, including member functions, for an elevator class. Each
object of this class should include a data item that records the floor the elevator is currently on
(e.g., from 1 at the bottom to 20 at the top). Write member functions that take the following
actions:

• Display the floor the elevator is on.

• Move the elevator up one floor.

• Move the elevator down one floor.

Session 8: Creating and Interacting with Objects

You’ve learned how to specify a class using instance data and member functions. However, the
purpose of a class specification is to serve as blueprint for creating objects. How do you actually
create objects? And once you’ve created some, how do you interact with them so they do
something useful?

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:A First Look at OOP and C++

http://www.itknowledge.com/reference/archive/1571690638/ch01/043-046.html [21-03-2000 18:56:43]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch01/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Creating Objects from a Class Specification

As it turns out, you use the same syntax to create an object that you use to
create a variable of a basic type such as int or float. This is no accident.
In C++, objects are treated very much like variables and classes are treated
very much like data types.

Here’s how to create an object called stand1 of the class
HotDogStand:

HotDogStand stand1;

What happens when this statement is executed? First, your program finds
the specification for the HotDogStand class (which must have appeared
earlier in your listing). It figures out how large such an object needs to be
and sets aside enough memory to hold it. It then gives this memory space a
name: stand1. This is exactly what it would do with a variable of a basic
type. However, stand1 is more complicated because it has several pieces
of data and several member functions as well.

You can create as many objects as you need.

HotDogStand stand1;
HotDogStand stand2;
HotDogStand stand3;

Or (as with basic data types) you can also use a single statement to create
multiple objects of the same type.

HotDogStand stand1, stand2, stand3;

So you see that, although writing a class specification may appear difficult
or at least unfamiliar, creating objects based on this specification is
simplicity itself.

Sending Messages to Objects

Once an object has been created, you need to interact with it. To do this, use
its member functions, that is, the functions described in the class
specification. You call an object’s member function. This is the same as
saying you send a message to the object.

A special syntax is used for this. When you send a message to an object,
there are two things to consider. First, which object are you communicating
with? In the case of the hot dog stands, is it stand1, stand2, or another
stand? Second, what message are you sending to the object? This is the
same as asking which of the object’s member functions you are calling.
Thus, you need a syntax with two parts: the name of the object and the
name of the member function.

Here’s how you would send a message to stand1 asking it to display its
data with displayData():

stand1.displayData();

The object name and the function name are connected by the period symbol
(.), which is called the dot operator or, more formally, the class member
access operator. This rather ponderous name means that the operator
allows you to access an object’s member functions or data, but let’s stick
with the handier dot operator. Figure 1-15 shows how this looks.

Figure 1-15 Syntax for sending a message

When this statement is executed, stand1 will display its data

Hot dogs on hand = 347
Buns on hand = 298

(or whatever values are actually stored in its data variables). You can send
the same message to a different object, for example, stand2.

stand2.displayData();

It will then display its data (which is probably not the same as that in
stand1).

Hot dogs on hand = 74
Buns on hand = 82

Similarly, you could send a message to stand3 telling it to get initial data
values from the user.

stand3.initData();

When this statement is executed, stand3 will call its initData()
function and the following interaction with the user might take place:

Enter hot dogs on hand: 19
Enter buns on hand: 21

where the user enters the 19 and 21.

Once the stand3 object has been given these initial values, you could call
the SoldOneDog() function every time a hot dog is sold at this stand.

stand3.SoldOneDog();

This would cause the HotDogsOnHand and the BunsOnHand variables
in stand3 to be decremented, although nothing would appear on the
screen. If you then executed

stand3.displayData();

you would see

Hot dogs on hand = 18
Buns on hand = 20

In other words, you can call member functions of specific objects to make
the objects do useful work for us. This is what OOP is all about.

Quiz 8

1. Creating an object normally involves

a. declaring a variable.

b. causing the compiler to designate memory space for the
object.

c. specifying what data and functions go in the object.

d. using the object as a specification for a class.

e. giving a name to the object.

2. Sending a message to an object normally involves

a. modifying the object’s data.

b. calling one of the object’s member functions.

c. specifying the particular object and the message to be sent
to it.

d. using a dot (or other) operator to connect the object name
and the member function name.

e. changing the class specification.

3. If you create a class of aircraft named acraft and you want to
tell an aircraft called ac1 to turn right, you might say

a. ac1.rightTurn();.
b. acraft.ac1.rightTurn();.
c. rightTurn(ac1);.
d. rightTurn().ac1;.
e. acraft.rightTurn();.

4. When you send a message to an object, the message content is
determined by

a. which object the message is sent to.

b. the data in the object at the time.

c. who sends the message.

d. which member function you call.

e. arguments to a member function.

5. To send a message to an object, you must always

a. include the data to be placed in the object.

b. name the class of the object.

c. specify the member function you’re calling.

d. use the name of the object you are sending the message to.

e. declare the object.

Exercise 1

Start with the elevator class specification of Exercise 2 in Session 7. Write
statements that create an elevator object, display its position, move it up
two floors, and display its new position.

Exercise 2

Start with the augmented HotDogStand class specification of Exercise 1
in Session 7. Write code that will allow the user to enter, for a particular
stand, the hot dogs, buns, and cash on hand. Then tell the HotDogStand
object to sell two hot dogs and display the same three variables.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:A First Look at OOP and C++

http://www.itknowledge.com/reference/archive/1571690638/ch01/046-049.html [21-03-2000 18:56:56]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
javascript:displayWindow('images/01-15.jpg',217,154)
javascript:displayWindow('images/01-15.jpg',217,154)
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch01/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Summary: Chapter 1

Let’s review the main points in this chapter. You’ve seen that the
fundamental building blocks of C++ programs are objects, which are
created using a class as a blueprint. Designing a program means figuring
out what the objects will represent.

The two important constituents of objects are instance data and member
functions. An object’s data is usually made private, or inaccessible to all
parts of the program except the object’s own member functions. This makes
it less likely the data will be corrupted by a programming error.

Once a class is specified and objects of that class are created, a program
“sends messages” to the objects—that is, it calls their member
functions—to cause them to carry out appropriate tasks, usually involving
the object’s own data.

In Chapter 2, you’ll put together everything you’ve learned in this chapter,
plus a few new details, to create a complete, working C++ program.

End-Of-Chapter Discussion

Don: I think I’m starting to get it. Everything in the program is an
object. A class specification describes how a bunch of similar
objects will look. So the trick in designing a program is to
figure out what the objects are going to be.

Estelle: That seems hard now, but I bet it’ll get easier.
George: I think it’s nuts. If I want to print a line of text, I’ve got to

figure out what objects to use, write a specification for a class,
define objects, and send one of them a message to print the
text. You’ve got to be kidding! I can print a text with one
statement in regular C code!

Don: So if all your program does is print one line, write it in C. The
point is, most programs do more than that.

George: So be sarcastic. I’m just afraid all this OOP stuff will be so
complicated it won’t be worth the trouble, even for major
programs.

Don: Lots of people seem to think it works fine for major programs.
Estelle: I’ve got a different question. I can’t understand how anyone

ever figured out that it would be a good idea to put data and
functions together to make objects.

Don: I know, it’s not exactly an obvious concept. It must have been a
major inspiration.

George: More likely a lucky guess. If it works at all, which I doubt.
Estelle: It’ll work. In the next chapter, we’ll see a complete program.
George: It’s about time!

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:A First Look at OOP and C++

http://www.itknowledge.com/reference/archive/1571690638/ch01/050-050.html [21-03-2000 18:57:03]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch01/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

CHAPTER 2
WRITING COMPLETE OOP PROGRAMS

So far, you’ve seen bits and pieces of a C++ program. In the beginning of this chapter, I’m
going to put these pieces together and demonstrate a complete, working program. Then, in the
next part of the chapter, I’ll improve this program by using loops and decisions, the
fundamental C++ control statements that allow your program to do something more than once
and to do different things in different circumstances.

In the second half of this chapter, I’ll introduce another complete C++ program—one that
models time values. This is a completely new use for classes: modeling new data types rather
than physical objects such as hot dog stands.

I’ll show other improvements you can make to this program by introducing function arguments
and function return values. Along the way, I’ll touch on such topics as software reusability,
output formatting, and creating temporary objects.

Session 1: The Complete Hot Dog Stand Program

I’ll begin by showing the complete source file, or listing, for the hot dog stand program. Most
of it should look familiar, but I’ll also explain some important features that you haven’t seen
before: header files and the main() function.

Listing for the Hot Dog Stand Program

Listing 2-1 is the complete HOTDOG1 program.

Listing 2-1 HOTDOG1

// hotdog1.cpp
// hot-dog stand inventory database program

#include <iostream.h> // for cout, cin, etc.

class HotDogStand // class specification
 {
 private:
 int HotDogsOnHand; // hot dogs on hand
 int BunsOnHand; // buns on hand
 public:
 void displayData() // display hot dogs and buns
 {
 cout << “\n Hot dogs = ” << HotDogsOnHand;
 cout << “\n Buns = ” << BunsOnHand;
 }
 void SoldOneDog() // record sale of one dog
 {
 --HotDogsOnHand;
 --BunsOnHand;
 }
 void initData() // set initial quantities
 {
 cout << “\n Enter hot dogs on hand: ”;
 cin >> HotDogsOnHand;
 cout << “ Enter buns on hand: ”;
 cin >> BunsOnHand;
 }
 }; // end of HotDogStand class

 ///
 void main()
 {
 HotDogStand stand1; // create hot-dog stand objects
 HotDogStand stand2;
 // set initial data
 cout << “\nInitialize data for stand 1”;
 stand1.initData();
 cout << “\nInitialize data for stand 2”;
 stand2.initData();
 // record some sales
 cout << “\nSelling 2 dogs from stand1”;
 stand1.SoldOneDog();
 stand1.SoldOneDog();
 cout << “\nSelling 3 dogs from stand2”;
 stand2.SoldOneDog();
 stand2.SoldOneDog();
 stand2.SoldOneDog();
 cout << endl;
 // display current data
 cout << “\nSupplies on hand, stand1”;
 stand1.displayData();
 cout << “\nSupplies on hand, stand2”;
 stand2.displayData();
 }

You’ve seen the specification for the HotDogStand class before. You’ve also seen the
statements that create hot dog stand objects and that access their member functions. Let’s look
at two unfamiliar parts of the program.

The IOSTREAM.H Header File

To use I/O streams, you need to place in the program various class specifications from which
the cin and cout objects, the << and >> operators, the endl manipulator, and so on are
derived. These specifications, along with various other definitions, are stored in a file called
IOSTREAM.H, which comes with your compiler. It’s a text file, just like the .CPP source files
you write yourself.

To insert the IOSTREAM.H file into your source file, place a line of text called a preprocessor
directive into your code. It looks like this:

#include <iostream.h>

This directive inserts all the text from the file IOSTREAM.H into your source file (or at least the
compiler treats it as if it had been inserted; actually your source file isn’t altered).

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Writing Complete OOP Programs

http://www.itknowledge.com/reference/archive/1571690638/ch02/051-053.html [21-03-2000 18:57:11]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch02/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Preprocessor Directives

Preprocessor directives are instructions to the compiler. By contrast, ordinary C++ statements, such
as alpha=17; are instructions to the microprocessor, which the compiler translates into machine
language that the microprocessor can understand. Preprocessor directives always start with a pound
sign (#).

When the compiler encounters the #include preprocessor directive shown above, it starts to search
for the file IOSTREAM.H. There is a particular subdirectory where such files are stored, usually called
…\INCLUDE\ (where the dots represent the first part of the path name, such as C:\BC5). This
subdirectory is usually found in the general directory for the compiler you’re using. The compiler
should know where such a directory is located; if not, it may need to be told (see the appendix in this
book that applies to your particular compiler). Once it finds the file, the compiler (actually a part of
the compiler called the preprocessor) simply inserts its text into the source file in place of the
#include directive.

If you want to see what’s in IOSTREAM.H, you can go to the …\INCLUDE\ directory and examine it
with the compiler’s editor or any other text editor. (Be careful not to change the file.) The contents
won’t make much sense at this point, but you will at least prove to yourself that IOSTREAM.H is a text
file, written in normal ASCII characters.

There are other preprocessor directives besides #include; you’ll encounter a few more as you go
along.

I should note that there are two formats for specifying the file in an #include directive. Using the
appropriate format speeds up the compiler’s search for the file. In the example above, angle brackets
are used to delimit the file name.

#include <filename.ext>

This causes the compiler’s search for the file to start in the standard …\INCLUDE\ directory. If quotes
are used instead

#include “filename.ext”

then the search for the file will begin in the directory where the program’s source files are stored.
This is the format you would use if you had written the header file yourself, a situation you’ll
encounter in Chapter 11.

Other Header Files

There are many header files. Some are used with the C function library. For example, if you need to
use mathematical functions such as sin() and cos(), you need to include a header file called
MATH.H. If you’re going to operate on strings, you’ll need STRING.H; if you’re going to perform
certain kinds of data conversion, you may need to include STDLIB.H. Various specialized I/O
functions may require CONIO.H or STDIO.H.

Other header files are needed for other kinds of class specifications. For example, your compiler may
be bundled with a container class library. Container is a general name for a data structure, such as an
array, a stack, a queue, or a linked list. The container class library contains classes that model these
data structures, but if you want to use one, you’ll need to include a header file specific to the
particular container, such as ARRAYS.H, STACKS.H, or QUEUES.H.

Don’t worry if there seems to be an endless number of header files. All you really need to know
about header files at this point is that they are an important part of C++ programs and you’ll need to
include IOSTREAM.H to run any program that does stream I/O.

The main() Function

Everything must have a beginning, and your program begins executing in a function called main().
This is not a member function of a class; it’s a special standalone function to which control is
transferred from the operating system. The first statement in main(), whatever it may be, is the first
statement in your program to be executed.

Here’s how main() looks when it has no statements installed in it:

void main()
 {
 }

Every program must contain a main() function. If it doesn’t, you’ll get error messages from the
linker when you try to compile and link your program.

Above I show main() with a return type of void. You can also use a return type of int. When
you do, the value returned is a code, which is usually used to indicate whether the program ran
successfully. (This is useful for batch files.) The example programs in this book don’t return a code,
so the return type of main() will always be void. You don’t need to worry about return types now
anyway.

The main() function can also take arguments, which are used when a program is called from the
command line and has extra text, such as a file name, typed after the program name. However, I’ll
ignore this possibility as well.

Interaction with the Hot Dog Stand Program

Here’s some typical interaction with this version of the hot dog stand program:

Initialize data for stand 1 <--Interaction with initData()
 Enter hot dogs on hand: 103 <--(User enters numbers)
 Enter buns on hand: 107
Initialize data for stand 2
 Enter hot dogs on hand: 223
 Enter buns on hand: 227

Selling two dogs from stand 1 <--Interaction with SoldOneDog()
Selling three dogs from stand 2

Supplies on hand, stand 1 <--Interaction with displayData()
 Hot dogs = 101 <--(Program displays numbers)
 Buns = 105
Supplies on hand, stand 2
 Hot dogs = 220
 Buns = 224

As you’ve seen, the user enters the initial amounts by calling the initData() function for each
object. The program then somewhat arbitrarily sells two dogs from stand 1 and three dogs from stand
2, and displays the resulting supplies on hand.

Of course, this kind of interaction isn’t really very useful, because the program always causes the
exact same number of hot dogs to be sold. A more practical program would allow the user to enter a
sale for any hot dog stand at any time, and print out supplies on hand for a particular stand when
requested. You’ll see how to achieve this after you learn about loops and decisions later in this
chapter.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Writing Complete OOP Programs

http://www.itknowledge.com/reference/archive/1571690638/ch02/053-055.html [21-03-2000 18:57:21]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch02/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Program Organization

Here’s how your source file is usually arranged. Preprocessor directives
such as #include come first, followed by class specifications, followed
by main(). The main() function contains statements that define objects
and send messages to them. Figure 2-1 shows what this looks like.

Figure 2-1 Source file organization

In larger programs, things may be a bit more complicated. There will
probably be many files. Some will contain class specifications, whereas
others will hold the code that uses these classes. Nevertheless, the simple
arrangement I use here reveals the essentials of OOP.

Quiz 1

1. Preprocessor directives

a. tell the compiler to do something before translating the
source file into machine code.

b. give the compiler instructions that will be translated into
machine code.

c. are executed just before the program executes.

d. are executed just before the program is compiled.

e. are executed just before the program is linked.

2. Which of the following will most efficiently include the file
CONIO.H, located in the compiler system’s …\INCLUDE\ directory,
into your source file?

a. #include “conio.h”
b. #include “..\include\conio.h”
c. #include <conio.h>
d. #include <..\include\conio.h>;
e. #include “conio”;

3. The main() function

a. must contain any class specifications.

b. is a member function of all classes.

c. may return void or int.

d. is the first function to be executed when a program is
executed.

e. may contain statements that create objects.

4. In HOTDOG1, the user can’t interactively signal the program every
time a hot dog is sold because

a. such interaction is impossible in an object-oriented
language.

b. there is no member function to handle this activity.

c. you haven’t learned yet how to write loops and decisions in
C++.

d. the main() function does not include code to handle this
activity.

e. there are no I/O statements in the program.

5. The general scheme of program organization you’ve seen so far is
that

a. a class is specified outside of main() and objects of that
class are created in main().

b. objects are defined outside of main() and told what to do
within main().

c. all parts of the program are within main().

d. objects are told what to do inside of main().

e. classes tell objects what to do and when to do it.

Exercise 1

Write a complete C++ program based on the elevator class specification
and instructions of Exercise 1 in Chapter 1, Session 8, which encouraged
you to display the elevator’s position, move it up two floors, and display its
position again. Run this program. Its output should look like this:

Elevator location: floor 1
Elevator location: floor 3

Exercise 2

Start with Exercise 2 in Chapter 1, Session 8. This augmented hot dog stand
class (hotdogstand2) included a cash-on-hand data item in addition to
the number of hot dogs and buns. Create a complete program, with
functionality similar to HOTDOG1, that uses the capabilities of this class.
Create two hot dog stand objects from the hotdogstand2 class.
Interaction with the program should look something like this:

Initialize data for stand 1
 Enter hot dogs on hand: 103
 Enter buns on hand: 107
 Enter cash on hand: 100.00
Initialize data for stand 2
 Enter hot dogs on hand: 223
 Enter buns on hand: 227
 Enter cash on hand: 200.00

Selling two dogs from stand 1
Selling three dogs from stand 2
Supplies on hand, stand 1
 Hot dogs = 101
 Buns = 105
 Cash = 96.10
Supplies on hand, stand 2
 Hot dogs = 220
 Buns = 224
 Cash = 194.15

Session 2: Loops

You can’t write interesting programs without loops. A loopless program
does something once, then exits. A program with a loop, on the other hand,
can do something as many times as necessary. Now I’m going to introduce
the three kinds of loops available in C++. If you already know C, you can
probably skip this lesson, because loops are the same in C and in C++.

To determine how many times to cycle around a loop, all C++ loops check
whether an expression is true or false. This tells them whether to cycle one
more time or to exit the loop immediately. Thus, to understand loops you
must first examine what makes an expression true or false,and how to
construct such true/false expressions. Then you can examine specific kinds
of loops: the while loop, the do loop, and the for loop.

True and False Values

Loops (and decisions, which I’ll discuss next) make decisions based on
values that can be either true or false. In C++, a value of 0 (zero) is false
and any other value is true. Thus, the constant 0 is false by definition, but
the constant 1 is true, as are -1, 275, and any other nonzero numbers. Some
languages have a special Boolean data type to hold true/false values, but in
C++ these values are simply stored in any of the integer data types (char,
int, short, long, and their unsigned counterparts).

Sometimes the value of a single variable is used by a loop to decide
whether to cycle again or exit. For example, a loop might check whether the
variable avar is true or false (nonzero or zero), and quit when it becomes
false. More often, however, loops check whether a relationship between
two variables, or between a variable and a constant, is true or false. That is,
a loop might want to continue cycling only if j is greater than 0; another
loop might want to continue if ch is not equal to ‘x’. Being equal to,
greater than, and so on are calculated with relational operators in C++, so
let’s examine these operators before examining examples of loops.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Writing Complete OOP Programs

http://www.itknowledge.com/reference/archive/1571690638/ch02/055-058.html [21-03-2000 18:57:34]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
javascript:displayWindow('images/02-01.jpg',340,391)
javascript:displayWindow('images/02-01.jpg',340,391)
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch02/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Relational Operators

Relational operators compare two values and evaluate to a true/false value, depending on
whether the comparison is true or not. There are six such operators, as shown in Table 2-1.

Table 2-1 Relational operators
Symbol Meaning Example

== equal to a == b
!= not equal to a != b
< less than a < b
> greater than a > b
<= less than or equal to a <= b
>= greater than or equal to a >= b

The expressions in the Example column will be either true or false depending on the values
of a and b. For example, suppose a is 9 and b is 10. Then a==b is not true, because 9
does not equal 10, but a!=b is true, as are a<b and a<=b. The expressions a>b and
a>=b are false.

You can compare characters as well as numbers, because characters have underlying
(ASCII) numerical values. Thus, it’s true that ‘a’<‘b’ and that ‘A’==65, but not true
that ‘z’<=‘a’ (because ‘z’ in fact has a higher ASCII value than ‘a’).

Now that you understand relational operators, let’s look at the three kinds of C++ loops
and see how they decide what to do based on expressions that use these operators.

while Loops

A while loop lets you do something over and over until a condition changes. The
condition is something that can be expressed by a true/false value. For example, a while
loop might repeatedly ask the user to enter a character. It would then continue to cycle
until the user enters the character ‘q’ (for “quit”).

Here’s an example of a while loop that behaves just this way:

while(ch != 'q')
 {
 cout << “Enter a character: ”;
 cin >> ch;
 }

If the user does not press ‘q’, the loop continues. Some sample interaction might look
like this:

Enter a character: c
Enter a character: a
Enter a character: t
Enter a character: s
Enter a character: q

A while loop consists of the keyword while followed by a test expression (also called a
conditional expression or condition) enclosed in parentheses. The body of the loop is
delimited by braces (but no semicolon), just like a function. Figure 2-2 shows how this
looks.

Figure 2-2 Syntax of the while loop

If the body of the loop consists of only one statement, you don’t need the braces.

while(n < 100)
 n = n * 2; <--One-statement loop body, so no braces

This loop will keep doubling n until n is not less than (i.e., becomes greater than or equal
to) 100; it will then terminate. If n has a value of 1 when the loop is entered, what value
will it have when the loop terminates? That’s right, 128. The values will go 1, 2, 4, 8, 16,
32, 64, and 128, at which point the loop terminates (i.e., control goes to the statement
following the loop). Figure 2-3 is a flow chart of a while loop’s operation.

Figure 2-3 Operation of the while loop

Note: Note that the test expression is checked before the body of the loop is executed. If
the condition is false when the loop is entered, then the body of the loop will never be
executed. This is appropriate in some situations, but it means you must be careful that a
variable in the test expression has an appropriate value before you enter the loop. The ch
in the first example must not have a value of ‘q’ when you enter the loop, or the loop
body will never be executed. The n in the second loop must be initialized to a value less
than 100.

do Loops

The do loop (often called the do while loop) operates like the while loop except that
the test expression is checked after the body of the loop is executed. This is nice when you
always want something (whatever is in the body of the loop) done at least once, no matter
what the initial true/false state of the condition is. Figure 2-4 shows how this looks.

Figure 2-4 Operation of the do loop

Here’s an example of a do loop. This fragment repeatedly performs addition on two
numbers entered by the user. When the user enters 0 for the first number, the loop
terminates.

do
 {
 cout << “\nEnter two numbers (to quit, set first to 0): ”
 cin >> x >> y;
 cout << “The sum is ” << x + y;
 } while(x != 0);

A do loop begins with the keyword do, followed by the body of the loop in braces, then
the keyword while, a test expression in parentheses, and finally a semicolon. This
arrangement is shown in Figure 2-5. Note that the do loop is the only loop that is
terminated with a semicolon. The semicolon is necessary because the test expression
follows the loop body, so the closing brace of the loop body can’t act as a delimiter for the
entire loop.

Figure 2-5 Syntax of the do loop

The do loop has a slightly dubious reputation among C++ programmers because its syntax
is not quite so clean and easy to read as that of the while loop. The consensus is to use a
while loop unless there’s a really good reason to use a do loop.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Writing Complete OOP Programs

http://www.itknowledge.com/reference/archive/1571690638/ch02/058-062.html [21-03-2000 18:57:50]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
javascript:displayWindow('images/02-02.jpg',349,396)
javascript:displayWindow('images/02-02.jpg',349,396)
javascript:displayWindow('images/02-03.jpg',291,255)
javascript:displayWindow('images/02-03.jpg',291,255)
javascript:displayWindow('images/02-04.jpg',292,283)
javascript:displayWindow('images/02-04.jpg',292,283)
javascript:displayWindow('images/02-05.jpg',320,346)
javascript:displayWindow('images/02-05.jpg',320,346)
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch02/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

for Loops

In both the while and do loops, you usually don’t know, at the time you enter the loop, how
many times the loop will be executed. The condition that terminates the loop arises
spontaneously inside the loop: The user answers ‘n’ instead of ‘y’, for example. This is not
the case with for loops.

In a for loop, the number of times the loop will be executed is (usually) stated at the beginning
of the loop. Here’s a loop that prints 20 asterisks in a line across the page:

int j; // define the loop variable

for(j=0; j<20; ++j); // cycle 20 times
 cout << '*'; // print asterisk

The parentheses following the keyword for contain three different expressions, separated by
semicolons. In the most common situation, these three expressions operate on a variable called
the loop variable, which in this example is j. These three expressions are

• The initialization expression, which usually initializes the value of a loop variable.

• The test expression, which usually checks the value of the loop variable to see whether
to cycle again or to quit the loop.

• The increment expression, which usually increments (or decrements) the value of the
loop variable.

In the example, the loop variable j is given an initial value of 0, then the test expression is
evaluated. If this expression is true (if j is less than 20), the body of the loop is executed and the
increment expression is executed (j’s value is increased by 1). If the test expression is false, the
loop terminates. Figure 2-6 shows the syntax of the for loop, and Figure 2-7 depicts its
operation.

Figure 2-6 Syntax of the for loop

Figure 2-7 Operation of the for loop

How many times will the loop in the example be executed? 20 times. The first time through the
loop, j is 0; the last time, it’s 19. (It does not run from 1 to 20, as you might expect.) Starting at
0 and continuing until the loop variable is 1 less than a constant is the most common
arrangement in for loops because, among other reasons, array indexes (which you’ll learn about
in Chapter 3) typically start at 0 and go up to 1 less than the size of the array.

If you did want the loop variable to run from 1 to 20, you could write

for(j=1; j<=20; ++j)
 // body of loop

where the less-than-or-equals operator is used instead of the less-than operator. However, this is
not a common idiom in C++.

Notice that, as in the while loop, the test expression is evaluated before the loop body is
executed the first time. Thus, the loop body may not be executed at all if the test expression is
false to begin with.

Here’s another example of a for loop, this one with multiple statements in the loop body. As in
the other loops, multiple statements must be surrounded by braces.

int j; // define loop variable
int total = 0; // define and initialize total

for(j=0; j<10; ++j) // cycle 10 times
 {
 total = total + j; // add j to total
 cout << total << ' '; // display total
 }

This fragment will display the sequence

0 1 3 6 10 15 21 28 36 45

Notice that there is no rule that says that the loop variable must be increased by 1 each time
through the loop. You can also decrease it by 1:

for(j=10; j>0; --j)
 cout << j << ' ';

which will display

10 9 8 7 6 5 4 3 2 1

or you can increase it or decrease it by any other amount. This code

for(j=0; j<100; j=j+10)
 cout << j << ' ';

will display

0 10 20 30 40 50 60 70 80 90

There is a surprising amount of flexibility in what you can put in the three expressions in a for
loop. For example, you can use multiple statements in the initialization expression and the test
expression. Here’s an example of a for loop with such multiple statements:

for(j=0, total=0; j<10; ++j, total=total+j)
 cout << total << ' '; // display total

This loop prints

0 1 3 6 10 15 21 28 36 45

as in the earlier example. However, here the variable total is set to 0 in the initialization
expression instead of before the loop, and increased by j in the increment expression instead of
in the loop body. The individual statements in these expressions are separated by commas.

Another option is to leave out any or all of the three for loop expressions entirely, retaining
only the semicolons.

Generally, taking advantage of the flexibility of the for loop in these ways causes more
confusion than it’s worth, but big-time C gurus enjoy it.

Nested Loops

You can nest one loop inside another. For example, the following program fragment prints a 10
by 10 square of Xs, like this:

xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx

in the upper-left corner of the screen.

for(y=0; y<10; y++) // outer loop, drops down line-by-line
 {
 for(x=0; x<10; x++) // inner loop, goes across char-by-char
 cout << 'X'; // print 'X'
 cout << endl; // go to new line
 }

Of course, you can embed any kind of loop inside any other kind of loop, and loops can be
nested in loops that are nested in other loops, and so on.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Writing Complete OOP Programs

http://www.itknowledge.com/reference/archive/1571690638/ch02/062-066.html [21-03-2000 18:58:03]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
javascript:displayWindow('images/02-06.jpg',343,364)
javascript:displayWindow('images/02-06.jpg',343,364)
javascript:displayWindow('images/02-07.jpg',296,380)
javascript:displayWindow('images/02-07.jpg',296,380)
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch02/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Logical Operators

It’s often convenient to test the true/false values of several expressions at
the same time and combine the results into a single true/false value. For
instance, you might want to create a true value any time both x<10 and
y<5 are true.

True/false values can be operated on with logical operators. There are three
logical operators in C++ (see Table 2-2). Two of them combine two
true/false values, and the third negates a true/false value.

Table 2-2 Logical operators
Logical Operator Meaning Example

&& AND x>0 && x<10

|| OR x==3 || x<1

! NOT !x

An AND expression is true only if the expressions on both sides of the &&
operator are true. Thus, the example in the table is true only if x is greater
than 0 and also less than 10. The AND operator is often used to determine
whether something is in a specified range. In the example in the table, the
expression is true if x is in the range of 1 to 9. Similarly, the expression

ch >= 'a' && ch <= 'z'

is true if ch is a lowercase letter.

The OR (||) operator evaluates to true if either or both of its operands are
true. For example,

j==0 || ch == 'q'

is true if either j is 0 or ch equals ‘q’, or if both are true.

The OR operator is often used to discover if a value is outside a specified
range. The expression

temp<65 || temp>75

is true if temp is outside the 65 to 75 range (the “comfort zone” for
Fahrenheit temperatures).

The ! (NOT) operator negates the variable following it. Thus, !alpha is
true if alpha is false, and false if alpha is true. (As you can see, this
operator has an Alice in Wonderland quality.) It’s often used when you
want a while loop to continue until something is true, instead of
continuing until it’s false. For example,

while(!alpha)
 {
 }

will cycle until alpha becomes true (nonzero).

Logical expressions can often be written in several ways. The expression

temp<65 || temp>75

could also be written

!(temp>=65 && temp<=75)

because a value being not in range is the same as it’s being out of range.

Precedence

In normal algebraic expressions, multiplication and division are carried out
before addition and subtraction. For example, in the expression

2*2+3*3

the 2s are multiplied (which gives 4), then the 3s are multiplied (giving 9),
and only then are these results added, yielding 13. The multiplications are
carried out before the addition because the * operator has a higher
precedence than the + operator.

If there was no precedence and the compiler just evaluated expressions
blindly from left to right, the compiler would obtain a different answer.
Multiplying the 2s gives 4, adding the 3 makes 7, and multiplying the result
by 3 gives 21, which is not what you expect. Thus precedence is important
in normal arithmetic expressions. It’s also important when different C++
operators are used.

You may have wondered why, when I say

temp<65 || temp>75

how I can be sure that the true/false value of temp<65 and temp>75 are
evaluated first, before being ORed together. If the processor proceeded
from left to right, for example, temp<65 would be evaluated, ORed with
temp (whatever that would mean, because temp is a number, not a
true/false value), and the result compared with 75. This isn’t what I want, of
course.

The expression is evaluated correctly because relational operators have a
higher precedence than logical operators.

How is the expression

n + 2 < x + 3

evaluated? You want to compare two arithmetic expressions, n+2 and x+3.
Is that what’s happening? Yes, because arithmetic operators have a higher
precedence than relational operators. Table 2-3 shows the precedence
relations, with the higher precedence operators higher in the table.

Table 2-3 Precedence relations
Operators Operator Types Precedence

* / % Multiplicative Higher
+ - Additive
< > <= >= == != Relational
&& || Logical
= Assignment Lower

Notice that the assignment operator, =, has the lowest precedence of all;
that is, it’s applied after all the other operators. You’ll see other examples
of precedence relations as you go along.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Writing Complete OOP Programs

http://www.itknowledge.com/reference/archive/1571690638/ch02/066-068.html [21-03-2000 18:58:09]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch02/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Quiz 2

1. True values and false values are represented in C++ by the numerical values _____ and
_____, respectively.

a. any number except 0, 0

b. any positive number, 0

c. 0, any negative number

d. 0, 1

e. 1, 0

2. Relational operators compare two

a. true/false values and evaluate to a number (such as 77).

b. numerical values and evaluate to a true/false value.

c. logical values and evaluate to a true/false value.

d. logical values and evaluate to a number.

e. true/false values and evaluate to a logical value.

3. What expression(s) will cause the while loop to cycle as long as j is greater than 0 and
ch is not ‘q’?

a. while(!(j<=0 || ch==’q’))

b. while(j > (0 && ch) != ‘q’)

c. while(j > 0 && ch != ‘q’)

d. while(j <= 0 && ch == ‘q’)

e. while(!(j <= 0) || !(ch == ‘q’))

4. If you want a loop variable to run from 12 to 36 (inclusive) in steps of 3, you might write

a. for(alpha==12, alpha<37, alpha=alpha+3)

b. for(x==12; x<=37; x=x+3)

c. for(b=12, b<37, b+b+3)

d. for(gamma=12; gamma<37; gamma=gamma+3)

e. for(rad=12; rad<=36; ++rad, ++rad, ++rad)

5. while loops and do loops differ in that

a. a do loop is terminated by a condition arising within the loop.

b. the number of times a while loop will cycle is known before the loop is entered.

c. a while is terminated by a condition arising within the loop.

d. the body of a do loop is always executed at least once.

e. the loop variable may be incremented within a do loop.

Exercise 1

Write a loop that repeatedly asks the user to type a character and then displays the ASCII value of
the character. Hint: You can cause a variable of type char to print as a number by converting it to
type int. Use an expression such as int(ch), which converts the variable ch to an int. Have
the loop exit when the user enters the character ‘q’.

Exercise 2

Write a program fragment, probably consisting of some nested loops, that asks the user what
character to use to create a 10 by 10 square on the upper-left corner of the screen. Then display
this square and ask for another character. Exit from the outermost loop when the user enters ‘q’ .

Session 3: Simple Decisions

I’m going to cover decisions in two sessions rather than one. I’ll examine simple decisions (if
and if…else) now and advanced decisions (else…if, switch, and the conditional operator)
in the next lesson. This relaxed pace will give you a chance to see how to improve the hot dog
stand program with various kinds of decision statements.

The if Statement

The simplest way to make a decision in C++ is with the if statement. Here’s an example of an if
statement at work:

if(denominator == 0)
 cout << “Division by zero is illegal”;

If a variable called denominator is 0, this fragment causes a message to be displayed. If
denominator is not 0, then nothing happens.

As with loops, if you use more than one statement in the body of an if statement, you need to
surround them with braces.

if(choice == 's') // if user chooses “sold dog' option
 {
 cout << “Selling a dog”; // verify I sold the dog
 stand1.SoldOneDog(); // sell the dog
 }

An if statement consists of the keyword if followed by a test expression in parentheses. The
loop body, which follows, consists of either a single statement or multiple statements surrounded
by braces. (With the exception of the keyword, an if statement has the same syntax as a while
statement.) Notice that there is no then keyword in C++, as there is in some other languages. The
body of the loop follows immediately after the test expression.

Figure 2-8 shows the syntax of the if statement and Figure 2-9 show how it operates.

Figure 2-8 Syntax of the if statement

Figure 2-9 Operation of the if statement

The if…else Statement

In a simple if statement, something happens if the condition is true, but if the condition is not
true, nothing happens at all. Suppose you want something to happen either way: one action if the
condition is true and a different action if the condition is false. To do this, you use an if…else
statement. The following fragment takes the hour of the day, expressed in 24-hour time, and
displays it in 12-hour time, with “am” or “pm” as appropriate:

if(hours < 12)
 cout << hours << “ am”; // e.g., “7 am” if hours is 7
else
 cout << hours-12 << “ pm”; // e.g., “3 pm” if hours is 15

Actually, this simple approach doesn’t handle the situation very well when hours is 0 (midnight)
or 12 (noon). You’ll see how to deal with these cases in the next lesson.

As with other C++ constructions, the if body or the else body may consist of multiple
statements surrounded by braces rather than the single statements I show here.

Test Expression

The test expression in an if or an if…else statement can be just as complicated as expressions
in loops. For example, this if…else statement advances the day from February 28 to either
March 1 or February 29, depending on whether the year is a leap year or not:

 // if it's Feb 28 and it's a leap year
if(day==28 && month==2 && year%4==0 && year%100 != 0)
 day = 29; // then the next day is the 29th
else // otherwise,
 {
 day = 1; // next day is March 1st
 month = 3;
 }

Leap years occur when the year is divisible by 4 (e.g., 1996 is a leap year), but not divisible by
100 (so 1900 is not a leap year, although it is divisible by 4. The remainder operator (%) is used to
find if the year is divisible by 4 (and by 100) with no remainder. The AND operators make sure
that February 29 occurs only when all the conditions are true at once. (Yes, I know, leap years
have other corrections as well.)

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Writing Complete OOP Programs

http://www.itknowledge.com/reference/archive/1571690638/ch02/068-071.html [21-03-2000 18:58:20]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
javascript:displayWindow('images/02-08.jpg',262,328)
javascript:displayWindow('images/02-08.jpg',262,328)
javascript:displayWindow('images/02-09.jpg',178,314)
javascript:displayWindow('images/02-09.jpg',178,314)
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch02/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Nested if…else Statements

You can nest if…else statements within one another. Typically, the nested statements end up
in the else body rather than in the if body. For example

if(age<2)
 cout << “\nInfant”;
else
 if(age<18)
 cout << “\nChild”;
 else // age >= 18
 cout << “\nAdult”;

This if…else “ladder” prints an appropriate description of a person’s age.

An insidious problem may arise when you nest if…else statements. Here’s a program
fragment that is intended to have a similar functionality to the one above, except it can’t print the
adult designation:

if(age>2) // if greater than 2
 if(age<18) // and less than 18
 cout << “\nChild”; // it's a child
else
 cout << “\nInfant”; // ERROR: inappropriate response

Will this fragment print “Infant” when age is less than or equal to 2, as I want? Alas, no.
“Infant” will be printed whenever age is greater than or equal to 18. Why? I have mislead
you with the indentation, so it looks as if the else matches up with the first if. It doesn’t.
Here’s the rule: An else is associated with the nearest preceding if that doesn’t have its own
else. The correct version of the fragment above would be

if(age>2)
 if(age<18)
 cout << “\nChild”;
 else // the else goes with the preceding if
 cout << “\nAdult”; // appropriate response, age>=18

If you really want an else to be associated with an if that doesn’t immediately precede it, you
must surround the intervening if statement with braces

if(age>2)
 {
 if(age<18)
 cout << “\nChild”;
 }
else // this else goes with the top if
 cout << “\nInfant”; // appropriate response

The braces make the entire if statement invisible to the else. (It would be nice if we could
conceal ourselves from telemarketers this easily.)

The moral is to be careful with complicated if…else statements. Forgetting which if gets the
else is a common source of annoying program bugs.

Improving the Hot Dog Program with if

Now that you know how to cause a program to do things more than once and make decisions,
you can improve the hot dog stand program, HOTDOG1. Rewrite the main() part of the
program so it runs continuously, waiting for the user to tell it a hot dog has been sold. For
simplicity, work with only one hot dog stand, represented by the stand1 object.

When first started, the program asks the user to enter the initial amounts of buns and hot dogs on
hand. Then the program enters a while loop, waiting for user input. If the user enters ‘s’, the
program records a sale. If the user enters ‘q’, the program displays the hot dogs and buns on
hand and exits. Presumably, the user enters ‘q’ when the last sale has been made and the hot
dog stand has closed down for the day.

Notice that I use the if statement to see if the user has typed an ‘s’, and the while loop to
check for ‘q’. Listing 2-2 shows HOTDOG2.

Listing 2-2 HOTDOG2

// hotdog2.cpp
// hot dog stand inventory database
// uses while loop and if statement

#include <iostream.h> // for cout, cin, etc.

class HotDogStand // class specification
 {
 private:
 int HotDogsOnHand; // hot dogs on hand
 int BunsOnHand; // buns on hand
 public:
 void displayData() // display hot dogs and buns
 {
 cout << “\n Hot dogs = ” << HotDogsOnHand;
 cout << “\n Buns = ” << BunsOnHand;
 }
 void SoldOneDog() // record sale of one dog
 {
 --HotDogsOnHand;
 --BunsOnHand;
 }
 void initData() // set initial quantities
 {
 cout << “\n Enter hot dogs on hand: ”;
 cin >> HotDogsOnHand;
 cout << “ Enter buns on hand: ”;
 cin >> BunsOnHand;
 }
 }; // end of HotDogStand class

 ///
 void main()
 {
 char choice = 'x'; // user's letter choice

 HotDogStand stand1; // create hot dog stand object
 // set initial data
 cout << “\nInitialize data”;
 stand1.initData();

 while(choice != 'q') // loop until 'q' typed
 {
 cout << “\nEnter s to record sale, q to quit: ”;
 cin >> choice;
 if(choice == 's') // if user entered 's'
 { // then sell a dog
 cout << “Selling a dog”;
 stand1.SoldOneDog();
 }
 } // end while
 // display current data

 cout << “\nSupplies on hand”;
 stand1.displayData();
 }

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Writing Complete OOP Programs

http://www.itknowledge.com/reference/archive/1571690638/ch02/071-073.html [21-03-2000 18:58:32]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch02/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

A Glimpse of Reusability

One of the most important things to notice about Listing 2-2 is that the
specification for the HotDogStand class is exactly the same as it was in
the HOTDOG1 program. I have made significant changes to the functionality
of the program, but I have not altered the class at all. In an embryonic way,
this demonstrates one of the major strengths of OOP. I have reused the
HotDogStand class in a new program. I haven’t worried about
integrating or modifying the parts of the class; I simply inserted the entire
class, just as I found it, into the new program. In a small program, the gain
may not appear significant, but in larger programs, the savings in time and
effort that result from being able to reuse already existing classes can be
substantial. The savings may be especially large when an entire library of
classes can be reused.

Of course, it is also possible to reuse code, especially functions, in
old-fashioned procedural languages such as C. However, the OOP
approach, which reuses classes instead of functions, provides a more
coherent and easily understood package for reuse, with both data and
functions combined into a single entity. The interface between the class,
which specifies how objects behave, and main(), which creates objects
and sends messages to them, is cleaner and more easily understood than the
relationship between some functions and some data that’s unrelated to the
functions and statements in main() that call functions and access the data.

Quiz 3

1. The test expression in an if statement

a. is an expression that counts how often the if statement
body will be executed.

b. may contain logical and relational operators.

c. determines whether the if statement body will be executed.

d. may be evaluated after the if statement body is executed.

e. may be any expression that evaluates to a true/false value.

2. Which of the following are test expression(s) for an if statement
that determine whether a character ch is a digit; that is, if it is in the
range of characters from '0’ to ‘9’.

a. if(ch>=’0’ && ch<=’9’)

b. if (ch >= 0 && ch <= 9)

c. if(ch>0) else (ch<9)

d. if(ch < ‘0’ || ch > ‘9’)

e. if(ch > -1 && ch < 10)

3. Which of the following are true?

a. An else is associated with the if that has the same
indentation as the else.

b. An else is associated with the if that is closest to and
above the else, if that if is not surrounded by braces.

c. An else is associated with the if that is surrounded by
braces and immediately precedes the else.

d. The body of an else is executed if the test expression in
the corresponding if is true.

e. The body of an else is executed if the test expression
following the else is true.

4. The interface between a class and the rest of a program normally
includes

a. the class sending messages to objects.

b. the program creating objects.

c. the program sending messages to objects.

d. objects sending messages to main().

e. the program manipulating the objects’ data.

5. OOP offers superior reusability because

a. other parts of the program need not be concerned with how
data is structured in an object.

b. it’s easier for objects to communicate with each other.

c. every object is built to the same specification.

d. other parts of the program need to relate only to one
thing—objects—not to data and functions separately.

e. the programmer need not be aware of the class
specification.

Exercise 1

Rewrite the program of Exercise 1 in Session 1 in this chapter so that it
continuously waits for a character to be entered. The user should be able to
make the elevator go up one floor by entering a ‘+’ (pressing the ‘+’ and

) and go down one floor by entering a ‘-’. After each floor
change, the program should display the floor the elevator is on. Pressing
‘q’ should terminate the program. Assume that the elevator starts on floor
1 and that the program informs the user of this fact when it is first started.
Here’s some sample interaction:

Elevator is now on floor 1
Enter choice: +
Elevator is now on floor 2
Enter choice: +
Elevator is now on floor 3
Enter choice: -
Elevator is now on floor 2
Enter choice: q

Exercise 2

Rewrite the program of Exercise 2 in Session 1 in this chapter (which uses
the hotdogstand2 class with a CashOnHand variable) so that it has the
same functionality as the HOTDOG2 program (Listing 2-2).

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Writing Complete OOP Programs

http://www.itknowledge.com/reference/archive/1571690638/ch02/073-075.html [21-03-2000 18:58:39]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch02/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Session 4: Advanced Decisions

In this session, I’ll cover more advanced ways for a program to choose between different actions: the
else if construction, the powerful switch statement, and the weird but compact conditional
operator. I’ll also apply the switch statement to the hot dog stand program to enhance its
functionality.

The else if Construction

In the previous session, I showed an example of an if…else statement that displayed “am” or
“pm” for hour values less than and greater than 12. I also acknowledged that this statement didn’t
handle the occasions when hour was 0 or 12. How can I fix this? I can check for these specific
values of hour and respond accordingly. Here’s how that looks with an if…else ladder:

if(hours == 0) // first-level indent
 cout << “Midnight”;
else
 if(hours == 12) // second-level indent
 cout << “Noon”;
 else
 if(hours < 12) // third-level indent
 cout << hours << “ am”;
 else
 cout << hours-12 << “ pm”;

If the hours is 0, it’s midnight, so the program displays an appropriate message and exits from the
entire if…else ladder. If it isn’t 0, the program goes on to the next if…else. It keep moving to
more deeply nested if…else statements until it finds one whose test expression is true or it runs out
of possibilities.

This arrangement does what I want, but it’s hard for humans to read the multiple indentations. Here’s
a somewhat more easily understood way to rewrite the same code:

if(hours == 0)
 cout << “Midnight”;
else if(hours == 12)
 cout << “Noon”;
else if(hours < 12)
 cout << hours << “ am”;
else
 cout << hours-12 << “ pm”;

The if that follows each else is simply moved up onto the same line, thus creating a sort of
artificial else if construction and removing the multiple levels of indentation. This arrangement
not only saves space, it presents a clearer picture of the program’s logic (at least, after you’ve gotten
used to it).

Notice that the else if construction is not really a part of the syntax of the C++ language; it’s
merely a way to rewrite an if…else ladder by rearranging the whitespace on the page. You can do
this because—as you know—the compiler doesn’t care about whitespace.

Fine-Tuning Loops

This is a good place to introduce the break and continue statements, even though they pertain to
loops, because they are used most effectively in conjunction with decisions. Also, break is an
important feature in the switch statement, which I’ll demonstrate next.

Usually loops work well with the straightforward syntax I showed in the last session. However,
sometimes you need to fudge things a bit to make a loop behave as you want. The break and
continue statements provide this added flexibility.

The break Statement

The break statement causes you to exit immediately from a loop, as shown in Figure 2-10.

Figure 2-10 Operation of the break statement

The break statement is often used to handle unexpected or nonstandard situations that arise within a
loop. For example, here’s a code fragment that sets the variable isPrime to 1 if an integer n is a
prime number or to 0 if n is not a prime number. (A prime number is divisible only by itself and 1.)
To tell if n is prime, I use the straightforward approach of trying to divide it by all the numbers up to
n-1. If any of them divide evenly (with no remainder), then it’s not prime.

isPrime = 1; // assume n is prime
for(j=2; j<n; ++j) // divide by all integers from 2 to n-1
 {
 if(n%j == 0) // if evenly divisible,
 {
 isPrime = 0; // n is not a prime
 break; // no point in looping again
 }
 }

I want to divide by all the numbers up to n-1, so I use a for loop with appropriate expressions.
However, if one of the j values does divide evenly, there’s no use remaining in the loop and dividing
by the remaining the j values. As soon as the program finds the first number that divides evenly, it
should set isPrime to 0 and then immediately exit from the loop. The break statement allows you
to exit from the loop at any time.

The continue Statement

The continue statement is similar to the break statement in that it is usually activated by an
unexpected condition in a loop. However, it returns control to the top of the loop—causing the loop
to continue—rather than causing an exit from the loop. Figure 2-11 shows how this looks.

Figure 2-11 Operation of the continue statement

Whereas the break statement causes an exit from a loop, the continue statement causes part of
the loop to be “short-circuited” or bypassed while the loop keeps running. That is, following a
continue, control goes back to the top of the loop. Here’s an example:

do
 {
 cout << “Enter dividend: ”;
 cin >> dividend;
 cout << “Enter divisor: ”;
 cin >> divisor;
 if(divisor == 0) // if user error,
 {
 cout << “Divisor can't be zero\n”;
 continue; // go back to top of loop
 }
 cout << “Quotient is ” << dividend / divisor;
 cout “\nDo another (y/n)? ”;
 cin >> ch;
 } while(ch != 'n');

Division by zero is illegal, so if the user enters 0 for the divisor, control goes back to the top of the
loop and the program prompts for a new dividend and divisor so the user can try again. To exit from
the loop, the user must answer ‘n’ to the “Do another” question.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Writing Complete OOP Programs

http://www.itknowledge.com/reference/archive/1571690638/ch02/076-079.html [21-03-2000 18:58:49]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
javascript:displayWindow('images/02-10.jpg',305,280)
javascript:displayWindow('images/02-10.jpg',305,280)
javascript:displayWindow('images/02-11.jpg',284,216)
javascript:displayWindow('images/02-11.jpg',284,216)
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch02/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

The switch Statement

Now you’re ready for perhaps the most powerful decision-making construction in C++. The switch
statement checks a variable and routes program control to any of a number of different sections of code,
depending on the value of the variable. Here’s an example:

switch(diskSpeed)
 {
 case 33: // if diskSpeed is 33
 cout << “Long-playing album”;
 break;
 case 45: // if diskSpeed is 45
 cout << “Single-selection”;
 break;
 case 78: // if diskSpeed is 78
 cout << “Old single-selection”;
 break;
 default: // if nothing matches
 cout << “Unknown format”;
 }

The switch statement consists of the keyword switch followed by a variable name in parentheses. The
body of the switch statement, enclosed in braces, follows. Within the body are a number of labels, which
are names followed by a colon. In a switch statement, these labels consist of the keyword case followed
by a constant and then the colon. When the value of the switch variable is equal to the constant following
a particular case, control will go to the statements following this case label.

The above section of code prints different messages depending on the value of the diskSpeed variable. If
diskSpeed is 33, control jumps to the label case 33. If diskSpeed is 45, control jumps to the label
case 45, and so on. If diskSpeed doesn’t match any of the cases, control jumps to the default
label (or, if there is no default, falls through the bottom of the switch). Figure 2-12 shows the syntax
of the switch statement and Figure 2-13 shows its operation.

Figure 2-12 Syntax of the switch statement

Figure 2-13 Operation of the switch statement

The variable or expression used to determine which label is jumped to (diskSpeed, in this example)
must be an integer or a character or must evaluate to an integer or a character. The values following the
cases must be—or must evaluate to—integer or character constants. That is, you can use variable names
or expressions, such as alpha, j+20, and ch+’0’, as long as alpha, j, and ch already have
appropriate values.

Once control gets to a label, the statements following the label are executed one after the other from the
label onward. In this example, the cout statement will be executed. Then what? If the break weren’t
there, control would continue down to the next cout statement, which is not what you want. Labels don’t
delimit a section of code, they merely name an entry point. The break causes control to break out of the
switch entirely.

Here’s another example that might be used in the hot dog stand program. It gives the user the choice of
three stands for which to record the sale of a hot dog. The user types a digit from ‘1’ to ‘3’, which is
then used as the switch variable.

cin >> choice;
switch(choice)
 {
 case '1';
 stand1.SoldOneDog();
 break;
 case '2';
 stand2.SoldOneDog();
 break;
 case '3';
 stand3.SoldOneDog();
 break;
 }

Improving the Hot Dog Program with switch

Let’s put this switch construction into a complete program. A while loop will allow the user to
repeatedly record the sale of hot dogs from the three stands. Listing 2-3 shows HOTDOG3.

Listing 2-3 HOTDOG3

// hotdog3.cpp
// hot dog stand inventory database
// uses while loop and switch statement

#include <iostream.h> // for cout, cin, etc.

class HotDogStand // class specification
 {
 private:
 int HotDogsOnHand; // hot dogs on hand
 int BunsOnHand; // buns on hand
 public:
 void displayData() // display hot dogs and buns
 {
 cout << “\n Hot dogs = ” << HotDogsOnHand;
 cout << “\n Buns = ” << BunsOnHand;
 }
 void SoldOneDog() // record sale of one dog
 {
 --HotDogsOnHand;
 --BunsOnHand;
 }
 void initData() // set initial quantities
 {
 cout << “\n Enter hot dogs on hand: ”;
 cin >> HotDogsOnHand;
 cout << “ Enter buns on hand: ”;
 cin >> BunsOnHand;
 }
 }; // end of HotDogStand class

 ///
 void main()
 {
 char choice = 'x'; // user's letter choice

 HotDogStand stand1; // create hot dog stand objects
 HotDogStand stand2;
 HotDogStand stand3;
 // set initial data
 cout << “\nInitialize data for stand 1”;
 stand1.initData();
 cout << “\nInitialize data for stand 2”;
 stand2.initData();
 cout << “\nInitialize data for stand 3”;
 stand3.initData();

 while(choice != 'q') // loop until user enters 'q'
 {
 cout << “\nEnter stand number, or q to quit: ”;
 cin >> choice;
 switch(choice)
 {
 case '1':
 cout << “Selling a dog at stand 1”;
 stand1.SoldOneDog();
 break;
 case '2':
 cout << “Selling a dog at stand 2”;
 stand2.SoldOneDog();
 break;
 case '3':
 cout << “Selling a dog at stand 3”;
 stand3.SoldOneDog();
 break;
 } // end switch
 } // end while
 // display current data
 cout << “\nSupplies on hand at stand 1”;
 stand1.displayData();
 cout << “\nSupplies on hand at stand 2”;
 stand2.displayData();
 cout << “\nSupplies on hand at stand 3”;
 stand3.displayData();
 }

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Writing Complete OOP Programs

http://www.itknowledge.com/reference/archive/1571690638/ch02/079-083.html [21-03-2000 18:59:01]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
javascript:displayWindow('images/02-12.jpg',283,485)
javascript:displayWindow('images/02-12.jpg',283,485)
javascript:displayWindow('images/02-13.jpg',361,442)
javascript:displayWindow('images/02-13.jpg',361,442)
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch02/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

The user can enter initial amounts of hot dogs and buns for three different stands, then record an
arbitrary number of sales at each stand, and then, at the end of the day, display the remaining
inventory before exiting from the program. Here’s some sample interaction:

Initialize data for stand 1
 Enter hot dogs on hand: 100
 Enter buns on hand: 110

Initialize data for stand 2
 Enter hot dogs on hand: 200
 Enter buns on hand: 220

Initialize data for stand 3
 Enter hot dogs on hand: 300
 Enter buns on hand: 330

Enter stand number, or q to quit: 1 <--sell 3 dogs from stand 1
Selling a dog at stand 1
Enter stand number, or q to quit: 1
Selling a dog at stand 1
Enter stand number, or q to quit: 1
Selling a dog at stand 1
Enter stand number, or q to quit: 2 <--sell 2 dogs from stand2
Selling a dog at stand 2
Enter stand number, or q to quit: 2
Selling a dog at stand 2
Enter stand number, or q to quit: 3 <--sell 1 dog from stand 3
Selling a dog at stand 3
Enter stand number, or q to quit: q <--quit program

Supplies on hand at stand 1
 Hot dogs = 97
 Buns = 107
Supplies on hand at stand 2
 Hot dogs = 198
 Buns = 218
Supplies on hand at stand 3
 Hot dogs = 299
 Buns = 329

In this example, the user enters initial amounts for the three stands and sells three hot dogs from stand
1, two from stand 2, and one from stand 3. Entering ‘q’ displays the current inventory and exits the
program.

Again, notice that I’ve altered the functionality of the program without changing the class
specification.

The Conditional Operator

The conditional operator was invented because a particular construction occurs often in C++
programs and it is nice to shorten it. Here’s an example of the lengthy version of the code:

if(alpha<beta)
 min = alpha;
else
 min = beta;

I have a variable min and I want to set it to alpha or beta, whichever is smaller. This if…else
statement requires four lines of code. (I could put it all on one line, of course, but it would still be
long and complicated.) However, using the conditional operator, I can shorten it to

min = (alpha<beta) ? alpha : beta;

The conditional operator is the only C++ operator that operates on three operands. It consists of two
symbols: a question mark and a colon. First comes a test expression (with optional parentheses), then
the question mark, then two values separated by the colon. If the test expression is true, the entire
expression takes on the value before the colon (here it’s alpha); if the test expression is false, the
entire expression takes on the value following the colon (beta). Figure 2-14 shows the syntax of the
conditional operator and Figure 2-15 shows its operation.

Figure 2-14 Syntax of the conditional operator

Figure 2-15 Operation of the conditional operator

Here’s another example. The statement

absvalue = (n<0) ? -n : n;

imitates an absolute value function. (The absolute value of a number is simply the number with any
negative sign removed.) The result is -n if n is less than 0 and +n otherwise.

Quiz 4

1. Suppose you want to display “Weekday” if a variable day is between 1 (Monday) and 5
(Friday), but you want to display “Saturday” if day is 6 and “Sunday” if day is 7.
Which of the following fragments might reasonably be part of the code for this task? Assume
day is always in the range of 1 to 7.

a. if else(day==7) cout << “Sunday”;

b. else if(day==6) cout << “Saturday”; else cout << “Sunday”;

c. else if(day<6) cout << “Weekday”; else if(day==6);

d. else cout << “Weekday”;

e. if(day<6) cout << “Weekday” else cout << “Saturday”;

2. Which of the following are true?

a. break brings you back to the top of a loop, whereas continue continues on from
the same point within the loop.

b. continue brings you back to the top of the loop, whereas break takes you out of the
bottom of the loop.

c. break takes you out of all the loops in which you may be nested

d. continue takes you immediately to the top of the innermost loop in which you’re
nested

e. break takes you immediately out of an if statement body

3. What will be displayed if the following code is executed when var has the value ‘b’?

switch(var)
 {
 case 'a': cout << “Alpha ”;
 case 'b': cout << “Beta ”;
 case 'c':
 cout << “Gamma ”;
 break;
 default:
 cout << “Not on list”;
 }

a. Alpha

b. Beta

c. Gamma

d. Alpha Beta

e. Beta Gamma

4. If you want to display “Too slow” if speed is less than 40, “Too fast” if speed is
greater than 65, and nothing otherwise, it would be appropriate to use

a. a switch statement.

b. a series of if statements.

c. nested if…else statements.

d. an else if ladder.

e. a conditional operator.

5. You want to send a message to each object in a group of objects. You already know the
names of all the objects. The message would retrieve a certain item of instance data from each
object. Your program would then display “Found one!” if this data item in any object was
divisible by 7. You would be likely to use

a. a switch in a do loop.

b. nested if…else statements in a while loop.

c. an else if ladder in a do loop.

d. an if in a for loop.

e. an else if ladder in a for loop.

Exercise 1

Rewrite the program of Exercise 1 in Session 3 in this chapter so that it uses a switch statement to
distinguish among the user’s choices.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Writing Complete OOP Programs

http://www.itknowledge.com/reference/archive/1571690638/ch02/083-086.html [21-03-2000 18:59:12]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
javascript:displayWindow('images/02-14.jpg',252,173)
javascript:displayWindow('images/02-14.jpg',252,173)
javascript:displayWindow('images/02-15.jpg',273,309)
javascript:displayWindow('images/02-15.jpg',273,309)
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch02/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Exercise 2

Rewrite the program of Exercise 2 in Session 3 in this chapter (which uses the
hotdogstand2 class with a CashOnHand variable) so that it has the same
functionality as the HOTDOG3 program in this session and uses a switch statement to
distinguish among the user’s choices.

Midchapter Discussion

Estelle: So George, what terrible negative thoughts do you have today?
George: No negative thoughts. I’m on top of the whole thing. I see how a C++

program fits together. It’s like there are two halves: the class
specification and main(). In the specification, you define what the
objects are and how they’ll act. In main(), you make objects based on
the class and interact with them.

Don: Well said. I think I’m beginning to see something else, too. There’s a
philosophical difference between a class specification and the code in
main(). The class is more general. You can imagine one programmer
writing a class specification, and then a whole bunch of different
programmers using the class for their own special purposes, each one
writing a different main(). It’s like someone designing a tool and other
people using it in different ways.

Estelle: Anyone with a chain of hot dog stands is a potential customer for the
HotDogStand class, but they might want to write their own main().

Don: Exactly.
George: I’m also relaxed because all the material on if and while and for

isn’t exactly news to an old C programmer such as myself.
Estelle: Lucky you. Actually, I didn’t think it was too hard either, except for the

conditional operator, which has too much going on in too small a space.
It’ll take me all day to figure out a line of code if it’s got one of those
things in it.

George: You don’t need to use a conditional operator if you don’t want to; just
use if…else instead.

Don: What I thought was silly is how in a switch statement you need to put
break statements at the end of every case. Why not have control
jump to the end of the switch automatically after a case is
completed?

Estelle: It’s a trade-off. The advantage of requiring a case is that, if you want,
two cases can go to the same code.

Don: When would you ever do that?
Estelle: Hmm…oh, I know. Suppose you wanted your program to do the same

thing if the user typed either an upper- or lowercase version of the same
character. Then you could put two cases right after each other. Here, I’ll
write it on the board:

case 'a':
case 'A':
// do something
 break;

Don:
I guess that’s reasonable. But you know what I think is weird? The
continue statement.

George: Don’t worry about it. It doesn’t come up that much in C programming,
so I bet it doesn’t in C++ either.

Session 5: A class to Represent Time Values

In the first half of this chapter, I devoted attention to hot dog stands. Now, to prove
how versatile OOP can be, I’m going to use a class to model something quite
different: a new data type. This data type will represent time. In particular, it will
represent the time used for airline flight reservation systems. This time has two data
items: one for hours and one for minutes. There is (regrettably) no need for seconds in
airline scheduling. I’ll call this new data type airtime.

New Data Types

Why would you want to create a new data type? Don’t int and float and the other
basic types pretty much allow you to do anything you want? Well, not really. You
may be able to do everything, but you can’t do it very elegantly or quickly. It would
be nice if you could treat airtime values just as though they were basic types and
make statements such as

t1 = t2 + t3; <--nice clean way to add times

where I add two airtime values and set the result equal to a third airtime value.

Of course, I could do this by using two int values for each time value: one for hours
and one for minutes. But then I would need to use two addition operations to add two
times.

h1 = h2 + h3; <--more complicated way to add times
m1 = m2 + m3;

I would also need to worry about how to carry an hour when the sum of the minutes
exceeds 60.

Or perhaps I could represent times as a single minutes values, obtained by adding the
minutes value to the hours value multiplied by 60.

t2 = m2 + h2*60; <--another complicated way to add times
t3 = m3 + h3*60;
t1 = t2 + t3;

However, this is not particularly elegant, because I need to convert from
hours/minutes format to minutes-only format and back again. It turns out that it’s far
easier to write a program that uses time values if these values are represented by
objects that can be treated like basic C++ variables.

Representing new data types is a major use for OOP languages. Other data types you
might want to model using classes are

• Dates, which have separate values for year, month, and day

• Fractions, which have separate values for the numerator and denominator

• Points on the Cartesian plane, which have separate x and y coordinates

• Complex numbers in mathematics, which have a real and an imaginary
component

It will take several iterations before you’re ready to use the + operator to add two
values of a user-defined data type. Along the way, you’ll learn to add such values
using a member function, add(). But first, let’s create a time class with no capability
to add values and see what that looks like.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Writing Complete OOP Programs

http://www.itknowledge.com/reference/archive/1571690638/ch02/086-089.html [21-03-2000 18:59:20]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch02/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

A Simple Version of the airtime Class

Let’s first examine a simple version of the airtime class. This class does
little more than handle input and output for airtime variables, but it will
introduce the idea of user-defined data types. Note that airtime variables
use 24-hour time, where 13:00 is 1:00 pm, and 23:59 is 11:59 pm. Listing
2-4 is the complete TIME1 program.

Listing 2-4 TIME1

// time1.cpp
// a class that models a time data type

#include <iostream.h>

class airtime
 {
 private:
 int hours; // 0 to 23
 int minutes; // 0 to 59
 public:
 void set()
 {
 char dummy; // for colon

 cout << “Enter time (format 23:59): ”;
 cin >> hours >> dummy >> minutes;
 }
 void display()
 {
 cout << hours << ':' << minutes;
 }
 };

void main()
 {
 airtime t1, t2; // create two airtime variables

 cout << “For t1, ”;
 t1.set(); // set t1
 cout << “For t2, ”;
 t2.set(); // set t2

 cout << “\nt1 = ”;
 t1.display(); // display t1
 cout << “\nt2 = ”;
 t2.display(); // display t2
 }

The airtime class specifies two items of instance data, hours and
minutes, and two member functions, set() and display(), which
get an airtime value from the user and display a value. Here’s some sample
interaction with the program:

For t1, Enter time (format 23:59): 10:15
For t2, Enter time (format 23:59): 23:30

t1 = 10:15
t2 = 23:30

The user enters two times and the program displays them.

Considering that it creates a data type instead of a group of hot dog stands,
this program is surprisingly similar to the HOTDOG1 program. But when
you think about it, time quantities and hot dog stands share common
characteristics. They both store data. Also, they should have similar
capabilities: they should specify their initial data, modify it, and display it.

Assignment Statements with Objects

One of the easiest ways to demonstrate the power of using classes for data
types is to assign the value of one object to another. You know how that
works with basic types such as int. The statement

avar = 3;

gives the value 3 to the variable avar. Can you do the same thing with
variables (objects) of data types (classes) that you’ve defined yourself?
Absolutely. Here’s a modification of the main() part of the TIME1
program. It gets a value for one airtime variable t1, assigns this value to
t2 with the statement

t2 = t1;

and then displays the value of t2.

void main()
 {
 airtime t1, t2; // create two airtime variables

 cout << “For t1, ”;
 t1.set(); // set t1

 t2 = t1; // make t2 equal to t1

 cout << “\nt2 = ”;
 t2.display(); // display t2
 }

How can you set one object equal to another? The capability is built into
C++. Although an airtime value contains two data items (hours and
minutes), the compiler has no trouble transferring these two values from
one variable to another. No matter how many items of instance data there
are in an object, they will all be copied to another object during assignment.
This may seem natural enough, but it’s a pretty slick capability.

What’s Really in an Object?

I’ve said that when you assign one object to another, its instance data is
copied into the other object. Are its member functions copied as well?
Conceptually, it’s probably easiest to think of them being copied along with
the data: Everything associated with one object is copied to another. You
probably won’t get into too much trouble if you assume this is true.
However, that’s not exactly what happens.

The truth is, no matter how many objects of a given class exist, there is only
one image of each member function stored in memory. This makes sense,
because the member functions are the same for each object, unlike instance
data, which in general contains different values for each object. It would
waste memory to duplicate the member functions, so all objects share the
class member functions, as shown in Figure 2-16.

Figure 2-16 Objects, data, functions, and memory

When you call a member function for a certain object, as in

t2.display(); // display t2

you always call the same display() function, but it operates on different
data, depending on what object called it. In this case, display() operates
on the data stored in t2.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Writing Complete OOP Programs

http://www.itknowledge.com/reference/archive/1571690638/ch02/089-092.html [21-03-2000 18:59:28]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
javascript:displayWindow('images/02-16.jpg',446,474)
javascript:displayWindow('images/02-16.jpg',446,474)
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch02/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

More Manipulators: Formatting Leading Zeros

As with most languages, there is a rich vocabulary in C++ for formatting output to the screen. So
far I’ve ignored such possibilities, except for endl and escape characters such as \n. However,
the airtime class suffers from an annoying drawback: It doesn’t print the hours with leading
zeros when appropriate. For example, in the time1 program, you might have the following
interchange:

For t1, Enter time (format 23:59): 12:00
For t2, Enter time (format 23:59): 3:05

t1 = 12:0
t2 = 3:5

We humans don’t recognize 12:0 and 3:5 as time values. We want the times to be displayed with
leading zeros when appropriate, as the user entered them. Here’s how to modify the display()
member function to supply leading zeros:

void display()
 {
 cout << hours << ':'; // hours and colon
 << setfill('0'); // fill character is '0'
 << setw(2) << minutes; // minutes is 2 chars wide
 }

This arrangement makes use of two new manipulators. Recall that a manipulator is an object that
can be inserted into an I/O stream. You’ve already made the acquaintance of endl, a manipulator
that takes no arguments.

The setw() manipulator takes one argument, which is the width in characters, of the field to be
occupied by the next output value. Ordinarily, the field width is automatically adjusted to the
number of digits to be displayed (which does not include leading zeros). By setting a fixed width
with setw(2), I specify that I want minutes to be displayed as two characters, even if it has a
value less than 10. The unused space will be filled with a fill character, which by default is a blank
(‘ ’). I want it to be a ‘0’ character, so I set this with the setfill(‘0’) manipulator. This
arrangement always prints two digits, using 0 for the left one when appropriate.

With this revised version of the display function, the input shown above will display

t1 = 12:00
t2 = 3:05

as it should.

There is a subtle difference between the setfill() and setw() manipulators. The effect of
setfill() lasts for the entire cout statement, no matter how many values are output. The
effect of setw(), on the other hand, lasts only until the next value has been displayed. Thus, you
must use setw() before every value if you want to change its field width.

There are other manipulators in C++; you’ll see some in Chapter 10.

Quiz 5

1. Data types are to variables as

a. classes are to member functions.

b. variables are to values.

c. data is to values.

d. variables are to member functions.

e. classes are to objects.

2. The following are advantages of representing multivalued quantities (such as time or
coordinates) by class objects rather than using separate variables.

a. Arithmetic is faster on objects than on separate variables.

b. It’s easier to declare an object than several variables.

c. It’s easier to write a statement to perform an arithmetic operation on an object than
on separate quantities.

d. It’s easier to write assignment statements for objects than for separate quantities.

e. Objects take up less space in memory than using separate variables for each
quantity.

3. If you wanted to line up three integer values (which would never exceed 32,767) in three
columns, you might say

a. cout << endl << setw(4) << alpha1 <<< alpha2 << alpha3;
b. cout << endl << setw(7) << alpha1 << alpha2 << alpha3;
c. cout << endl << setw(7) << alpha1

 << setw(7) << alpha2
 << setw(7) << alpha3;

d. cout << endl << setw(7) << alpha1

 << endl << setw(7) << alpha2
 << endl << setw(7) << alpha3;

e. cout << endl << setfill(‘*’)

 << setw(7) << alpha1 << setw(7) << alpha2
 << setw(7) << alpha3;

4. If you developed a class called AirCraftPosition, appropriate instance data might
be

a. latitude

b. longitude

c. speed

d. altitude

e. capacity

5. When you execute

 alpha = beta;

(assuming that alpha and beta are objects of a user-specified class)

a. the compiler checks that their instance data has the same values.

b. beta’s data and member functions are copied to alpha.

c. beta’s data but not its member functions are copied into alpha.

d. the compiler sets beta equal to alpha.

e. the compiler doesn’t care if alpha and beta are of the same class.

Exercise 1

Rewrite the specification for the airtime class in the TIME1 program so it includes a seconds
data member. The new class should work with the same main() that the old class did.

Exercise 2

Add a member function to the original airtime class that will advance the time by 1 minute.
Handle the case where the minutes value is 59 and adding a minute will cause the hours value to be
incremented. If the hours value becomes 24, set it back to 00.

Session 6: Function Arguments

The member functions you’ve looked at so far have always done exactly the same thing in the same
way. I’ve asked them to display their object or to get input from the user or—in the case of the
SoldOneDog() function—to decrement all inventory items. In none of these cases did I need to
add additional details to a message when I sent it to an object. (Sending a message to an object is,
as you recall, the same as calling one of the object’s member functions.)

However, in most cases, you need to supply additional information to a function besides the mere
fact that you’ve called it. This is done with function arguments, which are values passed to a
function when it is called.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Writing Complete OOP Programs

http://www.itknowledge.com/reference/archive/1571690638/ch02/092-095.html [21-03-2000 18:59:35]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch02/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Adding Hours to an airtime Value

Suppose that I need to add a certain number of hours to variables of type airtime,
described in the last session. I might do this to convert an airline departure or arrival to a
different time zone. Something that happens at 12:30 in San Francisco happens at 15:30
in Philadelphia, for example. I would carry out this conversion by adding the integer 3 to
the hours value of the airtime 12:30. I don’t need to touch the minutes value at all.

However, I don’t always want to increase the number of hours by 3. The time difference
between Salt Lake City and Chicago is 1, but between Chicago and London it’s 6. How
do I convey the number of hours, which will be 1 or 3 or 6 or whatever, to the airtime
object? As you’ve guessed, I use a function argument.

Sending a Message with an Argument

Assuming I am sending an addhours() message to the t1 object, telling it to add 3
hours to itself, I would say

t1.addhours(3);

The argument is placed between the parentheses following the function name. Or I could
use a variable name, provided it has already been given the appropriate value.

int diffhours = 3;
…
t1.addhours(diffhours);

Writing the Member Function

When I write a member function that takes an argument, I must place two things within
the parentheses in the function definition: the data type and a variable name, as shown in
Figure 2-17.

Figure 2-17 Syntax of a function call with arguments

Here’s the definition of the addhours() member function of the airtime class:

void addhours(int h)
 {
 hours = hours + h; // add hours
 if(hours > 23) // if carry to next day,
 hours = hours - 24; // subtract a day
 }

The int in

void addhours(int h)

specifies the type of data expected as an argument and the h is the name of the argument.
This argument h is a variable that can be accessed anywhere in the function. However,
note that h is visible (has meaning) only within the function; it is unknown to other parts
of the program.

The addhours() function adds h to the hours value of its object. It then checks to see
if the resulting hours value exceeds 23; if so, it subtracts 24. (Don’t worry about the
date.)

Listing for houradd.cpp

Let’s put everything together to see how this new member function might be used in a
program. Listing 2-5 is a revision of the TIME1 program that incorporates addhours()
and lets the user exercise this function. This program is called HOURADD.

Listing 2-5 HOURADD

// houradd.cpp
// a class that models a time data type
// includes member function to add hours to a time

#include <iostream.h>
#include <iomanip.h> // for setw(), etc.

class airtime
 {
 private:
 int hours; // 0 to 23
 int minutes; // 0 to 59
 public:
 void set()
 {
 char dummy;

 cout << “Enter time (format 23:59): ”;
 cin >> hours >> dummy >> minutes;
 }
 void display()
 {
 cout << hours << ':'
 << setfill('0')
 << setw(2) << minutes;
 }
 void addhours(int h)
 {
 hours = hours + h; // add hours
 if(hours > 23) // if carry to next day,
 hours = hours - 24; // subtract a day
 }
 };

void main()
 {
 airtime t1; // airtime
 int diffhours; // hours
 char choice; // user's choice: 'n' or 'y'

 do
 {
 cout << “For t1, ”;
 t1.set(); // set t1

 cout << “Enter hours to add: ”;
 cin >> diffhours;
 t1.addhours(diffhours); // add hours to t1
 cout << “t1 = ”;
 t1.display(); // display t1
 cout << “\nDo another (y/n)? ”;
 cin >> choice;
 }
 while(choice != 'n');
 }

The user enters an airtime value and an hours value, and the program adds them. This
continues until the user enters ‘n’ to quit the loop.

For t1, Enter time (format 23:59): 10:45
Enter hours to add: 3
t1 = 13:45
Do another (y/n)? y

For t1, Enter time (format 23:59): 23:30
Enter hours to add: 5
t1 = 4:30
Do another (y/n)? n

Let’s look at some other examples where function arguments are helpful.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Writing Complete OOP Programs

http://www.itknowledge.com/reference/archive/1571690638/ch02/095-098.html [21-03-2000 18:59:47]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
javascript:displayWindow('images/02-17.jpg',372,406)
javascript:displayWindow('images/02-17.jpg',372,406)
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch02/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

The set() Member Function with Arguments

There’s more than one way to design a class. In the airtime class (and the hotdogstand
class as well), I initialized the values of an object’s data members by having a member function
request the values directly from the user. However, I could instead pass these values as
arguments to the member function. This would shift the responsibility for getting user input from
the class to the main() function. Depending on circumstances, this might be a superior choice.

Let’s revise the set() member function from the airtime class, as seen in the TIME1
program, so that it obtains values as arguments rather than from the user. Let’s also revise
main() to handle user input, as shown in Listing 2-6.

Listing 2-6 TIME2

// time2.cpp
// a class that models a time data type
// uses arguments to the set() function

#include <iostream.h>

class airtime
 {
 private:
 int hours; // 0 to 23
 int minutes; // 0 to 59
 public:
 void set(int h, int m) // set airtime value
 { // (values supplied by arguments)
 hours = h; minutes = m;
 }
 void display() // display airtime value
 {
 cout << hours << ':' << minutes;
 }
 };

void main()
 {
 int hhs, mms; // variables for user-supplied values
 char dummy; // for colon
 airtime t1, t2; // two airtime variables

 cout << “For t1, enter time (format 23:59): ”;
 cin >> hhs >> dummy >> mms;
 t1.set(hhs, mms); // set t1 values

 cout << “For t2, enter time (format 23:59): ”;
 cin >> hhs >> dummy >> mms;
 t2.set(hhs, mms); // set t2 values

 cout << “\nt1 = ”;
 t1.display(); // display t1
 cout << “\nt2 = ”;
 t2.display(); // display t2
 }

The set() member function now takes two arguments: h and m. The body of the function
simply sets the hours and minutes instance data items to the values of these arguments.

void set(int h, int m) // (values supplied by arguments)
 {
 hours = h; minutes = m; // set airtime value
 }

Notice the breakdown of effort between the two parts of this program, the class specification and
main(). Compared with the TIME1 program, the set() function is simpler, but main() has
become more complicated. Actually, in this particular case, this is probably a mistake. The idea
in OOP is that classes will be created once but will be used many times in many different
programs. Thus it makes sense to embed as much functionality as possible within the class so
that every program that uses the class can be simpler.

Arguments of Any Type

I’ve shown only arguments of type int, but arguments may be of any type, and there can be any
number of arguments to a function. Here’s the skeleton for a member function that takes three
arguments of different types:

class Foo
 {
 …
 void func(int ivar, float fvar, char cvar) // define function
 {
 }
 …
 };

main()
 {
 Foo foo; // make an object
 int iarg = 17; // make some variables
 float farg = 6.025e23;
 char carg = 'x';
 …
 foo.func(iarg, farg, carg); // call the function
 …
 }

I specify a class Foo with a member function func() that takes three arguments of three
different types. Then in main(), I create an object of class Foo and call func() for this
object, with appropriate values for the arguments.

Other Uses for Functions

Because I’m focusing on the object-oriented approach to programming, using examples with
simple classes and programs, I’ve shown only one situation involving function calls: from
main() to a member function. However, functions may be called in all sorts of other situations
as well. First, the main() part of the program may be divided up into many functions, all of
which are called from main() or perhaps called from other functions that are called from
main(). This is a way of organizing the program. Second, member functions within classes
may call other functions. You’ll see examples as we go along. In the meantime, keep in mind the
comforting thought that things can always be more complicated than I show here.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Writing Complete OOP Programs

http://www.itknowledge.com/reference/archive/1571690638/ch02/098-100.html [21-03-2000 18:59:53]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch02/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Passing by Value

The method of passing arguments that I have shown here is called passing
by value. This means that the function creates an entirely new variable (a
place in memory with a name and a suitable size) to hold the value of each
argument passed to it. In the skeleton example above, there are three
variables in main(), iarg, farg, and carg. When the function is
called, it creates three new variables, ivar, fvar, and cvar, and copies
the values into them, as shown in Figure 2-18.

Figure 2-18 Passing by value

The function may modify the variables it has created, but doing so has no
effect on the variables in main(). This provides a built-in protection
mechanism: main() can use variables as arguments without worrying that
they might be modified by the function it supplies them to.

Sometimes you want a function to be able to modify the variables passed to
it. When this is the case, you can use a different approach: passing by
reference. With this mechanism, the function operates on the original
variables in main(). This approach is used less often, but sometimes it’s
essential, as you’ll see later.

Quiz 6

1. Function arguments are generally used to

a. download responsibilities from a class to main().

b. create new variables that the function can use however it
likes.

c. make a copy of data in case of harm to the original.

d. pass information to the function.

e. make functions more versatile.

2. If var1 is 11 and var2 is 13, the statement
obj1.dotask(var1, var2);

a. assigns the values 11 and 13 to the variables var1 and
var2 in the dotask() function.

b. transmits 11 and 13 to the dotask() member function of
obj1.

c. writes 11 and 13 into the instance data of obj1.

d. gets new values of var1 and var2 from obj1.

e. assigns 11 and 13 to some other variables in the
dotask() function of obj1.

3. Which of the following might be a reasonable way to tell an
object of the ship class to locate itself at +120 degrees longitude
and -17 degrees latitude? (In case you wondered, west longitude is
plus and east is minus, north latitude is plus and south is minus).

a. RoyalStar.setPosition(120, -17);
b. RoyalStar.setLongitude(120);
RoyalStar.setLatitude(-17);

c. RoyalStar.setPosition(long, lat);
d. RoyalStar(120).setLongitude;
RoyalStar(-17).setLatitude;

e. RoyalStar.setLongitude120();
RoyalStar.setLatitude-17();

4. The keywords int and float in the function declarator

void afunc(int ivar, float fvar)
 {
 }

a. are optional, because the function already knows the values
and types being sent.

b. specify the data type of the expected values, so the function
can check that the correct types are passed.

c. convert the values passed to the function to type int and
type float, respectively.

d. tell the function the types of two variables in main() so
the function can access their values.

e. create new variables of type int and float, called ivar
and fvar.

5. When arguments are passed from main() by value, the called
function

a. cannot modify the variables whose names are supplied by
main().

b. makes copies of the variables supplied by main() to hold
the values passed.

c. can modify the variables whose names are supplied by
main().

d. cannot access the values passed to it.

e. refers to the same variables as main() but uses different
names.

Exercise 1

Rewrite the HOTDOG1 program so that the initData() member function
takes two arguments, one for the number of hot dogs and one for the
number of buns. To keep the same functionality, rewrite main() so it
obtains this information from the user.

Exercise 2

Write a member function for the airtime class that will change the
seconds data by an integer amount supplied as an argument to the
function. You’ll need to handle the cases where seconds overflow past 60
and hours overflow past 23. Write a main() program to test this new
member function.

Session 7: Arithmetic For User-defined Types

You’ve seen that you can write a member function that will alter one of the
data values of an object. (see the addhour() function in the HOURADD
program). However, this is not the same as performing arithmetic on an
entire object all at once. In fact, you can perform arithmetic on user-defined
types just as you can on basic types like float; this is a powerful
capability of C++. As examples, I’ll show how to add two airtime values
and how to multiply an airtime value by a number of type float.
Along the way, you’ll see how user-defined data types can be used in
function arguments.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Writing Complete OOP Programs

http://www.itknowledge.com/reference/archive/1571690638/ch02/100-103.html [21-03-2000 19:00:04]

http://www.itknowledge.com/adclick.html/CID=000012ea6dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
javascript:displayWindow('images/02-18.jpg',451,369)
javascript:displayWindow('images/02-18.jpg',451,369)
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch02/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Adding airtime Values

The add() member function in the airtime class takes two time values as arguments, adds
these values, and places the result in the object that called it. That is, if add() is called like this

t3.add(t1, t2);

then t1 will be added to t2 and the result placed in t3. For example, if t1 is 10:10 and t2 is
2:30, then the result placed in t3 will be 12:40. (Technically, this amounts to adding a time
interval, not another time, to a time. Adding 2 o’clock to 3 o’clock doesn’t really make much
sense, but if you leave Denver at 10 minutes after 10 and it takes you 2 hours and 30 minutes to
fly to Dallas, then it does makes sense to say you’ll arrive there at 12:40.) Listing 2-7 shows
TIMEADD.

Listing 2-7 TIMEADD

// timeadd.cpp
// a class that models a time data type
// includes member function to add two times

#include <iostream.h>
#include <iomanip.h> // for setw(), etc.

class airtime
 {
 private:
 int minutes; // 0 to 59
 int hours; // 0 t0 23
 public:
 void set()
 {
 char dummy; // for colon

 cout << “Enter time (format 23:59): ”;
 cin >> hours >> dummy >> minutes;
 }
 void display()
 {
 cout << hours << ':'
 << setfill('0')
 << setw(2) << minutes;
 }
 void add(airtime at1, airtime at2)
 {
 minutes = at1.minutes + at2.minutes; // add minutes
 hours = at1.hours + at2.hours; // add hours
 if(minutes > 59) // if carry,
 {
 minutes = minutes - 60; // adjust minutes
 hours = hours + 1; // and hours
 }
 if(hours > 23) // if carry,
 hours = hours - 24; // adjust hours
 }
 };

void main()
 {
 airtime t1, t2, t3; // create three airtime variables
 char choice;

 do
 {
 cout << “For t1, ”;
 t1.set(); // set t1
 cout << “For t2, ”;
 t2.set(); // set t2

 t3.add(t1, t2); // add t1 and t2, result in t3

 cout << “t3 = ”;
 t3.display(); // display t3
 cout << “\nDo another (y/n)? ”;
 cin >> choice;
 } while(choice != 'n');
 }

Figure 2-19 shows how the function call t3.add(t1, t2) interacts with the the add()
function.

Figure 2-19 Operation of function call with arguments

It’s important to notice that you can use function arguments of types (classes) you’ve defined
yourself (airtime in this case) just as you can with basic types such as int. Here the add()
member function takes two values of type airtime as arguments:

void add(airtime at1, airtime at2)

This is a powerful capability. Variables of a user-defined type can be treated almost exactly the
same way as basic types in every aspect of C++ programming.

The add() function adds the minutes for the two airtime values, then adds the hours. If the
sum of the minutes exceeds 59, then 1 hour is added to hours and 60 is subtracted from
minutes. If the sum of the hours exceeds 23, then 24 is subtracted from hours. (Don’t
worry that the resulting airtime is the next day.)

If using functions such as add() to carry out arithmetic seems crude, rest assured that you will
eventually learn how to perform arithmetic operations by overloading the arithmetic operators
such as + and *. This will make for more natural-looking arithmetic expressions, like

t3 = t1 + t2;

instead of

t3.add(t1, t2);

Arithmetic Is Not for All Classes

It makes sense to add objects of type airtime because such objects represent a quantity that is
basically numerical: time. (Assuming, as I noted, that you imagine adding a time interval to a
time.) However, addition doesn’t make sense for objects of all classes. If I add two objects of the
hotdogstand class, for example, it’s not clear what meaning the “sum” would have.

Access to Private Data

Notice that the add() member function can access the private data members of the objects
passed to it as arguments. It receives copies of the data in t1 and t2 when it’s called in the
statement

t3.add(t1, t2); // add t1 and t2, result in t3

These values are copied in the function’s at1 and at2 objects. Statements within the function
can then access individual data items using the names at1.minutes, and so on. This is done
in the statements

minutes = at1.minutes + at2.minutes; // add minutes
hours = at1.hours + at2.hours; // add hours

As you may recall, private data items such as at1.minutes cannot be accessed by main()
directly. Because they are private, they can be accessed only by member functions of their own
class. However, member functions can access the private data, not only of the object for which
they are called (t3 in this example) but of any object, provided it’s from the same class (as t1
and t2 are). An object’s data is private to the outside world, but not to other objects of its own
class. Figure 2-20 shows how this looks.

Figure 2-20 Accessing other objects

Let’s try some sample interaction with the TIMEADD program.

For t1, Enter time (format 23:59): 10:10
For t2, Enter time (format 23:59): 10:50
t3 = 21:00
Do another (y/n)? y
For t1, Enter time (format 23:59): 23:59
For t2, Enter time (format 23:59): 0:01
t3 = 0:00
Do another (y/n)? n

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Writing Complete OOP Programs

http://www.itknowledge.com/reference/archive/1571690638/ch02/103-107.html [21-03-2000 19:00:17]

http://www.itknowledge.com/adclick.html/CID=000012ea6dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
javascript:displayWindow('images/02-19.jpg',328,395)
javascript:displayWindow('images/02-19.jpg',328,395)
javascript:displayWindow('images/02-20.jpg',403,267)
javascript:displayWindow('images/02-20.jpg',403,267)
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch02/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Converting Minutes to airtime

The add() member function operated on two variables. Let’s look at a different function
that operates on a single variable. This function will take as its only argument an int
value representing minutes (which can be larger than 59). It converts this minutes value
into an airtime value. This airtime value is then stored in the object that called the
function. The result is a minutes-to-airtime conversion function. Listing 2-8 shows
TIMECNV1.

Listing 2-8 TIMECNV1

// timecnv1.cpp
// a class that models a time data type
// includes a member function to convert minutes to airtime

#include <iostream.h>
#include <iomanip.h> // for setw(), etc.

class airtime
 {
 private:
 int minutes; // 0 to 59
 int hours; // 0 to 23
 public:
 void set()
 {
 char dummy; // for colon

 cout << “Enter time (format 23:59): ”;
 cin >> hours >> dummy >> minutes;
 }
 void display()
 {
 cout << hours << ':'
 << setfill('0') << setw(2) << minutes;
 }
 // convert minutes to airtime
 void MinsToAirtime(int imins)
 {
 hours = imins / 60;
 minutes = imins - hours*60;
 }
 };

void main()
 {
 airtime t1;
 int iminutes; // minutes (can be > 59)
 char choice;
 do
 {
 cout << “Enter minutes (for example, 241): ”;
 cin >> iminutes;

 t1.MinsToAirtime(iminutes);

 cout << “t1 = ”;
 t1.display(); // display t1
 cout << “\nDo another (y/n)? ”;
 cin >> choice;
 } while(choice != 'n');
 }

In the class specification for airtime, I define the member function
MinsToAirtime(), which converts an int minutes value to an airtime value. To
do this, the function first divides the minutes by 60 to get the hours. The fractional part
of this result (representing minutes) is chopped off when the number is converted to
type int because integers don’t have a fractional part. The resulting hours value
becomes the hours instance data in the object that called MinsToAirtime(),
which, as can be seen in main(), is t1 in this example. To obtain minutes, the
function subtracts the number of minutes in the hours variable (hours*60) from the
original number of minutes and assigns this to the instance variable minutes.

In main(), I ask the user for a minutes value and then convert it to airtime by
calling MinsToAirtime() for the t1 object. The resulting value of t1 is then
displayed in the usual way with the display() member function, just to prove that
the conversion works.

Nonautomatic Conversions

Conversions, such as the one from minutes to airtime, play an important role in C++
programs. Remember that C++ automatically converts basic types from one to another.
For example, you can say

int ivar = 27;
float fvar;

fvar = ivar;

and the C++ compiler will arrange for the integer value 27 to be converted to the
equivalent floating-point value, 27.0, for storage in fvar. Such conversions are
completely automatic. The conversion routines are built into the compiler, and it knows
how to use them.

However, when you convert between basic types and types you’ve specified yourself,
such as airtime, there are no routines built into the compiler to handle the
conversion. (After all, it doesn’t know what type you might invent.) You must write the
routines yourself, as I’ve done here with MinsToAirtime(). I’ll be returning to the
subject of conversions.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Writing Complete OOP Programs

http://www.itknowledge.com/reference/archive/1571690638/ch02/107-108.html [21-03-2000 19:00:25]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch02/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Multiplying an airtime Value

Let’s look at another example of arithmetic on the user-defined data type airtime. Multiply
an airtime value by a floating-point number. Such an operation might be handy if, for
example, you want to know how long it would take an airplane mechanic to service 23 jet
engines if it takes her 1 hour and 15 minutes to service one engine. Listing 2-9 shows
TIMEMULT.

Listing 2-9 TIMEMULT

// timemult.cpp
// a class that models a time data type
// includes a member function to multiply a time by a float

#include <iostream.h>
#include <iomanip.h> // for setw(), etc.

class airtime
 {
 private:
 int minutes; // 0 to 59
 int hours; // 0 t0 23
 public:
 void set()
 {
 char dummy; // for colon

 cout << “Enter time (format 23:59): ”;
 cin >> hours >> dummy >> minutes;
 }
 void display()
 {
 cout << hours << ':'
 << setfill('0') << setw(2) << minutes;
 }
 // multiply airtime by float
 void mult(airtime at1, int mplier)
 { // convert to minutes
 int im = at1.hours * 60 + at1.minutes;
 int ianswer = im * mplier; // do the multiply
 hours = ianswer / 60; // convert back to
 minutes = ianswer - hours*60; // hours and minutes
 }
 };

void main()
 {
 airtime t1, t2; // create airtime variables
 int m; // multiplier
 char choice;

 do
 {
 cout << “For t1, ”; // get t1 from user
 t1.set(); // set t1
 cout << “Enter multiplier: ”;
 cin >> m; // get multiplier

 t2.mult(t1, m); // multiply t1 by m, result in t2

 cout << “t2 = ”;
 t2.display(); // display t2
 cout << “\nDo another (y/n)? ”;
 cin >> choice;
 } while(choice != 'n');
 }

The user enters an airtime value and an integer to be used as a multiplier. Here’s some
sample interaction. As you can see, servicing the 23 engines will take 28 hours and 45
minutes.

For t1, Enter time (format 23:29): 1:01
Enter multiplier: 3
t2 = 3:03
Do another (y/n)? y
For t1, Enter time (format 23:29): 1:15
Enter multiplier: 23
t2 = 28:45
Do another (y/n)? n

The mult() member function takes two arguments, one of type airtime (which is t1)
and one of type int (called m, for multiplier). It multiplies these together and stores the
resulting airtime value in the object that called it (t2).

This function first converts the t1 airtime value to an integer, im, representing minutes. It
then multiplies this value by the multiplier mplier and saves the answer in ianswer. To
convert this all-minutes value back to an hours-and-minutes airtime value, it uses the same
approach shown in the TIMECONV1 program. As you can see, two different data type
conversions are actually carried out in this one function: airtime to minutes and minutes to
airtime.

Notice that in both the sub() and the mult() functions, the answer is stored in the
airtime object that called the function. The answer to a calculation can be placed in other
objects as well, as you’ll see in the next lesson, on function return values.

Calling Each Other

A member function can call another member function. In the mult() function in TIMEMULT,
I performed the same conversion from minutes to airtime that I did in the
MinsToAirtime() function in the TIMECNV1 program. I could have saved myself the
trouble of rewriting this conversion code by using the MinsToAirtime() function instead.
Here’s how I would rewrite mult() to do this:

 // multiply airtime by int
 void mult(airtime at1, int mplier)
 { // convert to minutes
 int im = at1.hours * 60 + at1.minutes;
 int ianswer = im * mplier; // do the multiply
 MinsToAirtime(ianswer); // convert back to airtime
 }

The MinsToAirtime() function, because it is being called from a member function, is
smart enough to act on the same object as the function that called it. That is, it will operate on
the hours and minutes data in t3. It doesn’t need to be called with an object name and
the dot operator, as member functions do in main(). Of course, the MinsToAirtime()
function would also need to appear in the class specification.

 // convert minutes to airtime
 void MinsToAirtime(int imins)
 {
 hours = imins / 60;
 minutes = imins - hours*60;
 }

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Writing Complete OOP Programs

http://www.itknowledge.com/reference/archive/1571690638/ch02/108-111.html [21-03-2000 19:00:31]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch02/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Quiz 7

1. Performing arithmetic on user-defined types is useful

a. when the user-defined type represents something that acts
like a number.

b. for the same reason it’s useful to perform arithmetic on
basic types such as int and float.

c. because otherwise it’s impossible to access an object’s
private data.

d. in situations where the data in an object is numerical.

e. any time two objects have similar data.

2. In the statement t3.add(t1, t2); found in the TIMEADD
program in this lesson,

a. the function add() could, if it were rewritten in the class
specification, add the values of t1 and t3 and place the result
in t2, without changing the format of the call.

b. the arguments t1 and t2 are variables of a basic C++ type.

c. the values in t1 and t2 are added and the result is placed
in t3.

d. the function add() is a member function of the t3 object.

e. the add() function can access private data in three objects.

3. We use a member function of class A to perform arithmetic on
objects of class A because

a. the compiler won’t let you call a function of class A from an
object of any other class.

b. only member functions of class A can access the private
data of class A objects.

c. only member functions of class A can access public parts of
class A objects.

d. functions in class A cannot access public data in class A.

e. functions in other classes cannot access the private data of
objects of class A.

4. A member function that converts a value from a basic data type to
a user-defined data type

a. is impossible because a user-defined type is not a number.

b. can place the new value in the object that called the
conversion function.

c. can get the old value from the object that called the
conversion function.

d. can take the user-defined type as a pass-by-value argument.

e. can take the basic type as a pass-by-value argument.

5. The statement t3.mult(t1, t2); in which the variables are
all of class airtime (as defined in the TIMEMULT program in this
lesson)

a. will apparently cause t1 to be multiplied by t2.

b. implies that the mult() function can modify data only in
t1, t2, or t3.

c. implies that the mult() function can modify data only in
t1 or t2.

d. implies that the mult() function can modify data only in
t3.

e. doesn’t make sense, because multiplying two airtime
values has no meaning.

Exercise 1

Write a sub() member function for the airtime class that subtracts one
airtime value from another. Write a main() that allows the user to test
this function. Assume that the smaller (earlier) time value will always be
subtracted from the larger so that negative values will not arise.

Exercise 2

Write a minutes-to-airtime conversion member function for the airtime
class. You can call it MinsToAirtime(). This function should take an
all-minutes time value, which can have values such as 65 and 241, as its
only argument. The function should convert this minutes value to an
airtime value in hours and minutes and store these values in the object
that called it. Write a main() that tests this function by asking the user for
a minutes value, and then convert this quantity into an airtime and
display it.

Session 8: Function Return Values

So far, all the functions I’ve used have been type void; that is, they have
not returned a value. When a member function, such as add() or
MinsToAirtime(), generated a value, this value was given to the object
itself. But what happens if you need a function to generate a value of some
other type? Then the value can’t be inserted in the object that called the
function. What can you do with it?

The function can return the value. This means that the call to the function
actually takes on the new value and can be assigned or otherwise used as if
it were a constant.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Writing Complete OOP Programs

http://www.itknowledge.com/reference/archive/1571690638/ch02/111-112.html [21-03-2000 19:00:37]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch02/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Converting airtime to Minutes

As an example of a function that returns a value, I’ll develop a member function for the
airtime class that’s the opposite of MinsToAirtime(). That is, the new function,
AirtimeToMins(), will convert an airtime value to a minutes value and will
return this minutes value. (This minutes value can be greater than 59 because it
represents both hours and minutes.) Listing 2-10 shows TIMECNV2.

Listing 2-10 TIMECNV2

// timecnv2.cpp
// a class that models a time data type
// includes member function to convert airtime to minutes

#include <iostream.h>
#include <iomanip.h> // for setw(), etc.

class airtime
 {
 private:
 int minutes; // 0 to 59
 int hours; // 0 to 23
 public:
 void set()
 {
 char dummy; // for colon

 cout << “Enter time (format 23:59): ”;
 cin >> hours >> dummy >> minutes;
 }
 void display()
 {
 cout << hours << ':'
 << setfill('0') << setw(2) << minutes;
 }
 int AirtimeToMins() // convert airtime to minutes
 {
 int imins = hours*60 + minutes;
 return imins;
 }
 };

void main()
 {
 airtime t1;
 int iminutes; // minutes (can be > 59)
 char choice;

 do
 {
 cout << “For t1, ”; // get airtime value from user
 t1.set();
 // convert airtime to minutes
 iminutes = t1.AirtimeToMins();

 cout << “Minutes = ” // display minutes
 << iminutes;
 cout << “\nDo another (y/n)? ”;
 cin >> choice;
 } while(choice != 'n');
 }

In main(), I obtain an airtime value from the user and store it in t1. Then I call
AirtimeToMins() with t1 as an argument. The return value from this function is
the equivalent time in minutes, which is then displayed.

Notice how I treat the entire expression t1.AirtimeToMins() as if it were a value,
assigning it to the variable iminutes.

The return Statement

Any function will return to the code that called it when control “falls through” the
bottom of the function (passes from the last statement to the closing brace). However,
this simple approach doesn’t allow you to return a value. For a function to return a
value, it must use a return statement. The keyword return can be followed by an
expression that evaluates to the value to be returned. In AirtimeToMins(), I say

return imins;

which causes the minutes value, stored in imins, to be returned, as shown in Figure
2-21.

Figure 2-21 Operation of the return statement

A return statement causes control to jump immediately out of the function and to
return to the code that called it. The expression following return must be the same
type as the type of the function. This expression is optional. If it’s not included, then the
function must be of type void, meaning it does not return a value. In void functions,
a return statement is not necessary (as you’ve already seen in numerous examples),
provided you want the function to end at its last statement. Using return gives you
the option of exiting from the function anywhere.

Creating Automatic Variables

You’ve seen examples of variables that are defined in a function body. Mostly these
definitions have occurred at the beginning of the function and defined a variable
without giving it a value.

int somevar;
…
somevar = 3;

However, it’s also possible to initialize a variable at the same time it’s defined. Not only
that, but the value used to initialize it can be calculated in the same statement. This is
what I do in the AirtimeToMins() function.

int imins = hours*60 + minutes;

Defining a variable and calculating it in the same statement is not a common idiom in
C, but it’s used frequently in C++.

When a function returns to the program that called it, any automatic variables created
within the function, such as imins, are destroyed. (That’s why they’re called
automatic; they’re created automatically when the function is called and destroyed
automatically when the function returns.) In this case, the value of imins is returned
just in time—as soon as the return statement has finished executing, the function
returns and imins is destroyed.

The Stack

Automatic variables are stored in a part of computer memory called the stack. The stack
grows and shrinks as functions are called and returned. It has a maximum size, usually
several thousand bytes, so you can’t use huge amounts of automatic data (unless you
make special arrangements to enlarge the stack). When an automatic variable is first
created, it has a random “garbage” value, probably not zero. This is because the stack
has just expanded into an (often) previously occupied part of memory. The moral is:
Don’t trust that an automatic variable will have an initial value of 0; be sure to initialize
it before you use it.

Nameless Automatic Variables

You can simplify the AirtimeToMins() function. You don’t actually need to give a
name to the variable that holds the result of the calculation. Instead, rewrite the function
like this:

int AirtimeToMins() // convert airtime to minutes
 {
 return hours*60 + minutes;
 }

The number of minutes will be calculated as before and assigned to a nameless variable.
This variable will be type int, because that’s the return type of the function. Its value
will be returned and the nameless variable will be destroyed when the function returns,
just as imins was in the original version of the function.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Writing Complete OOP Programs

http://www.itknowledge.com/reference/archive/1571690638/ch02/112-115.html [21-03-2000 19:00:46]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
javascript:displayWindow('images/02-21.jpg',413,534)
javascript:displayWindow('images/02-21.jpg',413,534)
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch02/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Returning a Value from add()

C++ is nothing if not versatile, and there are often many ways to carry out a given task. As an
example, I’ll rewrite the add() member function of airtime so that it returns a value instead of
storing the result of its addition in the object that called it. As you may remember, add() in the
TIMEADD program was called this way

t3.add(t1, t2);

where the values of t1 and t2, passed as arguments, were added and the result was stored in t3,
the object that called add() in the first place.

However, if I use a version of add() that returns a value, I can rewrite this statement in a
different way.

t3 = t1.add(t2);

This is a mixed blessing in terms of clarity. It’s more natural to assign t3 the result of the
addition, because that’s closer to the way it would be written in normal algebra: t3=t1+t2.
However, t1 and t2 are now treated differently: t1 is the object for which the function is called
and t2 is an argument to the function. This looks odd, because t1 and t2 play the same kind of
role.

Whether it’s any clearer or not, this new version of add() works just as well as the old one.
Listing 2-11 shows TIMERET.

Listing 2-11 TIMERET

// timeret.cpp
// a class that models a time data type
// member function to adds times, returns time value

#include <iostream.h>
#include <iomanip.h> // for setw(), etc.

class airtime
 {
 private:
 int minutes; // 0 to 59
 int hours; // 0 t0 23
 public:
 void set()
 {
 char dummy; // for colon

 cout << “Enter time (format 23:59): ”;
 cin >> hours >> dummy >> minutes;
 }
 void display()
 {
 cout << hours << ':'
 << setfill('0') << setw(2) << minutes;
 }
 airtime add(airtime at2)
 {
 airtime temp;
 temp.minutes = minutes + at2.minutes; // add minutes
 temp.hours = hours + at2.hours; // add hours
 if(temp.minutes > 59) // if carry,
 {
 temp.minutes = temp.minutes - 60; // adjust minutes
 temp.hours = temp.hours + 1; // and hours
 }
 if(temp.hours > 23) // if carry,
 temp.hours = temp.hours - 24; // adjust hours
 return temp;
 }
 };

void main()
 {
 airtime t1, t2, t3; // create three airtime variables
 char choice;

 do
 {
 cout << “For t1, ”;
 t1.set(); // set t1
 cout << “For t2, ”;
 t2.set(); // set t2

 t3 = t1.add(t2); // add t1 and t2, result in t3

 cout << “t3 = ”;
 t3.display(); // display t3
 cout << “\nDo another (y/n)? ”;
 cin >> choice;
 } while(choice != 'n');
 }

In the add() function, the program creates an object, called temp, of class airtime. This is an
automatic variable and it will be destroyed when the function returns, just as any automatic
variable is. Remember, the compiler treats all variables the same, whether they are of a built-in
type or a type defined in the program.

You might wonder if there’s a way to generate nameless temporary objects. There is, but to use
them you’ll need to learn about constructors, a topic I’ll get to in Chapter 5.

Returning by Value

I should note that the return statements I examine in this session return by value. The actual
value is passed back to the code that called the function. In other words, there will be—at least
briefly—two variables holding the same value: one in the function and one in the code that called
the function.

Another mechanism can be used to handle return values: returning by reference. In this case, the
code that calls the function receives only a reference to the original variable in the function.
However, you’ll need to learn about constructors before I talk about returning by reference.

Library Functions

Now that you know about function arguments and return values, I can mention the existence of
C-style library functions. These functions were developed for the C language, but can also be used
in C++. Many of these functions are not as useful in C++ as they are in C (such as I/O functions,
assuming you use the C++ stream classes). However, C library functions are still an essential
aspect of C++ programming. There are library functions for input/output, data conversions, string
handling, directory and file control, memory allocation, math, process control, and so on. You’ll
encounter many of these functions.

As an example, let’s look at the sqrt() function, which returns the square root of a
floating-point number. This skeleton code shows the essentials.

#include <math.h> // needed for sqrt()
…
double answer, somenum; // sqrt operates on type double
…
answer = sqrt(somenum); // find the square root

To use a library function, you’ll need to look it up either in your compiler’s online help or in the
manual. The first thing you’ll need to know is the name of the appropriate header file. Every
library function requires that a header file be included before the function is called; here it’s
MATH.H. Most of the math-related functions use this same header file.

The documentation will also tell you the data types of the function’s arguments and return value.
The sqrt() function takes a single argument of type double and returns the same type, so in
this example, both somenum and answer are type double. Other examples of library functions
will pop up in future lessons.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Writing Complete OOP Programs

http://www.itknowledge.com/reference/archive/1571690638/ch02/116-118.html [21-03-2000 19:00:54]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch02/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Quiz 8

1. In the TIMECNV2 program, converting a value from airtime to
minutes involves using a function that

a. returns a minutes value.

b. accesses a minutes value provided as an argument.

c. accesses the private data of the airtime object that called
it.

d. accesses the private data of the airtime variable
provided as an argument.

e. cannot exist, because airtime values are not numbers.

2. Depending on how it’s written, a return statement may cause

a. control to return from a function when the closing brace is
reached.

b. control to return from a function immediately.

c. control to return from a function once the return value is
calculated.

d. a function definition to assume a value.

e. a function call to assume a value.

3. An automatic variable is created when which two events have
occurred?

a. The program loads.

b. The program executes.

c. The variable is defined.

d. The variable is assigned a value.

e. Control is transferred to the function in which the variable
is defined.

4. Returning the answer from a function that adds two user-defined
values is superior to putting the answer in the object that called the
function because

a. the object that called the function is destroyed when the
function returns.

b. you can use the equal sign as it’s used in arithmetic.

c. one of the values to be added is the object that called the
function.

d. one of the values to be added is an argument to the
function.

e. it’s awkward to use an argument to send the answer back to
the code that called the function.

5. Returning from a function by value means that

a. a nameless temporary object (or variable) is always created
in the function.

b. a function call can be assigned to a variable.

c. a reference to a variable defined in a function is returned.

d. a reference to a variable defined outside a function is
returned.

e. the function must be of type void.

Exercise 1

Write statements to create variables called LetterCode, SalePrice,
and Quantity of types char double and long.

Exercise 2

Write statements to set the three variables in Exercise 1 to ‘V’, 67.95 and
1,000,000, respectively.

Summary: Chapter 2

In this chapter, you’ve seen two quite different kinds of complete, working
C++ programs: one in which a class represents hot dog stand inventory data
and another in which a class models a data type that represents time.
Because time is a numerical entity, you can treat a class that models it as a
new, user-defined C++ data type.

I also focused on some of the nuts and bolts of C++ programming: loops
(while, do, and for), decisions (if, if…else, the else if
construction, switch, and the conditional operator), and function
arguments and return values. I used various kinds of loops and decisions in
programs that further extend the capability of the hot dog stand and time
programs.

A major focus was expanding the kinds of member functions you can write.
You saw how to write member functions that perform arithmetic on objects
and that convert from one data type to another.

Finally, I discussed several more subtle features of C++. You discovered
that you can assign the value of one object to another the same way you can
with basic C++ types. You also learned that, although it may be convenient
to think of each object as containing both data and member functions, the
member functions are actually shared by all objects of a class. The function
examples you’ve seen so far pass arguments by value; that is, values are
copied from the calling program to variables in the function. The functions
also return by value, which means that a copy of a variable in the function
is returned to the calling program.

You learned that member functions can access the object for which they are
called. They can also access objects sent to them as arguments, provided
these objects are of the same class as the member function.

Automatic variables or objects are created automatically when a function is
called and are destroyed when the function returns. Automatic variables are
stored on the stack. Some automatic variables have no name and are created
temporarily to store the results of evaluating expressions.

C-style library functions are available to carry out many tasks. They are not
object oriented but they are very helpful in some situations, such as
mathematics operations.

End-Of-Chapter Discussion

George: I was just getting used to the idea that objects represent things
in the real world, and now it turns out they can represent data
types. Anyway, doing arithmetic on objects is too weird. No
one would do addition using a function!

Estelle: Poor George. I know you hate this answer, but again I think the
payoff is going to come later.

Don: Right. It doesn’t buy you much to add two airtime values
with a function such as add(), but it’ll be a lot more
interesting to say t3=t1+t2, just like in ordinary arithmetic.

George: Yeah, that may be cute, but what good is it? I can calculate
time values in C just by using separate variables for hours and
minutes. I don’t see that this airtime class is making my life
any easier. These sample programs he’s showing us are more
complicated than a C program would need to be.

Estelle: That’s because you’re looking at both parts of the program: the
class specification and the main() function. But suppose you
bought a whole airtime class library. Then the class
specification and all the member functions would already be
written and you wouldn’t need to put them in your listing, you
could just use an #include. You probably wouldn’t even need
to look at the source files for the class. You’d just need to
create objects and send them messages.

George: You mean define weird things and call their member functions.
Estelle: Whichever way you like to say it.
Don: You’d need a description of how the member functions

worked, like what arguments and return values to use for
add() and display() or whatever.

Estelle: Right, so you’d know how to use them. But looking up a short
description of a function is a lot easier than trying to figure it
out from the source code.

Don: Usually.
Estelle: And if you look at the listings of the programs we’ve seen so

far, about half the lines of code are the class specification. If all
you had to worry about was main(), things would be pretty
easy.

George:
Easy as chopping wood with a broom, as my granny used to
say.

Estelle: Come on, George. Get with the program.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Writing Complete OOP Programs

http://www.itknowledge.com/reference/archive/1571690638/ch02/118-122.html [21-03-2000 19:01:00]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch02/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

CHAPTER 3
ARRAYS AND STRINGS

Arrays are the most common way to combine a number of data items into a single unit. Most
computer languages include array handling in their fundamental syntax, and C++ is no exception.
Because arrays are such a fundamental data storage mechanism, I’ll devote several sessions to them.
Also, as it turns out, a text string in C++ is treated as an array of characters. So after you’ve seen
what arrays can do in general, I’ll introduce strings.

Arrays do have an important limitation: The variables stored in an array must all be of the same type.
However, you can group variables of different types together in another storage mechanism called a
structure, so I’ll talk about structures as well. Finally, I’ll introduce the enumerated data type, which
is a sort of simple way to create your own data types. Along the way, you’ll make the acquaintance of
some new and surprising classes.

Session 1: Array Fundamentals

An array is a way to group together a number of variables of a single data type. Arrays are useful
primarily because the individual variables stored in an array can be accessed using an index number.
This makes it easy to cycle through the array, accessing one variable after another.

In this session, I’ll look at the fundamentals of array syntax. Later in this chapter, you’ll see how to
put arrays to work, first as instance data in a class and then as an array of class objects.

Defining an Array

To define an array, you tell the compiler to set aside storage for a given number of data items of a
specified type. You also tell the compiler the name of the array. Here’s an example of an array
definition that creates storage for four integers. I’ll give this array the name age; perhaps it will be
used to store the ages of four people.

int age[4];

The int specifies the type of data to be stored, age is the name of the array, and 4 is the size of the
array; that is, the maximum number of variables of type int that it will hold. Brackets [] (not
braces or parentheses) surround the size. It’s the brackets that tell the compiler I’m defining an array
and not something else, such as a function. Figure 3-1 shows the format of this array definition.

Figure 3-1 Syntax of array definition

You can define arrays of any data type, of course. Here’s an array of 100 variables of type float,
called foo:

float foo[100]; // 100 floats

There is also no problem defining arrays of types you have created yourself, using classes:

airtime DenverDepartures[50]; // array of 50 airtimes

The type of the array can be any kind of class, whether it behaves like a data type or not:

HotDogStand stands[6]; // array of 6 hot dog stands

Here you have an array of objects that represent physical objects, not data types. It doesn’t matter to
the compiler.

Array Elements

Each variable stored in an array is called an element. The elements are numbered. These numbers are
called index numbers or indexes. Some people also refer to them as subscripts. The index of the first
array element is 0, the index of the second is 1, and so on. If the size of the array is n, the last element
has the index n-1. For example, in the age array, which has a size of 4, the elements are numbered 0,
1, 2, and 3. This numbering can be the source of some confusion. Keep in mind that the last element
in an array has an index one less than the size of the array.

Figure 3-2 shows the array elements for the age array stored in memory. (Here each element is
assumed to occupy 2 bytes.) The elements have been given the values 44, 16, 23, and 68. Don’t
confuse the values of the elements with their index numbers (0 to 3).

Figure 3-2 Array elements

Accessing Array Elements

You refer to individual array elements using their index numbers and the array name. Somewhat
confusingly, the brackets [] are used again, but in a different context than in defining an array. As
you can see in Figure 3-2, the first element is called age [0], the second is age [1], and so on.
You can make statements such as

age[2] = 23;

which sets element age [2] to a value, and

cout << age[3];

which displays the value of age [3] (which is 68, given the data in Figure 3-2). Remember that the
statement

int age[4];

defines an array of four elements, but the expression

age[2]

does not define an array of two elements; it refers to the third element of the array.

The real power of arrays comes from the fact that you can use a variable, rather than a constant such
as 2, as an array index. For example, you can print out all the values in the age array with the code

int age[4]; // define the array
... // (other code inserts values)
for(int j=0; j<4; ++j) // cycle through four elements
cout << age[j] << endl; // display each element

Such code is a common idiom in C++. The for loop cycles through values of j from 0 to 3, which
are simply the values of the array index needed to access each element. Notice that the expression
j<4 uses the size of the array as a limit, but restricts j to one less than this value. The output from
this fragment might be something such as

44
16
23
68

depending on what values had been inserted into the array. To set the elements of the array age to
values obtained from the user, you might say

int age[4];
...
for(int j=0; j<4; ++j)
 {
 cout << “Enter the value of element ” << j << “: ”;
 cin >> age[j];
}

Interaction with this fragment might be

Enter the value of element 0: 44 <--User enters 44, 16, etc.
Enter the value of element 1: 16
Enter the value of element 2: 23
Enter the value of element 3: 68

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Arrays and Strings

http://www.itknowledge.com/reference/archive/1571690638/ch03/123-126.html [21-03-2000 19:01:13]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
javascript:displayWindow('images/03-01.jpg',415,266)
javascript:displayWindow('images/03-01.jpg',415,266)
javascript:displayWindow('images/03-02.jpg',172,329)
javascript:displayWindow('images/03-02.jpg',172,329)
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch03/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Initializing Array Elements

You can set array elements to a value when you first define the array. Here’s an example:

int coins[6] = { 1, 5, 10, 25, 50, 100 };

The first element is initialized to 1, the second to 5, and so on. The equal sign connects the list of
values to the array definition, the values are separated by commas, and the list is delimited by
braces, as shown in Figure 3-3.

Figure 3-3 Syntax of array initialization

You could display these values with a for loop:

for(int j=0; j<6; ++j)
 cout << coins[j] << “ ”;

which would produce the output

1 5 10 25 50 100

Here’s another example:

int days_per_month[12] = { 31, 28, 31, 30, 31, 30,
 31, 31, 30, 31, 30, 31 };

A surprising feature of array initialization is that you don’t need to count how many items are
being initialized unless you want to. The definition

int coins[] = { 1, 5, 10, 25, 50, 100 };

works just as well as the earlier version, despite not specifying the array size. The compiler
cleverly counts how many values there are and uses this for the array size.

What happens if you specify an array size but it disagrees with how many initialization values
are actually on the list? If there are more values than the array size specified, the compiler
complains. If there are fewer values in the list than the array size, the compiler will simply fill
out the balance of the array with 0s. Thus if you want to initialize an array—of any size—with
all 0s, you need only say

int anarray[10] = { 0 }; // initialize 10 ints to 0

The first element is initialized to 0 explicitly and the remaining 9 are initialized to 0 because no
value is given for them. If they are not initialized, the elements of arrays declared inside a
function will have random (garbage) values. Arrays declared outside of a function or class—that
is, as external variables—are initialized to zero automatically. You’ll learn more about the
external storage class in Session 5 in Chapter 4.

Multidimensional Arrays

So far, you’ve looked only at one-dimensional arrays. You can create arrays of as many
dimensions as you like, and each dimension can be a different size. Here’s the definition of a 4
by 3 array:

float sales[4][3]; // define two-dimensional array

Notice that each array dimension is surrounded by its own set of brackets. Don’t write [4,3],
as is done in some languages. If the first dimension represents sales districts (North, South, East,
and West, say) and the second dimension represents the three months in a quarter, then I might
represent this array as shown in Figure 3-4.

Figure 3-4 Two-dimensional array

Individual array elements are accessed using two indexes. Thus in Figure 3-4, the element in the
upper-right corner of sales is sales[0][[2] and the element in the lower-left corner is
sales[3][0]. To display all the elements of such an array, you would probably use two
nested for loops.

for(int y=0; y<3; ++y) // step from row to row
 {
 for(int x=0; x<4; ++x) // step from column to column
 cout << sales[x][y] << ' '; // display value and a space
 cout << endl; // go to next line
 }

A two-dimensional array can be looked at as an array of arrays. The sales array is an array of
four subarrays, each of which has three elements. The subarrays are one-dimensional arrays
called sales[0], sales[1], and so on. This way of looking at things is important if you
want to refer to the subarrays of an array, which is common in arrays of strings, as you’ll see
later.

To initialize a two-dimensional array, make a list of lists

float sales[4][3] = { { 1437.07, 234.50, 654.01},
 { 322.00, 13838.32, 17589.88},
 { 9328.34, 934.00, 4492.30},
 {12838.29, 2332.63, 32.93} };

where each subarray is initialized with its own list of numbers separated by commas and
delimited with braces; these four lists are in turn separated by commas and delimited with braces.

If you initialize an array as shown here and then use the nested for loops to display its contents,
the output will be

1437.07, 234.50, 654.01
322.00, 13838.32, 17589.88
9328.34, 934.00, 4492.30
12838.29, 2332.63, 32.93

A three-dimensional array would be defined with the three dimensions in brackets

int cube[4][3][5]; // array of 60 ints

and its elements would be accessed with expressions such as cube[1][2][3]. Arrays of
higher dimensions can be defined and accessed similarly.

Danger: Index Out of Range

You should be aware that C++ contains no built-in mechanism to prevent a program from using
an incorrect index value. If your program generates an index value that is smaller than 0 or so
large it points beyond the last element of the array, you may be in for big trouble. If you read
data from nonexistent array elements (really memory outside your array), you will obtain
meaningless data. However, if you write data into memory outside your array, you may write
over other data, your program, or who knows what.

There are two morals here. The first is to be careful when programming arrays. The second is
that it would be nice to have a “safe array,” one that automatically checks all index values to be
sure they are in bounds. As it turns out, you can use a class to create safe arrays. I’ll return to this
topic later.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Arrays and Strings

http://www.itknowledge.com/reference/archive/1571690638/ch03/127-129.html [21-03-2000 19:01:25]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
javascript:displayWindow('images/03-03.jpg',435,220)
javascript:displayWindow('images/03-03.jpg',435,220)
javascript:displayWindow('images/03-04.jpg',474,494)
javascript:displayWindow('images/03-04.jpg',474,494)
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch03/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Quiz 1

1. To specify an array of 30 variables of type char you would say

a. int[30] array_name;
b. char array_name[30];
c. array_name char[30];
d. char[30] array_name;
e. array_name[30];

2. To access the last element of an int array alpha of 10 elements, you would say

a. int[10]
b. int[9]
c. int alpha[0]
d. alpha[10]
e. alpha[9]

3. A for loop to access all the elements of an array of size 7 would most likely be
written as

a. for(k=1; k<10; ++k)
b. for(k=1; k<7; ++k)
c. for(k=1; k<=10; ++k)
d. for(k=0; k<=7; ++k)
e. for(k=0; k<7; ++k)

4. To initialize an array to the squares of the first six integers, you could write

a. int squares[6] = { 1, 4, 9, 16, 25, 36 };
b. int squares[6] = { [1], [4], [9], [16], [25], [36] };
c. int squares[] = {1; 4; 9; 16; 25; 36};
d. int squares{6} = {1, 4, 9, 16, 25, 36};
e. int squares[] = (1, 4, 9, 16, 25, 36);

5. In the two-dimensional array defined as int addr[2][20]; that represents the
starting and ending locations (in that order) of 20 programs (don’t worry about what
“location” means), you would refer to the ending address of the third program as

a. addr[2][20]
b. addr[1][2]
c. addr[2][1]
d. addr[2][3]
e. addr[3][2]

Since I am concentrating on syntax rather than complete programs in this session, there are no
exercises.

Session 2: Arrays as Instance Data

An array, like any other variable, can be used as instance data in classes. Let’s look at an
example in a class called employee. This class, as you might have guessed, models people
who are employees of a company. In this version of the class, the information about the
employees is not very complete; it is limited to a name and an employee serial number. A
full-scale employee class would include other data, such as home address, salary, position, and
date of first employment.

You may wonder, because you have not yet learned about strings (used in C++ for storing text),
how I am able to store a name such as John Smith. In this program, I treat a name simply as an
array of individual characters and I input and output each character separately. In other words, I
make my own strings “by hand.” This demonstrates how arrays work and may provide the
motivation for learning how to handle strings in a more efficient way (by terminating a string
with a zero), which I’ll get to in Session 4. Figure 3-5 shows an example of a homemade string
stored in memory.

Figure 3-5 Text stored in a homemade string

The employee Class

The employee class contains three data items: an array of type char to hold the letters of a
name, an integer n that specifies the length of the name (i.e., how many characters are currently
stored in the array), and another integer for the employee serial number. The member functions
that obtain and display this data for the user are called input() and output(), respectively.
Listing 3-1 shows EMPLOY1.

Listing 3-1 EMPLOY1

// employ1.cpp
// models an employee
// uses array of type char for name

#include <iostream.h>
#include <conio.h> // for getche()

class employee
 {
 private:
 char name[20]; // name (20 chars max)
 int n; // length of name
 int serial_number;
 public:
 void input() // get data from user
 {
 char ch;
 n = 0;
 cout << “ Enter name: ”;
 do
 {
 ch = getche(); // get one char at a time
 name[n] = ch; // store in “name” array
 ++n;
 } while(ch != '\r'); // quit if “Enter” key
 cout << “\n Enter serial number: ”;
 cin >> serial_number;
 }
 void output() // display employee data
 {
 cout << “ Name = ”;
 for(int j=0; j<n; ++j) // display one character
 cout << name[j]; // at a time
 cout << “\n Serial number = ” << serial_number;
 }
 };

void main()
 {
 employee e1, e2;

 cout << “Enter employee 1 data” << endl;
 e1.input();
 cout << “Enter employee 2 data” << endl;
 e2.input();

 cout << “\nEmployee 1” << endl;
 e1.output();
 cout << “\nEmployee 2” << endl;
 e2.output();
}

I must confess that this source file may elicit warning messages from the compiler, such as
“Functions containing do are not expanded inline” and “Functions containing for are not
expanded inline.” (Your compiler may generate somewhat different messages.) The compiler
prefers that I use standalone member functions when the functions contain loops. You’ll see
what this means when I discuss functions in Chapter 4. In the meantime, don’t worry about
these messages. The compiler will do the right thing.

In main(), the program creates two employee objects, gets the data from the user for each
one, and then displays the data. Some sample interaction with the program looks like this:

Enter employee 1 data <--User enters data
 Enter name: George Harrison
 Enter serial number: 1119
Enter employee 2 data
 Enter name: Paul McCartney
 Enter serial number: 2229

Employee 1 <--Program displays data
 Name = George Harrison
 Serial number = 1119
Employee 2
 Name = Paul McCartney
 Serial number = 2229

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Arrays and Strings

http://www.itknowledge.com/reference/archive/1571690638/ch03/130-133.html [21-03-2000 19:01:35]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
javascript:displayWindow('images/03-05.jpg',496,381)
javascript:displayWindow('images/03-05.jpg',496,381)
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch03/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Library Function getche()

I used a new library function in the EMPLOY1 program. A weakness of the stream I/O

approach to C++ is that there’s no way to input a character without pressing the key

afterward. However, if you’re typing a name, you don’t want to press after every
character. Fortunately, the C function library contains a function that does just what we want:
getche(). This function waits until a single key is pressed on the keyboard and then returns

with the ASCII value of the key. There’s no need to press to get the character. The
getche() function requires that the CONIO.H header file be included. I used this function in
a do loop to obtain all the letters of the employee name.

do
 {
 ch = getche(); // get one char at a time
 name[n] = ch; // store in “name” array
 ++n; // increment the array index
 } while(ch != '\r'); // quit if “Enter” key

Each time through the loop, the getche() function returns with a new character, which is
then assigned to an array element. The index n starts at 0 and is incremented each time
through the loop by the ++n; statement. (I’ll show a more compact way to increment n in a
moment.)

The Key

What is the ASCII code for the key? It turns out it’s 13 (decimal), but you don’t
really need to know this, because the escape code ‘\r’ (for carriage Return) represents this
code. When the program encounters this code, it exits from the do loop. At this point, it
obtains the serial number from the user, a simpler process.

Displaying a name is the reverse of storing it. The program goes through the array one
character at a time, using a for loop, displaying each one.

for(int j=0; j<n; ++j) // display one character
 cout << name[j]; // at a time

The program knows how long the name is because it counted the incoming characters with n,
which is included as instance data for the class so it can be accessed by all member functions.
(When I discuss real C strings, you’ll see that you don’t need to store a string length.)

Postfix Increment Operators

When I store characters in the array name, I want to start with the array index of 0, as usual,
and then increment this index for each additional character. I do this with the code

name[n] = ch; // store the character
++n; // increment the index

The second line here is rather short; it’s too bad I need to devote a whole line of code to it. In
fact, it would be nice if I could cause n to be incremented inside the same statement in which
it’s used as the array index. Here’s how this might look:

name[++n] = ch;

Can I actually do this? Well, it’s perfectly legal syntax as far as the compiler is concerned.
However, there’s a glitch. The index n starts off at 0, and I want to put the first character in
array element 0, so I don’t want to increment n until after the contents of ch have been
placed in the array. Unfortunately, ++n causes n to be incremented before it is used. The
result will be that the first character of the name will go in name[1] instead of in name[0].

Is there a way to increment n after it’s used? The designers of C and C++ anticipated just this
situation and built the necessary capability into the increment and decrement operators. Here’s
the statement rewritten so it works properly:

name[n++] = ch;

When the ++ operator follows its operand, it’s called a postfix operator. When it precedes its
operand, as you’ve seen several times before, it’s called a prefix operator. The prefix operator
is applied before the value of the variable is used, whereas the postfix operator is used after
the variable is used. This is summarized as follows.

++n Prefix operator Incremented before being used
n++ Postfix operator Incremented after being used

Using the postfix operator, I can rewrite the do loop in EMPLOY1 as

do
 {
 ch = getche(); // get one char at a time
 name[n++] = ch; // store in “name” array
 } while(ch != '\r'); // quit if “Enter” key

This saves a line of code, which is widely believed to make the listing more readable. You
will not be surprised to learn that there is a postfix version of the decrement operator (n--) as
well as of the increment operator.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Arrays and Strings

http://www.itknowledge.com/reference/archive/1571690638/ch03/133-135.html [21-03-2000 19:01:46]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch03/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

The Stack Class

An array is a built-in way to store data, but arrays are inappropriate in many situations. A
major task of programming is creating other data-storage structures such as linked lists,
stacks, queues, hash tables, dictionaries, and vectors. (Here the word structure is used in a
general sense to mean any mechanism that stores data, not in reference to the C++ struct,
which you’ll encounter later.) Each such storage structure has advantages and disadvantages.
It’s faster to access a random data item or easier to add an item using some containers,
whereas using others, it’s easier to search or sort the data.

As it turns out, data storage structures belong in another category that lends itself to being
modeled by classes. Along with real-world objects such as hot dog stands and data types
such as time, you can also model arrays, linked lists, and so on.

Let’s look at an example in which a class models a stack. A stack is a data storage structure
that is convenient when you want to access the most recently stored data item first. This is
often referred to as LIFO, for Last In First Out. It’s like a stack of trays in a cafeteria. The
dishwasher puts trays on the stack and customers take them off. The last tray placed on the
stack goes on top, so it’s the first one to be removed. (That’s why the tray you get is often
still warm and damp; it’s been recently washed. Trays at the bottom of the stack may have
been there, unused, for weeks.)

Stacks are useful in many programming situations, such as parsing algebraic expressions
like 2*x+4*(3+y), where they are convenient for storing intermediate results. Hewlett
Packard calculators use a stack-based approach to calculations.

Pushing and Popping

Stacks can hold any kind of data, from basic types to complicated class objects. However,
like an array, each stack usually holds only one kind of data, int or float or whatever,
but not a mixture. (You can avoid this limitation if you use templates, which you’ll
encounter in Chapter 11.) When you place a value on a stack, you are said to push it; when
you take a value off, it’s called popping it. Figure 3-6 shows what this looks like.

Figure 3-6 Pushing and popping from a stack

In this example, I use an array, as instance data of the Stack class, to store a number of
integers. Listing 3-2 shows STACK1, which specifies the Stack class and then tests it by
creating a stack, pushing three integers on it, and then popping them back off and displaying
them.

Listing 3-2 STACK1

// stack1.cpp
// class models a stack

#include <iostream.h>

class Stack // a stack holds up to 20 ints
 {
 private:
 int st[20]; // integers are stored in array
 int top; // index of last item pushed
 public:
 void init() // initialize index
 {
 top = -1;
 }
 void push(int var) // place an item on the stack
 {
 st[++top] = var;
 }
 int pop() // remove an item from the stack
 {
 return st[top--];
 }
 };

void main()
 {
 Stack s1; // create a stack object

 s1.init(); // initialize it
 s1.push(11); // push 3 items onto stack
 s1.push(12);
 s1.push(13);

 cout << s1.pop() << endl; // pop 3 items and display them
 cout << s1.pop() << endl;
 cout << s1.pop() << endl;
 }

When you pop items off a stack, they appear in reversed order. Thus the output from this
program is

13
12

Notice that I use both prefix and postfix operators to manipulate the array index. This
instance variable, top, represents the top of the stack. (Think of a pointer to the top
cafeteria tray.) It’s initialized to -1 with the init() member function when main() first
starts. When items are pushed, top is incremented first (++top), and only then used as the
index, so top always points one place beyond the last item pushed. When items are popped,
they are accessed first and then the index is decremented (top--), so top again points just
above the top of the stack.

An Array Disguised as a Stack

The actual instance data, st, which is used as the storage mechanism in an object of the
Stack class, is an ordinary array of type int. However, to the user, a Stack object seems
to operate like a stack: Data is added and removed with the push() and pop() member
functions, rather than with index numbers as in an array. The Stack class wraps an array
with class member functions so it looks, to the user, like a completely different storage
mechanism.

This is a common theme in OOP classes: They create a new interface between the
programmer and the data. An example of this is the use of classes to wrap the basic
Windows Application Program Interface (API) functions in a new and presumably
easier-to-use set of classes and member functions.

Not a Constructor

Initializing top to -1 using a function like init(), as I do in the STACK1 program, is not
the favored approach in OOP. One reason is that the programmer who writes main() must
remember to call this init() function every time an object (in this example, the Stack
object s1) is created. According to Murphy’s law, anything that can be forgotten, will
eventually be forgotten, so init() is not a good idea. The solution to this is the
constructor, which I’ll discuss in Chapter 5.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Arrays and Strings

http://www.itknowledge.com/reference/archive/1571690638/ch03/135-137.html [21-03-2000 19:01:55]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
javascript:displayWindow('images/03-06.jpg',445,406)
javascript:displayWindow('images/03-06.jpg',445,406)
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch03/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Quiz 2

1. To insert into an array the characters that constitute a name (such as John Smith)
entered by the user, you might say

a. j=0; while(ch != ‘ ‘) { ch=getche();
charray[++j]=ch; }

b. j=1; while(ch != ‘\r’) { ch=getche();
charray[++j]=ch; }

c. j=0; while(ch != ‘\r’) { ch=getche();
charray[j++]=ch; }

d. j=1; while(ch != ‘ ‘) { ch=charray[j++];
getche(ch); }

e. j=0; while(ch != 13) { ch=charray[++j]; getche(ch);
}

2. The employee class in the EMPLOY1 program

a. contains an instance data item that holds the names of all the employees.

b. stores data for a number of employees in each object.

c. includes a member function that displays an employee’s name and serial
number.

d. requires the length of the name data item to be initialized to -1.

e. requires that main() create an array of employee objects.

3. Data storage structures such as stacks and linked lists

a. can be implemented with classes.

b. must be implemented with classes.

c. should not be implemented with classes.

d. exist because an array isn’t always the most useful approach to data storage.

e. can store data using a different approach than an array.

4. When you push a data item onto a stack in the STACK1 program, you are actually

a. creating an object.

b. reading data.

c. calling an object’s member function.

d. inserting the data item in array position 0.

e. storing the data item in an array.

5. Which of the following arrangements of Stack class member functions would
work together properly, without wasting space?

a.

 void init() { top = 1; }
 void push(int var) { st[--top] = var; }
 int pop() { return st[top++]; }

b.

 void init() { top = 0; }
 void push(int var) { st[++top] = var; }
 int pop() { return st[top--]; }

c.

 void init() { top = -1; }
 void push(int var) { st[++top] = var; }
 int pop() { return st[top--]; }

d.

 void init() { top = 0; }
 void push(int var) { st[top++] = var; }
 int pop() { return st[--top]; }

e.

 void init() { top = -1; }
 void push(int var) { st[++top] = var; }
 int pop() { return st[--top]; }

Exercise 1

Seven years after an employee leaves the Amalgamated Widgets company, the employee
records are purged of all information about that employee. Add a member function
called purge() to the employee class of the EMPLOY1 program. It should write over
the existing data for an employee so that when displayed, the name will have no
characters and the serial number will be 0. Modify main() so it tests this function.

Exercise 2

Sometimes it’s useful to examine the data item at the top of a stack without actually
popping the item off the stack. (That is, after you’ve read its value, the item remains at
the top of the stack.) A member function that does this is traditionally called peek().
Write such a function that works with the Stack class of the STACK1 program. Modify
main() to check it out.

Session 3: Arrays of Objects

Just as there can be objects with arrays in them, there can also be arrays of objects. This
is a particularly useful construction. You will often want to treat a large number of
objects of the same class in a similar way. For example, you may want to display the
data from 100 employee objects. Placing the objects in an array and using a loop with
a member function in it is a simple way to carry out this task.

Defining an Array of Objects

The syntax for defining an array of objects is the same as that for defining an array of a
basic type. Of course, you must place the class specification in your file before you try to
define any arrays of objects (or single objects, for that matter). If you have already
created the specification for the Xerxes class, for example, then you can define an
array of objects of this class, called Xarray, like this:

Xerxes Xarray[5]; // array of 5 Xerxes objects

All the data for each object in the array is stored contiguously in memory. If you assume
that the specification for the Xerxes class looks like this:

class Xerxes
 {
 private:
 int ivar;
 float fvar;
 public:
 // member functions go here
 };

then the elements of the array Xarray, each of which is an object of the class Xerxes,
will look as shown in Figure 3-7.

Figure 3-7 Elements of Xarray in memory

New Syntax for Access

As it happens, you need to learn a new syntax, or at least a variation on some old syntax,
to reference member functions of objects stored in an array. Suppose you have a
specification for a class X like this:

class Xerxes
 {
 ...
 public:
 void afunc()
 {
 // does something here
 }
 };

and further suppose that in main(), you’ve defined an array to 10 objects of class X

Xerxes xa[10]; // array xa of 10 objects of class Xerxes

Now the question is, how do you call the member function afunc() for the object that
is in, say, the third element of the array xa? You know you can’t say

xa.afunc(); // no good; xa is an array, not a single variable

because this gives no indication of which element in the xa array is calling the function.
You need to mix array notation with the dot operator, like this:

xa[2].afunc(); // accesses afunc() for the third object in xa

This syntax is straightforward, although it looks a little odd at first. Notice that the
subscript operator ([]) has higher precedence than the dot operator, so the expression
is interpreted as (xa[2]).afunc() and not as xa([2].afunc()). Let’s see how
this syntax is used in an actual program.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Arrays and Strings

http://www.itknowledge.com/reference/archive/1571690638/ch03/138-141.html [21-03-2000 19:02:04]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
javascript:displayWindow('images/03-07.jpg',245,620)
javascript:displayWindow('images/03-07.jpg',245,620)
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch03/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Array of airtime Objects

I’ll use the same airtime class I introduced in the TIMERET program in Chapter 2.
In main() the program defines an array of airtime objects, obtains data for as
many such objects as the user wants to type, and finally, when the user has finished
with input, the program displays all the data. Listing 3-3 shows ARRAYAIR.

Listing 3-3 ARRAYAIR

// arrayair.cpp
// creates array of airtime objects

#include <iostream.h>
#include <iomanip.h> // for setw(), etc.

class airtime
 {
 private:
 int minutes; // 0 to 59
 int hours; // 0 to 23
 public:
 void set()
 {
 char dummy; // for colon

 cout << “Enter time (format 23:59): ”;
 cin >> hours >> dummy >> minutes;
 }
 void display()
 {
 cout << hours << ':'
 << setfill('0') << setw(2) << minutes;
 }
 };

void main()
 {
 airtime at[20]; // array of 20 airtime objects
 int n=0; // number of airtimes in array
 char choice;

 do
 { // get time from user
 cout << “Airtime ” << n << “. ”;
 at[n++].set(); // and insert in array
 cout << “Do another (y/n)? ”;
 cin >> choice;
 } while(choice != 'n');

 for(int j=0; j<n; ++j) // display every airtime
 { // in the array
 cout << “\nAirtime ” << j << “ = ”;
 at[j].display();
 }
 }

Some sample interaction with the program looks like this:

Airtime 0. Enter time (format 23:59): 1:01
Do another (y/n)? y
Airtime 1. Enter time (format 23:59): 23:30
Do another (y/n)? y
Airtime 2. Enter time (format 23:59): 10:00
Do another (y/n)? n

Airtime 0 = 1:01
Airtime 1 = 23:30
Airtime 2 = 10:00

The important statements in ARRAYAIR are

at[n++].set(); // insert data into object in array

which calls the set() member function so the user can enter data for the object in the
array at index n (and which subsequently increments n) and

at[j].display(); // display data from object in array

which calls the display() member function to display the data for the object stored
at index j.

Array of employee Objects

In a similar way, I can define an array of objects of type employee, last seen in the
EMPLOY1 program earlier in this chapter. Listing 3-4 shows ARRAYEMP.

Listing 3-4 ARRAYEMP

// arrayemp.cpp
// models an employee
// uses array of employees

#include <iostream.h>
#include <conio.h> // for getche()

class employee
 {
 private:
 char name[20]; // name (20 chars max)
 int n; // length of name
 int serial_number;
 public:
 void input() // get data from user
 {
 char ch;
 n = 0;
 cout << “ Enter name: ”;
 do
 {
 ch = getche(); // get one char at a time
 name[n++] = ch; // store in “name” array
 } while(ch != '\r'); // quit if “Enter” key
 cout << “\n Enter serial number: ”;
 cin >> serial_number;
 }
 void output() // display employee data
 {
 cout << “ Name = ”;
 for(int j=0; j<n; ++j) // display one character
 cout << name[j]; // at a time
 cout << “\n Serial number = ” << serial_number;
 }
 };

void main()
 {
 employee emps[100]; // array of employee objects
 int n = 0; // number of objects in array
 char choice;

 do
 {
 cout << “Enter employee ” << n << “ data” << endl;
 emps[n++].input(); // get data
 cout << “Do another (y/n)? ”;
 cin >> choice;
 } while(choice != 'n');

 for(int j=0; j<n; j++)
 {
 cout << “\nData for employee ” << j << endl;
 emps[j].output(); // display data
 }
}

There should be no surprises in the operation of this program. The class specification
for employee is the same as in earlier examples, and the array of objects is handled
as it was in ARRAYAIR. Sample interaction with the program looks like this:

Enter employee 0 data
 Enter name: Henry James
 Enter serial number: 1119
Do another (y/n)? y
Enter employee 1 data
 Enter name: Nathaniel Hawthorne
 Enter serial number: 2229
Do another (y/n)? y
Enter employee 2 data
 Enter name: Edgar Allan Poe
 Enter serial number: 3339
Do another (y/n)? n
Data for employee 0
 Name = Henry James
 Serial number = 1119
Data for employee 1
 Name = Nathaniel Hawthorne
 Serial number = 2229
Data for employee 2
 Name = Edgar Allan Poe
 Serial number = 3339

One trouble with arrays is that you must declare an array that can hold the largest
number of objects that you will ever expect to be placed in it. Most of the time, the
array will hold fewer objects, so memory space is wasted. A linked list, or an array of
pointers to objects, can reduce this kind of memory extravagance, as you’ll see later.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Arrays and Strings

http://www.itknowledge.com/reference/archive/1571690638/ch03/141-144.html [21-03-2000 19:02:10]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch03/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Quiz 3

1. The member function f() takes no arguments. To call this function for the fourth
element in an array arr of objects of type X, you would say

a. f().arr[3];
b. f(X).arr[3];
c. arr.f(X);
d. arr[3].f();
e. X arr.f()[3];

2. Suppose you have a two-dimensional array of airtime values, defined as

airtime aat[50][100];

How would you call the display() member function for the airtime variable
located at the 25th element in the 20th subarray?

a. aat[19, 24].display();
b. aat[19][24].display();
c. aat[24][19].display();
d. aat.display([24][19]);
e. aat[25][20].display();

3. An array of objects is useful when

a. there are many objects of the same class.

b. a number of objects of different classes must be stored and accessed.

c. a number of objects will all have the same values in their instance data.

d. there are many variables of the same basic type to store as class instance data.

e. a number of objects all have the same member functions.

4. Assume that n is 5 just before the statement emps[n++].input();, taken from
the ARRAYEMP program, is executed. You can conclude that

a. the sixth element of the array will be accessed.

b. the statement contains a subtle bug.

c. no additional statement is necessary to move the index to the next array
element.

d. no elements of emps will be modified.

e. data will be obtained from the user and placed in an object of type employee.

5. In the ARRAYEMP program, assume the user has entered three employees called
Henry James, Nathaniel Hawthorne, and Edgar Allan Poe (as in the example). How
many bytes of memory are allocated to storing names?

a. 45

b. 2,000

c. 48

d. 60

e. 51

Exercise 1

Start with the program HOTDOG3 from Session 4 in Chapter 2. Write a program that uses the
HotDogStand class, allows the user to enter data for up to 10 hot dog stands, and then
displays the data for all the stands, as in the arrayemp program. Use an array to hold the
HotDogStand objects.

Exercise 2

Starting with the program in Exercise 1, modify main() so the user can choose what action to
take by entering one of four letters: ‘i’ to initialize the data at a particular stand, ‘s’ to
record a sale at a particular stand, ‘r’ to report the current data for all the stands, or ‘q’ to
quit the program. You may want to use a switch statement to select among these choices and
a while or do loop to cycle repeatedly through the switch.

Session 4: Strings

You learned in Session 2 in this chapter that text—such as a name—can be treated strictly as an
array of characters. Loops can be used to input and output the text from such arrays, one
character at a time. This is all a little awkward. Text is so common in computer programs that
having to program a loop every time text must be handled is not acceptable. Fortunately, C++
provides a sophisticated repertoire of ways to simplify text handling.

The C++ method of text handling treats text as a string, which is a sequence of characters
terminated by a special character. This approach to text was developed in C, long before the
arrival of OOP, so such strings are not object oriented. I will sometimes call them C strings to
avoid confusion with more sophisticated string classes, which can be created only in C++.
However, in most cases the context is clear, and I’ll simply call them strings.

Although they are old fashioned, strings are a key feature of both C and C++ programming, and
often form the foundation of more sophisticated string classes. It’s therefore important to learn
about strings, which is what you’ll do in the next few lessons.

String Variables

A string is a sequence of characters in which the last character has a numerical value of 0
(zero). As a character, this value can be represented by the escape sequence ‘\0’. It is often
called the null character. Using a special value like this to indicate the end of a text string
means that there is no reason to store the length of the text as a separate integer value, as I did
in the EMPLOY1 program. Instead, string-handling routines look for the ‘\0’ to determine
when the string ends.

A string variable is an array of type char. Like other variables, it may or may not contain a
value at any given time. Here’s how you would define a string variable called str:

char str[80]; // string variable; can hold up to 80 characters

When the string variable is first created, no value is stored in it. Unlike variables of basic types,
string variables can be different sizes; this one can hold a string of up to 80 characters.

Although they are really arrays of type char, C++ treats strings in some ways like a basic data
type such as int. For one thing, cin and cout know how to handle strings, so you can use
ordinary stream I/O to input or output a string with a single statement. Here’s how you would
create a string variable, read some text into it from the keyboard, and then display this same
text:

char str[80]; // create a string variable str

cin >> str; // get text from user, store in str
<< str; // display text entered by user

The user types the characters of the string and then presses . (As you know, this is
called entering the text.) Figure 3-8 shows how the array str looks in memory after the user
has entered the string “Amanuensis” (which means one employed to copy manuscripts).

Figure 3-8 String stored in string variable

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Arrays and Strings

http://www.itknowledge.com/reference/archive/1571690638/ch03/144-147.html [21-03-2000 19:02:20]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
javascript:displayWindow('images/03-08.jpg',350,398)
javascript:displayWindow('images/03-08.jpg',350,398)
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch03/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

String Constants

You can initialize a string variable to a value when you define it, just as you can
with other variables. Here’s one way to initialize a string variable called name to
the string “George”:

char name[20] = {'G', 'e', 'o', 'r', 'g', 'e', '\0'};

This is the format used to initialize arrays of other types: a list of values separated
by commas. However, typing all those quotes and commas is inefficient to say the
least, so the designers of C and C++ took pity on us and acknowledged that strings
were slightly more than arrays of type char by allowing this kind of initialization:

char name[20] = “George”;

where double (not single) quotes delimit text. A sequence of characters surrounded
by double quotes like this is called a string constant. Although you can’t see it, a
null ‘\0’) is included as the last character of this string constant “George”; it’s
inserted automatically by the compiler. Thus, although there are only six characters
in the name George, there are seven characters in the string constant “George”:
six letters and the ‘\0’ character. If you’re creating a string variable, you must
keep this in mind. The array you define must be large enough to hold the largest
number of characters you will ever store in it plus one more for the null character.

char name[6] = “George”; // not OK, the '\0' won't fit
char name[7] = “George”; // OK, it just fits

A string constant is a value that can be placed in a string variable. You might
wonder whether this means you can say

name = “George”; // illegal

Alas, this doesn’t work. In this situation, C++ thinks of a string variable as an array,
and you can’t use the equal sign to assign a whole bunch of values to an array, even
though the equal sign is used to initialize an array. (Later you’ll see that you can
make the equal sign do anything you want by overloading it.)

As with any array, you don’t need to specify the number of elements in a string
variable if you initialize it when you define it. You can say

char somestring[] = “Four score and seven years ago”;

and the compiler will make somestring just the right length to hold the string
constant (including the null character). This can save you a lot of counting.

Improved String I/O

I’ve mentioned that you can use cout and cin for strings.

char str[80];

cin >> str; // get string from user, store in str
cout << str; // display string entered by user

Some sample interaction with this program fragment might look like this:

Caramba! <--user enters this
Caramba! <--program displays this

Used in this way, with the overloaded >> operator, cin has an unfortunate
drawback. Once it encounters a space (the ‘ ‘ character) typed by the user, it
stops reading the input, so you might have the following interchange with this
program:

Law is a bottomless pit.
 Law

Only the word “Law” is stored in str. Everything else the user typed is lost. To
fix this, you must resort to another construction: the get() member function of
the istream class. I won’t explore stream classes in detail until Chapter 10, but
you can use their member functions without knowing much about them. To read a
string that may contain blanks, you can use this construction:

char str[80];

cin.get(str, 80); // get string from user
cout << str; // display string

Not only does get() handle input that contains blanks, it also provides an easy
way to ensure that the user won’t overflow the string array. The first argument to
get() is the name of the array where the string will be stored; the second is the
maximum length of the string that can be accepted. This length includes the null
character, so you can use the same number here that you use for the size of the
array. You can then input strings of up to, in this case, 79 characters.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Arrays and Strings

http://www.itknowledge.com/reference/archive/1571690638/ch03/147-149.html [21-03-2000 19:02:26]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch03/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Using const Variables

The code fragment just shown provides the motivation to introduce a new keyword. Notice
that the number 80 appears in two places: as the size of the array str and as the maximum
number of characters that can be placed in that array by cin.get(). These numbers should
be the same; if they’re not, the input from get() may overflow the array, or—less
seriously—space may be wasted in the array because get() can’t fill it up.

To ensure that these numbers are the same, it’s desirable to use a variable instead of a
numerical constant, like this:

int size = 80; // array size

char str[size]; // define array

cin.get(str, size); // get string from user
cout << str; // display string

Now if you change the value of size in the first statement, making size equal to 40, for
example, then both the array size and the character limit in cin.get() will be changed
automatically, ensuring they remain the same.

This is a safer way to program, but I can go further. An array size cannot be modified during
the course of a program. This implies that the variable size should be a constant, so that the
programmer is prevented from inadvertently modifying it. But how can a variable be a
constant? I can mandate this seeming contradiction using the keyword const. This keyword
is used in the definition of a variable that cannot change its value during the course of the
program. Here’s how you might use const:

const int SIZE = 80; // array size: cannot be changed

char str[SIZE]; // define array

cin.get(str, SIZE); // get string from user
cout << str; // display string

I use all uppercase letters as a reminder that SIZE is a constant. Now I can change the value
of SIZE if I want, but only by rewriting its declaration and recompiling the program.
Attempts by other program statements to modify it will elicit a compiler error. Because it
cannot be changed, a const variable must be initialized to a value when it’s first defined.

Old-time C programmers may remember when a preprocessor directive, #define, was used
to create constants, as in

#define SIZE 80

This construction can also be used in C++, but it has fallen out of favor because no data type
can be applied to the name, which means the compiler can’t verify that the correct type is
used. This makes programs potentially more error prone.

The const keyword can be used to improve program reliability in a variety of other
situations, notably with function arguments. I’ll explore these possibilities in Session 7 in
Chapter 5.

Eating Extra Characters

Nothing is perfect, and sometimes when you mix cin.get() with cin >>, a problem
arises (at least with some compilers). For example, suppose you say

cout << “Enter the patient's age: ”;
cin >> age; // get a number
cout << “Enter the patient's name: ”
cin.get(name, SIZE); // get a string

The name may not be obtained from the user. Instead, the program appears to skip right over
the last statement. Why is this? Because, following the input of the number age, a newline
character ‘\n’) is left behind in the input buffer. When cin.get() is executed, it reads the
new line from the buffer, assumes this is all there is to read, and exits. To get rid of this new
line, I can employ another member function of istream, called ignore(). Here’s the
revised code:

cout << “Enter the patient's age: ”;
cin >> age; // get a number
cin.ignore(10, '\n'); // eat the newline
cout << “Enter the patient's name: ”
cin.get(name, SIZE); // get a string

Here the ignore() function reads and discards up to 10 characters (which probably won’t
be there) and the new line. The moral: If you’re having trouble using cin.get(), try using
cin.ignore() to eat any extra new lines first.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Arrays and Strings

http://www.itknowledge.com/reference/archive/1571690638/ch03/149-150.html [21-03-2000 19:02:34]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch03/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Real Strings for the employee Class

Earlier in this chapter, I showed several programs that used the employee class. In this class,
I stored the employee’s name as a simple array of characters, not as a real null-terminated
string. Let’s rewrite this class to use real strings. This will simplify input and output, because I
can use cin and cout for text, instead of for loops. I’ll also add a switch statement to
main() so the user can operate the program interactively, choosing repeatedly from a list of
options. Listing 3-5 shows STREMP.

Listing 3-5 STREMP

// stremp.cpp
// models database of employees
// uses switch statement for user choice

#include <iostream.h>
const int SMAX = 21; // maximum length of strings
const int EMAX = 100; // maximum number of employees

class employee
 {
 private:
 char name[SMAX]; // name (20 chars max)
 int serial_number;
 public:
 void input() // get data from user
 {
 cout << “ Enter name: ”;
 cin.get(name, SMAX);
 cout << “ Enter serial number: ”;
 cin >> serial_number;
 }

 void output() // display employee data
 {
 cout << “ Name = ” << name;
 cout << “\n Serial number = ” << serial_number;
 }
 };

void main()
 {
 employee emps[EMAX]; // array of employee objects
 int n = 0; // current number of objects in array
 int j; // loop variable
 char choice = 'x'; // (ensure it's not 'q')

 while(choice != 'q') // exit on 'q'
 {
 cout << “\n'a' to add an employee”
 “\n'd' to display all employees”
 “\n'q' to quit program”
 “\nEnter letter choice: ”;
 cin >> choice; // get user's choice
 cin.ignore(10, '\n'); // eat extra '\n'

 switch(choice)
 {
 case 'a': // get employee data
 cout << “Enter data for employee ” << (n+1) << endl;
 emps[n++].input();
 break;
 case 'd': // display all employees
 for(j=0; j<n; j++)
 {
 cout << “\nData for employee ” << (j+1) << endl;
 emps[j].output();
 }
 break;
 case 'q': // let the while loop
 break; // terminate the program
 default:
 cout << “Unknown command”;
 break;
 } // end switch
 } // end while
 } // end main()

String I/O

Notice how using real strings simplifies the input() and output() member functions of
employee. The do and for loops have vanished.

I use cin.get() to read the employee’s name in the input() member function. This
requires that I use cin.ignore() in main() to eat the ‘\n’ after the user’s letter choice
so cin.get() won’t become confused.

The switch statement embedded in a while loop makes the program interactive. It displays
a list of possible letter choices; when the user enters one, the program carries out the
appropriate task before returning to the list of choices. Here’s some sample interaction with
STREMP:

'a' to add an employee
'd' to display all employees
'q' to quit program

Enter letter choice: a

Enter data for employee 1 <--input employee 1
 Enter name: James Joyce
 Enter serial number: 1117
'a' to add an employee
'd' to display all employees
'q' to quit program

Enter letter choice: a

Enter data for employee 2 <--input employee 2
 Enter name: Henry James
 Enter serial number: 2227

'a' to add an employee
'd' to display all employees
'q' to quit program
Enter letter choice: d <--display all employees

Data for employee 1
 Name = James Joyce
 Serial number = 1117
Data for employee 2
 Name = Henry James
 Serial number = 2227

'a' to add an employee
'd' to display all employees
'q' to quit program
Enter letter choice: q <-- quit the program

External Variables

I should mention that SMAX and EMAX are defined in a new way. The variables you’ve seen
before have been defined either inside a class or inside the main() function. SMAX and EMAX
, on the other hand, are defined outside of everything: There are no braces surrounding them.
Variables defined this way are called external variables. External variables are accessible to all
parts of the program, whereas variables defined within a class are accessible only within the
class and variables defined inside a function are accessible only within the function. I’ll delve
into external variables Session 5 in Chapter 4.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Arrays and Strings

http://www.itknowledge.com/reference/archive/1571690638/ch03/150-153.html [21-03-2000 19:02:42]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch03/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Quiz 4

1. In C and C++, a string constant

a. has a character with a numerical value of 0 (zero) at the
end.

b. has a character count stored in memory along with it.

c. can be assigned to any string variable using the = operater.

d. is terminated by the null character ‘\n’.

e. must be manipulated one character at a time for
input/output.

2. Which of the following correctly defines a string variable?

a. char stringvar[8] = “piggyback”;
b. char stringvar[8];
c. char “piggyback”;
d. stringvar[8] = “piggyback”;
e. char stringvar[80] = “rolling stone”;

3. The expression cin.get(buff, MAX)

a. displays characters.

b. reads from the keyboard.

c. obtains up to MAX characters and places them in buff.

d. implies that buff should be an array of MAX characters.

e. is identical to cin >> buff.

4. The keyword const, used when declaring a variable,

a. implies that the variable’s value can be changed only by
member functions of the const class.

b. implies that the variable’s value cannot be assigned to
another variable.

c. implies that the variable must be given a value at the same
time it’s defined.

d. creates variables that can be used for storing keyboard
input.

e. implies that the variable’s value won’t be changed by other
program statements.

5. The architecture of an interactive program, where the user enters
one-letter choices, might reasonably involve

a. a switch in a while loop.

b. a switch in a for loop.

c. an else if ladder in a for loop.

d. an else if ladder in a do loop.

e. no loops at all.

Exercise 1

Modify the employee class in the STREMP program of this lesson so that
it includes an additional item of instance data to hold the employee’s title,
such as “Editorial Assistant”, “Vice-president of Marketing”, “Laborer”,
and so forth. This modified class should work with the same main()
found in STREMP.

Exercise 2

Write a class called book that contains the data necessary to manage books
in a bookstore. This includes the title, publisher, price, and quantity on
hand. Write a main() that stores book objects in an array and allows the
user to add a book to the array interactively, display all the books, and sell a
book by decrementing the number on hand.

Midchapter Discussion

Don: Well, at least arrays are pretty straightforward.
George: Except for that little detail about the last element being

numbered one less than the size of the array. Or was it one
more? I can never remember. Anyway, whatever happened to
10 apples numbered from 1 to 10? That’s the natural way to
number things.

Estelle: But then you waste the place for number 0. In computers, the
first address, or the first anything, is always 0. It’s more
logical.

Don: You could do it either way, but in C++, arrays just happen to
start with 0. You better get used to it.

George: No need to get huffy.
Estelle: How come I learned about two different kinds of strings?
George: Huh?
Estelle: You know, I started off with “homemade” strings, as in the

EMPLOY1 program in Session 2. Then I learned about “real”
C++ strings, which are terminated with a zero.

George: I didn’t know there was a difference.
Estelle: Uh, oh. You’re in trouble.
Don: The homemade strings just showed how to treat text as as array

of characters. But doing that isn’t practical, because you need
loops to handle the characters individually. Real C strings are a
lot easier to use.

Estelle: You can use a single operator such as cout << to output a
real string all at once, instead of doing it one character at a
time.

Don: And real strings are null terminated, instead of having to store a
separate character count.

George: Is that good?
Don: Well, probably. It’s another deal where either way would work.

A C string is always one character longer than the number of
characters, but on the other hand, you don’t need an extra
integer variable to specify the length.

Estelle: Isn’t there a lot of stuff about strings I don’t know how to do?
Adding strings together, copying them, and comparing them?
Are there operators built into C++ to do all that?

Don: I think they use library functions instead of operators, and I bet
we’ll get to them soon.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Arrays and Strings

http://www.itknowledge.com/reference/archive/1571690638/ch03/153-155.html [21-03-2000 19:02:51]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch03/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Session 5: String Library Functions

The function library that accompanies most C and C++ compilers includes dozens of functions that operate on
strings. Functions copy strings, compare them, search them for other strings, and so on. You’ll look at a few of
these library functions in this lesson: the most common ones and those that will be useful later in this book.
Then you’ll put some of these library functions to work to create a simple string class, which can replace
ordinary C strings.

Library Functions for Strings

As with all library functions, you can find out more about the string functions by looking them up in your
compiler’s documentation or online help. What I cover here is just enough to get you started and give you an
idea what’s available. These string-oriented library functions all require the header file STRING.H.

Finding String Lengths

The strlen() function returns the length of a string used as an argument. Here’s a fragment in which a string
variable s1 is initialized to “Songs” and the strlen() function is applied to s1:

char s1[] = “Songs”;
cout << “Length of s1 = ”
 << strlen(s1);

The output would be

Length of s1 = 5

Notice that the terminating ‘\0’ character is not included in the length reported by strlen(). Nevertheless,
that character is there in s1, taking up space in memory. The array s1 is actually 6 bytes long.

Copying Strings

You can copy a string variable or constant to another string variable using the strcpy() function.

char src[] = “Songs”; // string initialized to a value
char dest[80]; // empty string variable

strcpy(dest, src); // copies the contents of src into dest

After this statement has been executed, dest will contain “Songs”. The string src will not be changed.
Notice that strcpy() causes the string named in its right argument to be copied to the string in its left
argument. If this right-to-left direction seems backward to you, remember that it’s how the assignment operator
(=) works: The value on the right is copied into the variable on the left.

Appending Strings

Appending strings might be called adding strings. If you append the string “hurry” onto the string “You
better “ the result is “You better hurry”. Here’s how that might look as a program fragment:

char s1[80] = “You better ”;
char s2[] = “hurry”;
strcat(s1, s2);

The string s1 is now “You better hurry”. The library function strcat() appends one string to
another. The cat in strcat() stands for concatenate, another word for append (although some writers use
concatenate to mean that a third string is created that consists of the other two).

Some languages allow you to concatenate strings using the + operator, as in s1+s2; this isn’t permitted with
ordinary C strings. (However, as I’ll demonstrate later, you can do this by overloading the + operator in
user-defined string classes.)

Let’s make a slight change in the previous code fragment. Will these statements operate correctly?

char s1[] = “You better ”; // s1 is 12 bytes long
char s2[] = “hurry”; // s2 is 6 bytes
strcat(s1, s2); // Error: now s1 needs to be 17 bytes

No, because the compiler makes s1 just large enough to hold “You better “ and concatenating anything
else onto it will overflow s1, leading to unpredictable but probably unpleasant results. The moral is, when you
put a string anywhere, you’d better be sure there’s enough space for it.

Comparing Strings

It’s often useful to compare strings—in checking passwords, for example. The strcmp() function compares
two strings and returns a number indicating that the strings are the same or, if they aren’t the same, which
comes first alphabetically. This function is case sensitive, so “Smith” is not the same as “smith”.

char name[] = “Smith”;
n1 = strcmp(name, “Renaldo”); <--returns 1 (first argument follows second)
n2 = strcmp(name, “Smith”); <--returns 0 (first argument same as second)
n3 = strcmp(name, “Townsend”); <--returns -1 (first argument precedes
 second)

Some string functions have close cousins that perform similar but not quite identical tasks. For example, the
stricmp() function compares two strings in the same way that strcmp() does but is not case sensitive; the
i stands for case insensitive. Thus it will tell you that “Blue” and “blue” are identical. The strncmp()
function is also similar to strcmp(), except that it looks only at a specified number of characters in the strings
it’s comparing. Many other string functions have similar variations, signaled by the addition of a letter in the
function name.

Some string functions cannot be used effectively without an understanding of pointers, which you’ll encounter
in Chapter 8. These include functions that search a string for a given character and search a string for another
string.

Because the C++ function library was inherited from C, it is not based on classes. However, most C++
compilers also include a class library that contains a string class. For example, Borland C++ includes a class
called cstring. I’m going to ignore such prebuilt classes for the moment, because it will be more educational
to develop our own string class as we go along.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Arrays and Strings

http://www.itknowledge.com/reference/archive/1571690638/ch03/155-157.html [21-03-2000 19:02:59]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch03/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

A Homemade String Class

The motivation for creating a string class arises from the deficiencies of ordinary C strings
and string functions. What are these deficiencies? Here are a few:

• You must define an array, not a single variable, to store a string.

• You can’t copy one string to another with the assignment operator (=).

• The string functions don’t warn you if you overflow a string array.

• You can’t concatenate strings with the + operator.

• You can’t compare strings with the ==, !=, <, and > operators.

In this section, I’m going to take a first step toward creating a homemade string class. I’ll
address the first two items on the list here; the last three require that you know how to
overload C++ operators, so I’ll defer them until later.

I’ll name the string class xString. Its instance data consists of an ordinary string and it
includes member functions to initialize itself to an ordinary string, get a string from the user,
display its own contents, and append one string to another. A surprising benefit of making a
string into a class is that you can use the equal sign to set one xString object equal to
another. Listing 3-6 shows STRCLASS.

Listing 3-6 STRCLASS

// strclass.cpp
// uses a class to models strings

#include <iostream.h>
#include <string.h> // for strlen(), strcpy(), etc.

const int MAX = 80; // maximum length of xStrings

class xString
 {
 private:
 char str[MAX]; // ordinary C string
 public:
 void init(char s[]) // initialize with string
 {
 strcpy(str, s);
 }
 void input() // get string from user
 {
 cin.get(str, MAX);
 }
 void display() // display string
 {
 cout << str;
 }
 void append(xString xs) // append argument string
 {
 if(strlen(str) + strlen(xs.str) < MAX-1)
 strcat(str, xs.str);
 else
 cout << “\nError: xString too long” << endl;
 }
 };

void main()
 {
 xString s1, s2, s3; // make xString objects

 s1.init(“Greetings, ”); // initialize s1

 cout << “Enter your name: ”;
 s2.input(); // get s2 from user

 s1.append(s2); // append s2 to s1
 s3 = s1; // set s3 to s1
 s3.display(); // display s3
}

In main(), the program creates three xString objects. It initializes s1 to an ordinary
string using the function init(), gets text from the user for s2 with the input() function,
appends s2 to s1 with append(), sets s3 equal to s1 using the assignment operator, and
finally displays s3 with display(). This may not be exactly what you would want to do
with three string objects, but it does provide a chance to exercise all the member functions of
the xString class.

Now let’s look at some features of this program.

Library Functions

I use the strcpy(), strlen(), and strcat() library functions to copy, find the length
of, and append ordinary C strings. As you can see, these functions are far more convenient
than writing your own loops to do the same thing character by character.

Clean Format

You can see how easy it is to create xString objects. You don’t need to define arrays, only
simple variables (or what look like simple variables but are actually user-defined class
objects).

Data Conversions

As I’ve noted, the init() function is a rather clumsy way to initialize an object. You’ll
learn a more elegant approach when I talk about constructors. However, the init() function
does do something interesting and useful: It acts as a conversion function, converting an
ordinary C string into an xString object. The C string is given as an argument to init(),
which assigns its value to the xString object that called it. Converting from one data type
to another is an important topic in OOP; I’ll return to it later.

Appending

The member function append() appends its argument to the object that called it. In this
example, whatever name the user enters into s2 is appended to “Greetings, “.

Assignment

Perhaps surprisingly, the assignment operator (=) works with objects (at least these objects).
The program sets s3 equal to s1; when it displays s3, you can sees that s3 has indeed taken
on the value of s1. How can the equal sign work with objects that contain arrays, when it
doesn’t work with arrays? It seems odd at first, but makes sense when you think about it. For
one thing, because all objects of the same class are identical (except for their contents), it’s
easy to copy the data from one into another, whereas one array may be a different size than
another.

Overflow Protection

The input() member function provides built-in protection against the user overflowing the
xString storage buffer (the str array). The programmer doesn’t need to take any special
precautions, such as specifying a buffer size. Also, the append() function checks that the
two strings that it’s about to append won’t exceed the size of an xString. Thus the
xString class is safer to use than ordinary C strings.

Of course there’s a downside to this safety: All xStrings must be the same length. This
may waste a lot of memory space for short xStrings and precludes using long strings.
(Later I’ll show how objects of a string class can be made exactly as large as they need to be
using dynamic memory allocation.)

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Arrays and Strings

http://www.itknowledge.com/reference/archive/1571690638/ch03/157-160.html [21-03-2000 19:03:06]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch03/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Wrapping

Imagine that the xString class was created by one programmer, but another
programmer must write a main() that makes use of this class. The main()
programmer could use ordinary C strings and library functions such as strcpy(), or
she could choose to use the xString class instead. Thus, although the xString class
itself uses ordinary C strings and string library functions internally, these are invisible to
the main() programmer, who instead sees xString objects and member functions
such as input() and append(). This is another example of wrapping one set of
functions with another to create a new user interface.

Quiz 5

1. String library functions such as strlen() and strcpy()

a. work with user-defined class objects.

b. are useful for ordinary C strings.

c. are used exclusively with null-terminated strings.

d. are member functions.

e. cannot be applied to nonstring arrays of characters.

2. To use the strcpy() library function to copy the string s1 to the string s2,
you would say

a. s1.strcpy(s2);
b. s2.strcpy(s1);
c. strcpy(s1, s2);
d. strcpy(s2, s1);
e. s2 = strcpy(s1);

3. Which of these statements are true?

a. The chief task of the single equal sign (=) in C++ is to assign a value to
a variable.

b. You can assign one C string variable to another with a function.

c. You can assign one C string variable to another with an equal sign.

d. You can assign any object to another of the same class with the
strcpy() function.

e. You can assign any object to another of the same class with the =
operator (assume that = is not overloaded).

4. A string class can reasonably be expected to be superior to ordinary C strings
for which of the following reasons:

a. It’s less error prone.

b. It’s easier to program.

c. It can do more things.

d. It executes faster.

e. It takes less memory to store a string.

5. One might want to use a class to “wrap” a group of functions and data in a
different group of functions because

a. there were flaws in the way the original functions operated.

b. different program design goals may favor a new approach.

c. the idea of classes is easier to understand.

d. using classes is generally more efficient than using library functions.

e. the programmer’s interface can be made easier or more capable.

Exercise 1

For the xString class, create a member function called compare() that compares
an xString given to it as an argument with the xString that called it. This function
should return -1 if the argument comes before the object alphabetically, 0 if the two are
the same, and 1 if the argument comes after the object.

Exercise 2

For the xString class, create a member function that takes two xString objects as
arguments, concatenates them, and places the resulting value in the object that called
the function. You can name this function concat(). Add some statements to main()
to test it.

Session 6: Arrays of Strings

A commonly used construction is an array of strings. Such arrays can hold lists of
employee names, passwords, file names, and so on. In this session, I’m going to create a
class based on an array holding the names of the days of the week. First, however, I’ll
review the syntax of an array of strings.

Syntax of Arrays of Strings

You can create an array of empty string variables using a simple two-dimensional array.
Because a string is an array, an array of strings is an array of arrays.

Arrays of Empty Strings

Suppose you don’t know yet what strings you want to store but you want to create space
for them. To store five strings, each of which can be up to 10 characters long, you
would define an array this way:

char names[5][10]; // array of 5 strings

Notice that the number of strings is always the first dimension given. The length of the
strings (which, because this is an array, must all be the same) is the second dimension.
Figure 3-9 shows how this looks.

Figure 3-9 Array of empty strings

You might write some code so the user could enter names into this array:

for(j=0; j<5; j++)
 {
 cout << “Enter name (or press Enter to exit loop): ”;
 cin.get(names[j], 10);
 if(strlen(names[j])==0) // if user presses [Enter],
 break; // exit from loop
}

Here the for loop won’t let the user enter more than five names. By pressing
and thus inserting a 0-length name into the array, the user can exit the loop after
entering fewer than five names.

Notice that a single string is referred to as names[j], with only one index. As I
mentioned earlier, this is how you refer to one subarray in a two-dimensional array.

Arrays of Initialized Strings

You can initialize the strings in an array of strings when you create them. Here’s an
example in which I store the days of the week:

const int MAX = 10; // maximum length of day name, +1
const int DPW = 7; // days per week

const char day_name[DPW][MAX] = // array of day names
 { “Sunday”, “Monday”, “Tuesday”,
 “Wednesday”,“Thursday”, “Friday”,
 “Saturday”};

The string constants used for initialization are separated by commas and surrounded by
braces, just as constants are in one-dimensional arrays. This causes each string constant
to be installed in the appropriate subarray of day_name. Figure 3-10 shows how this
looks.

Figure 3-10 Array of strings

Note: Note in Figure 3-10 that there is some space wasted at the ends of the shorter
string constants because all the string variables are the same length. You can avoid this
if you use pointers, as you’ll see later.

I’ve used the variable names MAX and DPW for the array dimensions and made them
type const, as discussed earlier. I’ve also made the entire array type const because
presumably the days of the week will never need to be changed.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Arrays and Strings

http://www.itknowledge.com/reference/archive/1571690638/ch03/160-163.html [21-03-2000 19:03:25]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000f956dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
javascript:displayWindow('images/03-09.jpg',256,489)
javascript:displayWindow('images/03-09.jpg',256,489)
javascript:displayWindow('images/03-10.jpg',416,266)
javascript:displayWindow('images/03-10.jpg',416,266)
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch03/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

The weekday Class

I’ll turn the weekday names into a class. Because I don’t want to duplicate the day_name
array in every object, I’ll make it an external variable. (I could also have made it a static
variable within the class. I’ll discuss static variables, along with external variables, in Chapter
4. For the moment, all you need to know is that external variables can be accessed from
anywhere in the program.) Listing 3-7 shows WEEKDAYS.

Listing 3-7 WEEKDAYS

// weekdays.cpp
// creates a class of days of the week objects

#include <iostream.h>
#include <string.h> // for stricmp()

const int MAX = 10; // maximum length of day name, +1
const int DPW = 7; // days per week

const char day_name[DPW][MAX] = // array of day names
 { “Sunday”, “Monday”, “Tuesday”,
 “Wednesday”,“Thursday”, “Friday”,
 “Saturday”};
class weekday // class of day names
 {
 private:
 int day_number; // Sunday=0, etc.
 public:
 void inday() // user inputs day name
 {
 char tempday[MAX]; // holds user input
 int gotit = 0; // match found? (0=false)
 int j; // loop variable

 while(!gotit) // cycle until user enters
 { // a correct name
 cout << “Enter day of week (e.g., Friday): ”;

 cin >> tempday;
 for(j=0; j<DPW; j++) // compare user input
 { // with list of names
 if(stricmp(tempday, day_name[j])==0)
 { // if there's a match,
 gotit = 1; // set flag,
 break; // break out of for loop
 }
 } // end for
 day_number = j; // record what day it was
 } // end while
 } // end inday()

 void outday() // display the day name
 {
 cout << day_name[day_number];
 }

 void outnumber() // display the day number
 {
 cout << (day_number + 1);
 }
 void add(int days) // add days to
 { // this weekday
 day_number += days; // add days
 day_number %= DPW; // ensure not > 7
 }
 }; // end weekdays class

//
void main()
 {
 weekday wd; // make a weekday object

 cout << “What day is it?” << endl;
 wd.inday(); // user gives it a value
 cout << “You entered ”;
 wd.outday(); // display its day name
 cout << “\nThat's day number ”;
 wd.outnumber(); // display its day number
 wd.add(10); // add 10 days to it
 cout << “\nTen days later is ”;
 wd.outday(); // display its day name
}

In main(), the program creates an object of the weekday class, wd. Then it gets a name from
the user and compares it with all the weekday names in the day_name array. If there’s a
match, it stores the number of the day in the object. Then it tells this object to display its day
name and day number.

I’ve added a member function to the weekday class to enable the user to add a number of days
to a weekday object. In main(), the program tells wd to add 10 days to itself, and then
reports what day of the week wd has become (10 days after Wednesday is a Saturday). Here’s
the output from WEEKDAYS:

What day is it?
Enter day of week (e.g., Friday): wednesday
You entered Wednesday
That's day number 4
Ten days later is Saturday

There are several new wrinkles in the operation of WEEKDAYS. It uses a variation of the string
function strcmp() and it uses a new kind of operator.

The stricmp() Function

Notice in the interaction with the program that the user typed “wednesday” with a lowercase
‘W’. The weekday class recognizes this as a legitimate weekday name because it uses the
stricmp() comparison function, which ignores case. This provides a more forgiving
approach to user input.

Arithmetic Assignment Operators

You may find the two lines in the add() member function somewhat puzzling. To add a fixed
number of days to the day_number variable, you might expect a statement such as

day_number = day_number + days;

where days is provided by the argument to the add() function. However, what I use instead
is the statement

day_number += days;

What’s this all about? The designers of C and C++ considered brevity a good thing and so
developed this shorthand format. Both statements have exactly the same effect, but the
day_number variable is named only once in the second statement. This is made possible by
the arithmetic assignment operator +=. This operator takes the value on its right and adds it to
the variable on its left, leaving the result in the variable on its left. Figure 3-11 shows how this
looks when the value of item is added to the value of total and the result is stored in
total.

Figure 3-11 Arithmetic assignment operator

It turns out that there are arithmetic assignment operators for all the arithmetic operations.

a += b; // same as a = a + b
a -= b; // same as a = a - b
a *= b; // same as a = a * b
a /= b; // same as a = a / b
a %= b; // same as a = a % b

There are a few other assignment operators as well, but you can ignore them for now.

In the WEEKDAYS program, I use the last of these operators, %=, to make sure that
day_number is always in the range of 0 to 6, no matter how many days you add to it.

day_number %= DPW;

This sets day_number to the remainder produced when day_number is divided by 7.

Arithmetic assignment operators provide a way to make your listing look less cumbersome,
possibly at the expense of some clarity for newcomers to C++.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Arrays and Strings

http://www.itknowledge.com/reference/archive/1571690638/ch03/163-166.html [21-03-2000 19:03:35]

http://www.itknowledge.com/adclick.html/CID=000012ea6dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
javascript:displayWindow('images/03-11.jpg',268,265)
javascript:displayWindow('images/03-11.jpg',268,265)
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch03/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Quiz 6

1. Which of the following statements define(s) an array of 100
empty strings, each of which can hold up to 80 characters?

a. char strarray[100];
b. char strarray[80][100];
c. int strarray[80, 100];
d. char strarray[100, 80];
e. char strarray[100][80];

2. If you initialize an array of strings called names,

a. each character is placed in a one-dimensional subarray of
names.

b. each string constant is placed in a one-dimensional subarray
of names.

c. each character is placed in an element of a one-dimensional
subarray of names.

d. each string constant is placed in an element of a
one-dimensional subarray of names.

e. all the string constants are placed in a subarray of names.

3. The weekday class

a. models the number of work hours in each day of the week.

b. must have access to the day_name array.

c. can convert from a day name such as “Monday” to a
number and back again.

d. stores the name of a day of the week as instance data.

e. stores a number as instance data.

4. If an external variable is defined at the beginning of a file, and
there is only one file for the program, the variable is

a. not accessible by any statement in the program.

b. accessible by statements in member functions in the
program.

c. accessible by statements in main().

d. accessible by statements that are neither in standalone
functions such as main() nor in member functions.

e. not accessible unless it’s made into a class.

5. Arithmetic assignment operators such as += and *=

a. exist to shorten and simplify the program listing.

b. perform arithmetic only on imaginary numbers.

c. combine the tasks of the equal sign (=) and another binary
operator.

d. perform arithmetic on two variables and leave the result in
a third.

e. assign something and then perform arithmetic on it.

Exercise 1

Add a member function called difference() to the weekday class.
This function should subtract the day number of the object that called it
from the day number of its argument and return an integer representing the
number of days between these two days of the week. Here’s how it might
be called from main():

cout << “Enter the starting day: ”
start_day.inday();
cout << “Enter the ending day: ”
end_day.inday();
cout << “\nThe project will take ”;
cout << start_day.difference(end_day);
cout << “ days”;

Exercuse 2

Create a class called ordinal that models the names of the ordinal
numbers, “first”, “second”, “third”, “fourth”, “fifth”, and so on, up to
“twelfth”. Provide input and output member functions that get and display
such values using either of two formats: ordinary integers (1, 2, and so on)
or ordinals. Also, provide an add() function that allows you to add a fixed
integer to objects of the class. Assume that no number larger than 12 or less
than 1 will be represented.

Session 7: Structures

A C++ structure is a way to group together several data items that can be of
different types. An array, by contrast, groups a number of data items of the
same type. Structures are typically used when several data items form a
distinct unit but are not important enough to become a class. Structures are
more important in C, where there are no classes. In C++, a class plays many
of the roles filled by structures in C. Nevertheless, there are still many
situations where structures are useful.

Specifying a Structure

Here’s an example of a structure specification:

struct part
 {
 int modelnumber;
 int partnumber;
 float cost;
 };

A structure consists of the keyword struct, followed by the structure
name (also called the tag) and braces that surround the body of the
structure. It is terminated with a semicolon. The body of the structure
usually consists of various data items, which may be of different types.
These individual data items are called members. (As you recall, the
individual data items within an array are called elements.) Figure 3-12
shows the syntax.

Figure 3-12 Syntax of the structure specifier

As you can see, a structure is quite similar syntactically to a class.
However, structures and classes are usually used in quite different ways.
Typically, a class contains both data and member functions, whereas a
structure contains only data. I’ll return to the relationship between
structures and classes at the end of this lesson.

As with a class, a structure specification does not actually create a structure.
It merely specifies how a structure will look when it’s created.

Defining Structure Variables

To define variables of type struct part, you would say something like

part cp1, cp2;

Figure 3-13 shows the relation between a structure specifier and the
variables created by using the specification as a blueprint.

Figure 3-13 Structures and structure variables

I should mention for completeness that there’s a shortcut for defining
structure variables. The variable names are telescoped into the structure
specification, like this:

struct part
 {
 int modelnumber;
 int partnumber;
 float cost;
 } cp1, cp2;

This code specifies the structure and creates two variables of that structure
at the same time. A peculiarity of this format is that you can remove the
structure name or tag (part); it’s not needed because the variables already
know what structure they’re based on.

This shortcut format is not as easy to understand as using separate
statements for the specification and the definition, so I’ll avoid it in the
example programs.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Arrays and Strings

http://www.itknowledge.com/reference/archive/1571690638/ch03/166-170.html [21-03-2000 19:03:48]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
javascript:displayWindow('images/03-12.jpg',454,323)
javascript:displayWindow('images/03-12.jpg',454,323)
javascript:displayWindow('images/03-13.jpg',312,386)
javascript:displayWindow('images/03-13.jpg',312,386)
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch03/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Accessing Structure Members

The dot operator is used to access structure members, just as it’s used to access member functions
from objects. Here’s how that looks:

struct part // specify structure
 {
 int modelnumber;
 int partnumber;
 float cost;
 };

part cp1; // define structure variable

cout << “Enter model number: ”
cin >> cp1.modelnumber; // access data member in structure
cout << “Enter part number: ”;
cin >> cp1.partnumber; // access data member in structure
cout << “Enter cost: ”;
cin >> cp1.cost; // access data member in structure

The variable name precedes the dot and the name of the member data follows it: cp1.cost.
Figure 3-14 shows how this looks if the user enters 6244, 373, and 217.55 for the model number,
part number, and cost; Figure 3-15 shows how the variable name and member data name are
related to what’s stored in memory.

Figure 3-14 Structure members in memory

Figure 3-15 The dot operator

Initializing Structure Variables

You can provide initial values for structure variables just as you can for arrays. Here’s how you
would initialize a structure variable of type part to the same values seen in Figure 3-14:

part cp1 = { 6244, 373, 217.55 };

Structure Usage

Let’s modify an earlier example program so that it uses a structure. Notice in the STACK1
program, from Session 2 in this chapter, that the array that stores data items and the index to this
array (the top of the stack) are closely related. You might find it convenient to combine these two
data items into a structure, and then use the structure as a single data member of the Stack class.
Listing 3-8 shows how this might look.

Listing 3-8 STRUSTAK

// strustak.cpp
// class models a stack, uses struct for array and index

#include <iostream.h>
struct stackette // structure
 {
 int arr[20]; // storage array
 int top; // index of top of stack
 };

class Stack // class
 {
 private:
 stackette st; // structure variable
 public:
 void init() // initialize index
 {
 st.top = -1;
 }
 void push(int var) // place an item on the stack
 {
 st.arr[++st.top] = var;
 }
 int pop() // remove an item from the stack
 {
 return st.arr[st.top--];
 }
 };

void main()
 {
 Stack s1; // create a stack object

 s1.init(); // initialize it
 s1.push(11); // push 3 items onto stack
 s1.push(12);
 s1.push(13);

 cout << s1.pop() << endl; // pop 3 items and display them
 cout << s1.pop() << endl;
 cout << s1.pop() << endl;
 }

Here the structure stackette holds the array of integers and the index that points to the top of
the stack (the last item placed in the array).

struct stackette
 {
 int arr[20]; // storage array
 int top; // index of top of stack
 };

The only item of instance data in the Stack class is now a variable of class stackette.

stackette st;

Member functions of Stack now refer to individual data members of st, using the dot operator

st.top = -1;

and

st.arr[++st.top] = var;

Notice that main() is identical to the main() in the STACK1 program. I’ve modified the class
but kept the class interface the same, so no rewriting is necessary for the functions that use the
class.

It’s doubtful whether in this particular programming example the use of a structure provides
significant simplification. However, once I discuss pointers, you’ll encounter examples where the
use of structures as class members can indeed clarify the workings of a program. (See the linked
list example in Session 7 in Chapter 8.)

Structures versus Classes

I’ve emphasized the use of structures as aggregates of data items. This is the way structures are
usually used. With this emphasis, structures appear quite different from classes. We might say that
a structure is a passive grouping of data items, whereas a class is an active combination of data
and functions. Of course, classes are far more important in C++ than structures are. Classes form
the very basis of object-oriented programming, whereas structures are a minor part of C++ usage.

However, these differences obscure the fact that the syntax of structures and classes is almost
identical. You can install member functions within a structure just as you can in a class, and
conversely you can remove the member functions from a class so that it acts like a structure.

There is only one real syntactical difference between a structure and a class: The members of a
structure are public by default, whereas the members of a class are private by default. That is, if
you don’t use the keywords public or private, class members are private.

class Foo
 { // no need for keyword, private by default
 int george;
 int harry;
 public: // public must be specified
 void init()
 { }
 void display()
 { }
 };

For clarity, I’ll always use the keyword private in class specifications in the example programs,
but in fact it’s optional. In structures, the situation is reversed.

struct Bar
 { // no need for keyword, public by default
 void init()
 { }
 void display()
 { }
 private: // private must be specified
 int george;
 int harry;
};

In structures, you usually want all the data members to be public, so you normally leave out this
keyword.

These syntax distinctions are all rather academic because in most situations, using a structure as a
class or vice versa would simply cause confusion. No doubt, the designers of C++ borrowed the
syntax of C structures when they invented classes and then—perhaps to make compiler design
easier—augmented structures to make them as similar as possible to classes.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Arrays and Strings

http://www.itknowledge.com/reference/archive/1571690638/ch03/170-174.html [21-03-2000 19:04:04]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
javascript:displayWindow('images/03-14.jpg',405,367)
javascript:displayWindow('images/03-14.jpg',405,367)
javascript:displayWindow('images/03-15.jpg',294,481)
javascript:displayWindow('images/03-15.jpg',294,481)
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch03/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Quiz 7

1. Specifying a structure

a. uses syntax similar to a class specification.

b. creates a structure variable.

c. requires the use of the keyword public.

d. usually involves a number of member data items.

e. usually involves a number of member functions.

2. Structures are normally used

a. as an alternative way to create classes and objects.

b. to group data items of the same type.

c. to group data items of different types.

d. to combine data items that are closely related into a single unit.

e. to increase memory efficiency.

3. Accessing a structure’s member data

a. is normally carried out using the structure’s member functions.

b. is normally carried out by a function located somewhere outside the
structure.

c. uses a similar format to accessing member functions in classes.

d. is easy because the data is public by default.

e. requires the dot operator (ignore pointers).

4. In the STRUSTAK program,

a. statements in main() access the stackette structure using the dot
operator.

b. a structure variable is included in the Stack class.

c. a structure specification is included in the Stack class.

d. there is only one member data item in the Stack class.

e. member functions in Stack need not be modified when a
stackette structure is inserted in the class in place of individual data
items of basic types.

5. Structures and classes differ in that

a. the public versus private distinction is applicable to classes but not to
structures.

b. structures are usually used only for data, not for data and functions.

c. data members may be accessed using the dot operator in classes, but
not in structures.

d. structures use brackets, whereas classes use braces.

e. both data and function members are public by default in structures, but
private by default in classes.

Exercise 1

In Exercise 2 in Session 2 in this chapter, I suggested you create a peek() function,
which would access the item on the top of the stack without removing it. Modify this
function so it works with the version of Stack in the STRUSTAK program.

Exercise 2

Modify the EMPLOY1 program from Session 2 in this chapter so that the array name
and the integer n, used as instance data in the employee class, are combined into a
structure. Substitute a variable of this structure type for these two member data items
and make whatever modifications are necessary for the employee class to work as it
did in EMPLOY1.

Session 8: enum and bool

I’ll cover two short topics in this lesson. An enumerated data type—specified by the
keyword enum—allows the programmer to invent a data type and then specify exactly
what values are allowed for the type. The bool keyword and the related literals true
and false are used in situations involving logic tests. These topics are related in that
bool type was typically, until a recent change in the C++ draft standard, implemented
using an enum type.

Enumerated Data Types

Creating a new type using enumerated data types is akin to creating a new type using a
class, as I did in programs that used the airtime class. However, enumerated data
types are much more limited than types created using classes. You can’t create
member functions to specify the operation of enum types; instead, they always behave
more or less like integers. Enumerated types existed in C long before OOP was
invented. You can think of them as a sort of poor person’s approach to creating one’s
own data types. However, given the right situation, they work well and they are
simpler to implement than classes. Enumerated types are usually used when a variable
has only a few allowable values, because every value must be named.

Specifying an Enumerated Type

In the WEEKDAYS example (Listing 3-7), I used a class to define a new data type
consisting of days of the week. This type also lends itself to being specified by an
enumerated type. Here’s how that would look:

enum days_of_week {Sun, Mon, Tue, Wed, Thu, Fri, Sat };

They keyword enum is followed by the name of the type, days_of_week in this
example, and then by braces enclosing a list of comma-separated value names. Figure
3-16 shows the format.

Figure 3-16 Syntax of enum specifier

Enumerated means that all the values are listed explicitly. This is unlike the
specification of an int, for example, which has a range of possible values (such as
-32,768 to 32,767). In an enum, you must give a specific name to every allowable
value. This is potentially confusing. Remember, the names used for enum values are
not the names of variables. An int has values 0, 1, 2, and so on. The enum shown
above has the values Sun, Mon, and so on up to Sat. Figure 3-17 shows the
difference between an int and an enum.

Figure 3-17 Usage of ints and enums

As with classes and structures, specifying an enumerated type is not the same as
actually creating variables of that type. That step requires a separate statement.

Creating and Using Enumerated Variables

Here’s how you might create and give values to some enumerated variables:

 // specify a type

enum days_of_week {Sun, Mon, Tue, Wed, Thu, Fri, Sat };

days_of_week day1, day2; // create variables of that type

day1 = Mon; // give them values
day2 = Wed;

One of the advantages of using enumerated types is that attempting to assign a
nonspecified value will cause a compiler error, alerting you to program bugs. For
example, even if Easter is defined as an int variable,

day1 = Easter;

will not compile because day1 is a variable of type days_of_week and Easter is
not on the list of possible values for days_of_week.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Arrays and Strings

http://www.itknowledge.com/reference/archive/1571690638/ch03/174-177.html [21-03-2000 19:04:19]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
javascript:displayWindow('images/03-16.jpg',417,195)
javascript:displayWindow('images/03-16.jpg',417,195)
javascript:displayWindow('images/03-17.jpg',432,539)
javascript:displayWindow('images/03-17.jpg',432,539)
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch03/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

They’re Really Integers

The compiler actually stores enumerated values as integers, starting with 0 for the first name
specified. In the previous figure, north is 0, south is 1, east is 2, and west is 3. In the
days-of-the-week example Sun is 0, Mon is 1, Tue is 2, and so on. Alternatively, you can
specify that the series begins on a value other than 0. For example, you could say

enum ordinal { first=1, second, third };

where first is 1, second is 2, and third is 3. Or you can specify separate values for all
the names.

enum coin { penny=1, nickel=5, dime=10,
 quarter=25, halfdollar=50, dollar=100 };

A Card Game Program

Let’s look at a lengthy example that uses arrays, structures, and enumerated types. This
program features a class, card, that models the playing cards used in games such as bridge,
hearts, and poker. Each object of this class represents a single card. Instance data records the
card’s number (2 through 10, jack, queen, king, and ace) and suit (clubs, diamonds, hearts,
spades). Member functions are provided to give the card an initial value and to display its
value.

In main(), the program defines an array of 52 objects of type card and calls it deck. It
then gives appropriate values to all these cards in order and displays the result. Next, it
shuffles the deck by exchanging each card with another in a random location in the deck
array. Finally, it displays the resulting shuffled deck. Listing 3-9 shows CARDARAY.

Listing 3-9 CARDARAY

// cardaray.cpp
// cards as objects

#include <iostream.h>
#include <stdlib.h> // for randomize(), rand
#include <time.h> // for randomize()
#include <conio.h> // for getche()

enum Suit { clubs, diamonds, hearts, spades };

const int jack = 11; // from 2 to 10 are
const int queen = 12; // integers without names
const int king = 13;
const int ace = 14;

class card
 {
 private:
 int number; // 2 to 10, jack, queen, king, ace
 Suit suit; // clubs, diamonds, hearts, spades
 public:
 void init(int n, Suit s) // initialize card
 { suit = s; number = n; }
 void display() // display the card
 {
 if(number >= 2 && number <= 10)
 cout << number;
 else
 switch(number)
 {
 case jack: cout << “J”; break;
 case queen: cout << “Q”; break;
 case king: cout << “K”; break;
 case ace: cout << “A”; break;
 }
 switch(suit)
 {
 case clubs: cout << 'c'; break;
 case diamonds: cout << 'd'; break;
 case hearts: cout << 'h'; break;
 case spades: cout << 's'; break;
 }
 } // end display()
 }; // end class card

void main()
 {
 card deck[52]; // deck of cards
 int j = 0; // counts thru deck
 int num; // card number

 cout << endl;
 for(num=2; num<=14; num++) // for each number
 {
 deck[j].init(num, clubs); // set club
 deck[j+13].init(num, diamonds); // set diamond
 deck[j+26].init(num, hearts); // set heart
 deck[j++ +39].init(num, spades); // set spade
 }

 cout << “\nOrdered deck:\n”;
 for(j=0; j<52; j++) // display ordered deck
 {
 deck[j].display();
 cout << “ ”;
 if(!((j+1) % 13)) // newline every 13 cards
 cout << endl;
 }

 randomize(); // seed random number generator
 for(j=0; j<52; j++) // for each card in the deck,
 {
 int k = random(52); // pick another card at random
 card temp = deck[j]; // and swap them
 deck[j] = deck[k];
 deck[k] = temp;
 }

 cout << “\nShuffled deck:\n”;
 for(j=0; j<52; j++) // display shuffled deck
 {
 deck[j].display();
 cout << “ ”;
 if(!((j+1) % 13)) // newline every 13 cards
 cout << endl;
 }
 getch(); // wait for keypress
 } // end main

This program uses two library functions that may not exist on all compilers. These are
randomize(), which seeds a random number generator (using the current time), and
random(), which returns a random number. These functions exist in Borland compilers but
other compilers use slight variations, so you may need to modify the source code to get this
program to run.

Here’s the output from CARDARAY. First the deck is displayed in the order it was initialized.
Then it’s displayed after shuffling.

Ordered deck:
2c 3c 4c 5c 6c 7c 8c 9c 10c Jc Qc Kc Ac
2d 3d 4d 5d 6d 7d 8d 9d 10d Jd Qd Kd Ad
2h 3h 4h 5h 6h 7h 8h 9h 10h Jh Qh Kh Ah
2s 3s 4s 5s 6s 7s 8s 9s 10s Js Qs Ks As

Shuffled deck:
3c 5c Qc 9s Ah Kd 6h 7h 4s As 2h 5d Ks
7c Js 3s 10h 8s Jc Jh Ac 5s 7s Qs 10d 2c
Jd 8d 4d 2d 6s 4h 10s 6d 4c Ad Qh 7d 6c
10c 9c 3h 8c 5h 2s Kc 9h Qd 8h 3d 9d Kh

The program uses an enum type for the suit because there are only four possible values:
clubs, diamonds, hearts, and spades. This makes it impossible for the program to assign any
value other than these four. If you try to use an integer value, for example, the compiler will
issue a warning.

The enum approach would be unwieldy for the card number, so I use an integer that can have
a value from 2 to 14, with the special names jack, queen, king, and ace given to the
values 11, 12, 13, and 14. The display() member function uses switch statements to
figure out the appropriate display, given the suit and number of each card.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Arrays and Strings

http://www.itknowledge.com/reference/archive/1571690638/ch03/177-180.html [21-03-2000 19:04:27]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch03/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

The bool Keyword

Until recently, there was no Boolean type in C++. Such a type (named after George Boole, a
British mathematician), has only two values: true and false. Variables of this type are used to store
the results of logic tests, such as the answer to such questions as, “Is alpha less than 10?”.

Until recently, C and C++ programmers either used an integer type for a Boolean value or had to
create their own using an enum.

enum boolean (false, true); // false is 0, true is 1

Then later in the program, variables of this type could be defined

boolean flag;

and set to one of the two permissible values

if(alpha<10)
 flag = false;

However, this homemade Boolean type is now unnecessary. A recent revision to the C++ draft
standard introduces a new keyword to specify Boolean variables, bool, and two new predefined
literal values for it, true and false. A variable of type bool must have one of these two
values.

Thus, to define a Boolean variable flag, simply say

bool flag;

There’s no need for an enum.

You can convert bool values to integers: true becomes 0 and false becomes 1. You can also
convert integers to bool values: 0 becomes false and all other values become true.

In the WEEKDAYS program in Session 6 in this chapter, I used an integer variable, gotit, to
indicate whether or not the user had typed a correct day name. I used the value 0 to indicate false
and 1 to indicate true. That’s not as clear or elegant as it might be. The new bool type allows you
to use a type designed for true/false values. Listing 3-10 shows WEEKDAYS rewritten to use a
bool type for the gotit flag.

Listing 3-10 BOOL

// bool.cpp
// creates a class of days of the week objects
// uses bool for logic value

#include <iostream.h>
#include <string.h> // for stricmp()

const int MAX = 10; // maximum length of day name, +1
const int DPW = 7; // days per week
const char day_name[DPW][MAX] = // array of day names
 { “Sunday”, “Monday”, “Tuesday”,
 “Wednesday”,“Thursday”, “Friday”,
 “Saturday”};
class weekday // class of day names
 {
 private:
 int day_number; // Sunday=0, etc.
 public:
 void inday() // user inputs day name
 {
 bool gotit = false; // match found?
 int j; // loop variable
 char tempday[MAX]; // holds user input
 while(gotit==false) // cycle until user enters
 { // a correct name
 cout << “Enter day of week (e.g., Friday): ”;
 cin >> tempday;
 for(j=0; j<DPW; j++) // compare user input
 { // with list of names
 if(stricmp(tempday, day_name[j])==0)
 { // if there's a match,
 gotit = true; // set flag,
 break; // break out of for loop
 }
 } // end for
 day_number = j; // record what day it was
 } // end while
 } // end inday()

 void outday() // display the day name
 {
 cout << day_name[day_number];
 }
 void outnumber() // display the day number
 {
 cout << (day_number + 1);
 }
 void add(int days) // add days to
 { // this weekday
 day_number += days; // add days
 day_number %= DPW; // ensure not > 7
 }
 }; // end weekday class

//
void main()
 {
 weekday wd; // make a weekday object

 cout << “What day is it?” << endl;
 wd.inday(); // user gives it a value
 cout << “You entered ”;
 wd.outday(); // display its day name
 cout << “\nThat's day number ”;
 wd.outnumber(); // display its day number
 wd.add(10); // add 10 days to it
 cout << “\nTen days later is ”;
 wd.outday(); // display its day name
 }

Quiz 8

1. The enum keyword specifies

a. a list of variable names.

b. a new data type

c. a list of values.

d. a list of data types.

e. the numerical equivalent for each name on a list.

2. Enumerated data types are useful when

a. only a small number of variables of a certain type will be used.

b. you will redefine how arithmetic works with variables of the type.

c. you want to ensure that a variable is not given an incorrect value.

d. a variable can take on a limited number of values.

e. a variable contains instance data of several basic types.

3. Declaring a variable of an enumerated type

a. requires you to use the int basic type.

b. involves specifying a list of possible values.

c. requires that the variable be simultaneously initialized to a value.

d. has the same syntax as declaring an object of a class.

e. creates a variable that is represented in computer memory by an integer.

4. In the cardaray program, a card object

a. can display its number and suit.

b. must be initialized to an appropriate card value when it is defined.

c. represents a deck of 52 cards.

d. can be moved to a different location in the array deck.

e. might have the value { jack, hearts }.

5. The keyword bool

a. represents an enum type.

b. is used to create variables that can have only one of two values.

c. represents an integer type.

d. is a value given to variables.

e. defines variables used to store the results of logic tests.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Arrays and Strings

http://www.itknowledge.com/reference/archive/1571690638/ch03/180-183.html [21-03-2000 19:04:34]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch03/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Exercise 1

Revise the main() part of the CARDADAY program so that, after shuffling
the deck, it deals a hand of 13 cards to each of four players (as in bridge). A
player can be represented by an array holding that player’s cards. After
dealing the four hands, display them.

Exercise 2

Revise the airtime class in the ARRAYAIR program in Session 3 in this
chapter so it works with 12-hour time. In other words, 1:30 should be
displayed as 1:30 am and 13:30 should be displayed as 1:30 pm. Create an
enumerated data type called meridian that has two possible values: am
and pm. Rewrite the set() and display() functions so they use this
type to help handle the 12-hour format.

Summary: Chapter 3

In this chapter, I’ve focused on arrays and strings, with brief looks at
structures and enumerated types. An array is a way to group a number of
variables of the same type and to refer to them using an index number or
subscript. The index number is represented by a number in brackets, such as
[5]. Arrays are the most commonly used data storage structure, but they
do not warn the programmer when an array index is out of bounds, so it’s
easy to make programming mistakes that cause serious malfunctions.

The increment and decrement operators, ++ and --, can be placed either
before or after their operands. If placed before (++x), the operand is
incremented (or decremented, if -- is used) before its value is used in an
expression. If placed after (x++), the operand is incremented (or
decremented) after its value is used.

A string is a group of characters terminated with a null character, ‘\0’,
which has the numerical value 0. A string variable is an array of type char
used for storing strings. A string constant is defined using double quotes:
“George Smith”. Special library functions exist for processing strings.
Strings (i.e., ordinary C strings) have nothing to do with classes and OOP.
However, string classes can be created that act like strings and improve
upon them in various ways.

A variable defined with the const modifier must be initialized to a value
when it’s defined; this value cannot be modified during the course of the
program.

A structure is, from a syntax standpoint, almost identical to a class; the only
difference is that a structure’s members are public by default, whereas a
class’s are private. However, a structure usually does not have member
functions; it’s used only as a way to group data items together. In many
cases in C++, a class replaces a structure.

Enumerated types allow the programmer to specify a new data type that can
be given only a small number of values whose names are specified. This
can aid in clarity and safety.

End-of-Chapter Discussion

George: Great. Now I have three kinds of strings to worry about.
Homemade, regular, and classes. When do you use what?

Estelle: Forget about homemade strings. No one would use them in a
real program; that was just a teaching device.

Don: In C++, assuming you have a string class, it’s easier to use
strings that are class objects than ordinary C strings.

Estelle: Why?
Don: Because you can define whatever string operation you want,

using member functions. But to write the class in the first
place, you need to use C strings. They’re the fundamental way
to handle text.

George: So you need to understand both?
Don: Ideally. But in your case, I’d stick with one or the other. No use

getting confused.
George: A wise guy, eh?
Estelle: I don’t understand why I need structures. It seems like classes

do everything structures do and then some.
Don: I don’t think structures are as important in C++ as they are in

C, for just that reason. But every now and then you probably
want to stick some data items together without going to the
trouble of making it a full-blown class.

George: What about enumerated types? What are they really for?
Don: I bet if they hadn’t already been part of C when C++ was

invented, no one would have bothered. For sure you can use a
class to do everything that enumerated types do. At least, I
think so. But because they’re in the language, you may as well
use them.

George: Use them when?
Estelle: Whenever some variable is going to have just a small number

of possible values.
George: What’s the advantage?
Don: It makes the listing clearer and makes it easier for the compiler

to find bugs in your program. If you assign an incorrect value
to an enumerated type, the compiler lets you know.

George: Who needs that? I never make programming mistakes anyway.
Estelle: Oh, right.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Arrays and Strings

http://www.itknowledge.com/reference/archive/1571690638/ch03/183-185.html [21-03-2000 19:04:41]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch03/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

CHAPTER 4
FUNCTIONS

Functions are important not only because they are one of the two major components of
objects but also because they are one of the basic ways to organize C++ programs.

I’ll first summarize what you’ve learned about functions so far. Then I’ll examine a new
way to write member functions outside of the class specification. I’ll look at the
advantages of overloading functions, which means giving the same name to different
functions, and default arguments, which allow a function to be called with fewer
arguments than it really has.

In the second half of this chapter, I’ll switch gears to a related topic: storage classes.
You’ll see how variables acquire different characteristics from two sources: first, from
the location of the variable with regard to functions and classes and second, from the use
of special keywords. Finally, I’ll examine references, a new way to pass arguments to
functions and to return values from them.

Session 1: Function Review and Function Declaration

This session begins with a brief review of what you’ve learned so far (or maybe just
assumed!) about functions and function syntax. It then introduces the function
declaration, which provides information to the compiler about how a function should be
called.

Review

I’ve been using functions all along. So far, you’ve seen them in three different situations.

First, I introduced member functions, which are one of the two fundamental components
of classes, along with instance data.

Second, functions appear independently in the listing, outside of any class specification.
An important function in this category is main(), which is the function to which control
is transferred when a C++ program starts to run. At the end of this lesson, you’ll see that
main() can, in effect, be divided into many functions.

Third, you’ve seen examples of C library functions such as getche() and strlen(),
which are called from main() or from member functions. The programmer does not
need the source code for library files; instead, object (.OBJ) or library (.LIB) files are
linked to user-written object files to create the final .EXE file. Library functions require
that the appropriate header file (e.g., CONIO.H for the getche() function) be included
in the source file.

Now let’s look in more detail at the various aspects of functions.

Function Calls

A function is a section of code. It is typically called (made to execute) from a statement
in another part of the program. The statement that does this is a function call. The
function call causes control to jump to the start of the function. As part of the function
call, arguments also may be passed to the function. After the code in the function has
been executed, control returns to the statement following the function call; at this time,
the call can return a value from the function.

Here’s an example of a function call:

func1();

This call causes the function func1() to be executed. This particular call takes no
arguments and does not return a value. It consists of the name of the function followed by
parentheses. Note that, like any other program statement, it is terminated with a
semicolon.

Functions, along with classes, serve as one of the important organizing principles of C++
programs. They also increase memory efficiency: A function can be executed many times
without the need for inserting duplicates of its code into the listing. Figure 4-1 shows how
three different statements cause the same section of code to be executed.

Figure 4-1 Flow of control to a function

Function Definitions

A function definition consists mostly of the function’s code, that is, the statements that
make up the function and cause it to do something. When I say function, I usually mean
the function definition. The function definition starts with a line called the declarator,
which specifies the function name, its return type, and the types and names of arguments.
Parentheses follow the function name and enclose the arguments, if any. The function’s
statements, which are the function body, are enclosed in braces. Figure 4-2 shows a
typical function definition.

Figure 4-2 Syntax of a function definition

Arguments

Arguments are the mechanism by which information may be passed from a function call
to the function itself. As an example, say that somewhere in your program is a function
called repchar(), whose purpose is to display a given character a certain number
times. The character to be displayed and the number of times to display it are passed as
arguments to the function. If you want to display 10 x’s in a line, for example, you might
call the function this way:

repchar('x', 10); // display 10 x's

Here’s the definition of the function repchar():

// repchar()
// displays n characters with value ch

void repchar(char ch, int n) <--This line is the declarator
 {
 for(int j=0; j<n; j++)
 cout << ch;
 }

This function will output the character ch exactly n times in a row. These variables are
assigned whatever values appeared in the function call. If the function is executed by the
function call shown above, it will display 10 x’s. If it is called with the statement

repchar('=', 30);

it will display 30 equal signs.

When data is passed as arguments in this way, the data is copied and the duplicate values
are stored in separate variables in the function. These variables are named in the function
declarator. This is called passing by value. Figure 4-3 shows how this looks.

Figure 4-3 Passing by value

Technically, the term arguments means the values specified in the function call, whereas
the term parameters is given to the variables in the function definition into which the
values are copied. However, argument is often used loosely for both meanings.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Functions

http://www.itknowledge.com/reference/archive/1571690638/ch04/187-190.html [21-03-2000 19:04:54]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
javascript:displayWindow('images/04-01.jpg',635,437)
javascript:displayWindow('images/04-01.jpg',635,437)
javascript:displayWindow('images/04-02.jpg',492,232)
javascript:displayWindow('images/04-02.jpg',492,232)
javascript:displayWindow('images/04-03.jpg',499,409)
javascript:displayWindow('images/04-03.jpg',499,409)
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch04/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Return Values

A function can return a value to the statement that called it. Here’s a function that
converts pounds (lbs) to kilograms (kg). It takes one argument, a value in pounds, and
returns the corresponding value in kilograms.

// lbstokg()
// converts pounds to kilograms
float lbstokg(float pounds) <--declarator
 {
 float kilograms = 0.453592 * pounds;
 return kilograms;
 }

The type of the value returned, in this case float, must precede the function name in
the function declarator. As I’ve mentioned, if a function does not return any value,
void is used as a return type to indicate this.

If a function does return a value, the return statement must be used. The value to be
returned is specified following the keyword return.

return kilograms;

This statement causes control to return immediately to the function call, even if it is not
the last statement in the function definition. It also causes the entire function call
expression to take on the value of the returned variable kilograms.

This function might be called this way:

kgs = lbstokg(lbs);

The function call expression, lbstokg(lbs), itself takes on the value returned and
can be assigned to a variable, in this case, kgs.

If the pounds variable happens to be 165.0 when this call is made, then the value
74.84 (i.e., 165.0 times 0.453592) is assigned to kgs when the function returns. Figure
4-4 shows how this value is copied from the kilograms variable in the function to the
kgs variable in main().

Figure 4-4 Returning by value

Function Declarations

In the example programs you’ve seen so far, all the functions were member functions of
a class, the main() function itself, or library functions. However, there are many other
possibilities. For one thing, main() can call other functions. Or, member functions
may call other functions located inside or outside the class.

When the compiler generates the machine language instructions for a function call, it
needs to know the name of the function, the number and types of arguments in the
function, and the function’s return value. If the function was defined someplace before
the function call, this isn’t a problem. The compiler will have taken note of these
characteristics and stored them away for reference. However, if the function definition
follows the function call, the compiler won’t know how to handle the call and you’ll get
an “undefined function” error message.

To keep this from happening (and assuming it’s not convenient to rearrange things so
the function definition precedes all calls to it), you must declare the function before any
function call. If you do this, the function can be defined anywhere. A function
declaration is a single line that tells the compiler the name of the function, the number
and types of arguments, and the return type. Here’s how you would declare the
lbstokg() function:

float lbstokg(float); // function declaration or prototype

The declaration looks very much like the declarator (the first line of the function
definition). However, it is followed by a semicolon because it is a standalone statement.
Also, you don’t need the names of the arguments, only the types.

Remember that a function declaration does not specify anything about what will go
inside the function body. All it tells is the name of the function, its return type, and the
number and types of its arguments. Function declarations are also called prototypes
because they serve as a sort of nonoperative model of how the function will be called.

Arguments

Although they aren’t necessary, argument names can be used in the declaration.

float lbstokg(float pounds); // function declaration

These names need not be the same as those in the definition; in fact, they are “dummy”
names, and the compiler ignores them (although they may be referred to in error
messages). Sometimes, however, they’re helpful for human readers. For example,
suppose the arguments x and y represent screen coordinates for a function that displays
a dot on the screen.

void draw_dot(int, int); // function declaration

This declaration is fine for the compiler, but the programmer may not know which is the
x coordinate and which is the y. So it’s helpful to write

void draw_dot(int X, int Y); // function declaration

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Functions

http://www.itknowledge.com/reference/archive/1571690638/ch04/190-193.html [21-03-2000 19:05:07]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
javascript:displayWindow('images/04-04.jpg',494,400)
javascript:displayWindow('images/04-04.jpg',494,400)
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch04/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Functions Called from main()

Here’s a typical situation where you would need to use function
declarations. Suppose the main() function has gotten so big that I want to
break it up into several different functions. In this example, the only
purpose of main() is to call these other functions, func1() and
func2(). Here’s part of a source file in which this happens:

void func1(); // function declarations
void func2();
void main()
 {
 func1(); // call to func1()
 func2(); // call to func2()
 }
void func1() // definition of func1()
 {
 // statements here
 }
void func2() // definition of func2()
 {
 // statements here
 }

The functions follow main(), so they must be declared before they can be
called. Here they’re declared outside of main(), but they could be
declared inside as well, like this:

void main()
 {
 void func1(); // function declarations
 void func2();
 func1(); // call to func1()
 func2(); // call to func2()
 }

Functions Called from Member Functions

Often a member function will need to call a user-written function that is not
part of the class. This also requires a declaration. Here’s an example:

class alpha
 {
 …
 void member_func() // member function
 {
 void afunc(); // declaration of afunc()
 …
 afunc(); // call to afunc()
 …
 }
 };
void afunc() // definition of afunc()
 {
 // statements
 }

Again, the declaration could be placed outside the class entirely, as long as
it appears in the listing before the function is called.

Library Functions

Perhaps you are wondering where the function declarations for library
functions are located. For example, if I call getche() from somewhere in
the program, how does the compiler know this function’s characteristics,
such as how many arguments it takes? The answer, of course, lies in the
header files: They hold the function declarations for a group of related
functions. By including the header file in your listing, you cause all these
functions to be declared.

The Rule

I can summarize the necessity for function declarations in the following
rule: If you call a function before its definition appears in the listing, then
you must insert a declaration somewhere before the call. In practice, it’s
best to place function declarations at the beginning of your source file or
sometimes at the beginning of the particular function from which calls are
made. (As you’ll see in Chapter 11, Session 7, declarations are typically
placed in header files in large program functions.)

Quiz 1

1. The function _________ transfers control to the function; the
function _________ is the function itself; the function __________ is
surrounded by braces; and the first line of the definition is called the
__________.

a. definition, declarator, call, body

b. definition, body, definition, call

c. call, definition, body, declarator

d. call, declarator, definition, body

e. call, declarator, body, definition

2. When a function returns a certain value,

a. the function must use a return statement.

b. the function can return other values at the same time.

c. the function call must supply the return value.

d. the function call expression can be treated as a constant
with that value.

e. the function must not be of type void.

3. A function declaration has the same relationship to a function
definition that

a. a class specification has to an object definition.

b. an object declaration has to an object.

c. a variable has to a variable declaration.

d. a variable declaration has to the variable itself.

e. none of the above.

4. A function declaration

a. creates the code for a function.

b. must be placed at the beginning of the file.

c. must be placed in the same function as the call.

d. must precede any calls to the function.

e. tells the compiler how to create a call to the function.

5. Library function declarations

a. are located in .LIB library files.

b. are located in .H header files.

c. are not necessary.

d. must be inserted into the source file by hand.

e. must not be inserted into the source file by hand.

Because this session is theoretical and concerned with the big picture, it
does not include any exercises.

Session 2: Standalone Member Functions

From time to time, the example programs have included member functions
that contain loops or decisions. This has elicited warning messages from the
compiler, such as Functions containing for are not
expanded inline. What does this mean? In this lesson, I’ll examine
the difference between ordinary functions and inline functions; this will
lead me into a discussion of how member functions can be defined outside
the class specification.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Functions

http://www.itknowledge.com/reference/archive/1571690638/ch04/193-196.html [21-03-2000 19:05:17]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch04/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Inline Functions

There are two quite different ways for the compiler to construct a function. I described the
normal approach in the last session: A function is placed in a separate section of code and a
call to the function generates a jump to this section of code. When the function has finished
executing, control jumps back from the end of the function to the statement following the
function call, as depicted in Figure 4-1.

The advantage of this approach is that the same code can be called (executed) from many
different places in the program. This makes it unnecessary to duplicate the function’s code
every time it is executed. There is a disadvantage as well, however. The function call itself,
which requires not only a jump to the function but also the transfer of the arguments, takes
some time, as does the return from the function and the transfer of the return value. In a
program with many function calls (especially inside loops), these times can add up to
sluggish performance.

For large functions, this is a small price to pay for the savings in memory space. For short
functions (a few lines or so), however, the savings in memory may not be worth the extra
time necessary to call the function and return from it. The designers of C++ therefore came
up with another approach: the inline function. An inline function is defined using almost
the same syntax as an ordinary function. However, instead of placing the function’s
machine-language code in a separate location, the compiler simply inserts it into the
normal flow of the program at the location of the function call. Figure 4-5 shows the
difference between ordinary functions and inline functions.

Figure 4-5 Ordinary functions versus inline functions

For inline functions, there is no time wasted in “calling” the function because it isn’t
actually called.

Specifying an Inline Function

You can request the compiler to make any function an inline function by using the
keyword inline in the function definition.

inline void func1()
 {
 // statements
 }

In other respects, the function is defined in the same way as an ordinary function.

If you need to use a function declaration, it must reflect the inline as well.

inline void func1(); // declaration

However, calls to the function are made in the normal way:

func1();

When Should You Inline a Function?

The decision to inline a function must be made with some care. If a function is more than a
few lines long and is called many times, then inlining it may require much more memory
than an ordinary function. It’s appropriate to inline a function when it is short, but not
otherwise. If a long or complex function is inlined, too much memory will be used and not
much time will be saved.

Actually, you seldom need to define a function explicitly as inline. In the most obvious
place to do this, it’s already done for you by the compiler, as you’ll see next.

Member Functions Defined Within a Class

Here is the (somewhat surprising) situation: Member functions defined within the class
specification (such as those shown in all the examples so far) are inline by default. That is,
they are inline whether you use the inline keyword or not.

class anyClass
 {
 public:
 void anyfunc() // this function is inline by default
 {
 // statements
 }
 };

Ordinary nonmember functions, on the other hand, are not inline unless inlining is
explicitly specified with the inline keyword.

void afunc(); // declaration

void main()
 {
 afunc(); // call to function
 }

void afunc(); // definition -- NOT an inline function
 {
 }

The main() function, of course, is never inline; what would it be in line with?

Member Functions Defined Outside a Class

What happens if you want to define a member function that is too large to make inline?
C++ provides an entirely different syntax for this arrangement. The function is declared
within the class but defined outside it. Here’s how that looks:

class anyClass // class specification
 {
 public:
 void anyfunc(); // declaration only
 };

void anyClass::anyfunc() // definition outside class
 { // this function is NOT inline
 // statements
 }

Member functions defined outside the class are ordinary–not inline–by default. (However,
you can force them to be inline using the inline keyword.)

The Scope Resolution Operator

When it is defined outside a class, the name of a member function must incorporate the
name of the class of which it’s a member; otherwise there would be no way for the
compiler to know which class that was. Of course, the function must use its own name as
well, so these two names must be combined. The operator used to join these names is
called the scope resolution operator. It consists of a double colon. In the previous example,
the complete function name would be

anyclass::anyfunc()

The scope resolution operator can appear in various other contexts as well. It’s used
whenever you want to tell what class something is when you’re outside the class
specification.

The Compiler Has Its Own Ideas

Even if you define a member function within a class specification, the compiler may not
allow it to be an inline function. As you saw in earlier examples where I used a loop in a
member function, the compiler treats such member functions as ordinary functions, issuing
warning messages when it does so.

Thus you can see that defining a function within a class specification (or using the
keyword inline explicitly, for that matter) is merely a suggestion to the compiler to
make a function inline. If the compiler thinks the function is too complicated, it will make
it an ordinary function no matter what you’ve told it to do.

Revised weekdays Program

Let’s see how these new member function definitions look in an actual program. The
WEEKDAYS program in Chapter 3, Session 6, elicited a compiler warning that
Functions containing switch statements are not expanded
inline. In addition, the inday() function, in which the offending switch statements
were embedded, is indeed rather large to be inline. So let’s do what the compiler did for us
anyway and define the inday() function outside of the class. Listing 4-1 shows the
WEEKOUT program.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Functions

http://www.itknowledge.com/reference/archive/1571690638/ch04/196-199.html [21-03-2000 19:05:37]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
javascript:displayWindow('images/04-05.jpg',497,513)
javascript:displayWindow('images/04-05.jpg',497,513)
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch04/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Listing 4-1 WEEKOUT

// weekout.cpp
// creates a class of days of the week objects
// uses member function external to class

#include <iostream.h>
#include <string.h> // for stricmp()

const int MAX = 10; // maximum length of day name, +1
const int DPW = 7; // days per week

const char day_name[DPW][MAX] = // array of day names
 { "Sunday", "Monday", "Tuesday",
 "Wednesday","Thursday", "Friday",
 "Saturday"};

class weekday // class of day names
 {
 private:
 int day_number; // Sunday=1, etc.
 public:
 void inday(); // NOTE: declaration

 void outday() // display the day name
 {
 cout << day_name[day_number];
 }
 void outnumber() // display the day number
 {
 cout << (day_number + 1);
 }
 void add(int days) // add days to
 { // this weekday
 day_number += days; // add days
 day_number %= DPW; // ensure not > 7
 }
 }; // end weekdays class
 // NOTE: definition
void weekday::inday() // user inputs day name
 {
 int j;
 char tempday[MAX]; // holds user input
 int gotit = 0; // match found? (0=false)

 while(!gotit) // cycle until user enters
 { // a correct name
 cout << "Enter day of week (e.g., Friday): ";
 cin >> tempday;
 for(j=0; j<DPW; j++) // compare user input
 { // with list of names
 if(stricmp(tempday, day_namhe[j])==0)
 { // if there's a match,
 gotit = 1; // set flag,
 break; // break out of for loop
 }
 } // end for
 day_number = j; // record what day it was
 } // end while
 } // end inday()
//
void main()
 {
 weekday wd; // make a weekday object

 cout << "What day is it?" << endl;
 wd.inday(); // user gives it a value
 cout << "You entered ";
 wd.outday(); // display its day name
 cout << "\nThat's day number ";
 wd.outnumber(); // display its day number
 wd.add(10); // add 10 days to it
 cout << "\nTen days later is ";
 wd.outday(); // display its day name
 }

This program is the same as WEEKDAYS except inday() is defined outside the class specification.
The other member functions, outnumber() and add(), which are quite short, have been kept
inline.

Move ’em Out?

All member functions of more than a few lines should be written outside the class specification, as
shown for inday() in WEEKOUT. From now on, the examples will conform to this usage.

Some programmers go further and recommend defining all member functions, no matter what size,
outside the class. This has the advantage of simplifying the class specification and it may be a good
idea when writing function libraries. However, for small programs such as the examples in this book,
defining short member functions within the class avoids some extra program lines and makes the
listings easier to read.

Macros

In C, in the olden times, it was customary to use something called a macro to accomplish what inline
functions accomplish in C++. For example, in C++ you might have a function that returns the smaller
of two integers.

int min(int a, int b)
 {
 return (a<b) ? a : b;
 }

This function uses the conditional operator to compare its two arguments. If a is less than b, it
returns a; otherwise, it returns b.

A macro uses the preprocessor directive #define, with arguments, to simulate a function. The
min() function, implemented as a macro, would look something like this:

#define MIN(A, B) ((A<B) ? A : B)

The #define directive basically causes the text on the right, ((A<B) ? A : B), to be
substituted for the name on the left (MIN) wherever this name occurs in the source file. It’s like a
word processor doing a global search and replace, except that it also uses arguments. If you “call” the
macro from your program like this,

cout << MIN(3, 5);

the statement will print out 3, the smaller of the two numbers. How does it work? The preprocessor
expands this statement into

cout << ((3<5) ? 3 : 5);

before it goes to the compiler. Thus, a macro causes a short section of code to be generated and
placed inline whenever it’s called. This has the same advantage inline functions do–it eliminates the
overhead of a function call and return.

However, macros are potentially dangerous. For one thing, they don’t perform type checking, so they
can’t tell if the types of the arguments are correct. On the whole, the compiler is better at catching
mistakes than the preprocessor is. Also, macros have some built-in problems (such as the need to
surround all variables with parentheses) that can generate particularly troublesome bugs. My advice,
even for old-time C programmers: Don’t use macros, use inline functions instead.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Functions

http://www.itknowledge.com/reference/archive/1571690638/ch04/199-201.html [21-03-2000 19:05:48]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch04/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Quiz 2

1. Member functions, when defined within the class specification,

a. are always inline.

b. are inline by default, unless they’re too big or too complicated.

c. are inline only if the compiler thinks it’s a good idea.

d. are not inline by default.

e. are never inline.

2. The code for an inline function

a. is inserted into the program in place of each function call.

b. is not generated by the compiler itself, but by the preprocessor.

c. may be repeated many times throughout the program.

d. occurs only once in a program.

e. is merely symbolic; it is not actually executed.

3. The scope resolution operator

a. joins a function name on the left and a variable name on the right.

b. joins a function name on the left and a class name on the right.

c. joins an inline function name and an ordinary function name.

d. consists of a semicolon.

e. comprises two semicolons.

4. In the WEEKDAYS program, there is a(n) __________ for inday() within the class specification,
a(n) ____________of this function following the class specification, and a(n) ____________ to the
function within main().

a. function body, declaration, assignment

b. declaration, definition, call

c. definition, member function, declaration

d. assignment, call, member function

e. declaration, function body, call

5. Member functions should be defined outside the class when

a. they are more than a few lines long.

b. they contain switches or loops.

c. they contain I/O statements.

d. they are short.

e. they are simple.

Exercise 1

Start with the STREMP program from Chapter 3, Session 4, and move both the input() and output()
member functions definitions outside the employee class.

Exercise 2

Start with the CARDARAY program from Chapter 3, Session 8, and move the display() member function
outside the card class. This will eliminate the warning message from the compiler about switch statements
not being expanded inline.

Session 3: Overloaded Functions

One really nice convenience built into C++ is function overloading. This means that you can use the same
name for different functions. You could, for example, have three functions all called afunc(), but each one
would have a separate function definition. It may not seem obvious why you would want to do this, so I’ll
explain.

Need for Function Overloading

Suppose there is a function that calculates the average of an array of numbers of type int. Such a function
might look like this:

int iaverage(int array[], int size);
 {
 int total = 0; // set total to 0
 for(int j=0; j<size; j++) // for every array member,
 total += array[j]; // add it to total
 return total/size; // return total div by array size
 }

The statement that calls this function passes the array name and the number of elements in the array as
arguments:

avg = iaverage(int_array, 50);

Now, what happens if I want a function that averages arrays of type long? Such a function might look like
this:

long laverage(long array[], int size);
 {
 long total = 0; // set total to 0
 for(int j=0; j<size; j++) // for every array member,
 total += array[j]; // add it to total
 return total/size; // return total div by array size
 }

The call to the function would be similar:

avg = laverage(long_array, 50);

There might be a similar function faverage() for type float and daverage() for type double. This
arrangement works all right, but notice that, even though iaverage(), laverage(), and so on do the
same thing–average numbers–they have different names. This is too bad, because the programmer must
remember all the names. In a reference book, each name requires a separate section or messy
cross-referencing. The multiplicity of names makes everyone’s life harder.

Using different names for functions that do the same thing to different types is common in the C language
library. For example, the function that returns the absolute value of a number is abs() for type int,
fabs() for type double, labs() for type long, and so on. This is called name proliferation.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Functions

http://www.itknowledge.com/reference/archive/1571690638/ch04/201-203.html [21-03-2000 19:05:54]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch04/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

How Does It Know?

C++ avoids the pitfalls of name proliferation by making it possible for several different functions to have
the same name. Thus, the iaverage(), laverage(), and similar functions can be called
average().

You may wonder how the compiler knows which function definition to call when the user writes a
statement such as

avg = average(larray, 20);

The compiler looks at the type and number of the function’s arguments to figure out what function is
intended. Here the second argument is always int, but the first argument varies with the type of data to
be averaged. In this statement, the type of larray is long, so the compiler calls the average()
function that operates with the long type. If I say

avg = average(iarray, 20);

where iarray is type int, the compiler will call the average function that works with the int type.
Figure 4-6 shows how the argument types determine which function is called.

Figure 4-6 Overloaded functions

How does the compiler distinguish one function from another that has the same name? It engages in a
process called name mangling. (“What’s the charge, officer?” “Name mangling, your honor.”) This
consists of creating a new name by combining a function’s name with the types of its arguments. The
exact syntax varies from one compiler to another, and in any case is normally hidden from the
programmer. However, I can speculate that the average() function for type int might be mangled
into something like average_int_int(), whereas the average() function for type long might
become average_long_int(). Notice, by the way, that the function’s return type is not part of its
mangled name. The compiler can’t distinguish between two functions on the basis of return type.

A Member Function Example

Let’s examine an example in which three different member functions all have the same name. Suppose I
want a class that handles the display of text in various fancy ways. The objects will contain text strings,
and member functions will display them. In particular, I want a set of functions that display text with a
“box” around it. For simplicity, boxes will consist of a line above the text and a line below. The lines can
be composed of various kinds of characters, such as dashes, asterisks, or equal signs. (This is a text-only
example, so it can’t draw real lines.)

Different versions of the member function box_display() will create boxes of varying degrees of
sophistication. The first function will always display lines of 40 dashes. The second will also display lines
40 characters long, but will draw them using any specified character. The third will allow the user to
specify both the character and the length of the lines. Listing 4-2 shows OVERFUN.

Listing 4-2 OVERFUN

// overfun.cpp
// overloaded functions

#include <iostream.h>
#include <string.h> // for strcpy()

const int MAX_LENGTH = 40; // maximum length of text

class fancy_text // class displays text
 {
 private:
 char text[MAX_LENGTH]; // text to be displayed
 public:
 void set_text(char tx[]) // set the text
 {
 strcpy(text, tx);
 }
 void box_display(); // line of dashes
 void box_display(char); // line of characters
 void box_display(char, int); // line of n characters
 };
void fancy_text::box_display() // line of 40 dashes
 {
 cout << "--";
 cout << endl << text << endl;
 cout << "--";
 }
 // line of 40 characters
void fancy_text::box_display(char ch)
 {
 int j;
 for(j=0; j<MAX_LENGTH; j++)
 cout << ch;
 cout << endl << text << endl;
 for(j=0; j<MAX_LENGTH; j++)
 cout << ch;
 }
 // line of n characters
void fancy_text::box_display(char ch, int n)
 {
 int j;
 for(j=0; j<n; j++)
 cout << ch;
 cout << endl << text << endl;
 for(j=0; j<n; j++)
 cout << ch;
 }
void main()
 {
 fancy_text ft1;
 ft1.set_text("Gone with the Wind");
 ft1.box_display(); // display text with default lines
 cout << endl << endl;
 ft1.box_display('='); // default length and equal signs
 cout << endl << endl;
 ft1.box_display('=', 18); // equal signs; length matches text
 cout << endl << endl;
 }

In main(), the program creates a fancy_text object and gives it the text Gone with the Wind.
Then it displays this text using three different versions of box_display(). First the program uses the
default version, which always prints lines of 40 dashes. Then it uses the version that allows the
specification of the type of character to use in the lines; it chooses equal signs. Finally, it uses the version
that allows it to select both the character and the length; it uses equal signs again, but matches the length
to the length of the text, which is 18 characters. The output from OVERFUN looks like this:

--
Gone with the Wind
--

==
Gone with the Wind
==

==================
Gone with the Wind
==================

Notice that I’ve defined all the box_display() functions outside the class. The function declarations
within the class show, with commendable brevity, the differences between the three versions of the
function:

void box_display(); // uses two lines of dashes
void box_display(char); // uses two lines of characters
void box_display(char, int); // uses two lines of n characters

Remember that, even though they have the same name, these three functions are completely different as
far as the compiler is concerned. The compiler has even invented separate names for each function by
mangling the argument type names into the function name. (Actually, although you don’t need to know
this, the class name is mangled into member function names as well so the compiler can distinguish
member functions that have the same name but are in different classes, such as the ubiquitous init().)

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Functions

http://www.itknowledge.com/reference/archive/1571690638/ch04/204-207.html [21-03-2000 19:06:04]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
javascript:displayWindow('images/04-06.jpg',603,485)
javascript:displayWindow('images/04-06.jpg',603,485)
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch04/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Quiz 3

1. Function overloading is desirable because

a. you don’t need to define as many functions.

b. in a reference book that’s arranged in alphabetical order, all the functions that do
the same thing will be in the same place.

c. one overloaded function can be made to do the work of several ordinary functions.

d. when functions that do the same thing all have the same name, it’s clearer and
easier to remember, even if they do it to different types of data.

e. you don’t need to make up a lot of slightly different function names.

2. In the OVERFUN program, once the code is compiled into machine language, how many
versions of the box_display() function actually exist?

a. 1.

b. 3.

c. There must always be the same number as there are function definitions.

d. There must always be the same number as there are function calls.

e. There must always be the same number as the number of arguments.

3. Name mangling of a member function involves

a. creating a name for internal use by the compiler.

b. creating a name for use by the programmer.

c. incorporating the name of the object that called the function into the function name.

d. incorporating the function’s argument types into the function name.

e. incorporating the class name into the function name.

4. Assuming the statements shown here are all in the same main(), which ones can
potentially compile properly and not interfere with each other?

a. intvar1 = get_number();
b. floatvar1 = get_number();
c. intvar1 = get_number(intvar2);
d. floatvar1 = get_number(floatvar2);
e. intvar1 = get_number(intvar2, intvar3);

5. It might be reasonable to use a set of overloaded member functions to

a. perform the five basic arithmetic operations on type float.

b. exit from a class in different ways.

c. draw different shapes.

d. display information about different kinds of employees.

e. play the roles of strcpy(), strcat(), strlen(), and so on in a string class.

Exercise 1

Write a set of overloaded functions (not necessarily member functions) that return the smaller of
two numbers passed to them as arguments. Make versions for int, long, and float.

Exercise 2

In the HOURADD program in Chapter 2, Session 6, is a member function called addhours() This
function adds a specified number of hours to an airtime object. Change the name of this function
to add() and write another member function, also called add(), that uses an airtime value as
an argument and adds this argument to the airtime object that called the function. Change
main() to check out these overloaded functions.

Session 4: Default Arguments

Default arguments are another convenience feature in C++. Like overloaded functions, they make
things easier for the programmer by reducing the number of function names that must be
remembered. However, where overloaded functions give a number of functions the same name,
default arguments allow a single function to operate as if it were several functions.

A Power Example

Suppose I write a function called power() whose purpose is to raise a number of type float to a
power, that is, to multiply the number by itself a given number of times. For simplicity, I’ll restrict
the power to whole numbers. To raise 2.0 to the power of 3, for example, I would call the function
like this:

answer = power(2.0, 3);

Here answer should be 2.0 cubed, or 8.0. The definition for such a function might look like this:

float power(float fpn, int pow)
 {
 float product = 1.0;
 for(int j=0; j<pow; j++) // multiply fpn by itself pow times
 product *= fpn;
 return product;
 }

This is fine so far, but let’s further suppose that I want the same function to handle a special case
somewhat differently. If no second argument is specified, I want it to find the square of a number
(multiply the number by itself).

answer = power(9.0); // should square the number

Here the answer should be 9.0 times 9.0, or 81.0.

To achieve this result, I could overload power() so I have two separate functions, one that takes a
single argument, which it multiplies by itself and one that takes two arguments and raises the first to
the power of the second. However, there’s a simpler approach.

Default arguments allow you to leave out one or more arguments when you call a function. Seeing
that arguments are missing, the function declaration supplies fixed values for the missing
arguments. Let’s see how that looks with the power() example.

float power(float, int=2); // function declaration
… // (supplies default argument)
void main()
 {
 …
 answer = power(9.0); // call with one argument
 // (2.0 is supplied as 2nd arg)
 …
 answer = power(2.0, 3); // call with two arguments
 }
float power(float fpn, int pow) // function definition
 { // (doesn't know about defaults)
 float product = 1.0;
 for(int j=0; j<pow; j++)
 product *= fpn;
 return product;
 }

The function declaration is used to supply the default argument. The equal sign indicates that a
default argument will be used; the value following the equal sign specifies the value of this
argument. The function definition is not changed at all. It doesn’t know whether it’s receiving real
arguments or default arguments; it just does what it’s told. In main(), the program calls power()
both ways, first with one argument and then with two. Figure 4-7 shows how the definition supplies
the values of the default arguments.

Figure 4-7 Default arguments

I should note that there is a family of C library functions, pow(), powl(), pow10(), and so on,
that raise one number to the power of another. However, being written in C, they cannot use
function overloading or default arguments.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Functions

http://www.itknowledge.com/reference/archive/1571690638/ch04/207-210.html [21-03-2000 19:06:15]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
javascript:displayWindow('images/04-07.jpg',680,388)
javascript:displayWindow('images/04-07.jpg',680,388)
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch04/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

A Member Function Example

Let’s modify the fancy_text class from the OVERFUN example in the last lesson so that the
box_display() member function uses default arguments instead of overloading. Depending on
how many arguments are sent to this function, it will display lines of 40 dashes, lines of 40 user-chosen
characters, or lines of characters with both the length and the character selected by the class user.
Listing 4-3 shows DEFARGS.

Listing 4-3 DEFARGS

// defargs.cpp
// default arguments

#include <iostream.h>
#include <string.h> // for strcpy()

const int MAX_LENGTH = 40; // maximum length of text

class fancy_text // class displays text
 {
 private:
 char text[MAX_LENGTH]; // text to be displayed
 public:
 void set_text(char tx[]) // set the text
 {
 strcpy(text, tx);
 }
 // set default values
 void box_display(char ch='-', int n = MAX_LENGTH);
 };
// line of n characters ch, or default values for n and/or ch
void fancy_text::box_display(char ch, int n)
 {
 int j;
 for(j=0; j<n; j++) // line of n ch's
 cout << ch;
 cout << endl << text << endl; // line of text
 for(j=0; j<n; j++) // line of n ch's
 cout << ch;
 }
void main()
 {
 fancy_text ft1;
 ft1.set_text("Gone with the Wind");

 ft1.box_display(); // display text with default lines
 cout << endl << endl;

 ft1.box_display('='); // default length and equal signs
 cout << endl << endl;
 ft1.box_display('=', 18); // equal signs; length matches text
 cout << endl << endl;
 }

There are three ways to call box_display(): You can leave out both arguments, leave out only the
second one, or supply them both. Here are examples of these three approaches. Each displays a line of
characters, a line of text, and another line of characters:

ft1.box_display(); // two lines of 40 dashes
ft1.box_display('='); // two lines of 40 '=' characters
ft1.box_display('=', 18); // two lines of 18 '=' characters

The output from this program is the same as that from OVERFUN:

--
Gone with the Wind
--

==
Gone with the Wind
==

==================
Gone with the Wind
==================

Note: Note also that the main() part of the program is identical to that of OVERFUN. I’ve changed a
member in the class from using overloaded functions to using default arguments, but this has not affected
the interface between main() and the class.

The cin.getline() Function

Another example of default arguments in action can be seen in the C++ library function
cin.getline(). I’ve already used the cin.get() function to acquire text from the keyboard.
The cin.getline()function is similar, but it uses a default argument for the termination
character—the character the user types to terminate input. You can call the function much as you can
call cin.get():

cin.getline(str, 80); // get up to 80 chars, place in str

When used this way, the function will return when the user presses . However, you can also
add a third argument:

cin.getline(str, 80, '$'); // get up to 80 chars, place in str

In this case, the function will not terminate when the user presses but will continue to accept

input from the keyboard until the user presses the dollar sign ().

The declaration of getline() in the IOSTREAM.H header file, somewhat simplified, looks like this:

istream getline(char, int, char = '\n'); // simplified declaration

The third argument is given a default value of '\n’, which is the character returned when the user
presses . By specifying a third argument, I can change the terminating character to anything I
want.

Limitations

Only the arguments at the end of the argument list can have default arguments. If one argument has a
default argument, it must be the last one. If two arguments do, they must be the last two, and so on.
You can’t insert a default argument in the middle of a list of normal arguments because the compiler
would lose track of what arguments went where. In other words, you can’t say

void badfunc(int, int=2, int); // no good

because the default argument is not the last one. However

void okfunc(int, int=2, int=10); // ok

is all right because both default arguments are at the end of the list (i.e., on the right).

If you call a function such as okfunc() that has two default arguments and you leave one argument
out, it must be the last one. Otherwise, the function won’t be able to figure out which value matches up
with which argument.

You can’t change the values of the default arguments midway through your program by using
additional function declarations. Attempting to do so will elicit a complaint from the compiler.

When to Do What

I’ve explored two ways to make one function name do the work of several. Overloaded functions are
actually separate functions with the same name but different numbers and/or types of arguments. A
function that has default arguments is only one function, but it can take different numbers of
arguments.

Overloaded functions are typically used when a similar operation must be performed on different data
types. Default arguments are used in cases where a simplified or default version of a function can be
used in certain circumstances. Default arguments are also useful in functions that are under
development. They can serve as place holders for arguments that are not yet installed in a function
definition but are planned for some time in the future. The defaults allow existing function calls to
operate correctly, but allow future calls to take advantage of a revised function that uses more
arguments.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Functions

http://www.itknowledge.com/reference/archive/1571690638/ch04/210-213.html [21-03-2000 19:06:29]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch04/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Quiz 4

1. A default argument is an argument that

a. can be of different types in different calls to the function.

b. must always have the same value.

c. can be used, or not used, in a function call.

d. will cause control to be routed to different functions,
depending on whether it’s supplied or not.

e. can be supplied with a value, but not by the function call.

2. The values for nonexistent default arguments are specified in

a. the function body.

b. the function declaration.

c. the function definition.

d. the function call.

e. class member data.

3. Given the following function declaration

 void afunc(float, int=2, char='x');

which of the following are correct calls to the function?

a. afunc(3.14159);
b. afunc(19, ‘a’);
c. afunc(12.2, 19, ‘a’);
d. afunc(12.2, ‘a’);
e. afunc(12.2, 19);

4. Which of the following are valid declarations for functions that
use default arguments?

a. void afunc(char, float=3.14159, int=10);
b. void afunc(char=‘x’, float, int);
c. void afunc(char ch, float fpn, int
intvar=77);

d. void afunc(char ch=3.14159, float
fpn=3.14159, int intvar);

e. void afunc(char, float, int);
5. It is appropriate to use default arguments when

a. you want to pass an array of data to a sorting function
sort(), but the data can be of any type.

b. you want a function log() that usually calculates
logarithms to the base 10, but you occasionally want to specify
a different base.

c. you want to average the contents of int arrays of varying
sizes.

d. the type of the arguments will vary.

e. the value of one of the arguments will often be a particular
fixed value.

Exercise 1

Using the getche() function to read the characters, write your own
version of the cin.getline() function described in this lesson. Include
the default argument for the terminating character.

Exercise 2

Revise the box_display() function in the fancy_text class so it
boxes in the left and right ends of the displayed text as well as on the top
and bottom, like this:

|====================|
| Gone with the Wind |
|====================|

Add a fourth argument to the function so the user can determine the
character to be used for the box ends. Make this a default argument, which,
if it’s not supplied, causes the function to use the character shown in the
example output.

Midchapter Discussion

George: Overloaded functions, default arguments, what do they buy
you? Is it really that hard to remember a bunch of different
function names?

Estelle: I don’t think it’s a major feature of the language, like classes or
something. It’s just a convenience.

Don: Right. Remember, with OOP we’ve got programmers who are
class creators and other programmers who are class users. I
think overloaded functions is a way to make things a little
easier for the class users. If you’ve got a whole lot of member
functions for a new class you’re learning about, overloading
means you’ve got fewer names to remember.

Estelle:
Does everyone get the difference between function declarations
and definitions?

George: The definition is the function, and the declaration is just the
instructions to the compiler about how to make a function call.

Don: Very good, George. You’re getting sharper and sharper.
George: Well, I read the assignment, for a change. But I still don’t see

why you don’t just put all the function definitions first. Then
you wouldn’t need any declarations.

Estelle: Lots of programmers like to put the more important functions,
such as main(), first and less important ones later. But the
important ones tend to call the unimportant ones.

Don: Or a program could be divided into different files. When you
call a function that’s in a different file, then you better have the
declaration in your file or the compiler won’t know how to
handle it.

Estelle: There sure are a lot of ways to use functions.

George:
I don’t see any reason to use anything but main() and
member functions.

Don:

That’s true in the little example programs we’ve seen in these
sessions. But you need more flexibility in big programs. That’s
why you’ve got to be able to call a function that’s in another
part of the file or in a different file.

George: If you say so.

Session 5: Storage Classes

As I noted earlier, functions, along with classes, are an important
organizing principle in the design of C++ programs. Dividing a program
into functions and classes gives rise to the concept of storage classes,
which allow you to specify various features of data variables. (Incidentally,
the word class in storage class is used in its generic sense; it has nothing to
do with C++ classes.) Storage classes are a major tool in the design of C++
programs. They allow the programmer to manage variables. This can help
save memory, make the program run faster, simplify it, and avoid variable
name clashes. In this session, I’ll explore storage classes and several other
fundamental aspects of variable usage.

Some of the material in this lesson may seem theoretical or obscure. Don’t
worry if you don’t understand it all. You can come back to this lesson later
when questions about storage classes arise in future discussions.

Before you learn about storage classes, you need to firm up your
understanding of two words: declaration and definition.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Functions

http://www.itknowledge.com/reference/archive/1571690638/ch04/213-216.html [21-03-2000 19:06:35]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch04/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Declarations and Definitions

Thus far, I have used the terms declaration and definition as they apply to
data variables without explaining exactly what they mean. In many cases,
these words are used in much the same way, but there is an important
distinction.

A declaration specifies a name and a data type. This is all a declaration is
required to do. Its job is to impart information to the compiler; it does not
cause the compiler to take any action.

A definition, on the other hand, causes the compiler to allocate a specific
place in memory for the variable.

I’ve already noted these distinctions with regard to functions, where a
function can be declared or defined:

void afunc(); // function declaration

void afunc() // function definition
 {
 // statements
 }

The declaration is for information only, whereas the definition is the “real
thing”; it is turned into code that is installed in memory. The same is true
for variables: At a single point in a program, a definition causes memory to
be set aside for each variable but the variable can be declared—that is, its
name and type can be specified—in several different places.

Two Kinds of Declarations

Confusingly, most writers consider a definition to be a kind of declaration.
That is, some declarations cause memory to be allocated, whereas some
don’t. Other writers try to use the word declaration only when a definition
is not taking place. Thus the word declaration is potentially confusing. In
any case, the word definition always means that memory is being allocated.
And, fortunately, the context usually makes it clear whether the word
declaration means declaration as opposed to definition or declaration that
may or may not be a definition.

All the variable declarations you’ve seen so far have been definitions as
well. However, when I discuss the external storage class in a moment,
you’ll see that some variable declarations are not definitions.

Lifetime and Visibility

Storage class determines two key characteristics of a variable. The first,
called visibility—or scope—relates to which parts of the program can “see”
or access the variable. The second, the lifetime, is the period of time during
which the variable exists. Variables can be visible within a class, a function,
a file, or a number of files. A variable’s lifetime can coincide with that of
an object, a function, or an entire program.

Each storage class provides a different combination of lifetime and
visibility. You’ve already made the acquaintance of several storage classes
(although I have not dwelled on the implications). These are automatic
variables and external variables. I’ll first look at these storage classes from
the standpoint of lifetime and visibility. Then I’ll introduce some new
storage classes; finally, I’ll summarize lifetime and visibility for all the
storage classes.

Automatic Variables

Automatic variables are declared inside a function, like this:

void anyfunc()
 {
 int ivar; // automatic variables
 float fvar;
 }

They are called automatic variables because they are automatically created
when a function is called. When the function returns, its automatic variables
are destroyed. For the technically minded, automatic variables are pushed
onto the stack when a function first starts to execute and popped off when it
returns. Thus, the lifetime of automatic variables coincides with the time
the function is actually executing.

Automatic variables are visible only within the function. Statements in any
other function cannot access them. Thus, a variable defined as j in one
function is a completely different variable than one defined as j in another
function.

You can use the keyword auto to specify an automatic variable, but
because variables defined within a function are automatic by default, there
is seldom a reason to do this.

Automatic variables are not initialized by default, so unless you initialize
them explicitly, they will have a random “garbage” value when they first
come into existence.

Figure 4-8 shows the visibility of variables of various storage classes. The
wide arrows indicate the parts of the program where a variable is visible.

Figure 4-8 Visibility of storage classes

Register Variables

A register variable is a specialized kind of automatic variable. Register
variables require the keyword register. The idea is that the compiler
will attempt to place register variables in CPU registers rather than in
memory. Because registers are more quickly accessed, they should make a
program with commonly used variables more efficient. A typical variable
that would profit from this treatment is the innermost loop variable in a set
of nested loops. You are usually limited to one or two register variables in a
given function.

Actually, modern compilers are so efficient at figuring out—on their
own—what variables should be register variables that it’s questionable
whether there is much point in specifying this storage class. I’ll ignore it in
this book. If you have a loop in which your program spends a great deal of
time, you might experiment to see if making the loop variables register
speeds things up.

Blocks

Automatic variables can be defined not only within a function but also
within a block, which is any section of code enclosed in braces. The body of
a loop or an if statement is a block, for example. Variables defined within
a block have block scope; that is, they are visible only within the block.

External Variables

As you’ve seen, most variables are declared either as class instance data
(usually private) or as automatic variables inside functions. However,
you’ve also seen a few examples of variables declared outside any class or
function, most recently the MAX_LENGTH variable in the OVERFUN
program in Session 3 in this chapter. Such variables are called external
variables. Here’s an example:

// start of file (e.g., somename.cpp)
int xvar; // external variable

void afunc()
 {
 …
 }

class aclass
 {
 …
 };

// end of file

External variables are visible to all statements throughout the file from the
point where the variable is declared onward. The lifetime of external
variables is the life of the program. External variables, unlike automatic
variables, are automatically initialized to 0, unless they are initialized
explicitly.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Functions

http://www.itknowledge.com/reference/archive/1571690638/ch04/216-218.html [21-03-2000 19:06:44]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
javascript:displayWindow('images/04-08.jpg',500,582)
javascript:displayWindow('images/04-08.jpg',500,582)
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch04/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

External Variables and Multiple Files

All but the smallest C++ programs are typically divided into several files. For simplicity, in this
book most of the example programs consist of a single file, although I’ll delve into multiple-file
programs on Chapter 11, Session 7. In the meantime, it’s useful to understand how external
variables can be made visible or invisible in multiple files.

You’ve already seen that an external variable is known throughout the file in which it’s defined
from the point of the declaration onward. An external variable that is defined in one file is not
normally accessible in other files; it is invisible outside its own file. However, it can be made
accessible by using a declaration, with the keyword extern, in any other file that wants to access
the variable. Here’s an example that consists of three files:

// file #1
int ivar; // definition
// ivar is known in this file
// end of file #1

// file #2
extern int ivar; // declaration
// ivar is also known in this file
// end of file #2

// file #3
// ivar is not known in this file
// end of file #3

The variable ivar is defined in file 1, declared in file 2, and not declared in file 3. This variable is
thus visible in files 1 and 2, but not in 3.

In any program, a variable can have only one definition. It can exist in memory in only one place,
and only one statement can cause this memory to be allocated. However, a variable can be
declared in many places. In the example above, ivar can be declared in any number of other
files, each time using the keyword extern.

You can also restrict an external variable so it is invisible in other files even if they attempt to
access it using an extern declaration. To do this, use the keyword static, which doesn’t
really mean static in this context as much as it means restricted scope.

// file #1
static int ivar; // definition
// ivar can be known ONLY in this file
// end of file #1

// file #2
extern int ivar; // useless declaration
// end of file #2

Here the compiler will think that ivar refers to some other variable that hasn’t been defined yet;
when the linker encounters this reference, it will complain that ivar is undefined.

External Variables in the Doghouse

Now that I’ve discussed external variables, I must note that their use is somewhat suspect in C++.
There are several problems with them. The first is that they are open to accidental alteration.
Because they are visible to all the functions in the program, it’s easy for a function to alter an
external variable by mistake. It’s like leaving your address book on the sidewalk. Who knows
what might happen to it?

The second problem has to do with name control. Variable names defined inside a class or
function do not conflict with the same names used for different variables inside another class or
function. That is, you can define a variable count inside func1(), a different variable count
inside func2(), and a third variable count inside class X. These names will not conflict
because the names are not visible outside their function or class.

External variables, on the other hand, are visible everywhere, so there can be only one external
variable called count in the entire program (or file, if it’s static). This can lead to name clashes,
especially in large programs where different sections of the program are created by different
programming teams.

Look long and hard at any external variables in your program; you may not really need them.
Often you should use static instance data, which I’ll look at in the next session, instead of external
variables.

Local Static Variables

Sometimes you want a function to be able remember something between one call to the function
and the next. For example, suppose you want a function (perhaps called average()) to add a
value to a running total every time it is called and to return with the updated average of all the
numbers it has been called with, including all the values from previous calls as well as the present
call.

Such a function would need to store the total and the number of times the function has already
been called so it could calculate the new average. However, this can’t be done with normal
automatic variables because they are destroyed and their contents are lost every time the function
returns. The solution is to make these variables static:

float average(float item)
 {
 static int n = 0; // number of times we've been called
 static float total = 0.0; // running total
 total += item; // add argument to running total
 return total/n++; // find average, increment count
 }

Local static variables exist for the lifetime of the program, so they don’t lose their existence or
their values when the function returns. They are initialized to 0.0 automatically, but doing so
explicitly, as I show here, helps clarify for the programmer what’s happening.

Local static variables are not used as much in C++ as they are in C. In C++, objects have taken
over the role of functions that use local static variables. Both an object and such a function contain
data that continues to exist even when the function is not executing. Because objects are more
powerful and versatile than functions (that’s why OOP was invented), it makes sense to use a class
instead of a function and static variables. If you find yourself needing to use static variables in a
standalone (nonmember) function, it’s probably time to turn the function into a class by making
the static data into instance data.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Functions

http://www.itknowledge.com/reference/archive/1571690638/ch04/218-221.html [21-03-2000 19:06:49]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch04/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

The Storage Class Table

Table 4-1 summarizes the scope and lifetime attributes of the various storage classes.

Table 4-1 Storage class, visibility, and lifetime
Storage Class Specifier (Keyword) Visibility (Scope) Lifetime

Automatic None (or auto) Function Function
Register register Function Function
Local static static Function Program
External (definition) None File (can be declared

in other files)
Program

External (declaration) extern File Program
External static static File (cannot be declared

in other files)
Program

Objects

Remember that objects are treated almost the same as variables in C++. (The difference is that
objects must have a class specification, whereas the specifications for basic types are built into
the language.) Objects can be created in any of the storage classes described in Table 4-1:
automatic, external, and so on. Like variables, they can be defined or only declared. (The
exception is the storage class register, which doesn’t make any sense for objects because
an object cannot be placed in a register.)

Visiblity of Instance Data

What about the visibility of instance data within classes? The variables I have used thus far in
class specifications have all been private. As you’ve learned, this means that such variables
cannot be “seen” or accessed except by statements in that class’s member functions. Private
class data is invisible outside the class. Here’s an example:

class someclass
 {
 private:
 int ivar; // private instance data
 float fvar;
 public:
 // member functions can access ivar and fvar
 };

In this class specification, the variables ivar and fvar are visible only to statements between
the braces that delimit the someclass class. The visibility of private class data is the class.

Public class members (usually functions) are visible to all functions and classes throughout the
entire file—at least from the point of the class specification onward—provided they are called
in conjunction with an actual object of that class. This requires the dot operator (or
somethingsimilar) to link the object and the function, as in

anobj.memfunc(); // member functions must be called by an object

Lifetime of Instance Data

What is the lifetime of class instance data? Such data doesn’t exist until an actual object of that
class is defined. Then the variables that make up the instance data for that particular object
(but not for any other objects) are defined as well. By defined, I mean that specific locations in
memory are set aside for these variables.

When an object ceases to exist, all its variables are destroyed along with it. (I’ll discuss in
Chapter 5 how objects may cease to exist.) Thus, the lifetime of class instance data, whether
public or private, is the lifetime of its object.

Quiz 5

1. Storage classes are concerned with

a. which variable a value is stored in.

b. which data type a value is stored in.

c. a special class whose objects are variables of basic types.

d. whether a variable can retain its value when a function returns.

e. how long a variable stays in existence.

2. A declaration ________, whereas a definition _____________.

a. may be a definition, can never be a declaration.

b. specifies only a name and a data type, also allocates memory space.

c. specifies a data type, specifies a name.

d. specifies a name, specifies a data type.

e. allocates only memory space, also specifies a name and a data type.

3. Instance data exists for the life of

a. a block.

b. a function.

c. an object.

d. a file.

e. the entire program.

4. Automatic variables are visible only in the __________ in which they are declared.

a. class

b. function

c. object

d. file
e. program

5. To make an external variable accessible in a file other than the one in which it is
defined,

a. is impossible.

b. it must be defined again.

c. the keyword extern must be used.

d. the keyword static must be used.

e. it must be declared.

Due to the largely theoretical nature of this lesson, there are no exercises.

Session 6: Static Members

In this lesson, I’ll introduce a C++ feature that’s related to storage classes and that casts some
light on the nature of class members.

Static Member Data

So far, the data members I’ve used in classes have been instance data, meaning that one copy
of the data exists for each instance of an object that is created. In other words, instance data is
associated with a particular object. But what if you need a variable that applies to the class as a
whole, rather than to particular objects?

For example, suppose I have a class of race cars in a game program. Such things as the position
of each car and its speed are clearly instance data because they apply to each individual car.
However, other data applies to the race track, such as the length of the track, and any
obstructions that might suddenly appear on it, like an oil slick or the yellow caution flag. This
sort of data is not specific to each car, but is related to the entire class of race cars. All the cars
in the class access the same variable to determine if the yellow flag is up; this data isn’t
duplicated for each car.

I could use external variables for such data, but external variables are not associated with the
particular class and have other problems as well, as mentioned in the last session. I want a class
variable, but one that is not duplicated for each object.

Static member data solves this problem. One copy of such data exists for the entire class, as
shown in Figure 4-9.

Figure 4-9 Instance data and static data

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Functions

http://www.itknowledge.com/reference/archive/1571690638/ch04/221-224.html [21-03-2000 19:06:57]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
javascript:displayWindow('images/04-09.jpg',659,670)
javascript:displayWindow('images/04-09.jpg',659,670)
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch04/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Creating Static Data

The syntax for creating static member data is unusual. You must have separate statements
to declare a variable within a class and to define it outside the class. Here’s an example:

class aclass
 {
 private:
 static int stavar; // declaration
 …
 };
int aclass::stavar = 77; // definition

The declaration uses the keyword static. The definition uses the class name connected
to the variable name with the scope resolution operator (::). This double-barreled
approach to creating a static variable makes some kind of sense if you assume that data
defined inside the class specification is always instance data, duplicated for each object. To
define a data item that exists only once for the entire class, you define it outside the class,
although you declare it inside the class so it will be visible to other class members.

The static data member can be initialized when it’s defined, as I showed here. If it’s not
explicitly initialized, it’s automatically set to 0. Once it’s defined, static class data can be
accessed only by class member functions; it has class scope.

Accessing Static Data

You can access static member data from an ordinary member function. However, it usually
makes more sense to use a special kind of function that, like static data, applies to an entire
class rather than a particular object. This is called a static function.

Static Functions

A static member function is defined using the keyword static. Otherwise, it looks like
any other member function. However, function calls to member functions are made
without referring to a particular object. Instead, the function is identified by connecting it
to the class name with the scope resolution operator. Here’s how that looks:

class aclass
 {
 private:
 …
 public:
 static int stafunc() // function definition
 {
 // can access only static member data
 }
 };
main()
 {
 …
 aclass::stafunc(); // function call
 …
 }

A static member function cannot refer to any nonstatic member data in its class. Why not?
Because static functions don’t know anything about the objects in a class. All they can
access is static, class-specific data. You can call a static function even before you’ve
created any objects of a class.

Count-the-Objects Example

Sometimes individual objects in a class, or nonmember functions such as main(), need to
know how many objects of a class exist at any given time. A race car, for example, might
want to know how many other race cars are left on the track after various crashes and
engine failures.

The example program creates a class of widgets (small devices of obscure purpose). Each
widget is given a serial number, starting with 10,000. The class uses a static variable,
total_widgets, to keep track of how many widgets have been created so far. It uses
this total to generate a serial number and to place it in the instance variable
widget_number when a new widget is created.

A static member function is used in main() to access the total number of widgets. This
allows the program to access the total before it has created any widgets and again when it
has created three. Listing 4-4 shows STATIC.

Listing 4-4 STATIC

// static.cpp
// demonstrates static data and functions
#include <iostream.h>
class widget
 {
 private:
 int widget_number; // a widget's serial number
 static int total_widgets; // all widgets made so far
 // NOTE: declaration only
 public:
 void init() // initialize one widget
 {
 widget_number = 10000 + total_widgets++;
 }
 int get_number() // get a widget's number
 {
 return widget_number;
 }
 static int get_total() // get total widgets
 {
 return total_widgets;
 }
 };

int widget::total_widgets = 0; // NOTE: definition
void main()
 {
 cout << "Total widgets = " << widget::get_total() << endl;
 widget w1, w2, w3; // create widgets
 w1.init(); // initialize them
 w2.init();
 w3.init();

 cout << "w1=" << w1.get_number() << endl;
 cout << "w2=" << w2.get_number() << endl;
 cout << "w3=" << w3.get_number() << endl;
 cout << "Total widgets = " << widget::get_total() << endl;
 }

The program calls get_total() before creating any widgets, creates three widgets,
numbers them by calling init() for each one, displays each widget’s number, and then
calls get_total() again.

Notice that the nonstatic member function init() can access the static variable
total_widgets (it increments it), but static member function get_total() cannot
access nonstatic (instance) data.

Here’s the output of the STATIC program:

Total widgets = 0
w1 = 10000
w2 = 10001
w3 = 10002
Total widgets = 3

I’ve noted before how clumsy it is to use a function such as init() to initialize each
object to a certain value just after it’s created. I’ll fix this in the next chapter, when you
learn about constructors.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Functions

http://www.itknowledge.com/reference/archive/1571690638/ch04/224-227.html [21-03-2000 19:07:04]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch04/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Quiz 6

1. Which of the following would be reasonable uses for static member
data in a class where each object represents an elevator in a high-rise
building?

a. The location of each elevator.

b. A request from the 17th floor to go up.

c. The number of riders in an elevator.

d. The number of elevators in the building.

e. Pushing the button for the 17th floor while inside an elevator.

2. A static member variable in a class

a. is duplicated within each object.

b. does not really exist, in the sense of being defined.

c. has only one copy for the entire class.

d. is duplicated in each member function.

e. represents something about the class as a whole.

3. Static member functions

a. must be declared inside the class specification, but defined
outside it.

b. must be called using an object of the class.

c. have only one copy for the entire class.

d. can access only static data.

e. can access any object’s data.

4. Calling a static member function from main() requires

a. the dot operator.

b. the scope resolution operator.

c. no operator.

d. the function to be public.

e. the class name.

5. In the STATIC program,

a. the get_number() function can access static variables.

b. the get_total() function can access static variables.

c. the get_number() function can access nonstatic variables.

d. the get_total() function can access nonstatic variables.

e. widget_total can be assigned a new value by a statement
in main().

Exercise 1

Add a price_per_widget member data variable (type float) to the
widget class. Should it be static? Also add a member function that will
return the total value of all widgets created to date; call it get_value().
Make this function static.

Exercise 2

Start with the elevator program from Exercise 1 in Chapter 2, Session 1. The
elevator class has member functions to display the floor the elevator is
on, to move it up one floor, and to move it down one floor. To this program
add a static member variable that represents how many floors there are in the
building. Modify the existing member functions so they use this value to
check whether moving the elevator up or down will cause it to go higher than
the highest floor or lower than the lowest floor (which you can assume is 1).
Don’t move the elevator if these conditions occur.

Session 7: Reference Arguments

What’s a reference? The short and enigmatic definition is that it’s another
name—an alias—for a variable. Why would anyone want a different name
for a variable? The most important reason has to do with function arguments.

Recall that when I pass an argument to a function by value (as you’ve seen
many times already), this value originates in a variable in the code that calls
the function and is then copied into another variable in the function itself.
The function then operates on its own copy of the variable; it cannot access
the original variable.

But what happens if I want the function to operate on the original variable?
When this is the case, I must use a different approach to specifying the name
the function uses for an argument. By doing this, I can make the name used
by the function refer to the original variable in the code that called the
function, instead of referring to a newly created copy of the variable within
the function.

I’ll first show a simple example of this, using integers. Then I’ll show how
the technique can be applied to objects. Finally, you’ll see that references
don’t need to be used exclusively with function arguments (or with return
values, as you’ll see in the next lesson), although they usually are.

Swapping Integers

Suppose you have two integer variables in your program and you want to call
a function that swaps (exchanges) their values. For example, suppose you’ve
defined two variables this way:

int alpha = 2; // initialize two ints
int beta = 7;

Passing by Value

Now you want to call a function that will swap 7 into alpha and 2 into
beta. Will the following function definition have the desired effect?

void swap(int a, int b) // function swaps values???
 {
 int temp = a;
 a = b;
 b = temp;
 }

This function swaps the values of a and b. However, if you call this function
in the usual way, like this,

swap(alpha, beta); // try to swap their values

hoping it will swap the values of alpha and beta, you will be
disappointed. If you print out the values of alpha and beta after calling the
function, you will find that they are unchanged. Why? Because normal
function arguments in C++ are passed by value, as I noted. The function
automatically creates completely new variables, called a and b in this
example, to hold the values passed to it (2 and 7) and operates on these new
variables. So when the function terminates, although it’s true that a has been
changed to 7 and b has been changed to 2, unfortunately the variables
alpha and beta, in the code that called the function, remain stubbornly
unchanged.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Functions

http://www.itknowledge.com/reference/archive/1571690638/ch04/227-229.html [21-03-2000 19:07:12]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch04/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Passing by Reference

We need a way for the function to reach back into the original variables (alpha and beta) and
manipulate them instead of creating new variable. That’s what passing by reference
accomplishes.

Syntactically, to cause an argument to be passed by reference, simply add an ampersand (&) to
the data type of the argument in the function definition (and the function declaration, if one is
needed). Here’s how you can rewrite the swap() function to use reference arguments:

void swap(int&, int&); // function declaration,
 // (note ampersands)
…
int alpha = 2; // initialize two ints
int beta = 7;
…
swap(alpha, beta); // swap their values (declaration)
…
void swap(int& a, int& b) // function swaps values
 { // (note ampersands)
 int temp = a;
 a = b;
 b = temp;
 }

If you print out the values of alpha and beta following the call to this version of swap(),
you’ll find that they have indeed been exchanged: alpha is 7 and beta is 2.

Note: The ampersands follow the ints in both the declaration and the definition. They tell the
compiler to pass these arguments by reference. More specifically, they specify that a is a
reference to alpha and that b is a reference to beta. (As you can see, ampersands should not be
used in the function call itself.) Figure 4-10 shows how the function swap() operates on the
variables alpha and beta in main(); the function has no variables a and b of its own because
they are only aliases for alpha and beta.

Figure 4-10 Passing by reference

A Reference Is a Different Name

What exactly is a reference? From the programmer’s standpoint, it is simply another name for
the same variable. The name a refers to exactly the same location in memory as alpha, and b
refers to the same location as beta.

Swapping Objects

Listing 4-5 shows a complete program, SWAPOBJ, that uses a swap() function to exchange two
objects. I’ll use the employee class, last seen in the STREMP program in Chapter 3, Session 4.

Listing 4-5 SWAPOBJ

// swapobj.cpp
// function swaps employee objects

#include <iostream.h>

const int SMAX = 21; // maximum length of strings

class employee
 {
 private:
 char name[SMAX]; // name (20 chars max)
 int serial_number;
 public:
 void input() // get data from user
 {
 cout << " Enter name: ";
 cin >> name;
 cout << " Enter serial number: ";
 cin >> serial_number;
 }
 void output() // display employee data
 {
 cout << " Name = " << name;
 cout << "\n Serial number = " << serial_number;
 }
 };
void main()
 {
 void swap(employee&, employee&); // declaration

 employee e1, e2;
 cout << "Enter data for employee 1" << endl;
 e1.input();
 cout << "Enter data for employee 2" << endl;
 e2.input();
 cout << "Swapping employee data";
 swap(e1, e2); // swap employees
 cout << "\nData for employee 1" << endl;
 e1.output();
 cout << "\nData for employee 2" << endl;
 e2.output();
 } // end main()

void swap(employee& emp1, employee& emp2) // definition
 {
 employee temp = emp1;
 emp1 = emp2;
 emp2 = temp;
 }

In main(), the program creates two employee objects and asks the user to supply the data for
them. Then it calls the swap() function to exchange the data in the two objects. This works
because the objects are passed by reference. Finally, the program displays the data. Here’s some
interaction with this program. (You can’t use multiple-word names because I simplified the input
routine in the interest of brevity.)

Enter data for employee 1
 Enter name: Bernard
 Enter serial number: 111
Enter data for employee 2
 Enter name: Harrison
 Enter serial number: 222

Swapping employee data

Data for employee 1
 Name = Harrison
 Serial number = 222
Data for employee 2
 Name = Bernard
 Serial number = 111

Notice that the swap() function doesn’t need to be a member function of employee because
it doesn’t deal with private employee instance data.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Functions

http://www.itknowledge.com/reference/archive/1571690638/ch04/229-232.html [21-03-2000 19:07:22]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
javascript:displayWindow('images/04-10.jpg',500,378)
javascript:displayWindow('images/04-10.jpg',500,378)
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch04/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Standalone References

Let’s perform a little experiment to clarify what references are. So far, you’ve seen
references used only as function arguments. References can also be used as standalone
variables. (Although it’s not clear why you would want to do this in a real program.)

First, I’ll create a variable of type int, initialized to a value:

int intvar = 7;

Now I’ll create a reference:

int& intref = intvar; // make a reference to intvar

When you create a reference you must also, in the same statement, initialize it to the variable
it refers to. Here I specify that intref is a reference to intvar. If you don’t initialize a
reference, the compiler will complain. (This initialization is handled automatically for
function arguments that are references, as you saw above.)

What happens if you now display the values of the original variable and the reference?

cout << "\nintvar=" << intvar; // 7
cout << "\nintref=" << intref; // 7

The numbers in the comments show the output. Both statements print the same value. This
isn’t surprising because they are actually referring to exactly the same variable. If you
change the value of the original variable and display its—and the reference’s—contents,
you’ll see they’ve both changed:

intvar = 27; // assign value to variable
cout << "\nintvar=" << intvar; // 27
cout << "\nintref=" << intref; // 27

I can also turn things around and use the reference to assign a new value to the variable:

intref = 333; // assign value to reference
cout << "\nintvar=" << intvar; // 333
cout << "\nintref=" << intref; // 333

This again causes the same output from both statements because both the reference and the
original variable name refer to the same part of memory.

After it’s defined and initialized, you cannot change a reference to refer to a different
variable. If you try to do this, the compiler will think you’re simply trying to assign the
reference (and the variable it already refers to!) to the value of the new variable:

int intvar2 = 3;
intref = intvar2; // gives intref (really intvar) the value 3

In any case, such arcane matters are hardly worth pondering because, as I noted, the use of
references is almost always restricted to passing arguments to functions and returning values
from functions. In this context, references are essential to creating overloaded operators and
copy constructors, which you’ll be meeting later on.

Behind the Scenes

Behind the scenes, the compiler uses the address of the original variable as the value
assigned to a reference when it’s initialized. As a programmer, you don’t need to know
anything about this. However, grizzled C hackers will recognize that references are similar
to pointers. References have advantages over pointers, however. The notation is simpler
because you don’t need to dereference anything, and the compiler forces you to initialize a
reference, so you have less excuse to make the dangling pointer mistake. On the other hand,
although references are easier to use and safer than pointers, they are less powerful. You’ll
learn more about pointers in Chapter 8.

Advantages of Passing by Reference

The advantage of passing by value is that a function cannot accidentally corrupt the original
values of the variables in the code that called it. Passing by value is often preferable when
passing data of basic types. However, when working with objects, passing by reference is
often a better choice. Why? Because when you pass by value, a copy of the object is created
and stored in a new variable, which is created in the function for that purpose.

There are several disadvantages to creating unnecessary copies of an object. The most
obvious is that some objects can be quite large (much larger than variables of basic types),
so extraneous copies waste memory space. Also, creating a copy of an object is often not as
straightforward as simply copying the values of all the instance data. Special member
functions (constructors) may need to be executed to create the copy; this takes time and may
cause unexpected side effects.

Passing by reference avoids these problems because nothing is copied; the only thing that’s
passed to the function is the reference to the original object.

Quiz 7

1. A reference is

a. the contents of a variable.

b. the address of a variable.

c. another name for a data type.

d. another name for a variable.

e. a recommendation, usually laudatory.

2. When you declare a reference,

a. the variable used to initialize the reference must itself already be initialized.

b. the variable used to initialize the reference must itself be declared.

c. it must have the same type as the variable used to initialize it.

d. you use the ampersand following the data type of the reference.

e. you use the ampersand following the name of the reference.

3. Passing function arguments by reference allows the function to

a. receive values passed from the function call, but not alter them.

b. perform input/output.

c. operate on variables that are not defined within the function.

d. access the variables named in the function definition.

e. access the variables named in the function call.

4. If you have a reference floref to the variable flovar and you execute the
statement

 floref = 12.7;

you are actually

a. telling floref to refer to a different variable.

b. causing no change to the contents of any variable.

c. assigning the value 12.7 to floref.

d. assigning the value 12.7 to flovar.

e. creating two different copies of 12.7 in memory, one for floref and one
for flovar.

5. A standalone reference (one not used for function arguments)

a. must be initialized, usually to a variable.

b. must be initialized, usually to a value.

c. must be initialized, usually to a function.

d. is used for function arguments.

e. is seldom used.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Functions

http://www.itknowledge.com/reference/archive/1571690638/ch04/233-235.html [21-03-2000 19:07:28]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch04/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Exercise 1

Write an ordinary (nonmember) function called divrem() that takes three arguments of
type int. This function should divide the first argument by the second, return the quotient
(the answer; which is also type int), and send the remainder back using the third argument,
which is passed by reference. A call to such a function might look like this:

quotient = divrem(dividend, divisor, remainder);

Exercise 2

Write a member function called move() for the employee class that, instead of exchanging
two employee objects as the swap() function did in this session, moves the contents of one
object to another. That is, the function will set its first argument equal to its second
argument and then set the second argument to an empty employee. An empty employee has
the name “” (the null string) and a serial number of 0. The original value in the first
argument will be lost. To simplify the programming, you can have the user enter the values
for the empty employee.

Session 8: Returning by Reference

If you thought reference arguments were strange, hang onto your hat. Returning by reference
will definitely raise your eyebrows.

One important reason for returning by reference is that the function call expression can be
used on the left side of the equal sign and assigned a value as if it were a variable. For
example, if you have an object om1 and a member function getnset() you can say

om1.getnset() = 1088; // function call on the left side

This looks very strange. Ordinarily you can’t do this, because the compiler does not think of
a function call as a variable—something that can be given a value. Instead it thinks of it as a
constant—a value that can only be given to something else. You can’t ordinarily use a
function call on the left for the same reason you can’t say

3 = avar; // doesn't mean anything

Because the number 3 is a constant, it can’t appear on the left of the equal sign. There are
names to express these concepts. Something that can be given a value is called an lvalue,
because it normally appears on the left side of the equal sign, whereas something that can’t
be given a value, like a constant, is called an rvalue because it normally appears on the right
side of the equal sign.

Setting an Object to a Value

Listing 4-6 shows the RETREF program, which demonstrates how, by defining a function to
return by reference, I can put the function on the left side of the equal sign and thereby
assign a value to an object.

Listing 4-6 RETREF

// retref.cpp
// demonstrates returning by reference
#include <iostream.h>

class omega
 {
 private:
 int data;
 public:
 int& getnset() // returns OR SETS data
 { // (note ampersand)
 return data;
 }
 };
void main()
 {
 omega om1; // make an object
 om1.getnset() = 92; // give it a value (!)
 cout << "om1 = "
 << om1.getnset(); // get the value and display it
 }

In main(), the getnset() member function is called twice. The second call is a normal
one: The function call goes on the right side of the equal sign and it returns the value from
the instance variable data, which is then displayed.

However, the first call to getnset() is placed on the left side of the equal sign in the
expression

om1.getnset() = 92;

What does this do? It assigns the value 92 to the variable data in the om1 object. Two
things are necessary for this to happen. First, the function getnset() must be defined as
returning by reference. This is accomplished by inserting an ampersand following the data
type of the return value:

int& getnset()

Second, the function must return the variable data, which is the variable I want to set to a
value. The statement

return data;

takes care of this. The arrangement is shown in Figure 4-11.

Figure 4-11 Value returned by reference

The return value of 92 goes from main() to the function, the opposite direction from
normal return values, which are passed back from the function to main(). The output of
the program is

om1 = 92

which shows that genset() can both set an object and get its value.

Cautions

Don’t try to return an automatic variable (one defined within the function) by reference.
Such variables cease to exist when the function terminates, so you would be assigning a
value to some random location in memory. For example, don’t write a member function like
this:

int& badret() // returns by reference
 {
 int somevar; // local variable
 …
 return somevar; // don't do this
 }

If in main() you then said something like

anObj.badret() = 1066;

you would be assigning somevar a value, but somevar would have already been
destroyed because the function had returned. Fortunately, the compiler won’t let you get
away with this.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Functions

http://www.itknowledge.com/reference/archive/1571690638/ch04/235-238.html [21-03-2000 19:07:40]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
javascript:displayWindow('images/04-11.jpg',500,290)
javascript:displayWindow('images/04-11.jpg',500,290)
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch04/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

What’s It For?

Returning by reference was created to solve a particular problem in C++:
how to handle return values from overloaded operators. It probably doesn’t
have much use otherwise, because there are more straightforward ways to
set an object’s instance data to a value. However, for those cases where it
does make sense, it’s invaluable. I’ll use this technique when I explore
overloaded operators in Chapter 6.

Quiz 8

1. Anything you place on the left side of the equal sign must be a
variable because

a. the variable shouldn’t go on the right side, where constants
go.

b. only a variable can be given a value.

c. only a constant can be given a value.

d. functions are always variables.

e. only variables can be equal to anything.

2. Syntactically, returning by reference involves inserting

a. in the function definition an ampersand following the data
type of the return value.

b. in the function definition an ampersand following the name
of the return value.

c. in the function call an ampersand following the name of the
return value.

d. in the function definition a statement that returns the
variable whose value is passed to the function.

e. in the class instance data a variable that can be assigned a
value.

3. An lvalue is

a. always an object.

b. always a constant.

c. always a variable.

d. a variable that must appear on the left side of an equal sign.

e. anything that can appear on the left side of an equal sign.

4. You can’t return a local variable by reference because

a. the local variable is unknown to the return statement in
the function.

b. the local variable is unknown to the statement calling the
function.

c. local variables become inaccessible when the function
terminates.

d. local variables cease to exist when the function terminates.

e. local variables are private.

5. Returning by reference is usually used in relation to

a. objects.

b. arguments passed by reference.

c. overloaded functions.

d. overloaded operators.

e. standalone member functions.

There are no exercises for this lesson because returning by reference can’t
be used for anything meaningful until you learn about overloaded operators.

Summary: Chapter 4

Functions are used for a variety of purposes. A function is basically a
section of code that can be called from elsewhere in the program. This
saves memory space. However, functions are also used to divide a program
into more manageable sections. Whereas member functions in classes are a
key way to organize C++ programs, standalone functions divide up parts of
the program that are not parts of objects.

Overloading allows several functions to have the same name. These
functions are distinguished by the number and types of their arguments.
Default arguments enable a single function to act as if it were several
functions. Arguments not supplied by the function call are supplied by the
function declaration.

Storage classes determine the lifetime and visibility of variables. The
lifetime is the period of time when a variable is in existence, whereas
visibility (or scope) is concerned with which other parts of the program can
access the variable. Storage classes include automatic, register, and local
static within functions, external and static external outside of functions, and
class data and functions.

A reference is an alias for a variable name. References are mostly used to
pass arguments to functions. In this system, an alias to a variable in the
calling program is passed to the function, rather than a value. This allows
the function to operate on the variables in the calling program and avoids
the need to copy the argument’s value, which may require much time and
space if the argument is a large object. Returning values by reference is
more esoteric and enables a function call to be used on the left side of the
equal sign. This will be important later for overloaded operators.

End-of-Chapter Discussion

Estelle: I think we’ve spent the last half of this chapter basically
learning how to fine-tune a program.

Don: That’s a good way to put it. You don’t desperately need all
these storage classes and references unless you want to make
your program more efficient.

George: Huh?
Estelle: It’s all a question of trade-offs. If a variable stays around too

long, it takes up too much memory. So automatic variables
disappear when the function returns. But you need some
variables to last longer so different functions can access them.
That’s why variables can be local static, external, or external
static. That way they can last the life of the program.

George: Why not just have one life-of-the-program category?
Don: So you can avoid name clashes.
George: Sorry, I don’t follow you.
Estelle: You want to be able to use the same name for different

variables in different places in your program. Otherwise, you
could use j only for a loop variable in one function in the
program.

Don:
Again, the bigger the program the more useful that kind of
thing is.

George: Umm. Well, one thing’s for sure. Count me out on references. I
didn’t get that at all.

Don: References are really just another way to optimize your
program. With a reference, the function can manipulate the
variables in the function that called it without having to make
them external variables.

Estelle: And the point of that is that you don’t have to copy reference
arguments when you pass them, which is faster and saves
memory.

Don:
Which is especially important with objects, because they can
be so big.

George: I thought it was so the function could change variables in the
code that called it.

Don: That too.
Estelle: What about static members?
Don: More of the same. If you didn’t have static members, you’d

need to use external variables, and that would spread class data
out all over the place, which is what classes were supposed to
avoid in the first place.

George: Really, I’m so glad you guys understand all this.
Don: If you don’t like that explanation about references, remember

they’re going to be used later for overloaded operators. I’m
sure it’ll all be clearer then.

George: I can hardly wait.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Functions

http://www.itknowledge.com/reference/archive/1571690638/ch04/238-241.html [21-03-2000 19:07:48]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch04/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

CHAPTER 5
CONSTRUCTORS

In this chapter I’m going to discuss constructors, which are special member
functions used to create and initialize objects. I’ll also briefly demonstrate
their counterpart, destructors, which carry out clean-up tasks when an
object is destroyed.

I’ll show constructors that take no arguments and constructors that do, and
a special case: the copy constructor, which takes one argument that is a
member of its own class. Along the way, you’ll encounter some other C++
features, such as const.

Session 1: Introducing Constructors

A constructor is a special member function that’s used to initialize an
object. You may remember that in several previous programs, I used a
member function called init() when I wanted to give a certain value to
an object just after it was created. For example, in the STACK1 program in
Chapter 3, Session 2, I used an init() to set the top-of-the-stack array
index to -1. This had to be done before the first item could be pushed onto
the stack. In the STRCLASS program in Chapter 3, Session 5, I used an
init() to set an xString object to a specified string constant. (Of
course, I didn’t need to name the initialization function init(); it could
have been initialize() or CallMeFirst() or anything else.)

Initialization

In these programs, the use of a function such as init() was somewhat
suspect. What’s wrong with using init()? First of all, it’s possible for the
class user to forget to call the init(), thereby leaving an object
uninitialized. Second, initialization should be a one-step process, just as it is
when you define an external variable and it’s set to zero automatically. But
when you use init(), you have a two-step process: creating the object
and then initializing it. This may seem like a theoretical distinction.
However, initializing an object automatically when it’s created can pay big
dividends in making a program more error free and more understandable.

The role of the user-written constructor, then, is to carry out any
initialization that’s necessary for the object. When you define an object in
your program, like this:

aClass anObj; // make an object

the compiler arranges for the class constructor to be called when this
statement is executed.

Creation

Whether you’ve written an explicit constructor or not, the compiler
generates the code necessary to create the object, allocate memory for it,
and perform other kinds of behind-the-scenes initialization. This happens
automatically, just as it does for variables of basic types such as int.
Confusingly, the term constructor is often used to refer not only to the
user-written initialization function, but also to this compiler-generated
behind-the-scenes activity.

Destructors

Every object that is created must eventually be destroyed. Automatic
objects (those created within the body of a function) are destroyed
(automatically!) when the function returns. This is true of main(), just as
it is with other functions. Conversely, objects declared as external or static
variables are destroyed only when the program ends.

The class creator can write an explicit destructor for a class. This destructor
typically takes care of deallocating whatever was allocated by the
constructor. Think of a destructor as the object’s last will and testament.

Whether the programmer writes a destructor or not, the compiler supplies a
routine to deallocate the memory occupied by an object and to perform
other clean-up operations when the object is destroyed. This code is often
included in the meaning of the term destructor.

Constructors and Destructors in Action

Let’s look at a very simple example that shows what constructors and
destructors look like. In this program, objects of the class Omega have no
purpose except to announce when they are initialized and when they are
destroyed. Listing 5-1 shows CONDEST.

Listing 5-1 CONDEST

// condest.cpp
// demonstrates constructors and destructors
#include <iostream.h>
class Omega
 {
 public:
 Omega() // constructor
 {
 cout << "I am the constructor" << endl;
 }
 ~Omega() // destructor
 {
 cout << "I am the destructor" << endl;
 }
 };
void main()
 {
 cout << "Starting main()" << endl;
 Omega om1, om2, om3; // create three objects
 cout << "Ending main()" << endl;
 }

Same Name as the Class

A constructor always has exactly the same name as the class. Why? Well, it
has to be given a standard and distinctive name. Using the class name helps
avoid name clashes, because you aren’t likely to use this name for one of
your own member functions. In any case, that’s how the compiler knows
you’re defining a constructor.

The destructor has the same name as the class, but it is preceded by a tilde
(~).

No Return Value

Constructors have no return value, not even void. It’s hard to imagine
what a constructor would return, and to whom, because it’s called
automatically. The same is true of destructors. (Because a destructor is
called to do away with an object, it’s hard to imagine what message a
destructor would return to the code that called it. Maybe You’ll be
sorry!)

What They Do

In the CONDEST example, the constructor doesn’t actually initialize
anything. It simply displays a message announcing that it’s executing.
Likewise, the destructor doesn’t clean up anything, it displays a message.
Here’s the output when you run this program:

Starting main()
I am the constructor
I am the constructor
I am the constructor
Ending main()
I am the destructor
I am the destructor
I am the destructor

Notice that there are no function calls in main(), or anywhere else, to the
constructor or destructor. They are called automatically. The constructor is
called when each object is created. This happens three times in the
statement

Omega om1, om2, om3;

When main() ends, by dropping through the closing brace, the three
objects go out of scope and are automatically destroyed. The destructor is
called for each one just before it’s destroyed, as can be seen from the
output. Notice that, like messages from the grave, these announcements
from the destructor appear after main() has terminated.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Constructors

http://www.itknowledge.com/reference/archive/1571690638/ch05/243-246.html [21-03-2000 19:07:57]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch05/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Initializing Variables

Let’s look at a more realistic example, where a constructor actually performs a useful
activity. I’ll rewrite the STACK1 program from Chapter 3, Session 2, to use a constructor
instead of the init() function. Listing 5-2 shows STACKCON.

Listing 5-2 STACKCON

// stackcon.cpp
// class models a stack; uses a constructor
#include <iostream.h>
class Stack // a stack holds up to 20 ints
 {
 private:
 int st[20]; // integers are stored in array
 int top; // index of last item pushed
 public:
 Stack() : top(-1) // constructor
 { }
 void push(int var) // place an item on the stack
 {
 st[++top] = var;
 }
 int pop() // remove an item from the stack
 {
 return st[top--];
 }
 };
void main()
 {
 Stack s1; // create a stack object
 // (no need to initialize it)
 s1.push(11); // push 3 items onto stack
 s1.push(12);
 s1.push(13);
 cout << s1.pop() << endl; // pop 3 items and display them
 cout << s1.pop() << endl;
 cout << s1.pop() << endl;
 }

Notice that I have not only eliminated the init() member function, I’ve also eliminated
all the calls to it that I needed in main() in STACK1. The constructor handles the
initialization automatically, which is a considerable convenience.

Initialization List

The purpose of the constructor is to set the top variable in each object to -1 when the
object is first created. You might expect code like this:

Stack() // constructor, incorrect approach
 {
 top = -1;
 }

This version of the constructor actually does the job, at least in this particular program.
However, it is not the preferred approach to initializing variables within the object. Some
variables cannot be initialized with ordinary assignment statements. As a somewhat
recursive example, suppose that one of the member variables in your class is an object from
some other class. This object should be initialized with a constructor, not a separate function
such as init(), so you don’t even have the option of initializing by calling a member
function.

Instead, a new syntax is used that causes actual initialization (rather than assignment) of
specified variables. A colon follows the class name and the variables to be initialized are
listed following the colon (separated by commas, if there is more than one). This is called
the initialization list (or initializer list). The value used to initialize each variable on the list
is placed in parentheses following the name, as shown in Figure 5-1.

Figure 5-1 Syntax of constructor initialization

In this example, the constructor’s declarator initializes the variable top:

Stack() : top(-1) // creates and initializes top
 { }

The body of the constructor is empty because all the initialization has already been taken
care of on the initialization list. An empty function body is not unusual in a constructor.
However, many constructors carry out other tasks in the function body. Also, some
variables, such as arrays, cannot be initialized in the initialization list.

I didn’t define a destructor for the Stack class because the constructor doesn’t allocate any
system resources or do anything else that needs unusual cleaning up.

Default Constructor

A constructor that takes no arguments, such as the one in the STACKCON program, is called
a default constructor. As you’ll see in the next session, other constructors do take
arguments.

Quiz 1

1. A constructor will typically _______ when an object is created.

a. allocate system resources

b. free system resources

c. initialize instance variables

d. destroy instance variables

e. cause main() to terminate

2. A constructor is preferable to a function like init() because

a. it has a unique name.

b. the programmer doesn’t need to remember to call the constructor, as is true
with init().

c. the constructor executes before the object is defined.

d. some instance variables must be initialized rather than assigned a value.

e. the constructor has no return value.

3. Destructors typically

a. deallocate system resources.

b. initialize instance variables.

c. return zero if all went well.

d. are called when the class specification is no longer visible.

e. are executed automatically when their object is destroyed.

4. The function call to a constructor

a. looks like any function call, except there is no return value.

b. may take arguments, as in aclass(2, 4);.

c. creates but cannot initialize an object.

d. is made automatically when an object is defined.

e. happens whenever an object’s instance data changes.

5. The preferred syntax for initializing an instance variable, using a constructor,

a. uses an assignment statement in the function body.

b. uses parentheses to surround the value.

c. inserts the variable name following a colon that follows the function body.

d. actually assigns the variable a value, as opposed to simply initializing it.

e. can be used for only one variable.

Exercise 1

Start with the TIME1 program from Chapter 2, Session 5. Add a constructor to the airtime
class that initializes both the hours and minutes member variables to zero. This will help
avoid errors when using the class, because an object will always have a valid time value
when created. Without the constructor, if you used display() without first using set(),
impossible time values would be displayed, such as 14203:2491.

Exercise 2

Start with the STATIC program from Chapter 4, Session 6. Change the init() function to a
constructor. (Note that you can do simple arithmetic in the expression that initializes an
instance variable in the constructor.)

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Constructors

http://www.itknowledge.com/reference/archive/1571690638/ch05/246-249.html [21-03-2000 19:08:09]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
javascript:displayWindow('images/05-01.jpg',326,419)
javascript:displayWindow('images/05-01.jpg',326,419)
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch05/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Session 2: Constructor Arguments

It’s nice to initialize objects to fixed values when they’re created, but it’s even more useful to
initialize them to values that you supply when you create them. In this lesson, you’ll see how to
do this. Special cases occur in the case of one-argument and no-argument constructors, so I’ll
begin with a more generic two-argument constructor and then look at the no-argument
constructor. I’ll examine the one-argument constructor in the next lesson.

A Two-Argument Constructor

Remember the airtime class from the TIME1 program in Chapter 2, Session 5? (You should;
it’s prominently featured in Exercise 1 of the last session.) Let’s see how to use constructor
arguments to initialize an airtime to any specified value when it’s created. Listing 5-3 shows
TIMECON.

Listing 5-3 TIMECON

// timecon.cpp
// class models time data type; uses constructor
#include <iostream.h>
class airtime
 {
 private:
 int hours; // 0 to 23
 int minutes; // 0 to 59
 public: // two-argument constructor
 airtime(int h, int m) : hours(h), minutes(m)
 {
 }
 void display()
 {
 cout << hours << ':' << minutes;
 }
 };
void main()
 {
 airtime t1(7, 54); // initialize t1

 cout << "\nt1 = ";
 t1.display(); // display t1
 }

The output from this program is

 t1 = 7:54

I’ve successfully initialized t1 to an airtime value. Because an airtime object has both
hours and minutes components, a two-argument constructor is required.

Arguments look much the same in the constructor definition as they do in any other function.
The data type is followed by a name and the arguments are separated by commas:

airtime(int h, int m) // looks like an ordinary function

Of course, you can tell this is a constructor because there’s no return type.

The Wrong Way

I could make the constructor look more like a normal function by using assignment statements
within the function body:

airtime(int h, int m) // still looks like an ordinary function
 {
 hours = h;
 minutes = m;
 }

However, assignment is not the proper way to initialize member variables.

The Right Way

Instead, I use the initialization list, following the colon, with the arguments as the initial values:

airtime(int h, int m) : hours(h), minutes(m)
 {
 }

Visually, you may find this a bit topheavy: a long declarator and an empty function body. You
can put the initializers on a separate line if you want:

airtime(int h, int m) :
 hours(h), minutes(m)
 {
 }

but it still looks strange. You’ll get used to it. In any case, it causes hours to be initialized to
the value of h and minutes to be initialized to the value of m. Figure 5-2 shows a similar
situation.

Figure 5-2 Arguments used as initializers

“Calling” the Constructor

Now you know how to write the constructor. However, because the constructor is called
automatically, you can’t use a normal function call to pass it the argument values. So how should
you pass it the values? By placing them in the object definition, like this:

airtime t1(7, 54);

This looks like a function call. As with function arguments, the values are placed in parentheses
and separated by commas. However, don’t be confused: This is the definition of an object. It
creates the airtime object t1 and initailizes its hours variable to 7 and its minutes to 54.

A No-Argument Constructor

If you don’t explicitly define any constructors, the compiler automatically generates a default
constructor for you, that is, a constructor that takes no arguments. This is why it’s called the
default constructor. I relied on this automatic creation of a default constructor in the program
examples in previous chapters. For example, there is no problem saying

employee emp1, emp2;

even if I have not explicitly defined any constructors at all for the employee class.

However, once you’ve defined even one kind of constructor, no matter how many arguments it
takes, the compiler will no longer create the default no-argument constructor for you. You must
do it yourself. Suppose I rewrite main() in TIMECON this way, without changing the class:

void main()
 {
 airtime t2; // can't do this
 // without a no-arg constructor
 airtime t1(7, 54); // initialize t1
 cout << "\nt1 = ";
 t1.display(); // display t1
 }

This would cause an error like

Could not find a match for airtime::airtime()

because there isn’t any no-argument constructor to handle the creation of t2. (The
airtime::airtime() format means “the no-argument constructor of class airtime.”)
The compiler does not supply a default constructor because there’s another (two-argument)
constructor. However, it’s easy to create a no-argument constructor. It could look like this:

airtime()
 { }

Although it doesn’t do anything, this constructor tells the compiler that I did not forget to write
the constructor, I know what I’m doing, and not to worry.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Constructors

http://www.itknowledge.com/reference/archive/1571690638/ch05/250-253.html [21-03-2000 19:08:21]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
javascript:displayWindow('images/05-02.jpg',447,384)
javascript:displayWindow('images/05-02.jpg',447,384)
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch05/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Quiz 2

1. Using a constructor with arguments (as opposed to the default constructor)
allows you to create objects

a. and at the same time specify what class they are.

b. with their own constructors.

c. whose instance data can be initialized to values supplied by the class
user.

d. and modify their existing instance data.

e. and assign values to the program’s external data variables.

2. Which of the following make(s) sense as an object definition?

a. horse george;
b. horse george(hands_high);
c. horse george(float hands_high);
d. point3d p(int x, int y, int z);
e. point3d p(0, 0, 0);

3. Which is the preferred two-argument constructor for class X?

a. X(int v1, float v2) { }
b. X(int v1, float v2) : var1(v1), var2(v2) { }
c. X(int v1, float v2) : var1(v1), var2(v2) {
var1=v1; var2=v2; }

d. X(int v1, float v2) { var1=v1; var2=v2; }
e. X(int v1, float v2) : { var1(v1), var2(v2) }

4. Calling a constructor with arguments is implemented by

a. a normal function call.

b. a normal function call, but with no return value.

c. a normal function call with arguments but no return value.

d. the definition of an object.

e. the specification of a class.

5. Which complete list of constructors, whose definitions you insert in a class,
will compile properly if you create objects using the syntax

aclass anobj;

a. no-argument constructor, one-argument constructor

b. one-argument constructor

c. no-argument constructor, two-argument constructor

d. one-argument constructor, two-argument constructor

e. no constructors at all

Exercise 1

Write a two-argument constructor for the employee class in the STREMP program in
Chapter 3, Session 4. It should allow you to define an employee object and at the
same time initialize it with appropriate values for the name and serial number. Ask
yourself whether, within the constructor, there is a difference in the way you should
set name and serial_number to the values passed as arguments.

Exercise 2

Start with the CARDARAY program from Chapter 3, Session 8. Change the init()
function to a two-argument constructor, which should have an empty function body.
Remove all the references to an array of type card in main() and test the
constructor by initializing a few cards and displaying them. The initializations should
look like this:

card c1(jack, diamonds);

Session 3: The One-Argument Constructor

A constructor with one argument plays a special role in object-oriented programming:
It can be used to convert an object from one class to another. This is usually done for
classes that represent data types, where a one-argument constructor can be used to
convert a value of one data type to another. Another name for such a constructor is a
conversion function. Figure 5-3 shows the idea.

Figure 5-3 Conversion function

Conversions

As a barebones example, let’s look at a class called typeA. This class has a
constructor that takes a single argument of the basic type int. Here’s how that looks:

class typeA
 {
 typeA(int i) // 1-argument constructor
 {
 // convert the int value to a typeA value
 }
 };

This constructor can be used to convert a variable of type int to an object of class
typeA. Remember, saying a variable is of a certain data type is the same as saying an
object is of a certain class.

There are two ways to write such a conversion. The most familiar way is for the
typeA object to be initialized with an int value in parentheses following the name
of the object:

void main()
 {
 int intv = 27; // an integer with a value
 typeA ta(intv); // initialize typeA object with int
 }

This causes the one-argument constructor to be called. Alternatively, you can use an
equal sign instead of the parentheses:

typeA ta = intv; // exactly the same as typeA ta(intv);

This is completely equivalent to the syntax with parentheses. Although it looks like an
assignment statement, the equal sign is not assigning anything; it’s initializing ta to
the value of intv. It also causes the one-argument constructor to be called.

A real assignment statement,

ta = tb;

does not cause a constructor to be called. Initialization is not the same as assignment.
This is an important distinction, as you’ll see later.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Constructors

http://www.itknowledge.com/reference/archive/1571690638/ch05/253-255.html [21-03-2000 19:08:30]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
javascript:displayWindow('images/05-03.jpg',500,289)
javascript:displayWindow('images/05-03.jpg',500,289)
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch05/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Converting Strings to xStrings

Let’s look at a more fully developed example of data conversion. In Chapter 3, Session 5, I
introduced the STRCLASS program, which used the xString class to model text strings. I’ll
modify this program by installing a one-argument constructor that can be used to convert an
ordinary null-terminated string to an xString object. Listing 5-4 shows STRCON.

Listing 5-4 STRCON

// strcon.cpp
// class models strings; uses constructors
#include <iostream.h>
#include <string.h> // for strlen(), strcpy(), etc.
const int MAX = 80; // maximum length of xStrings
class xString
 {
 private:
 char str[MAX]; // ordinary C string
 public:
 xString() // no-arg constructor
 {
 strcpy(str, ""); // make null string
 }
 xString(char s[]) // 1-arg constructor
 {
 strcpy(str, s); // initialize with string
 }
 void input() // get string from user
 {
 cin.get(str, MAX);
 }
 void display() // display string
 {
 cout << str;
 }
 void append(xString xs) // append argument string
 {
 if(strlen(str) + strlen(xs.str) < MAX-1)
 strcat(str, xs.str);
 else
 cout << "\nError: xString too long" << endl;
 }
};
void main()
 {
 xString s2, s3; // make xString objects
 xString s1("Greetings, "); // make and initialize s1
 cout << "Enter your name: ";
 s2.input(); // get s2 from user
 s1.append(s2); // append s2 to s1
 s3 = s1; // set s3 to s1
 s3.display(); // display s3
 }

This program is similar to STRCLASS. Here’s some sample interaction with it:

Enter your name: Kubla Khan
Greetings, Kubla Khan

However, STRCON uses a one-argument constructor instead of an init() function to give an
xString object a string value. In the definition

xString s1("Greetings, ");

the C string “Greetings” is converted to an xString called s1.

Notice that, as I mentioned earlier, I need to define a no-argument (default) constructor explicitly
because I also define a one-argument constructor. The no-argument constructor simply copies the
null string (a string of zero length) to its object. It’s probably a good idea to use the no-argument
constructor to initialize the xString. If you use the display() member function on an object
that’s been initialized to the null string, nothing will be printed; whereas, in the STRCLASS program,
displaying an uninitialized xString would produce a garbage string value, such as
“x!8*tEv$#^%”.

Of course, the two xString constructors in STRCON have the same name. This is simply another
example of function overloading. As long as the number or type of arguments is different for each
one, you can have as many constructors as you want.

Note: Note that you can’t initialize the str instance data in the one-argument constructor:

xString(char s[]) : str(s[]) // can’t do this --
 { // s is an array
 }

Because you’re dealing with an array, you must copy its elements one by one using the strcpy()
library function:

xString(char s[]) // 1-arg constructor
 {
 strcpy(str, s); // initialize with string
 }

Converting Meters to English Distances

As another example involving a one-argument constructor, let’s create a class that models distances
in feet and inches. I’ll call this class English, because feet and inches are part of the English
measurement system, in which a foot is divided into 12 inches. An English value of 6 feet 2 inches
is displayed as 6’-2”, with a single quote for feet and a double quote for inches and the two
quantities separated by a dash. There are 3.280833 feet in a meter.

The one-argument constructor will convert meters to an English object, which stores feet and
inches separately. I’ll also use a two-argument constructor to convert an int value for feet and a
float value for inches into an English value. (The float type allows me to use fractional
values for inches, such as 6.5.) With these constructors, I’ll also need a no-argument constructor,
which will set feet and inches to zero. Listing 5-5 shows ENGLCON.

Listing 5-5 ENGLCON

// englcon.cpp
// demonstrates constructors with English class
#include <iostream.h>
class English // English distances
 {
 private:
 int feet;
 float inches;
 public: // no-argument constructor
 English() : feet(0), inches(0.0)
 { }
 English(float meters) // 1-argument constructor
 {
 const float MTF = 3.280833; // meters to feet
 float fltfeet = MTF * meters; // get decimal feet
 feet = int(fltfeet); // integer part is feet
 inches = 12 * (fltfeet-feet); // remainder is inches
 }
 English(int f, float i) : // 2-argument constructor
 feet(f), inches(i)
 { }
 void display() // display
 {
 cout << feet << "\'-" << inches << '\"';
 }
 };
void main()
 {
 English E1(5, 2.5); // call 2-arg constructor
 cout << "\nE1 = ";
 E1.display();
 English E2(2.0); // call 1-arg constructor
 English E3; // call no-arg constructor
 E3 = E2;
 cout << "\nE3 = ";
 E3.display();
 }

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Constructors

http://www.itknowledge.com/reference/archive/1571690638/ch05/256-258.html [21-03-2000 19:08:39]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch05/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Meters to English Objects

The English object E1 is initialized to a feet and inches value. The object E2 is
initialized to a value in meters; then E3, created with the no-argument constructor, is
set equal to E2. Here’s the output of this program:

E1 = 5'-2.5"
E3 = 6'-6.73999"

The one-argument constructor converts meters to feet and inches by converting first to
decimal feet (2.0 meters is 6.56 decimal feet), then taking the integer part of this (6),
and subtracting it from the total and multiplying by 12 to get the inches value (6.56 - 6
is 0.56, times 12 is about 6.7 inches).

Escape Characters

The single quote (’) and the double quote (“) are special characters, used to delimit
characters and string constants respectively, so they can’t be displayed as normal
characters without being preceded by the escape character (\).

cout << feet << "\'-" << inches << '\"';

Thus, \’ causes a single quote to be displayed (indicating feet) and \” causes a
double quote to be displayed (indicating inches).

Not Always Appropriate

I mentioned that one-argument constructors work best on classes that represent data
types. As an example of a class that doesn’t represent a data type, consider the
employee class, seen in such examples as the STREMP program in Chapter 3,
Session 4. What value would you put in a one-argument constructor? An employee
can’t be boiled down into a single number, so this sort of conversion doesn’t make
much sense. Generally, if objects of a class represent physical, real-world objects,
such as employees or elevators or airplanes, then conversions with one-argument
constructors aren’t appropriate. Conversions work when objects represent variables.

More Conversions to Come

Conversions are an important part of working with C++ classes that represent
quantities, but I haven’t covered all there is to know about this topic. For example,
you’ve seen how to convert a basic type to a class object, but what about going the
other way? Suppose you want to convert an object of class English to a float
type representing meters? Or suppose you want to convert one kind of object to
another kind of object? You’ll learn more about these topics in Chapter 6.

Quiz 3

1. The purpose of data conversion is

a. to display data in different ways.

b. to exercise the one-argument constructor.

c. to convert a class of one type to a class of another type.

d. to convert a value of one type to a value of another type.

e. to convert a variable of one type to a variable of another type.

2. A one-argument constructor is the most appropriate constructor for data
conversions because

a. the no-argument constructor can work only with the value zero.

b. you want to convert the value of a single variable into another
variable.

c. the two-argument constructor can be used only with feet and inches.

d. it can convert an object to a basic type.

e. it doesn’t require a no-argument constructor to be defined.

3. Converting a C string to an xString requires

a. a C string constructor.

b. a C string object.

c. a C string value.

d. an xString constant.

e. an xString variable.

4. The two-argument constructor in the English class converts

a. feet and inches to English.

b. feet and inches to meters.

c. English to meters.

d. English to English.

e. English to feet and inches.

5. Converting from meters to an English distance value

a. requires you to multiply the number representing the value of the
English object by 3.280833.

b. requires you to multiply the feet part of the English object by
3.280833.

c. is more complicated than a. or b.

d. results in a single number.

e. results in two numbers.

Exercise 1

Write a one-argument constructor for the airtime class of the TIMECON program in
this chapter. It should convert decimal hours (type float) to an airtime value in
hours and minutes, that is, 1.5 hours becomes 1 hour and 30 minutes. Test it out by
initializing some airtime values to decimal hours values in main().

Exercise 2

Change the one-argument constructor in the ENGLCON program in this session so that
it accepts a floating-point quantity in inches rather than meters and converts it into a
feet and inches English value.

Session 4: Arrays as Instance Data

Arrays pose some interesting problems when used with constructors. In this session,
I’ll begin by investigating the question of how to size an array that’s being using as
instance data. I’ll start with several approaches that don’t work or are nonoptimum,
but are nevertheless instructive.

Array Sized with Constant

In the STACKCON program in Session 1 in this chapter, I committed a stylistic faux
pas by sizing the array with a constant:

class Stack
 {
 private:
 int st[20]; // really bad
 int top;
 …
 };

What’s wrong with this? It compiles and runs fine, but at some point in the
development of the Stack class, I will probably need to use this same number 20 in a
member function. Suppose I want to ensure, for example, that I don’t push too many
objects onto the stack. I might say

void push(int var)
 {
 if(top+ > 20) // if beyond end of array,
 cout << "Illegal push"; // error message
 else
 st(++top) = var;
 }

Now the constant 20 appears in two (or perhaps more) places in the class and, by
Murphy’s law, someone (perhaps myself) will change one without changing the other,
leading to problems. Also, the number 20 doesn’t tell me very much about its own
purpose. A name such as size (or better yet, especially in larger programs,
array_size or even stack_array_size) is more infomative.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Constructors

http://www.itknowledge.com/reference/archive/1571690638/ch05/258-261.html [21-03-2000 19:08:50]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch05/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Array Sized with External const

To have only one definition for a constant such as 20, I have recommended in other
contexts the use of external const variables at the beginning of the listing. Here’s what
that might look like, applied to the Stack class:

const int size = 20;
…
class Stack
 {
 private:
 int st[size]; // better
 int top;
…
};

This works, but it’s not in the spirit of OOP because it doesn’t encapsulate the data for
the class within the class specification. Ideally, the variable size should be declared
within the class so it is invisible outside the class and therefore impervious to accidental
alteration by other parts of the program.

Initializing Member Variables

Can I move the const variable into the class? A first attempt at that solution might look
something like this:

class Stack
 {
 private:
 const int size = 20; // illegal initialization
 int st[size];
 int top;
 …
 };

Sorry. I can’t initialize member data this way whether it’s const or not. The compiler
will say something like Cannot initialize a class member here. Instance
data must be initialized from the constructor’s initialization list, not in the variable
declaration. Let me digress for a moment to explore this rule.

Instance Data Initialization

Why can’t you initialize instance data with an equal sign, as in

const int size = 20; // not OK in instance data

as you can with nonmember data? Because instance variables are specific to each object.
The same variable within different objects can have different values. Therefore, instance
data can only be initialized when an object is created. How do you do that? In the
constructor, which is executed once for each object, when it’s created. The correct
approach is to put the variable on the initialization list:

class aClass
 {
 private:
 const int var;
 public:
 aClass(int v) : var(v) // v initializes var
 { }
 …
 };

Initialization Is Not Assignment

Incidentally, you cannot use an assignment statement in the body of the constructor to
initialize a const variable because assignment means changing an existing variable, not
initializing it, and const variables can’t be changed:

class aClass
 {
 private:
 const int var;
 public:
 aClass(int v)
 {
 var = v; // can't do this
 }
 …
 };

Arrays Sized at Compile Time

Suppose I go ahead and initialize the size variable properly with the constructor.
Unfortunately, I still can’t use this value to size the array:

class Stack
 {
 private:
 const int size; // legal
 int st[size]; // illegal--not known at compile time
 int top;
 public:
 Stack() : size(20), top(-1) // size initialized here
 { }
 …
 };

The trouble is that the size of an array must be known to the compiler at compile time.
It’s not something the program can figure out for itself when it’s running. So I can’t use
normal instance data, whether it’s const or not, for an array size.

The enum Hack

To solve the problem of initializing array sizes, many programmers have in the past used
something called the enum hack (where the word “hack” indicates that the solution
works, but it isn’t as elegant as it might be). Here’s how it looks:

class Stack
 {
 private:
 enum { size=20 }; // established at compile time
 int st[size]; // OK
 int top;
 …
 };

You encountered the enum data type in Chapter 3, Session 8. As you recall, enum
provides a way to create a new data type whose values are all listed and given names
and—optionally—values. In the expression:

enum { size=20 };

Here the idea isn’t to specify a new data type; it’s simply to give a name to a value. I do
this by leaving out the enum type name, specifying only one value name, and giving this
name a value. Because this value will be fixed at compile time, the compiler is happy to
use it as an array size. I’m happy too because I’ve created a value that can’t be changed,
yet is visible only within the class specification.

Static Constant Variables

Because the enum hack is so inelegant, the ANSI/ISO C++ working group has recently
added a new construction to the language: initialization of static constant instance
variables. This solves all the problems discussed in the sections above. Here’s the idea:

class Stack
 {
 private:
 static const int size = 20; // static constant
 int st[size];
 int top;
 …
 };

Here the variable size is a constant so it can’t be changed, but because it’s static, it’s
given a value at compile time, so it can be used to size the array.

This is now the preferred approach to sizing arrays that are instance variables. However,
not all compilers have been updated to handle this new construction, and older compilers
will produce errors if you try it. So you’ll probably see the enum hack being used for
quite a while. You may even catch me using it myself.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Constructors

http://www.itknowledge.com/reference/archive/1571690638/ch05/261-264.html [21-03-2000 19:08:57]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch05/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

The Improved STACK Program

Listing 5-6 shows the new improved version of the STACK program, incorporating the static constant
approach.

Listing 5-6 STATICON

// staticon.cpp
// class models a stack
// uses static constant for member array size
#include <iostream.h>
class Stack // a stack holds up to 20 ints
 {
 private:
 static const int size = 20; // array size
 int st[size]; // integers are stored in array
 int top; // index of last item pushed
 public:
 Stack() : top(-1) // constructor
 { }
 void push(int var) // place an item on the stack
 {
 st[++top] = var;
 }
 int pop() // remove an item from the stack
 {
 return st[top--];
 }
 };
void main()
 {
 Stack s1; // create a stack object
 s1.push(11); // push 3 items onto stack
 s1.push(12);
 s1.push(13);
 cout << s1.pop() << endl; // pop 3 items and display them
 cout << s1.pop() << endl;
 cout << s1.pop() << endl;
 }

This program works the same way its predecessors did and produces the same output:

13
12
11

Note that if you wanted to make several different Stack objects of different sizes, you wouldn’t be able to
use arrays at all. Instead, you would need to include the size as an argument in a constructor and then
allocate space for the array dynamically, using new. I’ll explore dynamic allocation and new in Chapter 8.

Initializing a Member Array

How can you initialize the elements of an array that’s declared as instance data in a class? For example, in
the WEEKOUT program in Chapter 4, Session 2, the array day_name was defined outside the class
weekday. However, it should be instance data, because it’s specific to the class. If it were instance data,
could it be initialized to the days of the week?

Unfortunately, you can’t initialize array elements in a constructor’s initialization list:

weekday() : day_name[0]("Sunday"), day_name[1]("Monday"), … // no good
 {
 }

The compiler can handle only individual variables in the initialization list, not arrays. How about
initializing the array when it’s defined? Alas, as you’ve seen, you can’t initialize nonstatic instance data
either:

class weekday
 {
 private:
 char day_name[DPW][MAX] =
 { "Sunday", "Monday", …}; // no good
 …
 };

In the particular situation of the WEEKOUT program, the array should be static, because it’s the same for all
objects and there’s no use duplicating it in each object. When an array is static, it can be initialized in its
definition (not the declaration):

class weekday
 {
 private:
 static const char day_name[DPW][MAX]; // declaration
 …
 };
…
const char weekday::day_name[DPW][MAX] = // definition
 { "Sunday", "Monday", "Tuesday",
 "Wednesday", "Thursday",
 "Friday", "Saturday" };

This approach solves this particular problem. I’ll leave it as an exercise to put this together into a working
program.

Quiz 4

1. Constants such as 20 should be avoided in your program listing because

a. such numbers have no specified data type.

b. their lifetime is too long.

c. if you change one 20 then you must change any others as well.

d. the number itself isn’t very informative about its purpose.

e. constants are visible throughout the program.

2. External variables should not be used to supply constant values for use in class member functions
because

a. their visibility does not correspond to that of the class.

b. their lifetime does not correspond to that of objects.

c. they can’t be initialized at compile time.

d. they can’t be initialized at all.

e. they can’t be made const.

3. You can’t use a statement such as

const int size = 20;

to initialize instance data in a class specification because

a. the assignment operator can’t be used to give values to data.

b. a constructor must be used to initialize instance data.

c. const variables can’t be initialized.

d. const variables must be initialized at compile time.

e. const variables must be initialized outside the class.

4. Why can’t you use const instance data to size an array?

a. const variables can never be used to size an array.

b. Array sizes must be declared outside the class.

c. Arrays must be declared outside the class.

d. Arrays are sized at compile time.

e. Arrays aren’t sized until after the data is declared.

5. The enum hack

a. associates a name and a value when an object is defined.

b. uses the name of a value of an enum variable to name a constant.

c. uses the name of an enum variable to name a constant.

d. uses the value of an enum variable as a constant.

e. cannot be used to size an array that is not instance data.

Exercise 1

Rewrite the STRCON program from Session 3 in this chapter so that it uses a static constant value for the
array size MAX.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Constructors

http://www.itknowledge.com/reference/archive/1571690638/ch05/264-267.html [21-03-2000 19:09:09]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch05/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Exercise 2

Rewrite the WEEKOUT program from Chapter 4, Session 2, so the array day_name is declared
inside the class. How will you insert the day names into the array? You should make the array type
static, because it is shared by all objects. This has repercussions on the variables used for the
array size: DPW and MAX. Where and how should they be declared?

Midchapter Discussion

George: I can’t believe I spent so much time on constructors. All they do is initialize objects.
It shouldn’t be that much more complicated than initializing an int.

Don: Well, whereas an int just has one value, objects can have many data items and you
may want to initialize different data items in different ways. That’s why C++ lets you
write your own constructors: It gives you complete control over the initialization
process.

Estelle: I can see that. It’s not like basic types, where you either initialize a variable to a
certain number or you don’t. What I didn’t get was the conversion function thing.

Don: With basic types, all that conversion stuff happens automatically. The compiler
knows how to convert int to float and you don’t need to think about it. But if
you want to convert int to airtime, the compiler can’t do it because it’s never
heard of airtime values. So you need to write a one-argument constructor.

George: Why a constructor? Why not just a function?
Estelle: Good question.
Don: Well, I guess you could use any old function for conversions, but the constructor

makes it easier to create a variable and initialize it to some simple value at the same
time. It’s really just a convenience.

Estelle: Isn’t it a safety feature, too? It forces the class user to remember to initialize every
object.

Don: Right. That’s what I meant.
Estelle: You know, I’m not sure I see the advantage of this English class having separate

numbers for feet and inches. Why not just store one number, representing fractional
feet?

George: Or fractional inches.
Don: Hmm. Well, suppose you have, like, 6 feet 4 inches. You can represent that exactly if

you store both those numbers. But if all you store is 6.333333 feet, then it’s not a
nice round number any more and you get round-off errors.

George: Big deal. Who cares about a ten-thousandth of a foot?
Don: I guess you could do it with a single number if you wanted, but it wouldn’t be as

pretty.
Estelle: Also you’d need to convert back and forth whenever there was input or output. It

would be slower for some functions.
George: I hope I never hear another word about constructors.
Don: Good luck.

Session 5: Copy Constructors

Copy constructors provide another way to create objects: by making a copy of an existing object. I
can use copy constructors overtly in my own programs, but the compiler also uses them behind the
scenes, sometimes in unexpected ways. In this session, you ’ll learn what copy constructors are and
how to make them work for you.

Copying Variables

You’ve seen numerous examples where I created an object or a variable from scratch. Where before
there was no object, now suddenly there is one:

sigma sigobj; // create an object of class sigma

The data in the object is initialized to zero or other appropriate beginning values. This is the familiar
approach to object creation, but there’s another one. You can also create an object that’s a copy of an
existing object. Do this with variables of basic types without thinking too much about it:

int alpha = 27; // create an int with value 27
int beta = alpha; // create another int that's a copy of beta

With basic types, copying means making a new variable of the same type and giving it the same
value. It’s not too complicated because there’s only one value to worry about and it’s always copied
as is into the new object.

Remember that in the two statements above, the equal signs are not assignment operators. The equal
signs in these statements don’t mean I’m assigning a value to an existing variable, they mean I’m
initializing a variable—as it’s being created—to a value. There is an important distinction between
assignment and initialization.

Equivalent Syntax

As I noted, a different but equivalent notation can be used for copying one variable to another. I can
also say

int beta(alpha); // copy alpha to beta

This has exactly the same effect as

int beta = alpha; // copy alpha to beta

However, the fact that there is no equal sign helps avoid confusion between assignment and
initialization. This is sometimes called functional notation. (It’s also used in constructors, in the
initialization list, as you’ve seen.)

Copying Objects

You can copy objects as well as variables of basic types:

sigma sigalpha; // create sigalpha
sigalpha.getdata(); // put some data in sigalpha
sigma sigbeta(sigalpha); // create sigbeta by copying sigalpha

Here I create sigalpha and give it some data by calling the member function getdata(). Then I
copy sigalpha to sigbeta. Another way of saying this is that I create sigbeta and initialize it
with sigalpha. Whatever data was placed in sigalpha by the getdata() function is
presumably transferred automatically into sigbeta when it’s initialized. I could say that I’ve
cloned the sigalpha object. Figure 5-4 shows how this looks.

Figure 5-4 Effect of the copy constructor

Not the Normal Constructor

When you create an object from scratch,

sigma sigobj; // create an object of class sigma

a constructor is invoked to initialize sigobj. It may take arguments and it may not. But if you copy
an object,

sigma sigbeta(sigalpha); // uses copy constructor to create sigbeta

what entity is responsible for initializing sigbeta? This also requires a constructor, but a very
special one with a unique argument type. It’s called the copy constructor.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Constructors

http://www.itknowledge.com/reference/archive/1571690638/ch05/267-270.html [21-03-2000 19:09:23]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
javascript:displayWindow('images/05-04.jpg',354,420)
javascript:displayWindow('images/05-04.jpg',354,420)
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch05/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

The Default Copy Constructor

If you don’t explicitly define your own copy constructor, the compiler creates one for you. This
default copy constructor carries out what’s called a memberwise copy of all the data from one
object to another. Memberwise means that the default copy constructor makes no effort to
change or interpret any of the data; it simply copies the value of each member into the
corresponding member in the other object.

Many times this memberwise copy is just what you want and there’s no need to create your
own copy constructor. However, when you want the new object to be different in some way
from the one it’s copied from or when you want the act of copying to cause some other side
effect, then you must explicitly define your own copy constructor.

You’ll see how to do this in a moment. First, however, I must digress briefly to show how
function arguments can be const. This is important because copy constructors typically use a
const argument.

const for Function Arguments

A major advantage of passing function arguments by value is that, because it works with a copy
of the argument, the function cannot access, and therefore cannot accidentally change, the
original variable used as an argument in the function call. This is an important safety device.

Passing by Reference

However, as I’ve noted, creating extra copies of an object, which may be arbitrarily large and
complex, is not always a great idea. Unnecessary copies of large objects may use too much
memory, and the copying process itself takes time and in some cases may introduce other
problems as well. For these reasons, it’s often preferable to pass objects by reference (see
Chapter 4, Session 7). This is the case in copy constructors, as you’ll see.

One of the advantages (at least sometimes) of passing by reference is that the function can
modify the arguments in the function call. But suppose you don’t want to modify them. Maybe
you want the other advantages of passing by reference, but don’t want to give up the
guaranteed safety of the original arguments that you get automatically when passing by value.

You can, when passing by reference, reinstate the guarantee that the original arguments won’t
be modified. All you need to do is declare these arguments as const. Listing 5-7 shows
PASSCON, which shows how that looks for arguments of basic types.

Listing 5-7 PASSCON

// passcon.cpp
// demonstrates passing const variables
class omega
 {
 private:
 int omdata;
 public:
 void getdata(const int& i) // guarantees not to change i
 {
 omdata = i; // this is fine
// i = 44; // error: can't modify const variable
 }
 };
void main()
 {
 omega om1;
 int ivar = 77; // I don't want getdata() to modify ivar
 om1.getdata(ivar); // perfectly safe
 }

I want to guarantee that the getdata() member function, when called from main() with
ivar as a reference argument, will not modify ivar. To do this, I make the argument const
in getdata():

void getdata(const int& i) // guarantees not to change argument
 {
 …
 }

Here, although ivar is passed by reference and given the alias i in the function, getdata()
can’t modify it, because it’s const.

Using const for reference arguments is an important technique for avoiding program bugs.
You should always make reference arguments const unless there is a specific reason for not
doing so (perhaps you want to modify the original variables).

Passing by Value

Notice that there is no point in using const for arguments that are passed by value. Passing by
value is already a guarantee that the original variable is safe because the original variable isn’t
passed at all; the function has access only to its own copy of the variable. Using const would
be gilding the lily.

A Simple Example of a Copy Constructor

Now that you know how to use const with function arguments, you can look at a real copy
constructor. Listing 5-8, COPYCON, is very simple.

Listing 5-8 COPYCON

// copycon.cpp
// demonstrates copy constructors
#include <iostream.h>
class omega
 {
 private:
 int intvar;
 public:
 omega(int v) : intvar(v) // one-arg constructor
 { }
 omega(const omega& om) // copy constructor
 {
 intvar = om.intvar;
 cout << "\nI am the copy constructor";
 }
 };
void main()
 {
 omega om1(27); // uses one-arg constructor
 omega om2=om1; // uses copy constructor
 omega om3(om1); // uses copy constructor
 }

There are two constructors for a class called omega: a one-argument constructor and the copy
constructor. You’ve already seen examples of one-argument constructors so it should be
familiar, but the copy constructor has some new features.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Constructors

http://www.itknowledge.com/reference/archive/1571690638/ch05/270-272.html [21-03-2000 19:09:32]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch05/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Just Another Constructor

The copy constructor is in many ways just another one-argument constructor. It
has the same name as the class and it has no return value. However, its argument
is always of the same class the function is a member of. The argument represents
the object to be copied.

COPYCON uses the copy constructor twice: when it makes om2 and when it makes
om3:

omega om2=om1; // uses copy constructor
omega om3(om1); // uses copy constructor

Both statements initialize a new object to the value of om1 by calling the copy
constructor. As I noted, the two syntax are equivalent. The copy constructor prints
a message each time it’s called. Here’s the output of the program:

I am the copy constructor <--when om2 is created
I am the copy constructor <--when om3 is created

The statement in the copy constructor

intvar = om.intvar; // copy the data item

is necessary to copy the data from one object to another. If you don’t define a
copy constructor at all, the compiler will generate a default constructor that will
take care of all this data copying automatically, using a memberwise copy. But if
you do define a copy constructor, then you are responsible for carrying out the
copy operation for every data item yourself. In omega, there’s only one such
item, intvar, so copy it.

If you checked the contents of the new objects, om2 and om3, following their
creation, you would see that they both have intvar values of 27.

You might wonder, if the compiler will make copy constructors for you, why
worry about them at all? In this simple example, the user-written copy constructor
doesn’t accomplish anything the compiler-generated (default) version would not
have. However, as you’ll see in the next session, there are times when a “smart”
copy constructor—which does things the default cannot do—is necessary.

Argument Must Be Passed by Reference

The copy constructor takes as its only argument an object of the same class as
itself. This argument must be passed by reference. (You’ll see why in the next
session, when I show how the compiler calls the copy constructor automatically.)

Argument Should Be const

The argument to the copy constructor should be const. There’s seldom any
reason for the copy constructor to modify anything in the object it’s copying from,
and guaranteeing that it can’t perform such modifications is an important safety
feature. You don’t absolutely need to use const, but it’s a good idea.

Quiz 5

1. A copy constructor

a. takes no arguments.

b. takes one argument.

c. takes an arbitrary number of arguments.

d. creates a new object that later may be assigned the data of an
existing object.

e. creates an object initialized with the same data as an existing
object.

2. The statement aclass obj2 = obj1; causes _____________ to be
executed.

a. no constructor

b. a one-argument constructor that must be written by the user

c. a one-argument constructor that must copy data

d. the copy constructor

e. an assignment operator

3. To prevent the possibility that a function will modify the object or
variable passed to it as an argument,

a. the argument may be passed by value.

b. the argument may be made const and passed by reference.

c. the function may be made const.

d. the function may not refer to the variable.

e. the function call must use the keyword const.

4. A copy constructor is always called when

a. an object is initialized with another object of the same class when
it’s created.

b. an object is initialized with another object of any class when it’s
created.

c. an object is initialized with a variable of a basic type when it’s
created.

d. an object is not initialized when it’s created.

e. an object is returned from a function by value.

5. The argument to a class copy constructor must be passed by reference
because otherwise

a. the copy constructor would not return.

b. the integrity of the argument object could not be guaranteed.

c. the integrity of the object being created could not be guaranteed.

d. too many objects would be created.

e. the copy constructor could not be identified by the compiler.

Exercise 1

Write a copy constructor for the airtime class from Exercise 1 of Session 1 in
this chapter. Have it perform a memberwise copy of all data. Write statements in
main(), using two different syntax, that exercise this copy constructor. Do you
really need an explicit copy constructor in this situation?

Exercise 2

One reason for an explicit copy constructor is to check that the arguments used to
initialize the new object have reasonable values. Modify the copy constructor in
Exercise 1 so it checks that the hours and minutes values are within
appropriate ranges and displays error messages if they are not. While you’re at it,
modify the constructor to perform the same check.

Session 6: Copy Constructors at Work

In this session, I’ll extend your understanding of copy constructors in two ways.
First I’ll look at a situation where defining your own copy constructor is
necessary. Then you’ll see several examples of how the compiler arranges for the
copy constructor to be called even when it may not be obvious that an object is
being copied.

Numbering the Objects

Remember the STATIC program in Chapter 4, Session 6? Objects of the widget
class in this program numbered themselves as they were created, using a static
member variable to record the total number of objects created to date.

However, suppose I create one widget object by initializing it with another:

widget w2(w1); // clone w2 from w1

If I have not written my own copy constructor, this will result in w2 being given
exactly the same widget number as w1, because the data is simply copied from
one object to another. Also, the count of all the existing objects won’t be
incremented, because the normal constructor is not called and the default copy
constructor doesn’t know anything about the count.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Constructors

http://www.itknowledge.com/reference/archive/1571690638/ch05/273-275.html [21-03-2000 19:09:40]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch05/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

An Intelligent Copy Constructor

To fix this, I must define my own copy constructor. For this example, I’ll use the omega
class from the COPYCON program in the last session. Its instance data will include a serial
number and a static count of all objects, as in the widget class, but it will also include a
string representing a name. The argument to the one-argument constructor will be a string
that gives each object whatever name the class user wants. However, I’ll arrange things
so that the copy constructor copies the name variable—without alteration—into a new
object. The object’s number variable, on the other hand, will be handled as it is in the
widget class: Each object will get a new number no matter how it’s created. An object
created with the copy constructor will therefore have the same name, but a different
number than the object it was copied from. Listing 5-9 shows COPYCON2.

Listing 5-9 COPYCON2

// copycon2.cpp
// demonstrates copy constructors,
// using objects that number themselves
#include <iostream.h>
#include <string.h> // for strncpy()
class omega
 {
 private:
 static const int size = 20;
 char name[size];
 static int total;
 int number;
 public: // one-arg constructor
 omega(char str[]) : number(++total)
 {
 strncpy(name, str, size);
 cout << "\nI am the 1-arg constructor. I have "
 << "created object " << name << "-" << number;
 }
 // copy constructor
 omega(const omega& om)
 {
 strncpy(name, om.name, size);
 number = ++total;
 cout << "\nI am the copy constructor. I have "
 << "created object " << name << "-" << number;
 }
 };
int omega::total = 0;
void main()
 {
 omega om1("Harriet"); // uses one-arg constructor
 omega om2=om1; // uses copy constructor
 omega om3(om1); // uses copy constructor
 }

In main(), I create one object of class omega, called om1, and give it the name
Harriet. Because it is the first object created in the program, it’s given the number 1
automatically by the constructor.

The second and third objects, om2 and om3, are created by copying om1 with the copy
constructor. They have the same name variable as om1 because the copy constructor
simply copies name. However, they have different number variable values because the
copy constructor does the same things the one-argument constructor does: It increments
the total count and uses the result for the new number value. Here’s the output from
COPYCON2:

I am the 1-arg constructor. I have created object Harriet-1
I am the copy constructor. I have created object Harriet-2
I am the copy constructor. I have created object Harriet-3

This shows that, if you write your own copy constructor, you can pretty much do
whatever you want to intialize the instance data in the new object. You can copy data
directly from the old object or you can modify the data or you can generate entirely new
data.

Initialization List

Remember that the strange-looking initialization list syntax in the constructor:

omega(char str[]) : number(++total) <--initialization
 {
 …
 }

has almost the same effect as would a similar statement in the function body:

omega(char str[])
 {
 number = ++total; <--assignment
 …
 }

However, the first construction initializes number to a value, whereas the second
assigns number a value.

A Variation on strcpy()

Incidentally, I’ve used a new library function, strncpy(), to copy the name from the
constructor argument to the object. This function is similar to strcpy(), but it includes
an argument that specifies the size of the buffer being copied to. It won’t permit any more
characters than this to be copied, thus offering insurance against buffer overflow.

Other Reasons for Using Copy Constructors

When do you write your own copy constructor? In Exercise 2 in the last session, you saw
that a copy constructor could be used to check the correctness of the data being passed to
the new object. Also, as you’ll see when I talk about pointers in Chapter 8, copy
constructors are often used when memory or other system resources are allocated during
object creation, for instance in string classes. (In fact, classes containing pointers used for
any purpose may need copy constructors so that the pointer points to things in its own
object instead of in the object it was copied from.)

Copy Constructor Invoked in Pass by Value

I have intimated that copy constructors are sometimes invoked in strange and mysterious
situations. There are two of these: when an argument is passed to a function by value and
when a function returns by value. In this section, I’ll look at the first of these situations.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Constructors

http://www.itknowledge.com/reference/archive/1571690638/ch05/275-277.html [21-03-2000 19:09:47]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch05/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Passing by Value Creates a Copy

Why should the copy constructor be invoked when an object is passed by value? Because a
copy of the object is created for use by the function. It doesn’t matter whether you create a
copy explicitly by defining a new object or whether the compiler creates a copy implicitly
because you’ve passed an argument by value. Either way, the copy constructor is invoked.
Listing 5-10, COPYCON3, demonstrates this process.

Listing 5-10 COPYCON3

// copycon3.cpp
// demonstrates copy constructors
// passes objects to functions by value
#include <iostream.h>
#include <string.h> // for strncpy()
class omega
 {
 private:
 static const int size = 20; // array size
 char name[size]; // array for name string
 static int total; // total number of omegas
 int number;
 public: // one-arg constructor
 omega(char str[]) : number(++total)
 {
 strncpy(name, str, size);
 cout << "\nI am the 1-arg constructor. I have "
 << "created object " << name << "-" << number;
 }
 // copy constructor
 omega(const omega& om)
 {
 strncpy(name, om.name, size);
 number = ++total;
 cout << "\nI am the copy constructor. I have "
 << "created object " << name << "-" << number;
 }
 };
int omega::total = 0;
void main()
 {
 void func(omega); // declaration
 omega om1("Harriet"); // uses one-arg constructor
 omega om2("Nancy");
 func(om1); // call the function
 func(om2); // call it again
 }
void func(omega og) // argument passed by value
 {
 }

This program uses the same omega class as COPYCON2. However, it adds a function
called func() that is called twice from main(). This function takes one argument: an
object of type omega. The function doesn’t do anything and it doesn’t return anything.
(The fact that it doesn’t do anything with its argument generates a warning message, which
you can ignore.)

In main(), I create two objects of type omega with the instance data names Harriet
and Nancy. Each time I create an object, the one-argument constructor is invoked. After
creating the objects, main() calls func() with the first object as an argument; it then
calls it again with the second. Each time I call this function, the copy constructor is
invoked to create a new omega object, using data from the argument passed to it. Thus the
first object, Harriet-1, is cloned to Harriet-3 and the second object, Nancy-2, is
cloned to Nancy-4. Here’s the output from the program:

I am the 1-arg constructor. I have created object Harriet-1
I am the 1-arg constructor. I have created object Nancy-2
I am the copy constructor. I have created object Harriet-3
I am the copy constructor. I have created object Nancy-4

The copy is created when the function starts to execute, as shown in Figure 5-5.

Figure 5-5 The copy constructor and passing value

The new object has the same instance data name as the original (such as Harriet),
because the copy constructor merely copies the name. However, the new object has a
different number, because the copy constructor, using the same process as the original
constructor, gives every object a unique number.

Why the Copy Constructor Must Use a Reference Argument

You’re now ready to think about why a copy constructor must take a reference argument
rather than one passed by value. What happens when an argument is passed by value? The
copy constructor is called to create a copy. But if the function I’m calling is the copy
constructor, it must call itself to create the copy. When it calls itself, a new copy of the
object must be created and the copy constructor calls itself again to create the copy. In fact,
it calls itself an infinite number of times, or at least until the computer’s stack overflows
and the program grinds to a halt, perhaps taking the entire operating system with it. To
avoid this unfortunate scenario, the copy constructor avoids making copies by passing its
argument by reference.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Constructors

http://www.itknowledge.com/reference/archive/1571690638/ch05/277-279.html [21-03-2000 19:09:56]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
javascript:displayWindow('images/05-05.jpg',313,420)
javascript:displayWindow('images/05-05.jpg',313,420)
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch05/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Copy Constructor Invoked in Return by Value

The copy constructor is also invoked when a function returns by value. In the next example, I use
the same class omega but the function retfunc(), called from main(), creates a new object,
temp, and returns it. What does returning the object entail? It means that a copy of the object is
created and installed in the code that called the function. Listing 5-11 shows copycon4.

Listing 5-11 COPYCON4

// copycon4.cpp
// demonstrates copy constructors
// function returns object by value
#include <iostream.h>
#include <string.h> // for strncpy()
class omega
 {
 private:
 static const int size = 20; // array size
 char name[size]; // array for name string
 static int total; // total number of omegas
 int number;
 public: // one-arg constructor
 omega(char str[]) : number(++total)
 {
 strncpy(name, str, size);
 cout << "\nI am the 1-arg constructor. I have "
 << "created object " << name << "-" << number;
 }
 // copy constructor
 omega(const omega& om)
 {
 strncpy(name, om.name, size);
 number = ++total;
 cout << "\nI am the copy constructor. I have "
 << "created object " << name << "-" << number;
 }
 };
int omega::total = 0;
void main()
 {
 omega retfunc(); // function declaration
 retfunc(); // call the function
 }
omega retfunc() // return by value
 {
 omega temp("Pandora"); // uses one-arg constructor
 return temp; // uses copy constructor
 }

In main(), the function call itself,

retfunc();

takes on the value of the object being returned.

Although I don’t show it here (to avoid complicating things too much), the function call can be
used, like a constant, on the right side of an equal sign:

void main()
 {
 omega retfunc(); // function declaration
 omega om1; // create a new object
 om1 = retfunc(); // call the function, assign to om1
 }

To do this, however, I would need a no-argument constructor, which I haven’t shown before, and
three objects would be created: om1 in main(), temp in the function retfunc(), and the
unnamed object created when the function returns. The value of this unnamed object is then
assigned to om1.

Here’s the output from the program:

I am the 1-arg constructor. I have created object Pandora-1
I am the copy constructor. I have created object Pandora-2

The one-argument constructor is called when the function creates the temp object. The copy
constructor is called when the function returns and creates a copy for use by the code that called
the function. This is shown in Figure 5-6.

Figure 5-6 The copy constructor and returning by value

Quiz 6

1. The copy constructor can’t modify the data in the object that’s being copied from,
because

a. the data is declared const in the class specification.

b. constructors have no return value.

c. the argument to the copy constructor is passed by value.

d. the argument to the copy constructor is passed by reference.

e. the argument to the copy constructor is const.

2. A copy constructor written by the class creator

a. must copy all data without modification from one object to another.

b. must copy all data, possibly modifying it, from one object to another.

c. must copy data from one object to another, modify it before copying, or create
new data.

d. is not necessary if all the member data is to be copied as is from one object to
another.

e. is necessary if there is a one-argument constructor.

3. When an object is passed by value to a function,

a. the function must access the object’s data using member functions.

b. the original object is accessed by the function.

c. a copy of the object is created in the function.

d. the object’s copy constructor is invoked.

e. the object is not copied.

4. An object constructed by a copy constructor

a. is only temporary.

b. lasts for the life of the program.

c. may not have a name.

d. is local to a member function.

e. must be identical to the object from which it was copied.

5. When a function returns an object by value,

a. the copy constructor is called.

b. the data to be returned is copied into a temporary object.

c. the function call can be used on the left side of an assignment operator.

d. no additional objects are created.

e. two additional objects are created.

Exercise 1

Start with the program in Exercise 2 in Session 5 in this chapter, which included a constructor
and a copy constructor that checked that correct values were passed to any newly created
airtime object. Write a standalone function, called from main(), that takes an airtime as
an argument passed by value. Check that the copy constructor works by attempting to pass bad
data to the function.

Exercise 2

Write another function, similar to that in Exercise 1, but have this one return an airtime by
value. Again, attempt to return bad data and verify that the copy constructor won’t allow it.

Session 7: const Objects

I’ve described how const variables of basic types are used in several contexts. I’ve used them
to define constants such as array sizes and, in the last lesson, I discussed const reference
arguments. Constant variables provide an important safety feature, helping to save programmers
from themselves when they inadvertently attempt to modify a value that should remain fixed.

Perhaps you’ve wondered whether it’s possible to use const not only with basic types but with
objects of user-defined classes as well. In other words, can you say

const zclass zobj; // declare a constant object of class zclass

This might be useful for the same reason it’s useful to use const with basic types: You want to
guarantee that the data in an object cannot be changed. In this section, I’ll digress from my focus
on constructors to examine the idea of const objects.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Constructors

http://www.itknowledge.com/reference/archive/1571690638/ch05/280-283.html [21-03-2000 19:10:09]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
javascript:displayWindow('images/05-06.jpg',390,394)
javascript:displayWindow('images/05-06.jpg',390,394)
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch05/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

The Wandering Noon

As an example, think about the airtime class, last seen in the TIMECON program in
Session 2 in this chapter. Suppose you want an airtime object called noon that always
has the value {12, 0}, that is, 12:00 in 24-hour time. It would be nice to guarantee that this
noon object could not change its value. Can you do this by making it const?

const airtime noon(12, 0);

This is possible, but to make it work, you must make some modifications to the class
specification.

Let’s start off with a program that defines an airtime object noon but does not use
const. Listing 5-12 shows CONSTA1.

Listing 5-12 CONSTA1

// consta1.cpp
// class models time data type
#include <iostream.h>
class airtime
 {
 private:
 int hours; // 0 to 23
 int minutes; // 0 to 59
 public: // constructor
 airtime() : hours(0), minutes(0)
 { }
 // copy constructor
 airtime(int h, int m) : hours(h), minutes(m)
 { }
 void display(); // declaration
 void get(); // declaration
 }; // end class airtime
void airtime::display() // output to screen
 {
 cout << hours << ':' << minutes;
 }
void airtime::get() // input from user
 {
 char dummy; // for colon
 cout << "\nEnter time (format 12:59): ";
 cin >> hours >> dummy >> minutes;
 }
void main()
 {
 airtime noon(12, 0); // create noon
 cout << "noon = ";
 noon.display(); // display noon
 noon.get(); // change noon (bad!)
 cout << "noon = ";
 noon.display(); // display noon
 }

The problem here is that there’s nothing to stop the class user from calling a member
function that changes noon, as happens in the line

noon.get();

which gets a new airtime value from the user and inserts it in noon. The output from the
program might be

noon = 12:00
Enter time(format 12:59): 1:23
noon = 1:23

Not so good: Noon should not occur early in the morning. The most obvious way to fix this
might appear to involve adding a const to the definition of noon:

const airtime noon(12, 0);

But now every time a member function of airtime is called in main(), as in

noon.display();

the compiler issues a warning along the lines of

Non-const function airtime::display() called for const object.

Apparently, the compiler wants me to use something called a const function.

const Functions

What is a const function? It’s a member function that guarantees that it won’t change the
object for which it’s called. Specify such a function by placing the keyword const in the
definition (and the declaration too, if there is one) just after the parentheses that follow the
function name. Here’s how that looks for the display() member function of airtime:

class airtime
 {
 …
 void display() const; // const in declaration
 …
 };
void airtime::display() const // const in definition
 {
 cout << hours << ':' << minutes;
 }

Only member functions that do not change an object’s data should be made const. In this
example, only display() is const. What about get()? Well, you should never use
get() with a const airtime object, because get() is expressly designed to modify
the object. You want an error message if you try to use get() with a const object, so
don’t make this function const.

You might think you should put the const before the function name, rather than after it:

const void display(); // not a const function

but this has a different meaning: It specifies that the return value of the function is const
(which doesn’t make sense here, because the return type is void).

In the example, I show the functions defined outside the class specification. If you define the
function within the class specification, then there’s only one place to put the const.
However, you must use const with any declaration because const becomes part of the
function name. The function void display() const is not the same as the function
void display().

Constructors are never const because the creation of an object requires const to be
changed.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Constructors

http://www.itknowledge.com/reference/archive/1571690638/ch05/283-285.html [21-03-2000 19:10:15]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch05/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

The Fixed Noon

The next example shows how the parts of the program fit together when the display() function
is made const. Listing 5-13 shows CONSTA2.

Listing 5-13 CONSTA2

// consta2.cpp
// class models time data type
// demonstrates const airtime objects
#include <iostream.h>
class airtime
 {
 private:
 int hours; // 0 to 23
 int minutes; // 0 to 59
 public: // constructor
 airtime() : hours(0), minutes(0)
 { }
 // copy constructor
 airtime(int h, int m) : hours(h), minutes(m)
 { }
 void display() const; // declare constant function
 void get(); // declare non-constant function
 }; // end class airtime
void airtime::display() const // output to screen
 { // can be called for const objects
 cout << hours << ':' << minutes;
// hours = 2; // error: can't modify const object
 }
void airtime::get() // input from user
 { // cannot be called for const objects
 char dummy; // for colon
 cout << "\nEnter time (format 12:59): ";
 cin >> hours >> dummy >> minutes;
 }
void main()
 {
 const airtime noon(12, 0); // create noon
 cout << "\nnoon = ";
 noon.display(); // display noon
// noon.get(); // warning: attempt to change noon
 airtime at1; // create at1
 at1.get(); // OK: at1 is not a const object
 cout << "at1 = ";
 at1.display(); // display at1
 }

Two airtime variables are defined in main(). The first one, noon, is const, whereas the
second one, at1, is not. The display() member function is const, because it does not modify
its object, but the get() member function does modify its object, so it’s not const. You can call
get() for at1 but not for noon. Here’s the output from the program:

noon = 12:00
Enter time (format 12:59): 1:30
at1 = 1:30

I can modify the nonconstant object at1 but not the constant noon. Attempting to call a
non-const function for a const object leads to a warning from the compiler, as you saw above.
However, I can call a non-const function for any object, whether const or not.

Within a const function such as display(), it’s illegal to modify any of the class data. You can
verify this by uncommenting the line

hours = 2;

in the display() function and recompiling. The compiler will tell you something like

Cannot modify a const object in function "airtime::display() const"

If the use of const with objects is to be meaningful, the class creator must have made const
those member functions that are not intended to modify their object. Then if the class user attempts
to call such a member function with a const object, a warning results.

Quiz 7

1. A const object is one whose

a. member functions can change only non-const variables.

b. member functions can change only const variables.

c. const member functions cannot be called.

d. instance data cannot be changed.

e. instance data can only be changed by non-const member functions.

2. Which of the following are appropriate const objects?

a. An object of class employee that represents the company president.

b. An object of the xString class that represents the null string.

c. Any object of the Stack class.

d. An object of the airtime class that represents pm (times after noon).

e. An object of the airtime class that represents a time entered by the user.

3. Which of these statements has (have) the correct syntax for a constant function?

a. const int func(int);
b. int const func(int);
c. int func(const int);
d. int func(int const);
e. int func(int) const;

4. A nonconstant member function of a constant object

a. can always modify the object’s instance data.

b. can modify the object’s instance data if the data not const.

c. guarantees not to modify the object’s data.

d. can always be called.

e. should never be called.

5. Statements in a const member function

a. can modify a const object’s data.

b. can modify any object’s data.

c. cannot modify a const object’s data.

d. cannot modify any object’s data.

e. cannot modify their own local variables.

Exercise 1

Create a const object called midnight for the airtime class (as in the CONSTA2 example in
Session 7 in this chapter). Write some statements to exercise this object.

Exercise 2

Assume you want to make some const objects of the weekday class, as seen in WEEKOUT in
Chapter 4, Session 2. Modify the class specification appropriately, make some const objects, and
test to be sure you can’t modify them.

Session 8: Visualizing Construction and Destruction

I’ll end this chapter by focusing on how constructors and destructors interact with different storage
classes. The class in the example program contains constructors and destructors that display data
about the objects they’re creating or destroying. This program is an aggrandizement of the
COPYCON3 program from Session 6 in this chapter. It doesn’t present any new concepts, but it does
use most of the C++ features I’ve discussed in this chapter, so it’s a good chance to review what
you’ve learned.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Constructors

http://www.itknowledge.com/reference/archive/1571690638/ch05/285-288.html [21-03-2000 19:10:27]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch05/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Two Kinds of Total

I’ve split the total variable from the COPYCON3 program, a static member variable of class
omega, into two kinds of total. One, total_ever, records how many omega objects have
ever been created (since the program started running). The other, total_now, is the number
of currently existing omega objects. The total_now variable can be less than
total_ever if objects are destroyed. Both constructors increment both totals, whereas the
destructor decrements total_now but not total_ever. The total_ever variable is
used to number each object as it’s created, as total did in COPYCON3.

I kept the function func() from COPYCON3. Calling it demonstrates how arguments passed
by value cause the creation of a local object within the function. I also created a local object
explicitly within the function. Finally, I defined an omega object as an external variable. All
this leads to interesting activity on the part of omega’s constructors and destructor.

This is a fairly complex program, but the resulting output rewards a bit of study. Listing 5-14
shows DESTRU.

Listing 5-14 DESTRU

// destru.cpp
// demonstrates constructors, destructors,
// and storage classes
#include <iostream.h>
#include <string.h> // for strncpy()
class omega
 {
 private:
 static const int size = 20; // array size
 char obname[size]; // array for obname string
 static int total_now; // objects in existence now
 static int total_ever; // objects ever created
 int snumber; // serial number of this object
 public:
 // one-arg constructor
 omega(char str[]) : snumber(++total_ever)
 {
 strncpy(obname, str, size);
 cout << "\n 1-arg constructor creating "
 << obname << "-" << snumber
 << ". Total=" << ++total_now;
 }
 // copy constructor
 omega(const omega& om) : snumber(++total_ever)
 {
 strncpy(obname, om.obname, size);
 cout << "\n Copy constructor creating "
 << obname << "-" << snumber
 << ". Total=" << ++total_now;
 }
 ~omega() // destructor
 {
 cout << "\n Destructor destroying "
 << obname << "-" << snumber
 << ". Total=" << --total_now;
 }
 }; // end class omega
int omega::total_now = 0;
int omega::total_ever = 0;
omega om0("Adam"); // external object
//
void main()
 {
 cout << "\nmain() starting";
 void func(omega); // declaration
 omega om1("Jane"); // uses one-arg constructor
 omega om2("Paul");
 omega om3(om2); // uses copy constructor
 cout << "\nmain() calling func(om1)";
 func(om1);
 cout << "\nmain() calling func(om2)";
 func(om2);
 cout << "\nmain() terminating";
 #125;
void func(omega og) // argument passed by value
 {
 cout << "\nfunc() starting";
 omega om4("Mike"); // object is local to func()
 cout << "\nfunc() terminating";
 }

The output from DESTRU looks like this:

 1_arg constructor creating Adam-1. Total=1
main() starting
 1_arg constructor creating Jane-2. Total=2
 1_arg constructor creating Paul-3. Total=3
 Copy constructor creating Paul-4. Total=4
main() calling func(om1)
 Copy constructor creating Jane-5. Total=5
 func() starting
 1_arg constructor creating Mike-6. Total=6
 func() terminating
 Destructor destroying Mike-6. Total=5
 Destructor destroying Jane-5. Total=4
main() calling func(om2)
 Copy constructor creating Paul-7. Total=5
 func() starting
 1_arg constructor creating Mike-8. Total=6
 func() terminating
 Destructor destroying Mike-8. Total=5
 Destructor destroying Paul-7. Total=4
main() terminating
 Destructor destroying Paul-4. Total=3
 Destructor destroying Paul-3. Total=2
 Destructor destroying Jane-2. Total=1
 Destructor destroying Adam-1. Total=0

The indented lines are printed by the constructors and the destructor. The nonindented lines
show what part of main() or func() is executing. The total shown in the last column is the
value of the total_now variable. As you can see, it shows how many objects exist at a given
moment.

Remember that the object’s name, obname, is copied without change by the copy constructor.
That’s why several different objects can have the same name, such as Paul. However, each
object’s serial number, snumber, is set equal to the current total_ever value, so it is
unique. It is only possible for there to be one number object numbered 3 in the entire program,
although there can be both Paul-3 and Paul-4 objects. The distinction between numbers and
names makes it easier to follow which objects are created by the one-argument constructor and
which are created by the copy constructor.

Program Features

Let’s examine some important points demonstrated in DESTRU.

External Variables

I use the one-argument constructor to define om0, which I initialize as Adam-1, as an external
variable. The output shows that it’s created before main() starts to execute. External variables
are destroyed after all the variables defined in main() have been destroyed and after main()
itself has terminated, as can be seen in the last line of the output.

Variables in main()

Within main(), the one-argument constructor is also used to create om1 (Jane-2) and om2
(Paul-3). Then the copy constructor copies om2, creating om3 (Paul-4). All this is reflected in
the output. When main() terminates, these three variables are destroyed in the opposite order
they were created.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Constructors

http://www.itknowledge.com/reference/archive/1571690638/ch05/288-291.html [21-03-2000 19:10:38]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch05/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Passing by Value

As you saw in Session 6 in this chapter, passing an argument to a function
by value causes the object’s copy constructor to be called, implicitly, to
create a copy for use by the function. This happens twice in DESTRU: the
two calls from main() to func(). In the first call, Jane-5 is copied from
Jane-2. In the second, Paul-7 is copied from Paul-2.

I don’t show an example of returning by value, but if I did, the copy
constructor would create an extra copy there as well.

Local Variables

The function func() creates a local variable, om4. The first time it’s
called, it creates Mike-6; the second time, it creates Mike-8. These variables
are destroyed as soon as func() returns so, like the argument variable
created by the copy constructor, they don’t stay around very long.

Quiz 8

1. Static member data is __________ by a copy constructor.

a. copied automatically to the new object

b. ignored

c. copied, but only if there are appropriate assignment
statements,

d. copied, but only if there are specific items on the
initialization list,

e. set to zero

2. In the DESTRU program, the total_ever variable _________,
whereas the total_now variable _________.

a. is static, is nonstatic

b. is decremented when a function returns, is not decremented
when a function returns

c. records the number of objects created with the copy
constructor, records the number of objects created with the
one-argument constructor

d. is not decremented by the destructor, is decremented by the
destructor

e. lasts for the life of the program, lasts for the life of an object

3. Variables created as a result of passing to a function by value

a. have the same lifetime as the function.

b. have the same lifetime as the variable named as the
argument in the function call.

c. are created by the one-argument constructor.

d. are created by the assignment operator.

e. are created by the copy constructor.

4. Instance data variables in a class

a. have the same lifetime as the program.

b. have the same lifetime as main().

c. have the same lifetime as the object of which they are a
part.

d. have the same lifetime as the class of which they are a part.

e. may be created by a copy constructor.

5. External variables defined at the beginning of the program are
created before _________ and destroyed after ____________.

a. the operating system starts execution, the operating system
terminates

b. each function starts execution, each function terminates

c. local variables in main(), local variables in main()

d. main() starts execution, main() terminates

e. static instance variables, static instance variables

Exercise 1

Insert some more external variables of type omega and some more local
variables in func() in the DESTRU program. What can you conclude
about the order in which external and local objects are created and
destroyed?

Exercise 2

Change the func() function in the omega class in the DESTRU program
so it returns an omega object by value. Notice what effect this has on the
output. The destructor is very busy. You may want to insert getch()
statements in main() to pause the program in several places, because the
output becomes rather lengthy.

Summary: Chapter 5

In this chapter, I’ve focused, for the most part, on constructors. A
constructor is a special member function whose purpose is to initialize the
instance data in an object. A no-argument constructor (called the default
constructor) initializes all objects to the same value. Constructors that take
arguments can initialize objects to specified values. A special constructor is
the copy constructor, which creates a copy of an object. If you don’t write
your own copy constructor, the compiler supplies one that performs a
memberwise (member-by-member) copy.

Copy constructors usually pass a const value by reference. Doing this
keeps the function from modifying the value named in the function call.

A const object, like a const variable of a basic type, is one that can’t be
modified. To make this work with classes, member functions that do not
modify any instance data are declared const and can be called for const
objects. Member functions that are not const cannot be called for const
objects.

End-of-Chapter Discussion

George: That’s just terrific. There are two ways to write a definition that
initializes an object with another object, they both do the same
thing, but one looks like an assignment statement. Why don’t
these guys get their act together?

Estelle: Life’s tough, George.
Don: I’m impressed with copy constructors. It’s all so flexible and

there are so many options. There’s a copy constructor built in,
which you use normally and the compiler uses it too, for stuff
like passing arguments by value. But if you write your own
copy constructor, then you can use it and the compiler will use
it too.

Estelle: It’s pretty amazing that the compiler executes
programmer-written routines. It puts the shoe on the other foot.

Don: There’s a lot more interaction between the compiler and the
programmer in C++ than there is in Pascal.

George: Or C.
Don: Or BASIC.
Estelle: It’s almost like you can write parts of the compiler yourself.
Don: Right. When you write a class specification you’re creating

your own data types and telling the compiler how to operate
with them. With basic types that are built into the compiler, all
that’s invisible; you don’t even need to think about it.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Constructors

http://www.itknowledge.com/reference/archive/1571690638/ch05/291-293.html [21-03-2000 19:10:47]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch05/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

CHAPTER 6
OPERATOR OVERLOADING

You’ve seen how functions can be overloaded so that calls to a single
function name can actually invoke different functions, provided the
arguments are different. This has advantages for the class user, such as not
needing to remember so many names.

It is also possible to overload the built-in C++ operators such as +, >=, and
++ so that they too invoke different functions, depending on their operands.
That is, the + in a+b will call one function if a and b are integers, but will
call a different function if a and b are objects of a class you’ve created.
Operator overloading is another C++ convenience feature that can make
your program easier to write and to understand.

In this chapter, you’ll find out how to overload the C++ operators so you
can define their operation for objects of your own classes. I’ll begin with
binary arithmetic operators such as +, -, * and / then move on to
comparison operators such as < and >= and assignment operators such as
+=. Next, I’ll talk about unary operators such as ++, --, and the negative
sign (as in -a).

The topic of data conversion is closely related to that of overloaded
operators. You’ve seen that you can use one-argument constructors to
convert from basic types to class types. To go the other way, from objects
to basic types, you can overload the built-in cast operators such as int(),
float(), and long().

The assignment operator (=) is an important special case of operator
overloading, so I’ll discuss it in some detail. I’ll also show you how to
overload the subscript operator, [], so you can make your own kinds of
arrays. Finally, I’ll introduce some techniques that make overloaded
operators safer and more efficient.

Session 1: Overloading Binary Arithmetic
Operators

The C++ operators can be divided roughly into binary and unary. Binary
operators take two arguments. Examples are a+b, a-b, a/b, and so on.
Unary operators take only one argument: -a, ++a, a--. (There is also one
ternary operator—meaning it takes three arguments—in C++, the
conditional operator (?:), but we won’t worry about overloading it).

For a discussion of overloaded operators, it makes sense to discuss the
binary operators first, because they are the most straightforward, and then
move on to the somewhat more obscure unary operators.

Why Overload Operators?

An overloaded operator, when applied to objects (not to basic types), can
carry out whatever operation the class creator wants. The + operator can
concatenate two xString objects, add two airtime objects, and so on.

Why would you want to overload operators? The basic reason is that you
want to make your listing easier to read. Perhaps the most familiar operator
is the plus sign (+), so I’ll begin my exploration of overloading with that.
Suppose you want to add two values of type airtime and to assign the
result to another airtime variable. It’s considerably easier to understand
what’s happening when you see

at3 = at1 + at2;

than when the same operation is expressed as

at3 = at1.sum(at2);

or the even less obvious

at3.sum(at1, at2);

You Could Do It with Functions

Overloading doesn’t actually add any capabilities to C++. Everything you
can do with an overloaded operator you can also do with a function.
However, by making your listing more intuitive, overloaded operators make
your programs easier to write, read, and maintain. They are also a lot of fun
to create and to use.

You might think of overloaded operators as a way to transfer some of the
labor from the class user to the class creator. If the class creator spends a
little time overloading operators for appropriate tasks, the class user can
spend less time writing the code that invokes these tasks, because the
operations will be more intuitive.

Not for All Classes

Some kinds of classes lend themselves to using overloaded operators, but
others don’t. If you’re talking about objects of class employee, for
example, it probably doesn’t make sense to say

emp3 = emp1 + emp2;

After all, what would it mean to add two employees together? Of course, if
you do come up with a reasonable meaning for the + operator in this
context, you are free to overload it. In general, however, overloaded
operators are best used with classes that represent numerical data types.
Examples are times, dates, imaginary numbers (x+iy), and geographical
positions. String classes can also profit from overloaded operators.

You Can’t Overload Everything

Incidentally, you can’t overload operators that don’t already exist in C++.
You can’t make up a ** operator for (say) exponentiation or a <- operator
for some other obscure purpose. You can overload only the built-in
operators. Even a few of these, such as the dot operator (.), the scope
resolution operator (::), the conditional operator (?:), and several others
you haven’t encountered yet, can’t be overloaded.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Operator Overloading

http://www.itknowledge.com/reference/archive/1571690638/ch06/295-297.html [21-03-2000 19:10:55]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch06/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

The operatorX() Function

Let’s see how to overload the + operator for airtime objects. Suppose you want to
arrange things so that

at3 = at1 + at2;

has the same effect as

at3 = at1.sum(at2);

How do you write an equivalent of the sum() member function that will enable the + sign
to carry out the addition operation? C++ uses a new keyword called operator, which is
followed by the operator itself, to form a function name. To overload the + operator, the
name is operator+ (to which you normally append parentheses to show that it’s a
function). Here’s an operator+() member function for the airtime class, in skeleton
form:

airtime operator+(airtime right)
 {
 // needs function body
 }

Now, you might think you need to invoke this member function in the ordinary way, like
this:

at3 = at1.operator+(at2);

This actually works—it adds at2 to at1 and returns the result—but it doesn’t gain much in
terms of readability. The payoff comes when you rearrange the syntax, as shown in Figure
6-1.

Figure 6-1 Syntax of overloaded operator

The dot operator, the word operator itself, and the parentheses surrounding the function
argument aren’t necessary. They can all be removed, leaving only

at3 = at1 + at2;

This same syntax holds true for any binary operator x. The function operatorX() enables
the operator to be used alone, with the other parts of the syntax being understood.

Adding airtime Objects

Let’s look at a complete program that overloads the + operator for the airtime class.
Listing 6-1 shows ADDAIR.

Listing 6-1 ADDAIR

// addair.cpp
// class models time data type
// overloads the + operator
#include <iostream.h>
class airtime
 {
 private:
 int hours; // 0 to 23
 int minutes; // 0 to 59
 public:
 void display() const // output to screen
 {
 cout << hours << ':' << minutes;
 }
 void get() // input from user
 {
 char dummy;
 cout << "\nEnter time (format 12:59): ";
 cin >> hours >> dummy >> minutes;
 }
 // overloaded + operator
 airtime operator + (airtime right)
 {
 airtime temp; // make a temporary object
 temp.hours = hours + right.hours; // add data
 temp.minutes = minutes + right.minutes;
 if(temp.minutes >= 60) // check for carry
 {
 temp.hours++;
 temp.minutes -= 60;
 }
 return temp; // return temporary object
 }
 }; // end class airtime

void main()
 {
 airtime at1, at2, at3;
 cout << "Enter first airtime: ";
 at1.get();
 cout << "Enter second airtime: ";
 at2.get();

 at3 = at1 + at2; // overloaded + operator
 // adds at2 to at1
 cout << "sum = ";
 at3.display(); // display sum
 }

Notice how easy it is to understand what’s going on in main(). The overloaded + makes
the addition look just like addition with basic types.

Arguments

The operator+() function in the airtime class works like the add() function in the
TIMEADD program (see Chapter 2, Session 7). It adds the hours, adds the minutes, and
checks if the minutes overflow past 59. (For brevity, I’ve left out the code that checks if the
hours exceed 23.)

However, notice where the input operands are placed in operator+(). The airtime
variable on the right of the + operator, which is called at2 in main(), becomes the single
argument to operator+().

Where does at1, the variable on the left side of the + operator in main(), show up in
operator+() in the class specification? It’s the object for which operator+() was
called. That is, it’s the object to which the operator+() message was sent. This message
tells at1 to add itself to at2 and to return the result. Notice that there will always be one
less argument to operator+() than there are operands to an operator x. That’s
because one operand (the one on the left, for binary operators) is the object for which the
function was called. (This rule doesn’t apply to friend functions, which I’ll introduce in
Chapter 9.)

Return Value

In main(), the return value from the addition is assigned to at3 in the usual way. In the
operator+() function, this is accomplished by returning the local airtime object,
temp, by value. The result of an addition of two airtime values is another airtime
value, so this must be the return value of operator+(). The temp object is used to hold
the results of the calculations and is the object that is returned.

Creating a temporary object as I do with temp is not very efficient. The object’s constructor
must be called, and its destructor must be called when the function terminates and the object
goes out of scope. Also, because this object is returned by value, the copy constructor must
be called when the function returns. I can make some improvements in the way things are
handled, as you’ll see later in this chapter.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Operator Overloading

http://www.itknowledge.com/reference/archive/1571690638/ch06/297-300.html [21-03-2000 19:11:04]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
javascript:displayWindow('images/06-01.jpg',511,399)
javascript:displayWindow('images/06-01.jpg',511,399)
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch06/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Adding xString Objects

For a nonnumeric example, I’ll overload the + operator so it can be used to concatenate two xString
objects (last seen in the STRCON program in Chapter 5, Session 3). That is, if you have two
xStrings, “dog” and “fish”, they will be concatenated to form “dogfish” (a kind of small shark). The
result will be returned from the operator, where it can be assigned to another xString object. Listing
6-2 shows STRPLUS.

Listing 6-2 STRPLUS

// strplus.cpp
// overloads + operator to concatenate xStrings
#include <iostream.h>
#include <string.h> // for strlen(), strcpy(), etc.

class xString
 {
 private:
 enum {MAX=80}; // maximum length of xStrings
 char str[MAX]; // ordinary C string
 public:
 xString() // no-arg constructor
 { strcpy(str, ""); }
 xString(char s[]) // 1-arg constructor
 { strcpy(str, s); }
 void input() // get string from user
 { cin.get(str, MAX); }
 void display() // display string
 { cout << str; }
 // concatenate two strings

 xString operator+(xString right)
 {
 xString temp; // temporary xString
 if(strlen(str) + strlen(right.str) < MAX-1)
 {
 strcpy(temp.str, str); // copy us to temp
 strcat(temp.str, right.str); // concatenate argument
 }
 else
 cout << "\nError: xString too long" << endl;
 return temp; // return temporary
 }
 };

void main()
 {
 xString s1("Greetings, ");
 xString s2, s3;

 cout << "Enter your name: ";
 s2.input(); // get s2 from user

 s3 = s1 + s2 + "."; // concatenate period to s2, s2 to s1
 s3.display(); // display s3
 }

The operator+() function creates a temporary xString object, temp, because it needs a “work
area” and it doesn’t want to modify its own object (or its argument). It first checks to be sure there’s
room for the concatenated string. Then it copies its own object to temp with the strcpy() library
function, concatenates the argument onto temp with strcat(), and returns temp.

In main(), the program initializes the xString s1 to “Greetings”; gets another string, s2, from
the user; concatenates them; and assigns the result to s3. Then it displays s3. Here’s some sample
interaction:

Enter your name: George Bernard Shaw
Greetings, George Bernard Shaw.

Other Binary Arithmetic Operators

You can overload the other binary arithmetic operators, such as -, *, and /, in similar ways. The
exercises in this session include several examples and you’ll encounter others later on.

Quiz 1

1. Which of the following are valid reasons for overloading an operator?

a. To make it possible to perform arithmetic on objects of user-defined classes.

b. To have fun.

c. To clarify the listing.

d. To speed up the program.

e. To make the program more memory efficient.

2. What is the name of the function that overloads the + operator for the airtime class?

a. add
b. airtime add
c. +
d. operator+
e. operator

3. The argument to an overloaded binary operator function such as operator+()

a. represents the operand on the left side of the + operator.

b. represents the operand on the right side of the + operator.

c. is the variable to which the sum is assigned.

d. is the temporary variable that is returned from the function.

e. is not necessary.

4. In the ADDAIR program, the return value of operator+() is

a. an airtime value.

b. type void.

c. an int value.

d. assigned to at3 in main().

e. actually serves no purpose, because the results of the addition are placed in the object
for which the function was called.

5. The named temporary object temp, defined in operator+() in the airtime class in
ADDAIR,

a. is used as a dummy variable and never contains valid data.

b. would need to be of the widget class if you were adding two widget objects.

c. is returned by reference.

d. is an instance variable.

e. must be constructed and destroyed whenever operator+() is called.

Exercise 1

Overload the subtraction operator to subtract one airtime value from another. Write some
statements in main() to exercise this function. Assume that the earlier (smaller) time will always be
subtracted from the later (larger) one, so you don’t need to consider negative times.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Operator Overloading

http://www.itknowledge.com/reference/archive/1571690638/ch06/300-302.html [21-03-2000 19:11:11]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch06/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Exercise 2

It doesn’t make sense to multiply one airtime value by another. After all, there’s no
such thing as time squared (that I know about, anyway). However, it’s perfectly reasonable
to multiply an airtime value by an ordinary number, say of type float. This lets you
calculate things like how long an airplane has been in the air since its last inspection or if it
has made 36 one-way flights between Austin and Boston, each of which lasted 3 hours and
45 minutes. Overload the * operator for the airtime class so it multiplies an airtime
by a float. Write some statements in main() to test it.

Session 2: Overloading Other Binary Operators

The overloaded arithmetic operators typified by operator+(), which I discussed in the
last session, perform an operation on two values of some type and return another value of
the same type. They are used, at least in this example, by calling them for the object on the
left of the operator, with the object on the right of the operator as an argument. (Later I’ll
show how both operands can be made into arguments by using friend functions, but don’t
worry about that now.)

Neither the object for which they are called nor their argument is modified. This is one
scenario and it applies to some operators, notably the arithmetic operators. However, there
is a wide variety of other ways to use overloaded binary operators. They may return values
of types other than their class or take arguments of types other than their class. (Exercise 2
in the last session showed one possibility, with an argument of type float.)

In this session, I’ll show several other common ways that binary operators are used and
discuss the relational operator < and the assignment operator +=.

Relational Operators

When you compare integers with a relational operator, the answer returned is a true/false
value; in C++, false is 0 and true is any other value. You can use a simple int variable to
hold true/false values, but this is a little obscure. It’s clearer and more self-explanatory to
use an enum declaration to give names to such true/false values:

enum boolean {false=0, true};

I’ll use this declaration in the next example, which overloads the < operator to compare
two airtime values and return a value of type boolean. The skeleton for this operator
looks like this:

boolean operator< (const airtime& right)
 {
 // statements
 }

When it’s called for an object, this operator compares its own object with its argument,
called right, and returns true if its object is less than right and false otherwise.
Listing 6-3 shows COMPAIR.

Listing 6-3 COMPAIR

// compair.cpp
// overloads the < operator
#include <iostream.h>

class airtime
 {
 private:
 int hours; // 0 to 23
 int minutes; // 0 to 59
 public:
 void display() const // output to screen
 {
 cout << hours << ':' << minutes;
 }
 void get() // input from user
 {
 char dummy;
 cout << "\nEnter time (format 12:59): ";
 cin >> hours >> dummy >> minutes;
 }
 // overloaded < operator

 bool operator<(const airtime& right)
 {
 if(hours < right.hours)
 return true;
 if(hours == right.hours && minutes < right.minutes)
 return true;
 return false;
 }
 }; // end class airtime

void main()
 {
 airtime at1, at2;
 cout << "Enter first airtime: ";
 at1.get();
 cout << "Enter second airtime: ";
 at2.get();

 if(at1 < at2)
 cout << "\nfirst less than second";
 else
 cout << "\nfirst not less than second";
 }

In main(), the program uses the relational operator < to compare two airtime values
in the expression

if(at1 < at2)

The overloaded < operator makes this look like a normal comparison with basic types. As
you can see by experimenting with this program, it tells you which of two airtimes is
less than the other. Here’s a sample interaction:

Enter first airtime:
Enter time (format 12:59): 3:59
Enter second airtime:
Enter time (format 12:59): 4:00

first less than second

How It Works

The member function operator<() first compares the hours member for its own
object and its argument object. If its own object’s hours is less, then it knows its whole
airtime value is less than its argument. Otherwise, it checks the minutes value. If the
hours are equal and the minutes are less, then again its own object is less. In all other
cases, its own object is equal to or larger than its argument. The function returns the
appropriate boolean true/false value to reflect this fact.

Passing the Argument by const Reference

I pass this argument by reference because I don’t want an unnecessary copy of it to be
created. Then, to prevent operator+() from accidentally modifying the original object,
I make the argument const, as I’ve discussed before. In the programs in the last session,
ADDAIR and STRPLUS, I passed the argument to the operator+() function by value to
simplify the listings. However, for maximum efficiency, they should also have been passed
by constant reference.

Notice that, in the COMPAIR example, no constructors are needed in the airtime class.
The operator<() function doesn’t use them. This is unlike the operator+()
function in the examples in Session 1 in this chapter, which required a constructor to create
a temporary object to be returned. Figure 6-2 shows the difference.

Figure 6-2 Some operators create a new object

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Operator Overloading

http://www.itknowledge.com/reference/archive/1571690638/ch06/303-305.html [21-03-2000 19:11:20]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
javascript:displayWindow('images/06-02.jpg',414,435)
javascript:displayWindow('images/06-02.jpg',414,435)
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch06/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Assignment Operators

Another important category of operators that can be overloaded is the assignment operators,
which include +=, -=, *=, /=, and other more obscure operators. In the example, I’ll examine
+=. The major difference between “normal” binary operators such as + and assignment operators
such as += is that assignment operators modify the object for which they are called. If you say

at1 += at2;

then the function operator+=() is called for the at1 object and at1 is modified (by having
at2 added to it). You’re sending a message to at1 saying, “Add this argument to yourself.” By
contrast, the message with the normal addition operator+() is “add yourself to this argument
and return the result.”

Although the primary purpose of an assignment operator is to modify the object for which it was
called, it’s common for it to return a value as well. You want to be able to say

at3 = at1 += at2;

where the result of the += operation is assigned to at3 as well as at1. Assignment operators
typically return a value of their own class to make this sort of chaining possible, even though this
return value is not always used.

The example, PLEQAIR, following a long tradition, will overload the += operator for the
airtime class. Listing 6-4 shows PLEQAIR.

Listing 6-4 PLEQAIR

// pleqair.cpp
// overloads the += operator
#include <iostream.h>

class airtime
 {
 private:
 int hours; // 0 to 23
 int minutes; // 0 to 59
 public:
 // no-arg constructor
 airtime() : hours(0), minutes(0)
 { }
 // 2-arg constructor
 airtime(int h, int m) : hours(h), minutes(m)
 { }

 void display() const // output to screen
 {
 cout << hours << ':' << minutes;
 }

 void get() // input from user
 {
 char dummy;
 cout << "\nEnter time (format 12:59): ";
 cin >> hours >> dummy >> minutes;
 }
 // overloaded += operator

 airtime operator += (const airtime& right)
 {
 hours += right.hours; // add argument to us
 minutes += right.minutes;
 if(minutes >= 60) // check for carry
 { hours++; minutes -= 60; }
 return airtime(hours, minutes); // return our new value
 }
 }; // end class airtime

void main()
 {
 airtime at1, at2, at3;
 cout << "Enter first airtime: ";
 at1.get();
 cout << "Enter second airtime: ";
 at2.get();

 at1 += at2; // overloaded += operator
 // adds at2 to at1
 cout << "\nat1+=at2 = ";
 at1.display(); // display result

 at3 = at1 += at2; // do it again, use return value
 cout << "\nat3 = ";
 at3.display(); // display result
 }

In main(), I show the assignment operator used twice: once where no value is returned and
once where one is. Here’s some interaction:

Enter first airtime:
Enter time (format 12:59): 10:30
Enter second airtime:
Enter time (format 12:59): 0:10
at1+=at2 = 10:40
at3 = 10:50

In a similar way, you can overload the other assignment operators -=, *=, /=, and so on.
Overloading the assignment operator =, however, is a somewhat more complex operation that
I’ll discuss in Session 6 in this chapter.

Avoiding Temporary Objects

Notice how the program returns the result of the addition in the operator+=() function in
PLEQAIR:

return airtime(hours, minutes);

This is a very special kind of statement. It looks like a constructor, and you might think it will
cause the creation of a new airtime object. However, the C++ compiler, which is sometimes
unnervingly clever, realizes that all I want to do here is return a value. Consequently, it doesn’t
create a temporary object within the function. The only object that’s created is the return value in
main(), which is always necessary when returning by value. The first time operator+=() is
called, this return value is not used; the second time, it’s assigned to at3.

Avoiding the creation of a temporary object within operator+=() saves time and memory
space and is clearly a good idea. Why didn’t I do this in operator+() in the last lesson?
Because I needed a place to store intermediate calculations (the addition results before I checked
for a carry). However, I could have created temporary int variables for this purpose instead:

 // overloaded + operator
airtime operator + (const airtime& right)
 {
 int thrs = hours + right.hours; // add data
 int tmins = minutes + right.minutes;
 if(tmins >= 60) // check for carry
 { thrs++; tmins -= 60; }
 return airtime(thrs, tmins); // return unnamed
 } // temporary object

This could be a better approach, if creating and destroying individual member data items is faster
than creating and destroying a complete object.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Operator Overloading

http://www.itknowledge.com/reference/archive/1571690638/ch06/305-308.html [21-03-2000 19:11:28]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch06/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Quiz 2

1. In the overloaded < operator for airtime values in COMPAIR,
the operator<() function

a. returns a value of type boolean.

b. returns a value of type int.

c. returns an airtime object.

d. compares two objects passed as arguments.

e. compares the object for which it was called with the object
passed as an argument.

2. Why did I not construct a temporary airtime object in the
operator<() function in the COMPAIR program, as I did for the
operator+() function in the ADDAIR program?

a. A comparison doesn’t require a value to be returned,
whereas addition does.

b. A comparison returns a boolean, whereas addition
returns an airtime.

c. Constructing a temporary object would have worked just as
well.

d. The result of the comparison was not an object.

e. I hadn’t yet learned how inefficient such temporary objects
were.

3. The operator +=() function in the airtime class in the
PLEQAIR program

a. alters an unnamed temporary object.

b. alters the value of the object for which it was called.

c. performs addition on two airtime objects.

d. returns the value of the object that called it.

e. returns the sum of two airtime objects.

4. Every time you overload the += operator for a class, you
necessarily give this operator the ability to

a. add an object to the object for which the operator was
called.

b. add the argument to operator+=() to itself.

c. add two objects without modifying them.

d. return the result of an addition.

e. create a new numerical value.

5. Returning an unnamed temporary object from a member function
using a statement such as

return classname(arg1, arg2);

causes a call to

a. the two-argument constructor and the destructor, before the
function terminates.

b. the two-argument constructor, to make an object in
main().

c. the copy constructor, when the function is called.

d. the copy constructor, when the function returns.

e. the two-argument constructor twice, once to create the
temporary object and once to create the return value.

Exercise 1

Overload the >= operator in the airtime class. Write some statements in
main() to demonstrate that it works correctly.

Exercise 2

Overload the *= operator for the airtime class. Write some statements in
main()to demonstrate that it works correctly.

Session 3: Overloading Unary Operators

Unary operators operate on a single operand. Examples are the increment
(++) and decrement (--) operators; the unary minus, as in -28; and the
logical not (!) operator. The most commonly overloaded unary operators
are the increment and decrement operators. I’ll show how the ++ operator is
overloaded; the -- operator is similar. As you know, these operators can be
used in either prefix or postfix form. I’ll show the prefix version first and
the unary minus later.

Prefix Version of Operator ++

Unary operators take no arguments (at least in the member function
versions I show here; they take one argument if you use friend functions,
which you’ll encounter in Chapter 9). They operate on the object for which
they were called. Normally, this operator appears on the left side of the
object, as in !obj, -obj, and ++obj. Most of the unary operators can
appear only with the object on the left, but the ++ and -- operators can be
either on the left (prefix) or on the right (postfix). The prefix version is thus
the “normal” one and the postfix version is the exception.

Listing 6-5 shows PREFIX, in which the prefix version of the ++ operator is
overloaded for the airtime class.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Operator Overloading

http://www.itknowledge.com/reference/archive/1571690638/ch06/308-310.html [21-03-2000 19:11:36]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch06/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Listing 6-5 PREFIX

// prefix.cpp
// overloads the ++ operator, prefix version
#include <iostream.h>

class airtime
 {
 private:
 int hours; // 0 to 23
 int minutes; // 0 to 59
 public:
 // no-arg constructor
 airtime() : hours(0), minutes(0)
 { }
 // 2-arg constructor

 airtime(int h, int m) : hours(h), minutes(m)
 { }

 void display() const // output to screen
 {
 cout << hours << ':' << minutes;
 }

 void get() // input from user
 {
 char dummy;
 cout << "\nEnter time (format 12:59): ";
 cin >> hours >> dummy >> minutes;
 }

 airtime operator++ () // overloaded prefix ++ operator
 {
 ++minutes; // increment this object
 if(minutes >= 60)
 {
 ++hours;
 minutes -= 60;
 } // return new value
 return airtime(hours, minutes);
 }
 }; // end class airtime

void main()
 {
 airtime at1, at2; // make two airtimes
 at1.get(); // get value for one

 ++at1; // increment it
 cout << "\nat1=";
 at1.display(); // display result

// at1++; // error: postfix

 at2 = ++at1; // increment again, and assign
 cout << "\nat2=";
 at2.display(); // display assigned value
 }

The first use of ++ in main() adds 1 minute to the airtime object for which it was called, handling the
carry if necessary. (Of course, you can define an overloaded operator however you want. You could
increment the hours, if you wish, and leave the minutes alone, as happens when you change time zones.)

Do I return the old value of the object before it was incremented, or the new value? Because it’s a prefix
operator, which increments the operand before it’s used in any other calculations, I return the new value.

Here’s some interaction when the user enters 7:35 into the program:

Enter time(format 12:59): 7:35
at1=7:36
at2=7:37

In main(), the program gets a time, at1, from the user (7:35 in this example), increments it, and displays
the result (7:36). The commented-out statement shows that the compiler will issue a warning if you try to use
the postfix version of an operator when you have defined only the prefix version. Next, the program
increments at1 again and in the same statement assigns it to at2. Then it displays at2. Because at1 is
incremented before the assignment, at2 is assigned the new value of 7:37.

Postfix Version of Operator ++

The next example demonstrates the postfix version of the overloaded ++ operator. How does the compiler
distinguish between the prefix and the postfix versions of operator++()? The answer is rather arbitrary
and not very elegant: A dummy argument with a data type of int is inserted to indicate the postfix version.

airtime operator++ () // prefix version
airtime operator++ (int) // postfix version

You don’t actually supply a value for this dummy argument; the mere inclusion of the int is enough to let
the compiler know it’s postfix. Listing 6-6 shows POSTFIX, which includes both prefix and postfix versions
of the ++ operator.

Listing 6-6 postfix

// postfix.cpp
// overloads the ++ operator, postfix and prefix versions
#include <iostream.h>

class airtime
 {
 private:
 int hours; // 0 to 23
 int minutes; // 0 to 59
 public:
 // no-arg constructor
 airtime() : hours(0), minutes(0)
 { }
 // 2-arg constructor

 airtime(int h, int m) : hours(h), minutes(m)
 { }

 void display() const // output to screen
 {
 cout << hours << ':' << minutes;
 }

 void get() // input from user
 {
 char dummy;
 cout << "\nEnter time (format 12:59): ";
 cin >> hours >> dummy >> minutes;
 }

 airtime operator++ () // overloaded prefix ++ operator
 {
 ++minutes; // increment this object
 if(minutes >= 60)
 {
 ++hours;
 minutes -= 60;
 } // return incremented value
 return airtime(hours, minutes);
 }

 airtime operator++ (int) // overloaded postfix ++ operator
 {
 airtime temp(hours, minutes); // save original value
 ++minutes; // increment this object
 if(minutes >= 60)
 {
 ++hours;
 minutes -= 60;
 }
 return temp; // return old original value
 }
 }; // end class airtime

//
void main()
 {
 airtime at1, at2; // make two airtimes
 at1.get(); // get value for one

 at2 = ++at1; // increment it (prefix) and assign
 cout << "\nat2=";
 at2.display(); // display result

 at2 = at1++; // increment (postfix) and assign
 cout << "\nat1=";
 at1.display(); // display incremented value
 cout << "\nat2=";
 at2.display(); // display assigned value
 }

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Operator Overloading

http://www.itknowledge.com/reference/archive/1571690638/ch06/310-313.html [21-03-2000 19:11:43]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch06/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

The postfix function operator++(int) operates differently from the prefix function
operator++(). The postfix version must remember the original value of its object,
increment the object, and then return the original value, not the new value. This is
accomplished by creating a temporary object, temp, that is initialized to the original value
of the object. After the object is incremented, temp is returned. Figure 6-3 shows how this
compares with the prefix version.

Figure 6-3 Prefix and postfix versions of ++ operator

Here’s some sample interaction with POSTFIX:

Enter time (format 12:59): 7:35
at2=7:36
at1=7:37
at2=7:36

The user enters a time for at1. The program increments it with the prefix operator, assigns
it to at2, and displays at2. Because at1 was incremented before being assigned, at2
reflects the new value of 7:36. Now the program increments at1 again, this time with the
postfix operator, and assigns it to at2. This time, because it was assigned before being
incremented, at2 retains the original value of 7:36, whereas at1 is now 7:37.

The Unary Minus Operator

I’ll close this session with a look at another unary operator: the negative sign. When you say
something like

alpha = -beta;

you’re assigning the negative of beta to alpha. You know what it means to change the
sign of an ordinary number. If beta is an int with a value of 7, then alpha will be -7.
But what does the negative sign do with class objects? If you’re the class creator, you can
handle it however you like.

Let’s look at an example using the English class. Perhaps you plan to subtract one
English value from another, so you want to be able to handle negative English values. We’ll
assume negative values are indicated by making the feet member, but not inches,
negative. (There are other options: You could make inches negative, or make both feet
and inches negative, or use a third member, possibly boolean, to indicate a negative
value.)

Listing 6-7 shows NEGENGL, which overloads both the binary subtraction operator and the
unary minus.

Listing 6-7 NEGENGL

// negengl.cpp
// overloads the unary minus for English class
#include <iostream.h>

class English // English distances
 {
 private:
 int feet;
 float inches;
 public: // no-argument constructor
 English() : feet(0), inches(0.0)
 { }
 // 2-argument constructor

 English(int f, float i) : feet(f), inches(i)
 { }

 void get() // user input
 {
 cout << " Enter feet: "; cin >> feet;
 cout << " Enter inches: "; cin >> inches;
 }

 void display() // display
 {
 if(feet<0)
 cout << "-(" << -feet << "\'-" << inches << "\")";
 else
 cout << feet << "\'-" << inches << '\"';
 }

 English operator-() // negation operator
 { // (unary minus)
 return English(-feet, inches);
 }
 // subtraction operator

 English operator-(English right)
 {
 int tfeet = feet - right.feet;
 int tinches = inches - right.inches;
 if(tinches < 0)
 {
 tinches += 12.0;
 tfeet -=1;
 }
 return English(tfeet, tinches);
 }
 }; // end English class

void main()
 {
 English man(6, 2.0);
 English horse(7, 0.0);
 English difference;

 difference = man - horse; // subtraction
 cout << "\ndifference = ";
 difference.display();

 difference = -difference; // unary minus
 cout << "\n-difference = ";
 difference.display();
 }

The job of the unary minus function operator-() is to return the value of the object for
which it was called, but with the sign of the feet member changed. This operator does not
change the value of its own object.

The subtraction function operator-(English) works like the addition functions
you’ve seen for the airtime class. It subtracts the appropriate values, checks for a carry,
and returns the result without changing either its own object or the argument.

I’ve changed the display() member function so it can print out negative English values.
The format for this is to surround the value with parentheses and to precede the result with a
minus sign, as in -(1’-2”), which means minus the distance one foot two inches.

In main(), the program initializes two English variables and subtracts one from the other,
yielding a negative result, which it places in a third English variable, difference. It
displays difference, negates it with the unary minus operator, and displays it again.
Here’s the output from NEGENGL:

difference = -(1'-2")
-difference = 1'-2"

The unary plus operator (as in +alpha) can be overloaded in a way similar to that of the
unary minus, except that it (usually) doesn’t need to do anything. Plus is the default sign, so
applying it causes no change.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Operator Overloading

http://www.itknowledge.com/reference/archive/1571690638/ch06/313-316.html [21-03-2000 19:11:52]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
javascript:displayWindow('images/06-03.jpg',517,382)
javascript:displayWindow('images/06-03.jpg',517,382)
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch06/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Quiz 3

1. A unary operator x

a. is called “unary” because operatorX() takes only one
argument.

b. is called “unary” because x takes only one operand.

c. always changes the object for which it’s called.

d. usually returns a value.

e. is normally written immediately following a variable name.

2. The prefix version of the ++ operator, overloaded as a member
function of class x, probably has the declarator

a. void operator++(X)
b. void operator++()
c. void operator++(int)
d. X operator++(int)
e. X operator++()

3. The postfix and prefix versions of the ++ operator for the
airtime class differ in that

a. the prefix version returns its object’s value after it has been
incremented.

b. the postfix version increments the object and then returns
its value.

c. the prefix operator is applied after the object is used in other
calculations.

d. the prefix version increments the value passed as an
argument.

e. the postfix version increments the value for which it was
called.

4. Overloading the unary minus operator (-) for the airtime class

a. could be handled in much the same way as it was in the
English class.

b. would lead to syntactic difficulties.

c. would probably require a way to display negative
airtime values.

d. could never make sense, because there is no such thing as
“minus time.”

e. would be handled similarly to overloading the binary +
operator.

5. The unary minus operator, overloaded as a member function for
class x,

a. changes the object for which it was called to the negative of
its former value.

b. returns a value that is the negative of the object for which it
was called.

c. negates its argument.

d. subtracts its argument from the object for which it was
called.

e. can perform “negation” however it wants.

Exercise 1

Overload the decrement (--) operator for the English class and write
some statements in main() to check that it operates correctly.

Exercise 2

Overload the unary minus (-at) for the airtime class and write some
statements in main() to check that it operates correctly.

Session 4: Conversion from Objects to Basic
Types

It’s surprising how important the topic of data conversion becomes when
class objects are being discussed. When you operate exclusively on basic
types (as in C or other non-object-oriented languages), you don’t notice this
conversion process so much. Partly that’s because it’s automatic. If you say

floatvar = intvar;

where floatvar is type float and intvar is type int, the conversion
takes place invisibly, with no complaint from the compiler. The appropriate
conversion routines for basic types are built in.

This is not the case with classes. If I write a class and I want to convert
between basic types and class objects, or between objects of different
classes, then I must write the conversion routines myself.

Conversions can be divided into several categories. These are

• From basic types to objects

• From objects to basic types

• From objects to objects of another class

You’ve already seen several examples of converting basic types to objects.
This conversion is conveniently handled by the one-argument constructor,
where the argument is the basic type. In Chapter 5, Session 3, you saw how
ordinary strings were converted to xString objects in STRCON and how a
type float quantity representing meters was converted to an English
object in ENGLCON.

The second category, conversion from objects to basic types, is the subject
of this session. Conversion from objects of one class to objects of a
different class is discussed in the next session.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Operator Overloading

http://www.itknowledge.com/reference/archive/1571690638/ch06/316-318.html [21-03-2000 19:11:58]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch06/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Type Casting: Conversion for Basic Types

Before you see how to convert objects to basic types, let’s see how to use explicit conversion operators
to convert one basic type to another. The same format is used in both cases.

As I noted, conversions between basic types often take place automatically, with no intervention from
the programmer. However, there are times when the programmer needs to tell the compiler to make a
conversion explicitly. As an example, let’s look at a small function that breaks a floating-point number
into a whole number part and a fractional part. If I give this function, which I’ll call parts(), the
number 123.45, for example, it will break it into a whole number part of 123.0 and a fractional part of
0.45. All these numbers are type float. Here’s how the function looks:

float parts(const float& orig, float& fracpart)
 {
 float wholepart = int(orig); // find whole part
 fracpart = orig - wholepart; // find fractional part
 return wholepart; // return whole part
 }

The first argument to the function is the original number. The second argument is where the function
will place the fractional part. The function will return the whole number part. You can call the function
this way:

wpart = parts(original_number, fpart); // call to function

The key to the operation of this function is the statement

float wholepart = int(orig); // find whole part

which strips off the fractional part of the floating-point number orig and assigns the remaining whole
number part to wholepart. How does it get rid of the fractional part? By converting orig to a type
int, which has no fractional part. This conversion is accomplished by casting orig to type int. A
cast is an explicit conversion of one type to another. Here the keyword int is used as if it were a
function name; it’s called the int operator. The variable to be converted is its argument and the return
value is the type implied by its name. Figure 6-4 shows the syntax. Casting can be used this way to
convert any basic type to any other basic type.

Figure 6-4 Casting from one type to another

Type casting is a semidangerous practice. Why? For one reason, you may lose information (e.g.,
converting from long to int may entail the loss of significant digits). More importantly, typing, or
making sure that variables interact only with variables of their own type, is an important technique in
preventing errors. If you find yourself assigning a float to an int, you may be making a conceptual
mistake. Casting should therefore never be done merely for the sake of expediency, to fix something
that doesn’t seem to work, but only when it’s obviously necessary.

I should mention that there’s another format for type casting. Besides using the so-called “functional”
syntax (because it looks like a function),

var2 = long(var1); // "functional" syntax

to convert var1 to type long, you can also say

var2 = (long)var1; // alternative syntax (not recommended)

This second form is the old-fashioned syntax used in C. It is not the preferred approach, but
occasionally it works in situations where the preferred syntax does not.

Conversion from English to float

You can use the cast syntax to convert a class object to a basic type. The only difference is that the
class creator must write the routine to handle the conversion. This is done using the same operator
keyword I’ve used before to overload operators. For example, here’s how you’d write a member
function to convert a class object to type long:

operator long()
 {
 // conversion performed here
 return longvar;
 }

Although this function returns a long, no return type is specified; it’s implied in the name of the
function. As you’ve seen, this long() operator works for basic types, but you can overload it to work
with your own classes.

As an example, we’ll see how to convert an English object (feet and inches) to a float type
(representing meters), using the overloaded float() operator. Listing 6-8 shows ENGLCONV.

Listing 6-8 ENGLCONV

// englconv.cpp
// converts English objects to meters

#include <iostream.h>

class English // English distances
 {
 private:
 int feet;
 float inches;
 static const float MTF; // meters to feet, declaration
 public: // no-argument constructor
 English() : feet(0), inches(0.0)
 { }

 English(float meters) // 1-argument constructor
 {
 float fltfeet = MTF * meters; // get decimal feet
 feet = int(fltfeet); // integer part is feet
 inches = 12 * (fltfeet-feet); // remainder is inches
 }
 // 2-argument constructor

 English(int f, float i) : feet(f), inches(i)
 { }

 void get() // user input
 {
 cout << " Enter feet: "; cin >> feet;
 cout << " Enter inches: "; cin >> inches;
 }

 void display() // display
 {
 cout << feet << "\'-" << inches << '\"';
 }
 operator float() // convert English to float
 {
 float fracfeet = inches/12; // inches to feet
 fracfeet += float(feet); // add the feet
 return fracfeet/MTF; // convert to meters
 } // and return
 }; // end English class
const float English::MTF = 3.280833; // meters to feet,
 // definition

void main()
 {
 English engman(1.9); // meters to English
 cout << "\nengman = ";
 engman.display(); // display English

 float metman;
 metman = float(engman); // English to meters
 cout << "\nmetman = " << metman; // display meters
 }

The English class includes both a one-argument constructor, to convert from float to English,
and the float() function, to convert from English to float.

In main(), the program converts from a float value of 1.9 meters to English when constructing
the engman variable. This English value, 6’-2.803”, is displayed, then converted back to float in
the statement

metman = float(engman); // English->float conversion

The program then displays the meters value, which should be the same one we started with, 1.9. Here’s
the output from ENGLCONV:

engman = 6'-2.803"
metman = 1.9

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Operator Overloading

http://www.itknowledge.com/reference/archive/1571690638/ch06/318-321.html [21-03-2000 19:12:08]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
javascript:displayWindow('images/06-04.jpg',514,156)
javascript:displayWindow('images/06-04.jpg',514,156)
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch06/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Conversion Function Invoked Automatically

Other syntaxes will also invoke the float() member function. If you say

metman = engman; // also causes the English->float conversion

the compiler will realize it can’t assign an English value to a float value without converting it
first, so it will look for a way to do this. It will find the float() member function and carry out
the conversion, even though you have not explicitly asked for it.

The float() function will also be invoked in initializations:

float metman(engman);

Here metman is not assigned a value; it’s initialized to a value. But because the value is English,
the compiler will call the float() function automatically. (Lord Wormsley always said that
English values were the best.)

Casting for Clarity

I used the cast syntax in two places in ENGLCONV where it’s not really necessary. In the
one-argument constructor, I said

feet = int(fltfeet);

This conversion would have happened automatically even without the int(), because feet is an
int variable. However, using an explicit conversion makes it clearer to someone reading the listing
that I intended to perform the conversion. Similarly, in the float() function, I said

fracfeet += float(feet);

This conversion from int to float would also have been carried out automatically.

Note: Note that the float() function that converts from int is not the same as the float()
function that converts from English. The first is built in; the second is written by the class creator.

A Static Constant

The MTF member variable is the conversion factor for converting meters to feet. I make this
variable static because it can be used by all objects and I make it const because it should not
be changed.

Conversion from xString to String

As another example of converting from a class type to a basic type, let’s see how to convert an
xString object to an ordinary C string. (You last saw the xString class in the STRPLUS
program in Session 1 in this chapter.) Listing 6-9 shows STRCONV.

Listing 6-9 STRCONV

// strconv.cpp
// converts xString to normal C string
#include <iostream.h>
#include <string.h> // for strlen(), strcpy(), etc.

class xString
 {
 private:
 enum {MAX=80}; // maximum length of xStrings
 char str[MAX]; // ordinary C string
 public:
 xString() // no-arg constructor
 { strcpy(str, ""); }
 xString(char s[]) // convert string to xString
 { strcpy(str, s); }
 void input() // get string from user
 { cin.get(str, MAX); }
 void display() // display string
 { cout << str; }

 operator char*() // convert xString to string
 {
 return str;
 }
 };

void main()
 {
 xString s1("George"); // constructor converts
 // string to xString
 xString s2;
 cout << "Enter your name: ";
 s2.input(); // get s2 from user
 // convert s1, s2 to strings

 if(strcmp(s1, s2)==0) // compare them with strcmp()
 cout << "You're George!";
 else
 cout << "You aren't George.";
 }

Why would you want to convert xString objects to ordinary null-terminated C strings? Well, for
one thing, there’s a large library of functions that work with C strings. If I have a conversion
function, I can use these library functions on xStrings.

That’s what STRCONV does in main(), where it calls the strcmp() library function to compare
two xString objects, s1 and s2. When the compiler sees that the arguments to strcmp() are
xStrings, but that this function requires C strings, it looks for a conversion function. Finding that
the char*() operator has been overloaded for the xString class, the compiler uses it to convert
s1 and s2 to C strings and then calls strcmp(), which returns 0 if the strings are the same.
Here’s some sample interaction with STRCONV:

Enter your name: Dan
You aren't George.

You might be wondering what the asterisk means in the member function operator char*().
It indicates a pointer, which I have not yet discussed. However, the asterisk has the same effect here
as brackets ([]): It indicates (approximately) an array of type char or, in other words, a normal C
string. Thus, the operator char*() function converts an xString to a string.

The static_cast Approach

You may be interested to know that there is another, considerably more lengthy, syntax that you can
use to perform type casting. To draw an example from the ENGLCONV program, instead of the
statement

feet = int(fltfeet);

which was used in the one-argument constructor to convert float to int, you can substitute

feet = static_cast<int>(fltfeet);

This has the same effect, but makes it much more obvious that a data conversion is taking place. It
also makes it easier to find all such conversions in your listing by searching for the keyword
static_cast. The target type is inserted between angle brackets following static_cast and
the variable to be converted is inserted in parentheses in the usual way.

This format also works with conversions you have written yourself, so for the statement

metman = float(engman);

(again from the ENGLCONV program), which converts English to float, you can substitute

metman = static_cast<float>(engman);

This is a rather ponderous syntax, and you won’t normally use it. However, if you’re trying to write
the most error-free and maintainable code you can, you might consider it a helpful feature.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Operator Overloading

http://www.itknowledge.com/reference/archive/1571690638/ch06/321-324.html [21-03-2000 19:12:15]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch06/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Quiz 4

1. Conversions from basic types to class objects

a. are carried out using a constructor.

b. are carried out using an overloaded operator.

c. are carried out using a member function of the basic type.

d. are carried out using a cast operator member of the class.

e. are not possible.

2. Conversions from class objects to basic types

a. are carried out using a constructor.

b. are carried out using an overloaded operator.

c. are carried out using a member function of the basic type.

d. are carried out using a cast operator member of the class.

e. are not possible.

3. In the ENGLCONV program, operator float()

a. returns type English.

b. returns type float.

c. has no return value.

d. converts from a decimal-feet value.

e. converts from a meters value.

4. The declarator of a member function to convert from type
airtime to type float might be

a. airtime float()
b. float(airtime at)
c. float static_cast(airtime at)
d. operator float(airtime at)
e. operator float()

5. The member function operator char*() in the xString
class in the STRCONV program

a. takes a C string as an argument.

b. takes an xString as an argument.

c. returns an xString.

d. returns a C string.

e. returns an array of type char*.

Exercise 1

Write a member function for the airtime class that converts airtime
values to type long, where the long variable represents the number of
seconds since midnight (e.g., 1:05 would convert to 65). You can start with
the ADDAIR program in Session 1 in this chapter. Write some statements in
main() to exercise this function.

Exercise 2

Write another member function for the airtime class, but have this one
convert airtime values to type float, where the float variable
represents the number of hours since midnight. For example, 2:30 would
convert to 2.5.

Midchapter Discussion

George: I really like overloaded operators. I haven’t been so excited
since I got my first C program to print “Hello, world.”

Don: Yeah, I like them too. You can define whole new number
systems. How about doing arithmetic in hexadecimal? Or
making up a class of really huge numbers, like integers with
hundreds of digits?

Estelle: I like being able to apply operators to nonarithmetic stuff, like
concatenating strings.

George: I bet you can overload the plus sign to add one file to another
and the equal sign to copy files. Just type file1 = file2 at
the C prompt.

Don: Wait a minute. The idea is for the class user, the programmer,
to use these operators, not the end user.

George: Nobody ever likes my ideas.
Estelle: Poor boobie.

Session 5: Conversions Between Classes

Why would you want to convert from an object of one class to an object of
another class? For many classes, such conversions wouldn’t make any
sense. It’s hard to imagine converting an airtime object to an
employee object, for example. Even when both classes represent
numerical quantities, a conversion may be hard to justify. Why convert
airtime to English? One is time and one is distance. However, when
both classes represent numerical quantities that measure the same thing,
class-to-class conversions may be reasonable. In this session, I’ll
demonstrate such conversions by concocting a new class, FracFeet, and
converting between it and the English class.

There are two ways to convert from one class to another. You saw in
Chapter 5 that you can use a one-argument constructor to convert from a
basic type to a class object, and you saw in Session 4 in this chapter how to
overload operators such as float() and int() to convert from a class
object to a basic type. These same two techniques are used to convert
between objects of different classes.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Operator Overloading

http://www.itknowledge.com/reference/archive/1571690638/ch06/324-326.html [21-03-2000 19:12:24]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch06/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

A Short Example

Let’s look first at a skeleton program that reduces the conversion operations to their
fundamentals. This program contains two classes, alpha and beta, and includes the
necessary functions to convert from alpha to beta and from beta to alpha. Both
the conversion functions are located in beta. One is a constructor that takes an
alpha object as an argument; the other is the operator alpha() function,
which returns an alpha. Listing 6-10 shows TWOTEST.

Listing 6-10 TWOTEST

// twotest.cpp
// tests conversions between two classes

class alpha
 {
 private:
 int ia;
 public:
 alpha(int i) // converts int to alpha
 { ia = i; }
 int get_ia() // "peek" function
 { return ia; }
 };

class beta
 {
 private:
 int ib;
 public:
 beta(alpha a) // converts alpha to beta
 { ib = a.get_ia(); } // uses alpha get_ia()
 operator alpha() // converts beta to alpha
 { return alpha(ib); } // uses alpha 1-arg constr
 };

void main()
 {
 alpha a(11); // alpha 1-arg constructor; int to alpha
 beta b(a); // beta 1-arg constructor; alpha to beta
 a = b; // beta operator alpha(); beta to alpha
 }

Both classes contain a single data item of type int. Class alpha contains a
one-argument constructor that converts an int to an alpha (or initializes an alpha
with an int, to put it another way). It also contains a “peek” function that gives other
parts of the program read-only access to its data item. Such access is necessary for the
conversion function, the one-argument constructor, in beta.

This one-argument constructor in beta converts an alpha to a beta. It does this by
calling the get_ia() peek function in alpha to obtain alpha’s data and assigning
this data to its own object. (Of course, a more practical class would probably need to
change the data in some way.)

The second member function in beta is the operator alpha(), which converts the
beta for which it was called into an alpha, which it returns. It performs this
conversion by calling the alpha constructor with its own int data as the argument.

In this scenario, both conversion functions—the constructor and the class
operator—are in beta. However, you could also handle the conversions using similar
functions in class alpha. Figure 6-5 shows the relationship of functions in the two
classes.

Figure 6-5 Class-to-class conversions

In main(), the program tests the conversions by initializing a beta with an alpha
and setting an alpha equal to a beta. There’s no output.

Notice that it’s important to put class alpha first in the listing. The beta class needs
to know about alpha’s member functions, but alpha doesn’t need to know
anything about beta’s.

The FracFeet Class

Let’s move on to a more realistic example. The new class is called FracFeet. It
stores distances in feet and fractions of a foot. More specifically, it has three member
data items that represent whole feet, the numerator of a fraction, and the denominator
of a fraction. It displays its value like this: 5-1/2 ft, which means five and one-half
feet. An interaction with the input routine for this class looks like this:

Enter feet: 7
Enter fraction (format 2/3): 3/4

Here the user has entered 7-3/4 ft (seven and three-quarters feet).

Why would you ever need both an English class and a FracFeet class in the
same program? After all, they both store distances using the English system. If you
were designing a program from scratch, it might not make sense to create both classes.
Suppose, however, that an architectural firm works with data in the feet and inches
format and someone has already written the English class to handle this kind of
data. One day this firm buys another company that stores data in the feet and fractions
format. Now you need to modify the program to store this new kind of data in addition
to the English kind, so you invent the FracFeet class. (This situation might also
be a candidate for inheritance, which I’ll cover in Chapter 7.)

I’ll use roughly the same arrangement for the conversion functions that I did in the
TWOTEST program, with both conversion functions in the new FracFeet class.
These will be a constructor that takes as its single argument an object of the English
class and an English() function that converts its FracFeet object to an
English value.

I’ve added two member functions, get_feet() and get_inches(), to the
English class; they return the feet and inches values of an English object.
These peek functions provide the only way for functions outside the English class
to access its data. The English class also has a two-argument constructor taking feet
and inches as arguments.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Operator Overloading

http://www.itknowledge.com/reference/archive/1571690638/ch06/326-328.html [21-03-2000 19:12:35]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
javascript:displayWindow('images/06-05.jpg',586,568)
javascript:displayWindow('images/06-05.jpg',586,568)
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch06/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

The FracFeet Program

Because it includes two classes, this program is somewhat longer than the usual examples.
However, you’ve seen the English class before, and that’s half the program. The classes are
separated by slashed lines. Listing 6-11 shows FRACFEET.

Listing 6-11 FRACFEET

// fracfeet.cpp
// converts between English and FracFeet
#include <iostream.h>
//
class English // feet-and-inches class
 {
 private:
 int feet;
 float inches;
 public: // no-argument constructor
 English() : feet(0), inches(0.0)
 { }
 // 2-argument constructor

 English(int f, float i) : feet(f), inches(i)
 { }

 void get() // user input
 {
 cout << " Enter feet: "; cin >> feet;
 cout << " Enter inches: "; cin >> inches;
 }

 void display() // display
 { cout << feet << "\'-" << inches << '\"'; }

 // these functions needed for conversions
 int getfeet() // return feet
 { return feet; }
 float getinches() // return inches
 { return inches; }
 }; // end English class
//
class FracFeet // fractional feet class
 {
 private:
 int wfeet; // whole feet
 int numer; // numerator
 int denom; // denominator
 public: // no-argument constructor
 FracFeet() : wfeet(0), numer(0), denom(1)
 { }

 FracFeet(English); // one-argument constructor
 // (declaration)

 void get() // user input (never use 0
 { // in denominator)
 char dummy;
 cout << " Enter feet: ";
 cin >> wfeet;
 cout << " Enter fraction (format 2/3): ";
 cin >> numer >> dummy >> denom;
 }

 void display() // display
 {
 cout << wfeet;
 if(numer != 0) // if numerator 0, no fraction
 cout << '-' << numer << '/' << denom;
 cout << " ft";
 }

 operator English() // convert FracFeet to English
 { // inches = 12 * n / d
 float temp_inches = 12.0 * float(numer) / float(denom);
 return English(wfeet, temp_inches);
 }
 }; // end class FracFeet
//
FracFeet::FracFeet(English e) // one-argument constructor
 { // convert English to FracFeet
 wfeet = e.getfeet(); // feet are the same
 int i = int(e.getinches()); // convert inches to integer
 // find fraction
 if(i==6) { numer=1; denom=2; } // 1/2
 else if(i==2 || i==10) { numer=i/2; denom=6; } // 1/6, 5/6
 else if(i==3 || i== 9) { numer=i/3; denom=4; } // 1/4, 3/4
 else if(i==4 || i== 8) { numer=i/4; denom=3; } // 1/3, 2/3
 else { numer=i; denom=12;} // i/12
 }
//
void main()
 {
 FracFeet ff;
 English eng;

 cout << "\nFracFeet value\n";
 ff.get(); // get FracFeet from user
 cout << "FracFeet = ";
 ff.display(); // display FracFeet

 eng = ff; // convert FracFeet to English
 cout << "\nEnglish = ";
 eng.display(); // display equivalent English

 cout << "\n\nEnglish value\n";
 eng.get(); // get English from user

 cout << "English = ";
 eng.display(); // display English

 ff = eng; // set English to FracFeet
 cout << "\nFracFeet = ";
 ff.display(); // display equivalent FracFeet
 }

In main(), the program tests both kinds of conversions. First, a FracFeet object gets data
from the user and displays itself. Then the program sets an English object equal to the
FracFeet object and displays it, proving that the FracFeet to English conversion
works. Second, an English object gets data from the user and displays itself. The program
sets the FracFeet object equal to the English object and displays it, thus demonstrating
the English to FracFeet conversion. Here’s some interaction with FRACFEET:

FracFeet value
 Enter feet: 7
 Enter fraction (format 2/3): 3/4
FracFeet = 7-3/4 ft
English = 7'-9"

English value
 Enter feet: 3
 Enter inches: 8
English = 3'-8"
FracFeet = 3-2/3 ft

Notice that the FracFeet class specification follows the English class specification in the
listing. This ordering is necessary, because the conversion functions reside in FracFeet.
These conversion functions must access member functions in the English class, so
English must be specified first.

The English() Operator

The English() operator in the FracFeet class converts FracFeet to English by
supplying values to the English class two-argument constructor. The feet value is supplied as
is; it’s the same in both classes. The fraction of a foot is converted to inches by converting both
numerator and denominator to type float, dividing them, and then multiplying by 12.0.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Operator Overloading

http://www.itknowledge.com/reference/archive/1571690638/ch06/328-331.html [21-03-2000 19:12:41]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch06/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

The One-Argument Constructor

The one-argument constructor for the FracFeet class converts an
English object to a FracFeet object. To do this, it must access the
private data inside the English object. This isn’t possible unless the
English class includes public functions that allow such access. The
member functions get_feet() and get_inches() do this. In
FracFeet, the one-argument constructor calls these functions to get
feet and inches values from the English object passed as the
argument.

The English inches must be converted to the numerator and denominator
of a fraction in the FracFeet class. The constructor does this somewhat
inelegantly in an else…if ladder by selecting values for the numerator
and denominator, depending on how many inches there are. (A more
elegant approach is to call a function that finds the lowest common divisor
of two numbers and to use it to reduce a fraction to its lowest terms, but that
takes you too far afield.)

I’ll return to the topic of conversions when we encounter friend functions in
Chapter 9. Friends provide increased flexibility for conversions in several
ways.

Quiz 5

1. Conversions between classes

a. are never a good idea.

b. can always be carried out, no matter what the classes are.

c. normally make the most sense for classes representing
numerical types.

d. can usually make use of an overloaded cast operator.

e. can always be handled with existing constructors.

2. To convert from class A to class B, you could use

a. a constructor in class A.

b. a constructor in class B.

c. an operator A() in class A.

d. an operator B() in class B.

e. an operator B() in class A.

3. You can’t exchange the order of the English and FracFeet
class specifications in the FRACFEET program because

a. FracFeet objects are defined earlier in main() than
English objects.

b. the English two-argument constructor needs to access
data in FracFeet.

c. the FracFeet one-argument constructor needs to access
member functions in English.

d. the operator English() function needs to call the
English two-argument constructor.

e. the operator English() function needs to call the
FracFeet one-argument constructor.

4. In the FRACFEET program, inches are converted to

a. feet and fractions of a foot.

b. feet and inches.

c. a numerator and denominator.

d. a fraction of an inch.

e. a fraction of a foot.

5. The one-argument constructor in FracFeet gets the values it
needs from

a. “peek” member functions of the English class.

b. a locally stored list.

c. its single argument.

d. the constructor in the English class.

e. the operator English() function.

Exercise 1

Rearrange the FRACFEET program so that the conversions are carried out in
the English class rather than in the FracFeet class. Use a
one-argument constructor that takes a FracFeet object as an argument
and an operator FracFeet() function.

Exercise 2

Create a class called Time that stores three data items: hours, minutes,
and seconds, all of type int. Include the Time class in the same
program as the airtime class. (See the ADDAIR program in Session 1 in
this chapter.) Create the necessary functions to convert between Time and
airtime and between airtime and Time.

Session 6: Overloading the Assignment Operator
(=)

You can overload the assignment operator (=) just as you can other
operators. However, the assignment operator plays a larger role than most
operators because it performs such a fundamental operation and is used so
frequently. It and the copy constructor can be thought of as twins. They
both copy data from one object to another. If, when you do this, you need to
copy any data item in other than a simple memberwise fashion, then you
will probably need to overload both the copy constructor and the
assignment operator.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Operator Overloading

http://www.itknowledge.com/reference/archive/1571690638/ch06/331-333.html [21-03-2000 19:12:48]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch06/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Syntax of the Overloaded Assignment Operator

Here’s one way to write an overloaded assignment operator (OAO):

void operator=(const omega& right) // overloaded assignment
 {
 // copy data if appropriate
 }

This function takes one argument of its own class (here called omega), which is usually passed
as a const reference. When there’s a void return value, as I show here, you can’t chain the
assignment operator (as in a=b=c). We’ll see how to fix this later.

The comment copy data if appropriate means that the OAO is responsible for
copying each data member from one object to another unless there’s a good reason to do
otherwise. Typically, there is a good reason to do something other than a memberwise copy on
at least one data item; otherwise, you wouldn’t need to overload the assignment operator in the
first place.

Notice how similar the OAO is to the copy constructor, which often performs exactly the same
operation on the data:

omega(const omega& om) // copy constructor
 {
 // copy data if appropriate
 }

The difference between the assignment operator and the copy constructor is that the copy
constructor actually creates a new object before copying data from another object into it,
whereas the assignment operator copies data into an already existing object. Figure 6-6 shows
how this looks.

Figure 6-6 Operation of the overloaded assignment operator

Remember that the use of an equal sign in a definition is not the same as assignment:

omega beta = alpha; // construction and initialization
 // uses copy constructor

beta = alpha; // assignment
 // uses assignment operator

The assignment operator is not used in the first statement, only in the second.

A Simple Assignment Operator Example

As with the copy constructor, you typically need to overload the assignment operator when the
creation of an object causes resources (such as memory) to be allocated, or when objects use
pointers, or when objects do something unusual such as counting or numbering themselves. I’ll
return to the issues of pointers and memory allocation in Chapter 8. For now, you’ll see how to
overload the assignment operator for the omega class, which counts and numbers its objects.
You encountered this class in the COPYCON2 program in Chapter 5, Session 6.

In the omega class, I adopted the (somewhat arbitrary) convention that each new object, when
it’s first created, is given a unique and permanent serial number. Because this number can’t
change, it’s not copied by either the copy constructor or the assignment operator. Each object is
also given a name (such as Harriet) that is copied by the copy constructor and the assignment
operator. An object’s name thus indicates from which other object it was copied. Listing 6-12
shows ASSIGN.

Listing 6-12 ASSIGN

// assign.cpp
// demonstrates overloaded assignment operator
// using objects that number themselves
#include <iostream.h>
#include <string.h> // for strncpy()

class omega
 {
 private:
 enum { size=20 };
 char name[size];
 static int total;
 const int number;
 public: // one-arg constructor
 omega(char str[]) : number(++total) // number the object
 {
 strncpy(name, str, size); // give it a name
 cout << "\n1-arg constructor has "
 << "created " << name << "-" << number;
 }
 // overloaded assignment operator
 void operator=(const omega& right)
 {
 cout << "\n" << right.name << "-" << right.number
 << " assigned to " << name << "-" << number;
 strncpy(name, right.name, size); // copy the name
 cout << ", making " << name << "-" << number;
 }
 };
int omega::total = 0; // (no objects when program starts)

void main()
 {
 omega om1("Harriet"); // uses one-arg constructor
 omega om2("Bernard");
 om2 = om1; // assignment
 }

There are three data items in the omega class. The OAO copies only one of these, name, using
the strncpy() library function.

The second item, total, is static. Static data is never copied by an OAO (or a copy
constructor) because it applies to the class as a whole, not to individual objects.

I don’t copy the number data item either, because each object’s serial number is permanent
from the time it’s first created. I reinforce this by making number a const data item. After
const member data is initialized in the constructor, the compiler won’t allow it to be changed.
(Incidentally, it follows that when an object has a const data item, you must overload the
assignment operator and copy constructor, because the compiler can’t use the default
memberwise copy, which would involve changing the unchangeable const variable.)

In main(), the program creates two objects and then uses the assignment operator to copy one
to the other. Both the constructor and the OAO display messages to tell what they’re doing.
Here’s the output from the program:

1-arg constructor has created Harriet-1
1-arg constructor has created Bernard-2
Harriet-1 is assigned to Bernard-2, making Harriet-2

The om2 object, which started out as Bernard-2, becomes Harriet-2; its name is changed but
not its number. (This is similar to a person being able to change his or her name legally but not
his or her social security number.)

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Operator Overloading

http://www.itknowledge.com/reference/archive/1571690638/ch06/333-336.html [21-03-2000 19:13:03]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
javascript:displayWindow('images/06-06.jpg',420,363)
javascript:displayWindow('images/06-06.jpg',420,363)
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch06/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

An Assignment Operator That Allows Chaining

You can chain the default memberwise assignment operator:

var3 = var2 = var1;

For this to work, the result of one assignment operation, the one on the right, must be made
available to the one on its left. This requires the assignment operator to return the value of the
operand on its left. In the case of an OAO, this is the object for which it was called. Here’s how an
OAO that permits chaining looks in skeleton form:

omega operator=(const omega& right) // overloaded assignment op
 {
 // copy data if appropriate
 return omega(name); // returns by value; uses
 } // 1-arg constructor

The return statement uses the one-argument constructor to create a new temporary “copy” of the
object for which the OAO was called, which is the object to the left of the = sign in main().
Listing 6-13, ASSIGN2, shows how this looks.

Listing 6-13 ASSIGN2

// assign2.cpp
// overloaded assignment operator with self-numbering objects
// returns a value
#include <iostream.h>
#include <string.h> // for strncpy()

class omega
 {
 private:
 enum { size=20 };
 char name[size];
 static int total;
 int number;
 public:
 // one-arg constructor
 omega(char str[]) : number(++total)
 {
 strncpy(name, str, size);
 cout << "\n1-arg constructor has "
 << "created " << name << "-" << number;
 }
 ~omega()
 {
 cout << "\nDestructor has "
 << "destroyed " << name << "-" << number;
 }
 // overloaded assignment operator
 omega operator=(const omega& right)
 {
 cout << "\n\n" << right.name << "-" << right.number
 << " assigned to " << name << "-" << number;
 strncpy(name, right.name, size);
 cout << ", making " << name << "-" << number;
 return omega(name);
 }
 };
int omega::total = 0; // no objects when program starts

void main()
 {
 omega om1("Harriet"); // uses one-arg constructor
 omega om2("Bernard");
 omega om3("Damien");
 om3 = om2 = om1; // chained assignment
 }

The output from the program looks like this:

1-arg constructor has created Harriet-1
1-arg constructor has created Bernard-2
1-arg constructor has created Damien-3

Harriet-1 assigned to Bernard-2, making Harriet-2
1-arg constructor has created Harriet-4

Harriet-4 assigned to Damien-3, making Harriet-3
1-arg constructor has created Harriet-5

Destructor has destroyed Harriet-5
Destructor has destroyed Harriet-4

Destructor has destroyed Harriet-3
Destructor has destroyed Harriet-2
Destructor has destroyed Harriet-1

The first three lines are created by the first three invocations of the one-argument constructor in
main(). Then the chained assignment statement is executed:

om3 = om2 = om1;

Each of the two assignment operators in this statement causes an assignment of the name variable
and the invocation of the one-argument constructor to create the temporary variable that will be
assigned. These temporary objects are Harriet-4 and Harriet-5. Both are destroyed at the end of the
assignment statement.

When the program ends, the three original objects with their new names (Harriet-1, Harriet-2, and
Harriet-3) are destroyed as well. All the objects end up with the name Harriet because either they all
have been assigned to Harriet-1 or have been assigned to an object that was itself assigned to
Harriet-1.

Future Improvement

In the ASSIGN2 program, the OAO is returned by value, using the one-argument constructor. This is
not very efficient, because it requires the creation (and destruction) of a new object every time you
use the assignment operator. It’s better to be able to return by reference, which does not require the
creation of a new object. But you can’t return a local object by reference, because local objects are
destroyed when the function returns.

It would be really nice to return a reference to the object that called the OAO (return a reference to
myself). How can you do that? The magic expression *this solves the problem; I’ll mention it
again in Session 8 at the end of this chapter. For now, keep in mind that the current version of the
OAO can be improved.

Another improvement to OAOs that you can make later, when you learn about pointers, is to check
for self-assignment: that is, assigning an object to itself:

obj1 = obj1; // uh, oh

If nothing else, such a statement may indicate that the class user made a mistake; for some classes,
it can cause serious internal problems. For now, assume that class users don’t make this mistake.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Operator Overloading

http://www.itknowledge.com/reference/archive/1571690638/ch06/336-338.html [21-03-2000 19:13:10]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch06/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Quiz 6

1. Overloading the assignment operator is the only way to

a. chain assignment operators in a single statement, such as a=b=c=d.

b. perform assignment on objects.

c. assign one object to another when not all the data should be copied.

d. assign an object of one type to an object of another type.

e. initialize an object with another object when it’s created.

2. Classes in which an overloaded assignment operator might be helpful include those

a. that contain pointers as member data.

b. that number each object.

c. with static data.

d. with const data.

e. that allocate system resources such as memory.

3. An overloaded assignment operator

a. is used to initialize objects in statements such as alpha b = a;

b. copies all the data without modification from the source object to the target
object.

c. copies data or does not copy it, as appropriate, from the source object to the
target object.

d. performs any action the class creator wants when one object is assigned to
another.

e. operates the same way as the default assignment operator, except for large
objects.

4. Returning an object from an OAO makes it possible to

a. chain assignment operators, as in a=b=c=d.

b. assign an object of one type to an object of another type.

c. assign one object to another even when not all the data should be copied.

d. display information from within the OAO.

e. exit from the OAO.

5. Returning an object by value from an OAO

a. cannot be done with objects that number themselves.

b. is not a perfect solution.

c. is not acceptable to the compiler.

d. causes a temporary object to be created.

e. returns the object for which the function was called.

Exercise 1

It’s not really necessary, but overload the assignment operator for the airtime class.

Exercise 2

Remove the name variable from the omega class and create overloaded versions of the
assignment operator and copy constructor for the new version of the class.

Session 7: Overloading the [] Operator

The subscript operator, [], which is normally used to access array elements, can be
overloaded. This is useful if you want to modify the way arrays work in C++. For example,
you might want to make a “safe” array: one that automatically checks the index numbers
you use to access the array to ensure they are not out of bounds. That’s what I’ll do in this
example.

Access with access() Function

To show that things aren’t as mysterious as they might seem, I’ll first introduce a program
that uses a normal member function, called access(), to read and write the elements of a
safe array. This function returns by reference. As you learned in the RETREF program in
Chapter 4, Session 8, you can use the same member function both to insert data into an
object and to read it out if the function returns the value from the function by reference. A
function that returns by reference can be used on the left side of the equal sign, like this:

afunc() = 3; // possible if function returns by reference

The example program creates a class called safearay whose only member data is an array
of int values. The access() function in this class takes as its only argument the index of
the array element to be accessed. It checks that this index is within bounds and then either
assigns a new value to the array element at this index or retrieves the element’s value,
depending on which side of the equal sign it finds itself on.

The main() function tests the class by creating a safe array, filling it with values (each
equal to 10 times its array index), and then displaying them to assure the user that everything
is working as it should. Listing 6-14 shows ARROVER1.

Listing 6-14 ARROVER1

// arrover1.cpp
// creates safe array (index values are checked before access)
// uses access() function for put and get
#include <iostream.h>
#include <process.h> // for exit()

class safearay
 {
 private:
 enum {SIZE=100}; // array size
 int arr[SIZE]; // ordinary array
 public:
 int& access(const int& n); // function declaration
 };

int& safearay::access(const int& n) // access() function
 { // returns by reference
 if(n< 0 || n>=SIZE)
 { cout << "\nIndex out of bounds"; exit(1); }
 return arr[n]; // return the value by reference
 }

void main()
 {
 int j;
 int temp;
 safearay sa; // make a safe array
 const int LIMIT = 20; // amount of data

 for(j=0; j<LIMIT; j++) // insert elements
 sa.access(j) = j*10; // *left* side of equals

 for(j=0; j<LIMIT; j++) // display elements
 {
 temp = sa.access(j); // *right* side of equals
 cout << "\nElement " << j << " is " << temp;
 }
 }

In main(), the statement

sa1.access(j) = j*10;

causes the value j*10 to be placed in array element arr[j], the return value of the
function. Here the function appears on the left of the operator. The statement

temp = sa.access(j);

causes the value of arr[j] to be assigned to temp. Here the function appears to the right
of the operator.

One Size Fits All

For simplicity, all safearay objects are the same size: They can store 100 ints. This
wouldn’t be too practical in a real-world situation. You’ll see in Chapter 8 how such a class
can be designed so the user can determine the size of a safe array, either when it’s first
defined or, dynamically, as more data is added to it.

Note that in main(), only 20 int values are stored in the safe array. Thus, there’s plenty
of space left over. Here’s the output from ARROVER1 (with most of the lines omitted for
brevity):

Element 0 is 0
Element 1 is 10
Element 2 is 20
…
Element 18 is 180
Element 19 is 190

The output shows that the data has been successfully inserted and retrieved from the safe
array.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Operator Overloading

http://www.itknowledge.com/reference/archive/1571690638/ch06/338-341.html [21-03-2000 19:13:19]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch06/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Errors Are Reported

The access() function will display the error message Index out of bounds if the index
sent to it as an argument is not between 0 and SIZE-1. Try changing LIMIT to 101 and see if the
error-detection device works. After the error message is displayed, the exit() library function
is executed, which causes the immediate termination of the program.

Access with Overloaded [] Operator

The access() function works fine, but it would be a convenience to the programmer, and to
anyone else trying to read the listing, to access the elements of the safe array using the same
subscript ([]) operator as normal C++ arrays. To do this, I overload the [] operator in the
safearay class, using the operator[]() function. With the access() function, I would
write

temp = sa.access(j); // get element j of array sa

With the operator[] function, this could be rewritten as

temp = sa.operator[](j); // get element j of array sa

but of course C++ allows you to use the simplified syntax

temp = sa[j]; // get element j of array sa

where the dot operator, the keyword operator, and the parentheses disappear and the index j
moves from inside the parentheses to inside the brackets so as to replicate normal array syntax,
as shown in Figure 6-7.

Figure 6-7 Syntax of the overloaded [] operator

Like the access() function in ARROVER1, operator[]() must return by reference so it
can be used on the left of the equal sign. Listing 6-15 shows ARROVER2.

Listing 6-15 ARROVER2

// arrover2.cpp
// creates safe array (index values are checked before access)
// uses overloaded [] operator for put and get
#include <iostream.h>
#include <process.h> // for exit()

class safearay
 {
 private:
 enum {SIZE=100}; // array size
 int arr[SIZE]; // ordinary array
 public:
 int& operator [](int n); // function declaration
 };

int& safearay::operator [](int n) // overloaded []
 { // returns by reference
 if(n< 0 || n>=SIZE)
 { cout << "\nIndex out of bounds"; exit(1); }
 return arr[n];
 }

void main()
 {
 int j;
 int temp;
 safearay sa; // make a safe array
 const int LIMIT = 20; // amount of data

 for(j=0; j<LIMIT; j++) // insert elements
 sa[j] = j*10; // *left* side of equal sign

 for(j=0; j<LIMIT; j++) // display elements
 {
 temp = sa[j]; // *right* side of equal sign
 cout << "\nElement " << j << " is " << temp;
 }
 } // end main()
} // end program

In this version of main(), I can use the natural subscript expressions

sa[j] = j*10;

and

temp = sa[j];

for input and output to the safe array. They are used in exactly the same way as normal subscript
operators are. The output from ARROVER2 is the same as that from ARROVER1.

Of course, you don’t need to use operator[] exactly as I’ve shown here. If you’re only going
to read from an array, for example, there’s no reason for it to return by reference. Feel free to
adapt any of the overloaded operators to do exactly what you want.

Quiz 7

1. Overloading the subscript operator allows you to

a. access elements of normal C++ arrays, such as intarray[10].

b. use the array name on the right side of the equal sign.

c. access elements of an array object, using [].

d. make an array class that, to a class user, acts like a normal C++ array.

e. make an array that, internally, behaves differently than a normal C++ array.

2. In arrover1, all array objects of the safearay class hold the same amount of data
because

a. overloaded operators can’t handle large amounts of data.

b. that’s how LIMIT is defined in main().

c. that’s the size specified within the class.

d. all objects of the same class are necessarily the same size.

e. other options would require dynamic memory allocation.

3. An overloaded subscript operator should

a. take one argument and return a value by reference.

b. take no arguments and return a value by reference.

c. take no arguments and return void.

d. take no arguments and return by value.

e. calculate the index of the element to be accessed.

4. Returning by reference from an overloaded subscript operator means that

a. you can use the operator on the left side of the equal sign.

b. you can use the operator on any data type.

c. no copy is made of the returned data item.

d. only objects can be returned.

e. only objects of the same class as the operator can be returned.

5. You might reasonably want to create an array class that

a. uses an overloaded subscript operator that always returns the last item inserted in
the array.

b. expands automatically as you add data.

c. automatically sorts data as you enter it.

d. allows the user to choose the size of the array when it’s defined.

e. models a write-only array.

Exercise 1

Add a one-argument constructor to the safearay class so the user can specify the highest
element that will be used in the array. (For example, on ARROVER2, only the first 20 elements
are used.) Then have the overloaded subscript operator check that the index does not exceed this
limit (called LIMIT in ARROVER2), rather than checking if it exceeds the total size of the array.

Exercise 2

Modify the safearay class by adding a new member function, called add(), that allows the
class user to insert a value at the end of the array, where “end” is defined as the
highest-numbered element to have been accessed. In other words, if elements 0 to 6 are already
filled, then

sa.add(127);

will insert the value 127 into element 7. This function is convenient because the user doesn’t
need to supply an index number. You’ll probably need a new member data item (called top?)
that records the number of the highest element accessed.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Operator Overloading

http://www.itknowledge.com/reference/archive/1571690638/ch06/341-345.html [21-03-2000 19:13:30]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
javascript:displayWindow('images/06-07.jpg',218,296)
javascript:displayWindow('images/06-07.jpg',218,296)
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch06/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Fine-Tuning Overloaded Operators

In the operator overloading examples you’ve seen so far in this chapter, I’ve left out some
refinements. I did this to simplify the listings and to avoid muddying the waters while
introducing the basic concepts of overloaded operators. Now it’s time to return to some of these
earlier examples and retrofit them with the latest in OOP technology. I’ll demonstrate two such
features: making overloaded operators into constant functions and using appropriate return types.
I’ll begin by reviewing what you’ve learned about constant arguments.

Constant Arguments

I already discussed (in Chapter 4, Session 7) the desirability of passing arguments, when they are
objects, by reference. Because an object may be large, passing by reference avoids the time and
memory space necessary to create the copy of an object that’s generated automatically when an
argument is passed by value.

An argument passed by reference should be passed as a const to guarantee that it won’t be
accidentally altered by the function. (Of course, this isn’t true if the function is supposed to
modify the argument.) Almost all arguments to overloaded operators are objects and should be
passed by const reference. I’ve done this in most of the examples in this chapter.

An argument that is a basic type such as int can be passed by value without incurring
significant overhead. As I’ve noted, arguments passed by value can’t be modified by the function
and so don’t need to be const.

Constant Functions

I discussed making an entire function const in Chapter 5, Session 7. A const function
guarantees not to modify the object for which it is called. You can call a const member
function, but not a non-const one, for a const object. A constant function is indicated by the
keyword const following the parentheses of the function name:

void afunc() const // constant function
 { } // won't modify its object

Constant Overloaded Operators

How does this apply to overloaded operators? Any overloaded operator, if it does not modify the
object for which it was called, should be made const. This allows the class user to define
const objects that are guaranteed to be unalterable.

Binary operators such as +, *, <, and == should be const, because they don’t modify the object
for which they were called (the object on the left side of the operator); neither do the unary + and
- (with these operators, the object is on the right). However, assignment operators such as = and
+= do modify their object, as do the ++ and -- unary operators, so they should not be const.
The subscript operator [] may modify its object, so it should not be const either.

Adding Constant airtime Objects

Let’s modify the ADDAIR example from Session 1 in this chapter. I’ll make operator+() into
a const function and use it to add an airtime to a const airtime. Listing 6-16 shows
ADDAIRCO.

Listing 6-16 ADDAIRCO

// addairco.cpp
// overloads the + operator for airtime class,
// using const function
#include <iostream.h>

class airtime
 {
 private:
 int hours; // 0 to 23
 int minutes; // 0 to 59
 public:
 // no-arg constructor
 airtime() : hours(0), minutes(0)
 { }
 // two-arg constructor
 airtime(int h, int m) : hours(h), minutes(m)
 { }

 void display() const // output to screen
 {
 cout << hours << ':' << minutes;
 }

 void get() // input from user
 {
 char dummy;
 cout << "\nEnter time (format 12:59): ";
 cin >> hours >> dummy >> minutes;
 }
 // overloaded + operator
 airtime operator + (const airtime& right) const
 {
 airtime temp; // make a temporary object
 temp.hours = hours + right.hours;// add data
 temp.minutes = minutes + right.minutes;
 if(temp.minutes >= 60) // check for carry
 {
 temp.hours++;
 temp.minutes -= 60;
 }
 return temp; // return temporary
 object by value
 }
 }; // end class airtime

void main()
 {
 airtime at1, at2;
 const airtime noon(12, 0); // constant object

 cout << "Enter first airtime: ";
 at1.get();

 at2 = noon + at1; // overloaded + operator
 // adds at1 to noon

 cout << "sum = ";
 at2.display(); // display sum
 }

In main(), the airtime object noon is declared to be const. The statement

at2 = noon + at1;

adds another airtime value, at1, to noon. Because operator+() is a const function, it’s all
right to call it for a const airtime. If this operator were not const, attempting to use it on
a const object would elicit a compiler warning. This mechanism keeps an overloaded operator
from accidentally modifying a const object for which it is called.

Notice that, whether operator+() is const or not, it’s perfectly all right to say

at2 = at1 + noon;

because in this case, the operator is called for the nonconstant object at1, whereas noon is the
argument to the function and is already declared const .

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Operator Overloading

http://www.itknowledge.com/reference/archive/1571690638/ch06/345-347.html [21-03-2000 19:13:37]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch06/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Return Values

When an operator produces a new value, an object must be created to hold
this value. For example, in the ADDAIRCO program, operator+() adds
its argument to its object and must store the sum somewhere. Usually it’s
stored in a temporary object defined in the function. Because it’s
temporary, this object cannot be returned by reference, but must be returned
by value. For this reason, the overloaded arithmetic operators return by
value, as operator+() does for the airtime class.

However, things are simplified for some other kinds of operators because
they can return a copy of themselves. This is true when the result of an
operation is placed in the object for which the operator is called. This
happens in the assignment operators and a few others.

Returns from Assignment Operators

If answer, a and b are class objects and you say

answer = a += b;

the operator+=() function is called for a and the result of the a+b
operation is assigned to a. The return value of the operation a+=b is thus
simply a. It’s this value that is assigned to answer.

When the object that called a function itself takes on the result of the
calculation performed by the function, then the function can return by
reference. Why? Because, unlike a local object created within the function,
the object itself will be in existence after the function returns. (Objects, not
surprisingly, are longer lived than local variables defined within their
member functions.) Thus, operator+=() can return by reference,
whereas operator+() must return by value.

Should this reference return for assignment operators be const or
non-const? In most cases, it probably doesn’t make any difference.
However, in some obscure situations a nonconstant reference allows more
flexibility. I’ll refrain from making any recommendation about applying
const to return values and I’ll leave it out in the examples. You’re free to
use a const return if it works best in your own situation.

The Amazing *this Object

But what, exactly, do I return by reference if I want to return my own
object? In previous examples (e.g., in operator+=() in PLEQAIR in
Session 2 in this chapter), when I’ve needed to return the value of the object
for which a function was called, I’ve used the construction

return airtime(hours, minutes);

where hours and minutes are the data from my own object. This creates a
temporary object with the same data as my object. Because it’s temporary, I
return it by value. As I noted in Session 2 in this chapter, the compiler is
clever enough to create only one temporary object in this situation, so it is
fairly efficient to execute. However, if I can figure out a way to return by
reference, I won’t need to create any temporary objects at all.

To return the value of our own object by reference, we need to know about
a magic name called *this. In any member function, this name stands for
the object for which the function was called. That is, if in main() you say

anobj.afunc();

then within afunc(), the expression *this refers to exactly the same
object that the name anobj does in main().

The *this expression is passed implicitly (i.e., invisibly) to the function
by the compiler, so if I am a member function, I always know how to refer
to the object that called me: It’s *this. (To paraphrase Pogo, we have met
*this, and it is us!)

You don’t need to know anything about pointers to use *this. However,
if you are familiar with pointer notation, you’ll recognize the asterisk (*) as
the dereferencing operator. The name this is the address of the object that
called the function; *this is the object itself. I’ll discuss pointers and
addresses in greater detail in Chapter 8.

It follows that if a member function needs to return the object that called it,
it need only say

return *this;

and the deed is done. If the return is by reference, no copies at all are
created. You can’t get more efficient than that.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Operator Overloading

http://www.itknowledge.com/reference/archive/1571690638/ch06/348-349.html [21-03-2000 19:13:45]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch06/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

The += Operator Revisited

Let’s modify the PLEQAIR example from Session 2 in this chapter so that operator+=()
returns by reference, using *this. Listing 6-17 shows PLEQRET.

Listing 6-17 PLEQRET

// pleqret.cpp
// overloads the += operator, uses *this
#include <iostream.h>

class airtime
 {
 private:
 int hours; // 0 to 23
 int minutes; // 0 to 59
 public:
 // no-arg constructor
 airtime() : hours(0), minutes(0)
 { }
 // 2-arg constructor
 airtime(int h, int m) : hours(h), minutes(m)
 { }

 void display() const // output to screen
 {
 cout << hours << ':' << minutes;
 }

 void get() // input from user
 {
 char dummy;
 cout << "\nEnter time (format 12:59): ";
 cin >> hours >> dummy >> minutes;
 }
 // overloaded += operator
 airtime& operator += (const airtime& right)
 {
 hours += right.hours; // add argument to us
 minutes += right.minutes;
 if(minutes >= 60) // check for carry
 { hours++; minutes -= 60; }
 return *this; // return by reference
 }
 }; // end class airtime

void main()
 {
 airtime at1, at2, at3;
 cout << "Enter first airtime: ";
 at1.get();
 cout << "Enter second airtime: ";
 at2.get();
 at1 += at2; // overloaded += operator
 // adds at2 to at1
 cout << "\nat1+=at2 = ";
 at1.display(); // display result
 at3 = at1 += at2; // do it again, use return value
 cout << "\nat3 = ";
 at3.display(); // display result
 }

The main() here is the same as in PLEQAIR. The class user won’t need to change anything to
use the improved operator +=() function, but the function is more efficient. Notice that
operator +=() itself cannot be made const because the object for which it is called (i.e.,
a in a+=b) is modified. You can’t call this operator for a constant object.

The Increment Operator Revisited

The POSTFIX program in Session 3 in this chapter demonstrated both prefix and postfix
versions of the overloaded increment (++) operator. Let’s bring this program up to date. Listing
6-18 shows PFIXRET.

Listing 6-18 PFIXRET

// pfixret.cpp
// overloads the ++ operator, prefix version uses *this
#include <iostream.h>

class airtime
 {
 private:
 int hours; // 0 to 23
 int minutes; // 0 to 59
 public:
 // no-arg constructor
 airtime() : hours(0), minutes(0)
 { }
 // 2-arg constructor
 airtime(int h, int m) : hours(h), minutes(m)
 { }

 void display() const // output to screen
 {
 cout << hours << ':' << minutes;
 }

 void get() // input from user
 {
 char dummy;
 cout << "\nEnter time (format 12:59): ";
 cin >> hours >> dummy >> minutes;
 }
 airtime& operator++ () // overloaded prefix ++ operator
 {
 ++minutes;
 if(minutes >= 60)
 {
 ++hours;
 minutes -= 60;
 }
 return *this; // return our object by reference
 }
 airtime operator++ (int) // overloaded postfix ++ operator
 {
 airtime temp(hours, minutes); // save original value
 ++minutes; // increment this object
 if(minutes >= 60)
 {
 ++hours;
 minutes -= 60;
 }
 return temp; // return old original value
 }
 }; // end class airtime
//
void main()
 {
 airtime at1, at2; // make two airtimes
 at1.get(); // get value for one

 at2 = ++at1; // increment (prefix) and assign
 cout << "\nat2=";
 at2.display(); // display assigned value

 at2 = at1++; // increment (postfix) and assign
 cout << "\nat1=";
 at1.display(); // display incremented value
 cout << "\nat2=";
 at2.display(); // display assigned value
 }

The prefix version of ++ increments its object before its value is used so it can return its own
value. But where before I used

return airtime(hours, minutes);

I can now say

return *this;

This allows me to use a reference return and to avoid copying any objects at all.

As I noted earlier, the postfix version must return the value its object had before it was
incremented, so there’s no choice but to save this value in a temporary object and return this
object after the real object has been incremented. Because a temporary object is being returned,
it must be returned by value, so I can’t make a corresponding improvement in the postfix ++
operator.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Operator Overloading

http://www.itknowledge.com/reference/archive/1571690638/ch06/349-352.html [21-03-2000 19:13:54]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch06/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Summary of Fine-Tuning for Overloaded Operators

Table 6-1 shows the recommended approach to overloaded operators as
regards their return value, how their argument (if any) is passed, and
whether they are themselves declared const. Note that this table applies
only to operators used as member functions, as I’ve shown in this chapter,
not to operators that are friend functions.

Table 6-1 Recommended functions, return values, and arguments for
overloaded operators as member functions

Type of Overloaded
Operator

Return Argument
Passed by

Function

*Arithmetic (+, -, *,
/)

by value const reference const

Assignment (=, +=,
-=)

by reference
(*this)

const reference non-const

*Comparison (<, ==)
by value
(boolean)

const reference const

Unary prefix (++,
--)

by reference
(*this)

none non-const

Unary postfix (++,
--)

by value
value (dummy
int)

non-const

Unary (-, +) by value none const

Subscript ([]) by reference value (integer) non-const

Binary operators other than assignments are marked with asterisks to show
that, ideally, they should be friend functions rather than member functions.
When they’re friends, you can use a basic type on the left of the operator as
well as on the right, in classes where this is appropriate. However, except in
this case, they work fine as member functions.

Quiz 8

1. Which of the following are advantages of declaring an overloaded
operator to be a const function?

a. It cannot modify the object for which it was called.

b. Its return value cannot be modified.

c. It can be called for a constant object.

d. It cannot modify its argument.

e. It cannot modify any objects of its class.

2. In the airtime class, the operator+() function

a. adds the object that called it to its argument.

b. adds its argument to the object that called it.

c. should return by reference.

d. returns the value of its own object.

e. returns the result of the addition.

3. Within a member function, the expression *this always refers to

a. the object passed as an argument to the function.

b. the address of an object.

c. a temporary object created within the function.

d. the object that called the function.

e. the object that will be returned from the function.

4. In the overloaded assignment operator +=,

a. the object for which the operator is called may be modified.

b. the argument to the operator may be modified.

c. nothing is modified but the return value.

d. the return value is the sum of the object that called the
operator and its argument.

e. the return value is the same as that of the object that called
the operator.

5. The prefix version of the increment operator ++

a. can return by reference.

b. modifies the object that called it.

c. returns the value of the object that called it.

d. returns a temporary object that has been incremented.

e. returns a temporary object that has not been incremented.

Exercise 1

Overload the >= operator for the airtime class, using the various
improvements shown in this session.

Exercise 2

Overload the *= operator for the English class, again using the various
improvements shown in this session. Multiply by type int (how many feet
and inches in five boards 2’-6” long?) because it gets complicated to
generate square feet, which are not the same as feet.

Summary: Chapter 6

You’ve seen how the normal C++ operators, such as +, +=, <, and ++, can
be made to work with class objects as well as with basic C++ types such as
int and float. This involves overloading the operators so they cause
different functions to be executed, depending on the data type of their
operands.

The advantage of operator overloading is purely visual: Source code may
be easier to read and write when operators are used instead of functions
such as add(). However, using equivalent functions produces the same
results. It follows that overloaded operators should not be used unless they
make the listing easier to read. They are not helpful when they do
something that is not intuitively similar to their operation on basic types.
Using the + operator to display something or, worse yet, to subtract two
objects is a bad idea.

With binary operators, as in a+b, the object that calls the overloaded
function is to the left of the operator; the object to the right is an argument
to the operator. Unary operators may appear on either side of the object that
calls them: ++a and a++. Unary operators take no argument.

Various techniques can be used to make overloaded operators safer and
more efficient. Most arguments should be const and passed by reference,
to avoid the creation of extraneous object copies. The operators themselves
should be const whenever they don’t modify the object that called them.
The *this expression allows the value of the object that called the
operator to be returned by reference, which again avoids the creation of
additional copies.

As you will find when you learn about friend functions, you can make an
additional improvement to overloaded binary operators. Also, you’ll see in
Chapter 10 how the << and >> operators can be overloaded to perform
input and output with class objects, as they do with basic types.

End-of-Chapter Discussion

Estelle: There’s some pretty subtle stuff going on. I like overloaded
operators, but I don’t like worrying about the most efficient
possible way to write them.

George: Yeah, it’s a drag. You’ve got to think about every little thing.
Does an operator modify its own object? Does it modify its
argument? Can it return the value of its own object or does it
create a new value? It’s really too much.

Don: Well, you don’t need to worry about all that stuff if you don’t
want to. Pass all your arguments by value, return everything by
value, don’t make anything const, forget *this, and it’ll
still work.

George: Really?
Don: I wouldn’t kid you. It just makes your program faster and

smaller and safer if you do it right.
Estelle: Why are we talking about all this efficiency stuff now? Don’t

these rules apply to regular functions as well as overloaded
operators?

Don: Sure. But it’s easier to be specific about overloaded operators
because they do pretty much the same thing no matter what
class they’re in.

Estelle: It seems like there are situations where you can do something
several different ways. Like when you convert one class to
another, you could use a constructor in one class or an
overloaded cast operator in the other class.

George: You could probably overload the equal operator, too.
Don: I don’t think there are any rules about which approach to use. It

depends on the circumstances, like which class is already
written, or which class you have the source code for, or which
classes have peek functions.

Estelle: The nice thing about C++ is you can try out stuff and the
compiler will pretty much tell you if it’s right.

Don: It’s a lot smarter than the C compiler. If you can compile it
error free in C++, it’ll probably run.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Operator Overloading

http://www.itknowledge.com/reference/archive/1571690638/ch06/352-355.html [21-03-2000 19:14:02]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch06/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

CHAPTER 7
INHERITANCE

Inheritance is the second central concept behind object-oriented
programing, after classes themselves. In fact, although conceptually
inheritance is secondary to the idea of classes, practically it is the driving
force behind OOP. Why? Because inheritance makes reusability possible.
Reusability means taking an existing class and using it in a new
programming situation. By reusing classes, you can reduce the time and
effort needed to develop a program, and make software more robust and
reliable. If you develop software for money, you can’t afford to overlook
the savings made possible by reusability.

Inheritance also plays a major role in OOP design. It allows you to
conceptualize a complex program using a new relationship between
program elements.

In this chapter, I’ll first discuss the conceptual underpinning of inheritance
and then I’ll delve into some of the slippery details, including how to
handle constructors in inheritance and multiple inheritance. Along the way,
you’ll see plenty of examples of how to use this key feature of OOP.

Session 1: Introduction to Inheritance

In this first session, I’ll start by considering the two principal motivations
for inheritance: how it aids reusability and how it provides a new basis for
program organization. I’ll finish the session by introducing the syntax used
to make one class inherit from another.

Reusability

To understand why inheritance is important, you need to look back at the
history of reusability. Programmers have always tried to avoid writing the
same code twice, or “reinventing the wheel.” Inheritance is the latest
solution to this problem, and the most powerful.

Rewriting Code

The earliest approach to reusability was simply rewriting existing code.
You have some code that works in an old program, but doesn’t do quite
what you want in a new project. You paste the old code into your new
source file, make a few modifications to adapt it to the new environment,
and you’re off and running. Except that the modifications you made, in all
probability, have introduced new bugs. Now you must debug the code all
over again. Often you’re sorry you didn’t just write new code.

Function Libraries

To reduce the bugs introduced by modification of code, programmers
attempted to create self-sufficient program elements in the form of
functions. The hope was that functions could be written that were general
enough that they could be used without modification in a variety of
programming situations. Software companies gathered groups of such
functions together into function libraries and sold them to other
programmers.

Function libraries were a step in the right direction, but, as I discussed in
Chapter 1, functions don’t model the real world very well, because they
don’t include important data. All too often, functions require modification
to work in a new environment; it was common for the purveyors of function
libraries to provide source code to make such modifications easier. But
again, the modifications introduced bugs.

Class Libraries

A powerful new approach to reusability appears in OOP: the class library.
Because a class more closely models a real-world entity, it needs less
modification than functions do to adapt it to a new situation. More
importantly, OOP provides a way—in effect—to modify a class without
changing its code. This apparent contradiction is achieved by using
inheritance to derive a new class from the old one. The old class (called the
base class) is not modified, but the new class (the derived class) can use all
the features of the old one and additional features of its own. Figure 7-1
shows how this looks.

Figure 7-1 Inheritance

Inheritance and Program Design

Besides making it easier to modify existing program components,
inheritance has another benefit. It provides a new way of relating one
program component to another. This new relationship gives added
flexibility to program design and allows program architecture to mirror
real-world relationships more accurately. Inheritance is sometimes referred
to as a “kind of” relationship. To see what this means, let’s first examine
another relationship, composition, which you can think of as a “has a”
relationship.

Composition: A “Has a” Relationship

You’ve already used composition many times. Every time you place
instance data in a class, you are creating a “has a” relationship. If there is a
class employee and one of the data items in this class is the employee’s
name, I can say that an employee object has a name. The employee
object may also have a salary, ID number, and so on. This sort of
relationship is called composition because the employee object is
composed of these other variables.

Similarly, in a Stack class, member data may include an array (to hold the
stack’s data) and an index to the top of the stack. I can say that a Stack
object is composed of an array and a stack-top index.

Class member data can contain objects of other classes as well as variables
of basic types. I might use airtime objects called Departure and
Arrival in an airline’s FlightInformation class. Or you can
imagine a bicycle class, in which each bicycle object includes a
frame object, two wheel objects, and a handlebar object (among
other things). Composition in OOP models the real-world situation in which
objects are composed of other objects.

Old-fashioned procedural languages such as C and Pascal model this “has
a” relationship using structures. A structure can be composed of variables
and other structures. However, there is another relationship procedural
languages cannot model: the “kind of” relationship.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Inheritance

http://www.itknowledge.com/reference/archive/1571690638/ch07/357-360.html [21-03-2000 19:14:12]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
javascript:displayWindow('images/07-01.jpg',275,513)
javascript:displayWindow('images/07-01.jpg',275,513)
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch07/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Inheritance: A “Kind of” Relationship

Inheritance in OOP mirrors the concept that we call generalization in the real world. If I have a
racing bicycle, a mountain bicycle, and a child’s bicycle, I can say that these are all specific
instances of a more general concept called a bicycle. Every kind of bicycle has certain features: two
wheels, a frame, and so on. But a racing bike, in addition to these general features, has narrow tires
and a low weight. A mountain bike also has all the features of a bicycle, but in addition has fat
knobbly tires and powerful brakes.

Similarly, there may be laborers, executives, scientists, and clerks on a company’s payroll. These
are all specific examples of a more general category of employees.

We use generalization in our everyday perception of the world. I know that cats, sheep, and humans
are kinds of mammals; trucks, cars, and buses are kinds of vehicles; that PCs and Macintoshes are
kinds of computers. This sort of relationship is so common in ordinary life that it makes sense to
model it in computer programs. That’s what inheritance does. As you’ll see as we go along, this
turns out to be a surprisingly useful tool in program design.

Not Exactly a Family Tree

Inheritance is often compared to family relationships; hence the name. However, inheritance in
OOP is not quite the same thing as inheritance in human families. For one thing, a class can—and
usually does—inherit from a single parent. Also, derived classes tend to have more features than
base classes, whereas human children, as is well known, often lack qualities possessed by their
parents.

Inheritance Syntax

The simplest example of inheritance requires two classes: a base class and a derived class. The base
class does not need any special syntax. The derived class, on the other hand, must indicate that it’s
derived from the base class. This is done by placing a colon after the name of the derived class,
followed by a keyword such as public and then the base class name, like this:

class Base
 {
 // member data and functions
 };
class Derv : public Base
 {
 // member data and functions
 };

The colon (like the arrow in inheritance diagrams) means “is derived from.” Thus, the class Derv is
derived from the class Base and inherits all the data and functions that Base has (although I don’t
show any here). I’ll leave an explanation of the keyword public until later. (It’s called an access
specifier, and the other possibilities are private and protected, but public is by far the
most commonly used.) Figure 7-2 shows the syntax used in inheritance.

Figure 7-2 Derived class syntax

Let’s look at a more detailed example. Listing 7-1 has a Parent class, and a Child class derived
from it.

Listing 7-1 INHERIT

// inherit.cpp
// skeleton classes demonstrate inheritance
#include <iostream.h>
class Parent
 {
 private:
 float flov; // Parent's data
 public:
 void pget() // get Parent's data
 {
 cout << "\n Enter float value: ";
 cin >> flov;
 }
 void pdisplay() // display Parent's data
 {
 cout << "flov=" << flov;
 }
 };
class Child : public Parent
 {
 private:
 int intv; // Child has its own data
 public:
 void cget() // get data for Child
 {
 pget(); // call function in Parent
 cout << " Enter integer value: ";
 cin >> intv; // get Child-specific data
 }
 void cdisplay()
 {
 pdisplay(); // call function in Parent
 cout << ", intv=" << intv; // show Child-specific data
 }
 };
void main()
 {
 Child ch; // make a child object
 cout << "Requesting data for child object";
 ch.cget(); // get data for it
 cout << "Data in child object is ";
 ch.cdisplay(); // display its data
 }

The Parent class has a data item intv, along with pget()and pdisplay() member
functions. The Child class has a data item flov and similar cget() and cdisplay()
functions.

In main(), the program creates an object of class Child, gets data for it from the user, and then
displays the data. Here’s how the interaction with the program looks:

Requesting data for child object
 Enter float value: 456.789
 Enter integer value: 123
Data in child object is flov=456.789, intv=123

This may seem mysterious. Although the object ch of class Child contains only an integer data
item, the output shows it has successfully stored and retrieved a float item as well. How does this
happen?

Inheriting Attributes

An object of a derived class inherits all the member data and functions of the base class. Thus the
Child object ch contains not only a data item intv, but a data item flov as well. The ch
object can also access, in addition to its own member functions cget() and cdisplay(), the
member functions from Parent, which are pget() and pdisplay().

Accessing Base Class Data

Although an object of a derived class may contain data defined in the base class, it doesn’t
necessarily follow that this data is accessible from the derived class. Assuming that I want the
cdisplay() function in Child to display Parent’s flov data as well as its own intv, could
I rewrite cdisplay() this way?

class Child
 {
 ...
 void cdisplay()
 {
 cout << "flov=" << flov; // error: private Parent member
 cout << ", intv=" << intv;
 }
 };

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Inheritance

http://www.itknowledge.com/reference/archive/1571690638/ch07/360-363.html [21-03-2000 19:14:30]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
javascript:displayWindow('images/07-02.jpg',340,212)
javascript:displayWindow('images/07-02.jpg',340,212)
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch07/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

No, I can’t access flov from the Child class, because flov is a private member of
Parent. As is usual in C++, public members (data and functions) can be accessed from
outside the class, but private members cannot.

It’s true that the derived class occupies a strange new position with regard to the base class.
Derived class functions aren’t actually in the base class, but they are more closely related
to the base class than functions in some completely unrelated class. Nevertheless, they
can’t access private members of the base class. (You’ll see later that a special category,
protected, does allow such access.)

Calling a Base Class Function

Fortunately, I don’t need to access the base class data flov from functions in Child
objects directly. Unlike flov, which is private, the member functions of Parent are
public, so I can call them to handle flov. From cget() I call pget(), which asks the
user to enter a value for flov. From cdisplay() I call pdisplay(), which displays
the value of flov. The derived class need never access flov directly.

Function Overloading in Base and Derived Classes

In the INHERIT program, there are separate functions to get user input in the base and
derived classes: pget() for Parent and cget() for Child. Similarly, pdisplay()
displays the data item in Parent and cdisplay() displays the item in Child. It’s
somewhat confusing, and not in the spirit of OOP, to use different function names for
functions that do essentially the same thing. It would be nice if both these functions had the
same name, so the name would be clearer and easier to remember (among other benefits).

It turns out that it’s perfectly all right to overload functions in base and derived classes. If I
name both functions display(), we’ll have a situation like this:

class Parent
 {
 void display()
 { }
 };
class Child : public Parent
 {
 void display()
 {
// display(); // bad: calls display() in Child
 Parent::display(); // good: calls display() in Parent
 }
 };

The compiler has no trouble distinguishing the two versions of display() because
they’re in different classes.

However, if I use the name display() in a derived class function, the compiler assumes
I mean the function of that name in the derived class. That would be disastrous from within
display(), because a function calling itself over and over would eventually crash the
program. In the derived class, to refer to the version of the function that’s in the base class,
I must use the scope resolution operator and the base class name:

Parent::display();

This makes it clear to the compiler which function I mean. Listing 7-2, a revised version of
the INHERIT example, shows how it looks when I overload the member functions, calling
both display functions display() and both input functions get().

Listing 7-2 INHERIT2

// inherit2.cpp
// skeleton classes demonstrate inheritance
// uses overloaded functions
#include <iostream.h>
class Parent
 {
 private:
 float flov;
 public:
 void get()
 {
 cout << "\n Enter float value: ";
 cin >> flov;
 }
 void display()
 {
 cout << "flov=" << flov;
 }
 };
class Child : public Parent
 {
 private:
 int intv;
 public:
 void get()
 {
 Parent::get();
 cout << " Enter integer value: ";
 cin >> intv;
 }
 void display()
 {
 Parent::display();
 cout << ", intv=" << intv;
 }
 };
void main()
 {
 Child ch;
 cout << "Requesting data for child object";
 ch.get();
 cout << "Data in child object is ";
 ch.display();
 }

This program operates the same way as INHERIT, but using overloaded functions makes it
easier for the class user to remember the function names.

Table 7-1 summarizes how overloaded and normal functions can be accessed from base
and derived classes. I assume there’s a basefunc() member function in the base class, a
dervfunc() function in the derived class, and an overloaded func() in both classes.

Table 7-1 Function accessibility from base and derived classes
Function Is Member
of

Overload Status To Access Function
from Base Class

To Access Function
from Derived Class

Base class Different names basefunc() basefunc()

Base class Overloaded func() Base::func()

Derived class Different names Function is unknown dervfunc()

Derived class Overloaded Function is unknown func()

If functions are not overloaded, the derived class can access functions in the base class
using their name alone. For overloaded functions, the derived class must use the scope
resolution operator to access functions in the base class.

Of course, inheritance only works one way. The base class doesn’t know anything about
the derived class and can’t access any of its members.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Inheritance

http://www.itknowledge.com/reference/archive/1571690638/ch07/363-365.html [21-03-2000 19:14:43]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch07/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Quiz 1

1. Inheritance facilitates reusability because

a. child objects cannot be modified.

b. the base class need not be modified to derive a new class.

c. programming objects are more like real-world objects.

d. objects of the base class can be treated as objects of the
derived class.

e. derived class objects inherit only the desirable features of
the base class.

2. Inheritance helps with program organization by

a. allowing the use of “gives birth to” arrows in organization
diagrams.

b. modeling the “has a” relationship.

c. exactly replicating human family trees.

d. providing a new kind of relationship between objects.

e. allowing a class to consist of objects of other classes.

3. If you want the functions in a derived class to access the data in a
base class directly, you must

a. make the base class data private.

b. not make the base class data private.

c. use a private base class function.

d. use a nonprivate base class function.

e. make the data public and call a public access function.

4. To access a public nonoverloaded base class function bafunc(),
a statement in a derived class function defunc() uses the
expression

a. Base::bafunc();
b. Derv::bafunc();
c. bafunc();
d. defunc();
e. “I’m outta luck.”

5. To access the public function func() in the base class, a
statement in the derived class function func() uses the statement

a. “This is impossible.”

b. Base();
c. Derv();
d. func();
e. Base::func();

Due to its abstract nature, this session has no exercises.

Program Design: The employee Class

Let’s look at a somewhat more realistic example of inheritance. I’ll start
with the employee class of the EMPLOY1 program from Chapter 3,
Session 2. This program emphasizes the program design aspect of
inheritance: that is, using inheritance as a basic way to relate program
components. It is less relevant to the concept of reusability, which I’ll focus
on in the next session.

Suppose I want to program a database of company employees. It’s common
for employees to be divided into different categories. In this particular
imaginary company, I’ll assume there are managers, scientists, and
laborers. (Forget for the moment about secretaries, salespeople,
accountants, and so on.)

Class Hierarchy

When you encounter a situation in which different categories of things can
be described as kinds of something else, you’re looking at a situation that
can be modeled in a program as inheritance. Managers, scientists, and
laborers are kinds of employees. Here’s how that looks in C++ in skeleton
form:

class employee
 { ... };
class manager : public employee
 { ... };
class scientist : public employee
 { ... };
class laborer : public employee
 { ... };

The three classes manager, scientist, and laborer are derived from
the employee class.

All employees, no matter what derived class they belong to, share some
common elements. For purposes of the database, let’s assume that they all
have a name and an ID number. In inheritance, such common elements are
placed “upstream,” in the base class. The derived classes have their own
individual characteristics. The characteristics that are important about
managers are titles, such as “President” or “Vice-President,” and golf club
dues. For scientists, the important data is the number of publications for
which the scientist has written scholarly articles. Laborers have no
distinguishing characteristics other than their name and ID number. (A
database program does not always mirror the diversity of real people, with
all their hopes and dreams.) Figure 7-3 shows how this looks.

Figure 7-3 Class hierarchy in EMPINH

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Inheritance

http://www.itknowledge.com/reference/archive/1571690638/ch07/365-367.html [21-03-2000 19:14:59]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
javascript:displayWindow('images/07-03.jpg',505,343)
javascript:displayWindow('images/07-03.jpg',505,343)
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch07/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

The EMPINH Program

The full-scale program is rather lengthy, but the similarities of the classes make it easier to
understand than it might seem at first sight. Listing 7-3 shows EMPINH.

Listing 7-3 EMPINH

// empinh.cpp
// models employee database using inheritance
#include <iostream.h>
class employee // employee class
 {
 private:
 enum { LEN=30 }; // maximum length of names
 char name[LEN]; // employee name
 unsigned long number; // employee number
 public:
 void getdata()
 {
 cout << "\n Enter last name: "; cin >> name;
 cout << " Enter number: "; cin >> number;
 }
 void putdata()
 {
 cout << "\n Name = " << name;
 cout << "\n Number = " << number;
 }
 };
class manager : public employee // management class
 {
 private:
 enum { LEN=40 }; // maximum length of titles
 char title[LEN]; // "vice-president" etc.
 double dues; // golf club dues
 public:
 void getdata()
 {
 employee::getdata();
 cout << " Enter title: "; cin >> title;
 cout << " Enter golf club dues: "; cin >> dues;
 }
 void putdata()
 {
 employee::putdata();
 cout << "\n Title = " << title;
 cout << "\n Golf club dues = " << dues;
 }
 };
class scientist : public employee // scientist class
 {
 private:
 int pubs; // number of publications
 public:
 void getdata()
 {
 employee::getdata();
 cout << " Enter number of pubs: "; cin >> pubs;
 }
 void putdata()
 {
 employee::putdata();
 cout << "\n Number of publications = " << pubs;
 }
 };
class laborer : public employee // laborer class
 {
 };
void main()
 {
 manager m1, m2;
 scientist s1;
 laborer l1;
 cout << endl;
 cout << "\nEnter data for manager 1"; // get data for
 m1.getdata(); // several employees
 cout << "\nEnter data for manager 2";
 m2.getdata();
 cout << "\nEnter data for scientist 1";
 s1.getdata();
 cout << "\nEnter data for laborer 1";
 l1.getdata();
 cout << "\nData on manager 1"; // display data for
 m1.putdata(); // several employees
 cout << "\nData on manager 2";
 m2.putdata();
 cout << "\nData on scientist 1";
 s1.putdata();
 cout << "\nData on laborer 1";
 l1.putdata();
 }

The member functions of manager and scientist call base class functions in employee to
get the employee name and number from the user and to display them. They also handle their
own particular data, title, and dues for managers and number of publications for scientists. The
laborer class relies completely on employee for all data and member functions.

Abstract Classes

You might think I could simply use employee objects instead of laborer objects, because
they have the same data and functions. However, this violates the spirit of the program’s
organization. As used here, the employee class is not one from which actual objects will be
instantiated. The only purpose of employee is to serve as a general class from which other
classes are derived. All real employees are members of a more specific category.

As an analogy, imagine you own a specific animal called Toby. If someone asked you what Toby
is, you probably wouldn’t say, “Oh, he’s a mammal.” Everyone would say, “Yes, but what kind
of mammal?” All real animals must come from a more specific category than simply mammals.
(It turns out Toby is a hamster.) Mammal is a category that has no members itself, but serves
only as a generalization.

A class from which you don’t intend to instantiate any objects, but is used only as a base class
for other classes is called an abstract class. One of the advantages of using an abstract class for
employee is that if you decide, sometime after the employee class hierarchy is designed, to
add a data item to the laborer class, then you can modify laborer without modifying
employee, which would potentially affect all employee’s derived classes.

Abstract classes are a powerful concept in OOP, and I’ll return to them later.

Interaction with EMPINH

In main(), the program creates four employees: two managers, a scientist, and a laborer. It then
gets the data for these four employees from the user and displays it. Here’s some sample
interaction with EMPINH. First the user enters the data:

Enter data for manager 1
 Enter last name: Montegue
 Enter number: 111
 Enter title: President
 Enter golf club dues: 500000
Enter data for manager 2
 Enter last name: Blakley
 Enter number: 222
 Enter title: Vice-President
 Enter golf club dues: 100000
Enter data for scientist 1
 Enter last name: Lee
 Enter number: 333
 Enter number of pubs: 99
Enter data for laborer 1
 Enter last name: Jones
 Enter number: 87647162

Then the program plays it back:

Data on Manager 1
 Name = Montegue
 Number = 111
 Title = President
 Golf club dues = 500000
Data on Manager 2
 Name = Blakley
 Number = 222
 Title = Vice-President
 Golf club dues = 100000
Data on Scientist 1
 Name = Lee
 Number = 333
 Number of publications = 99
Data on Laborer 1
 Name = Jones
 Number = 87647162

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Inheritance

http://www.itknowledge.com/reference/archive/1571690638/ch07/367-371.html [21-03-2000 19:15:16]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000f956dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch07/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Quiz 2

1. The purpose of the EMPINH program is to demonstrate

a. inheritance.

b. composition.

c. classes.

d. the “kind of” relationship.

e. reusability.

2. In EMPINH, the __________ class is __________ the ___________ class(es).

a. scientist, the base class for, employee

b. laborer, derived from, employee

c. employee, composed of, manager, scientist, and laborer

d. employee, derived from, laborer

e. laborer, the same as, employee

3. An object of the scientist class contains instance data representing

a. the employee name, employee number, and number of publications.

b. only the number of publications.

c. only the employee name and employee number.

d. the title and golf club dues.

e. the location of the object.

4. From the manager class, you call the display() function in employee to

a. display all the data on a manager.

b. satisfy the formal requirements of the compiler.

c. display the manager’s name and number.

d. display the manager’s title and golf club dues.

e. let the compiler know you’re dealing with an object derived from the
employee class.

5. An abstract class is

a. one whose objects are identical to those of some derived class.

b. one from which no objects will be instantiated.

c. one that contains common elements of derived classes.

d. any base class.

e. any derived class.

Exercise 1

Add a secretary class to the hierarchy in EMPINH. The quality unique to this class is typing
speed in words per minute, an integer value. In main(), create two objects of this class and
input and output appropriate data.

Exercise 2

Create a class hierarchy with a vehicle base class. Derived classes will be trucks, cars, buses,
and motorcycles. All vehicles have instance data representing the vehicle identification number
(type long) and the gross vehicle weight. In addition, trucks have a load capacity (in pounds,
type float), cars have a body style (a string, such as “sedan”, “sports car”, or “station
wagon”), and busses have a passenger capacity (type int). Motorcycles have no additional
instance data.

Session 3: Reusability: An Improved Stack Class

In the last session, we examined a program in which inheritance served as a major design
element. In this session, I’ll demonstrate a program where inheritance allows reusability. I’ll
start with the Stack class, last seen in the ENUMSIZE program from Chapter 5, Session 4.

As you may recall, the previous versions of the Stack class did not warn the class user if too
many items were placed on the stack or too many items were removed. Let’s remedy this
situation by deriving a new class from Stack that checks for stack overflow and underflow.
I’ll call this derived class (with a certain lack of inventiveness) Stack2.

Reusability

Imagine that one company (or group of programmers) developed the original Stack class. It
spent many years developing and debugging the class, and the class is now a reliable
programming component. Later, another programming group in another company obtains a
library containing the Stack class. It is impressed with the class’s speed and versatility, but
the company discovers that it needs better error protection. This second group therefore derives
a new class from the old one. Because it doesn’t change anything in the original Stack class,
the original features will continue to work well. The new class simply adds some new features;
it is only these that need to be debugged.

The STACKINH Program

In a real-world situation, I would be dealing with multiple files, but for simplicity I’ll show
both the base class and derived class as part of the same source file. Listing 7-4 shows
STACKINH.

Listing 7-4 STACKINH

// stackinh.cpp
// improved stack created using inheritance
#include <iostream.h>
#include <process.h> // for exit()
class Stack // a stack holds up to SIZE ints
 {
 protected:
 enum {SIZE=20}; // capacity of stack
 int st[SIZE]; // integers are stored in array
 int top; // index of last item pushed
 public:
 Stack() // no-arg constructor
 { top = -1; }
 void push(int var) // place an item on the stack
 { st[++top] = var; }
 int pop() // remove an item from the stack
 { return st[top--]; }
 };
//
class Stack2 : public Stack
 {
 public:
 void push(int var)
 {
 if(top >= SIZE-1)
 { cout << "Error: stack overflow"; exit(-1); }
 Stack::push(var); // call push() in Stack class
 }
 int pop()
 {
 if(top<0)
 { cout << "Error: stack underflow"; exit(-1); }
 return Stack::pop(); // call pop() in Stack class
 }
 };
//
void main()
 {
 Stack2 s; // create a Stack2 object
 s.push(11); // push 3 items onto it
 s.push(12);
 s.push(13);
 cout << s.pop() << endl; // pop items and display them
 cout << s.pop() << endl;
 cout << s.pop() << endl;
 cout << s.pop() << endl; // oops, popped one too many
 }

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Inheritance

http://www.itknowledge.com/reference/archive/1571690638/ch07/371-374.html [21-03-2000 19:15:40]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch07/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

A Smarter Object

The Stack2 class has no data of its own. Its role is to “wrap” the pop()
and push() functions of the Stack class with its own improved pop()
and push(). These improved functions start with if statements that check
to be sure the class user is not popping or pushing too many items. Then
they call the base class versions of pop() or push() to carry out the
actual data storage and retrieval.

The accessible members of a class are called its interface, because they’re
what the class user interacts with. Here the interface for Stack2 is just the
same as for Stack. The Stack2 class has in effect disguised itself as the
Stack class. However, a Stack2 object is smarter internally.

In main(), the program creates a Stack2 object and pushes three items
onto it. Then, mistakenly, it pops four items off. Fortunately it’s using the
new improved Stack2 class, which duly complains. Here’s the output
from STACKINH:

13
12
11
Error: stack underflow

The Base Class Constructor

Notice that there is a constructor in the base class Stack but not in the
derived class Stack2. When you create an object of the derived class, the
compiler checks to see if it has a constructor. If it does, the constructor
arranges for it to be called; if there is no derived class constructor, the
compiler calls the base class constructor instead. (This is only true of
no-argument constructors, as you’ll see in the next session.) In Stack, this
constructor’s job is to initialize the top index to the top of the empty stack.

The protected Access Specifier

Actually, as you may have noticed, it’s not true that I made absolutely no
alterations to the base class Stack before deriving Stack2 from it. Can
you spot the change? I altered the access specifier for Stack’s data from
private (which I’ve used for member data in all previous examples) to
protected. What effect does this have?

I’ve noted that a private access specifier allows access only by member
functions that are within the class itself. A public specifier, on the other
hand, allows access by any function in the program. The protected
specifier has a role in between. It allows access to functions that are either
members of the class or members of its derived classes. Thus, protected
is the family-oriented access specifier.

The creators of Stack would need to make its data protected when the
class was first created so that, if anyone else wanted to derive other classes
from it, they could access the data.

Actually, there’s a disadvantage to making class data protected in that
it’s not quite as safe as if it were public. I’ll return to this point when I
focus on access specifiers in Session 5 in this chapter.

Functions That Aren’t Inherited

Before we go any farther, I should mention that a few special functions
aren’t automatically inherited. What does this mean? As you learned in
Session 1 in this chapter, if you have a function func() in a base class
alpha and it’s not overloaded in a derived class beta, then an object of a
derived class can call this base class function:

beta bb;
bb.func();

The function func() is automatically inherited by beta. The assumption
is that func() operates only on base class data; it doesn’t need to interact
with the derived class.

With a few functions, however, you know in advance that they will need to
do different things in the base class and the derived class. They are the
overloaded = operator, the destructor, and all constructors.

Consider a constructor. The base class constructor must create the base
class data, and the derived class constructor must create the derived class
data. Because the derived class and base class constructors create different
data, one constructor cannot be used in place of another. Thus, constructors
cannot be automatically inherited.

Similarly, the = operator in the derived class must assign values to derived
class data, and the = operator in the base class must assign values to base
class data. These are different jobs, so this operator is not automatically
inherited.

Finally, in the same way, a derived class destructor destroys derived class
data. It can’t destroy the base class object; it must call the base class
constructor to do this. Again, these destructors do different jobs, so they
can’t inherit.

If you explicitly define one of these noninheritable functions in the base
class, the = operator, say, and don’t explicitly define the same function in
the derived class, the compiler will generate a default version for you. The
default copy constructors and the default = operator perform memberwise
copying and assignment.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Inheritance

http://www.itknowledge.com/reference/archive/1571690638/ch07/374-376.html [21-03-2000 19:15:53]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch07/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Quiz 3

1. The purpose of the STACKINH example is to demonstrate

a. inheritance.

b. composition.

c. the “kind of” relationship.

d. a class hierarchy.

e. reusability.

2. The class creator may make the data in the Stack class
protected

a. so that it cannot be accessed by functions in other classes.

b. so that it can be accessed by objects of derived classes.

c. if other classes will be derived from Stack.

d. if Stack is derived from another class.

e. to prevent other classes from being derived from Stack.

3. The interface between a class and the class user consists of

a. the class member functions accessible from a derived class.

b. the class’s public member functions or data.

c. the class specification.

d. any class member functions and variable definitions.

e. calls in main() to class member functions.

4. Which of the following are true?

a. If the base class has a constructor, the derived class must also
have one.

b. If the derived class has a constructor, the base class must also
have one.

c. If the base class has no constructor, the derived class
constructor will be called.

d. If the derived class has no constructor, the base class
constructor will be called.

e. The compiler will look for multiple approaches to a problem.

5. The protected access specifier

a. allows access to functions in the program.

b. allows access to functions in the class.

c. allows access to functions in derived classes.

d. is used in the base class.

e. is used in the derived class.

Exercise 1

In Exercise 2 in Chapter 3, Session 2, I discussed a peek() function that
allows the user of a stack to read the data item from the top of the stack
without popping it off. Write such a function for the Stack class and then
write an overloaded version for the Stack2 class that checks to be sure the
stack is not empty.

Exercise 2

A queue is like a stack except that it works on a first-in-first-out (FIFO)
principle instead of the last-in-first-out (LIFO) principle of a stack. It’s like the
line at a bank teller’s window: The first person to join the tail of the line is the
first person to reach the head of the line and be removed. Rewrite the Stack
and Stack2 classes in the STACKINH program so they model queues instead
of stacks; you can call the new classes Queue and Queue2. You’ll need two
index variables, head and tail, instead of top. The head index will be
incremented when an item is pushed onto the queue, and the tail index will be
incremented when an item is popped off. These indexes will follow each other
through the array as items are pushed and popped. When either one gets to the
end of the array, it must wrap around to the beginning.

Session 4: Constructors and Inheritance

As you’ve seen, constructors are rather special functions. It’s not surprising,
therefore, that they play an unusual role in inheritance. In this session, I’ll
examine that role, show you when you need constructors and when you don’t,
and explain how one constructor can call another using a special syntax.

The Great Chain of Constructors

When you define an object of a derived class, not only is its constructor
executed but the constructor in the base class is executed as well. In
fact—perhaps surprisingly—the base class constructor is executed first. This is
because the base class object is a subobject—a part—of the derived class
object, and you need to construct the parts before you can construct the whole.
Figure 7-4 shows the relationship between objects and subobjects.

Figure 7-4 Inheritance and subobjects

The constructors for all the subobjects of an object are called before the
constructor for the object itself. The next example demonstrates this point.
Listing 7-5 shows INCONDES.

Listing 7-5 INCONDES

// incondes.cpp
// tests constructors and destructors in inheritance
#include <iostream.h>
//
class Parent
 {
 public:
 Parent()
 { cout << "\n Parent constructor"; }
 ~Parent()
 { cout << "\n Parent destructor"; }
 };
//
class Child : public Parent
 {
 public:
 Child()
 { cout << "\n Child constructor"; }
 ~Child()
 { cout << "\n Child destructor"; }
 };
//
void main()
 {
 cout << "\nStarting";
 Child ch; // create a Child object
 cout << "\nTerminating";
 }

This program specifies a Parent class and a Child class derived from Parent. In
main(), it then creates an object of the Child class. I’ve installed explicit
constructors and destructors in both classes that identify themselves when they
execute. Here’s the output from INCONDES:

Starting
 Parent constructor
 Child constructor
Terminating
 Child destructor
 Parent destructor

As you can see, the base class constructor is called first; then the derived class
constructor is called. When the Child object goes out of scope at the end of the
program, the destructors are called in reverse order: The derived object is
destroyed first, then the base class object.

The compiler arranges for all these constructors and destructors to be called
automatically, so you don’t need to worry about it. Even if you haven’t defined
explicit constructors and destructors as I did here, the compiler will call the
implicit (invisible) ones that actually create and destroy objects and subobjects.
You should be aware that this activity is taking place, whether or not you write
your own explicit constructors and destructors.

Incidentally, an object’s implicit constructor is always called before the
explicit one you define. When your explicit constructor starts to execute, your
object and all its subobjects already exist and have been initialized.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Inheritance

http://www.itknowledge.com/reference/archive/1571690638/ch07/376-379.html [21-03-2000 19:16:15]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
javascript:displayWindow('images/07-04.jpg',466,385)
javascript:displayWindow('images/07-04.jpg',466,385)
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch07/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

When Are Derived Class Constructors Necessary?

You saw in the STACKINH program in the last session that you don’t need to write a
no-argument (default) constructor for the derived class if the base class already has such a
constructor. It turns out this is about the only time you can get away without explicitly writing a
constructor in the derived class.

No Arguments

You can’t use a constructor with arguments unless it’s explicitly defined in the specific class
from which you’re instantiating an object. That is, even if there’s an n-argument constructor in
the base class, you must still write an n-argument constructor in the derived class. Listing 7-6,
CONSINH1, shows how this works.

Listing 7-6 CONSINH1

// consinh1.cpp
// demonstrates constructors and inheritance
//
class Mu // base class
 {
 private:
 int mudata; // data
 public:
 Mu() : mudata(0) // no-arg constructor
 { }
 Mu(int m) : mudata(m) // one-arg constructor
 { }
 };
//
class Nu : public Mu // derived class
 { // no constructors
 };
//
void main()
 {
 Nu n1; // can use the no-arg constructor in Mu
// Nu n2(77); // error: cannot use one-arg constructor
 }

You can write the specification for class Nu, which is derived from Mu, without any
constructors; the compiler doesn’t complain. You can also define an object of Nu if you don’t
use any arguments, as seen in the first statement in main(). But you can’t define a Nu object
that takes arguments unless there’s an appropriate constructor in Nu itself. The compiler won’t
substitute the constructor from the base class because it can’t be sure how you want to handle
the arguments.

Arguments

If you add an explicit one-argument constructor to the derived class Mu, then you must also add
a no-argument constructor, just as you must with any class (assuming you’re actually going to
create objects with this constructor). Listing 7-7 shows the previous program, rewritten as
CONSINH2, with these additional constructors.

Listing 7-7 CONSINH2

// consinh2.cpp
// demonstrates constructors and inheritance
class Mu
 {
 private:
 int mudata; // data
 public:
 Mu() : mudata(0) // no-arg constructor
 { }
 Mu(int m) : mudata(m) // one-arg constructor
 { }
 };
//
class Nu : public Mu
 {
 public:
 Nu() // no-arg constructor
 { }
 Nu(int n) : Mu(n) // one-arg constructor
 { }
 };
//
void main()
 {
 Nu n1; // calls no-arg constructor
 Nu n2(77); // calls 1-arg constructor
 }

In main(), the program successfully defines Nu objects using both the no-argument and the
one-argument constructors. The one-argument constructor passes its argument along to the
constructor in Mu using a new syntax: the initializer list.

The Initializer List

The derived class constructor Nu(int) calls the base class constructor Mu(int) using a
syntax that may appear strange and yet familiar:

Nu(int n) : Mu(n) // one-arg constructor
 { }

Everything following the colon is the initializer list, where initializations are carried out before
the constructor starts to execute. This is the same syntax used by constructors to initialize
variables of basic types, but here it’s used to call a constructor. Actually these operations are
conceptually identical, so it’s not surprising they use the same syntax. In one case, a class
object is initialized and in the other, a variable of a basic type is initialized, but C++ treats class
objects and basic-type variables in the same way.

Here the derived class constructor simply passes the argument n along to the base class
constructor. It takes no action of its own, so the braces are empty. This is a common situation in
derived classes: Constructors have an empty function body because all their work is done in the
initialization list.

Adding Functionality to the Derived Class Constructor

Not all derived class constructors have an empty function body. Suppose I want to add an
additional feature to the airtime class (last seen in the addairco program in Chapter 6, Session
8). I want to prevent the class user from initializing airtime objects with hours or minutes
values that are too large. Hours should be less than 24, and minutes should be less than 60. (Of
course, they should both be greater than 0 as well, but I won’t worry about that now.) That is, if
the class user writes

airtime Departure(11, 65);

I want the constructor to complain because minutes can’t be greater than 59.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Inheritance

http://www.itknowledge.com/reference/archive/1571690638/ch07/379-381.html [21-03-2000 19:16:24]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch07/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

To add this new feature to airtime, I’ll derive a new class called airtime2, with the
requisite error-checking code in its two-argument constructor. Listing 7-8 shows AIRINH.

Listing 7-8 AIRINH

// airinh.cpp
// constructors and inheritance in the airtime class
#include <iostream.h>
#include <process.h> // for exit()
class airtime
 {
 protected:
 int hours; // 0 to 23
 int minutes; // 0 to 59
 public:
 // no-arg constructor
 airtime() : hours(0), minutes(0)
 { }
 // two-arg constructor
 airtime(int h, int m) : hours(h), minutes(m)
 { }
 void display() const // output to screen
 { cout << hours << ':' << minutes; }
 }; // end class airtime
//
class airtime2 : public airtime
 {
 public: // no-arg constructor
 airtime2() : airtime()
 { } // two-arg constructor
 airtime2(int h, int m) : airtime(h, m)
 {
 if(minutes>59 || hours>23)
 { cout << "\nError: invalid airtime value "
 << hours << ':' << minutes; exit(-1); }
 }
 }; // end class airtime2
//
void main()
 {
 airtime2 at0; // ok (no-arg constructor)
 cout << "\nat0 = ";
 at0.display();
 airtime2 at1(10, 45); // ok (2-arg constructor)
 cout << "\nat1 = ";
 at1.display();
 airtime2 at2(10, 65); // user error (2-arg constructor)
 cout << "\nat2 = ";
 at2.display();
 }

In the airtime2 class, I create explicit no-argument and two-argument constructors. The
two-argument constructor calls the two-argument constructor in the base class and then checks
the values provided to it. If either hours or minutes is too large, it prints an error message and
causes an exit from the program.

In main(), the program creates three airtime2 objects. The first uses the no-argument
constructor; the second uses the two-argument constructor with appropriate argument values;
and the third uses the two-argument constructor with a minutes value that’s too large. Here’s
the output from AIRINH:

at0 = 0:00
at1 = 10:45
Error: invalid airtime value 10:65

As you can see, the airtime2 constructor has successfully detected the out-of-range minutes
value for at2 and notified the user.

Quiz 4

1. Which of the following are true?

a. A derived class constructor is executed before the base class constructor.

b. A derived class constructor is executed after the base class constructor.

c. A derived class destructor is executed before the base class destructor.

d. A derived class destructor is executed after the base class destructor.

e. Derived and base class constructors are executed simultaneously.

2. For a derived class constructor with arguments to call a base class constructor, it must

a. make the call in the usual way from within its function body.

b. finish executing before calling the base class constructor.

c. use any arguments to itself in the call to the base class constructor.

d. place the call to the base class constructor on its initialization list.

e. make no explicit call, because the system will handle it automatically.

3. If there’s a constructor with arguments in a derived class, then you must have

a. at least a no-argument constructor in the base class.

b. a constructor with the same number of arguments in the base class.

c. a no-argument derived class constructor (assuming you’ll substantiate objects
without arguments).

d. a no-argument base class constructor (assuming you’ll substantiate objects
without arguments).

e. instantiated objects of the base class.

4. The initializer list in a constructor typically

a. initializes variables of basic types in its own class.

b. calls a constructor in a base class.

c. initializes variables of basic types in a base class.

d. calls other constructors in its own class.

e. assigns values to existing variables.

5. A derived class constructor

a. need not call a base class constructor.

b. can do more than simply call the base class constructor.

c. must call the base class constructor that has the same number of arguments.

d. creates an object of the derived class.

e. creates a subobject of the base class.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Inheritance

http://www.itknowledge.com/reference/archive/1571690638/ch07/381-384.html [21-03-2000 19:16:34]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch07/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Exercise 1

Augment the two-argument constructor to the airtime2 class in the airinh
program so it checks for values of hours and minutes that are too small (less
than 0) as well as too large.

Exercise

Rewrite the STACKINH program from Session 3 in this chapter so the
Stack2 class, in addition to checking for stack overflow and underflow,
also provides a one-argument constructor that can create stacks of different
sizes, with the value of the argument (type int) specifying the size.
Actually, the array used will always be the same size, but the stack will act
as if it’s a smaller size in that it will report stack overflow if the user tries to
push too many items.

Midchapter Discussion

George: Does this reusability business work in the real world? I mean,
do software companies actually see any improvement in the
bottom line because of inheritance?

Don: Absolutely. Although I hear it takes a while for the payoff.
First the programmers have to learn C++. And then they need
to write the first major application in C++. After that, they start
to be much more productive, because they can reuse classes
from the first project for all the projects that follow.

Estelle: Well, I bet it takes a while to learn. Things are getting pretty
complicated, aren’t they? All these rules about constructors,
when you need them and when you don’t. Who can remember
all that?

Don: I’ve been trying out some of this stuff at home, and...
George: Oh, aren’t you the overachiever! You better not learn this stuff

too fast, or you’ll make the rest of us look bad.
Don: ...and the surprising thing is that the compiler really helps you

get it right. If you need a constructor and you don’t have one,
the compiler lets you know. So it’s a lot easier to program than
you might think. It’s like the compiler is on your side, for a
change.

Estelle: Sounds like you need to experiment a lot.
Don: Absolutely. Writing code is even more important for learning

C++ than it is for procedural languages. Wump on those keys!

George:
Oh, for Pete’s sake. You wump on the keys. I’m gonna watch
TV.

Session 5: Access Control

You’ve already been introduced to the public, protected, and
private access specifiers and seen how they control access to base class
members. In this session, I’ll take a longer look at access specifiers and
when to use which one. I’ll also look at another access situation: public,
protected, and private inheritance.

Access Review

Let’s review what you’ve already learned about access. When inheritance is
not involved, class member functions have access to anything in the class,
whether public or private, but objects of that class have access only to
public members, as shown in Figure 7-5.

Figure 7-5 Access specifiers without inheritance

Once inheritance enters the picture, other access possibilities arise for
derived classes. Member functions of a derived class can access public and
protected members of the base class, but not private members. Objects of a
derived class can access only public members of the base class (assuming
it’s publicly derived; more on this at the end of the session). This situation
is shown in Table 7-2.

Table 7-2 Inheritance and accessibility
Access Specifier Accessible from

Own Class
Accessible from
Derived Class

Accessible from
Objects Outside
Class

public yes yes yes
protected yes yes no
private yes no no

Even though a class is derived from the base class, the situation for the base
class members and objects is unchanged, because they know nothing about
the derived class. Figure 7-6 shows these relationships.

Figure 7-6 Access specifiers with inheritance

Keeping Data Private

Should data in the base class be protected or private? I’ve shown examples
of both approaches. For example programs, making base class data
protected has the advantage of simplicity: No additional base class
functions need to be written to access data from the derived class. However,
this is not usually the best approach.

In general, class data should be private. (Of course, there are legitimate
exceptions to this rule.) Public data is open to modification by any function
anywhere in the program and should almost always be avoided. Protected
data is open to modification by functions in any derived class. Anyone can
derive one class from another and thus gain access to the base class’s
protected data. It’s safer and more reliable if derived classes can’t access
base class data directly.

Recall that an interface consists of the functions used to access something.
Design your classes to provide two interfaces: a public interface for use by
objects of the class and a protected interface for use by derived classes.
Neither of these interfaces should have direct access to data. One advantage
of keeping base class data private is that you can change it without breaking
(causing the failure of) derived classes. As long as the interface remains the
same, you can modify the underlying data.

Although it may be a good idea to prevent derived class functions from
modifying base class data, such functions must often read base class data.
To provide this read-only access, you can write simple functions as I
demonstrated earlier (e.g., in the get_ia() function in TWOTEST in
Chapter 6, Session 5). These functions should be protected, because they
are part of the protected interface used by derived classes and should not be
accessible to nonderived classes.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Inheritance

http://www.itknowledge.com/reference/archive/1571690638/ch07/384-387.html [21-03-2000 19:16:47]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
javascript:displayWindow('images/07-05.jpg',473,264)
javascript:displayWindow('images/07-05.jpg',473,264)
javascript:displayWindow('images/07-06.jpg',352,476)
javascript:displayWindow('images/07-06.jpg',352,476)
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch07/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

A Stack Example

The next example shows this arrangement of private data and protected access functions. It’s a
modification of the STACKINH program in Session 3 in this chapter. Listing 7-9 shows
STAPROFU.

Listing 7-9 STAPROFU

// staprofu.cpp
// superior stack created using inheritance,
// base class data private; uses protected member function
#include <iostream.h>
#include <process.h> // for exit()
//
class Stack // a stack holds up to SIZE ints
 {
 protected:
 enum {SIZE=20}; // capacity of stack
 private:
 int st[SIZE]; // integers are stored in array
 int top; // index of last item pushed
 protected:
 int get_top() const // return current top
 { return top; }
 public:
 Stack() // no-arg constructor
 { top = -1; }
 void push(int var) // place an item on the stack
 { st[++top] = var; }
 int pop() // remove an item from the stack
 { return st[top--]; }
 };
//
class Stack2 : public Stack
 {
 public:
 void push(int var)
 {
 if(get_top() >= SIZE-1)
 { cout << "Error: stack overflow"; exit(-1); }
 Stack::push(var); // call push() in Stack class
 }
 int pop()
 {
 if(get_top() < 0)
 { cout << "Error: stack underflow"; exit(-1); }
 return Stack::pop(); // call pop() in Stack class
 }
 };
//
void main()
 {
 Stack2 s; // create a Stack2 object
 s.push(11); // push 3 items onto stack
 s.push(12);
 s.push(13);
 cout << s.pop() << endl; // pop 3 items and display them
 cout << s.pop() << endl;
 cout << s.pop() << endl;
 cout << s.pop() << endl; // oops, popped one too many
 }

As you can see, the array st and the index top, which constitute the main data items in
Stack, are now private. Only member functions of Stack can access them. When I derive
Stack2 from Stack, Stack2’s push() and pop() can call Stack’s push() and
pop() functions to store and retrieve data. However, in Stack2 I also need to read the value
of top so I can check if the stack is full. To make this possible, I install a get_top()
function in Stack. This function is protected, so derived classes can execute it; to ensure they
can’t use it to alter anything in Stack, it’s a const function.

To the normal class user, Stack2 works just the way it did in STACKINH. (Note that main()
looks almost the same as it did when only Stack existed.) However, in STAPROFU, Stack’s
data is safe from harm by class users who code incorrectly.

In general, this is a better approach than making Stack’s data protected. For brevity, I’ll
continue to show some program examples with protected data, but you should be aware that
this is often a second-choice approach.

Notice that I’ve made the enum constant SIZE protected so it can be used by Stack2.
Because SIZE must be defined before st, which is private, I use two protected sections of data
in Stack.

A Graphics Example

Let’s look at another example where data is made private in the base class. In this program,
inheritance is used as a design element rather than for reuse. The purpose of the program is to
draw shapes on the screen. To avoid becoming embroiled in the graphics library of any
particular compiler, I’ll simulate graphics activity by drawing shapes made of Xs on the
character display. The OOP principles are the same as if I used functions that draw in graphics
mode.

A Hierarchy of Shapes

The program consists of a base class, shape, and three derived classes, square, cap, and
bowl. A cap is a triangle with the point facing up (a pyramid), whereas a bowl is a triangle
with the point facing down. Other shapes, such as circles and polygons, would be fun, but
would take us too far afield.

You can create shapes of any size and position them (with certain restrictions) anywhere on the
screen. Specify a shape’s position and size with arguments to its constructor. For example,

square(15, 2, 6);

creates an X-filled square, 6 lines high and 6 characters wide, with its upper-left corner 15
columns from the left edge of the screen and 2 rows down from the last position of the cursor.
The object looks something like this:

XXXXXX
XXXXXX
XXXXXX
XXXXXX
XXXXXX
XXXXXX

Alas, in my rather crude implementation, you can put only one shape on any given row and
each shape must be drawn below the previous shape. (You could fix this by storing the shapes
in an array before displaying them, but again this would complicate the example.)

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Inheritance

http://www.itknowledge.com/reference/archive/1571690638/ch07/387-389.html [21-03-2000 19:16:56]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch07/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

The Classes

The shape class contains elements that are common to all shapes. These are the position of the
object on the screen, represented by the coordinates xCo and yCo, and its size, represented by
size. Both position and size are measured in characters. The position has two parts: the distance
from the left edge of the screen to the left edge of the object and the distance from the top of the
screen to the top of the object. Size is the height of the object.

Shape also contains protected member functions that permit read-only access to its private data.
Because Shape is an abstract base class that will never be instantiated itself, its constructor can be
protected along with these access functions. The square, cap, and bowl classes contain
constructors that call the base class constructor, and member functions to draw themselves. Listing
7-10 shows the SHAPES program.

Listing 7-10 SHAPES

// shapes.cpp
// draws shapes made from Xs on character-based display
// base class data is private; uses protected access functions
#include <iostream.h>
//
class shape
 {
 private:
 int xCo, yCo; // coordinates of shape
 int size; // size of shape
 protected: // read-only functions
 int getx() const { return xCo; }
 int gety() const { return yCo; }
 int getz() const { return size; }
 void down() const; // declaration
 // 3-arg constructor
 shape(int x, int y, int s) : xCo(x), yCo(y), size(s)
 { }
 };
void shape::down() const // move cursor down to top of shape
 {
 for(int y=0; y<yCo; y++)
 cout << endl;
 }
//
class square : public shape // square shape
 {
 public: // 3-arg constructor
 square(int x, int y, int s) : shape(x, y, s)
 { }
 void draw() const; // declaration
 };
void square::draw() const // draw a square
 {
 shape::down(); // position y at top of shape
 for(int y=0; y<getz(); y++)// move y down across shape
 {
 int x;
 for(x=1; x<getx(); x++) // space over to shape
 cout << ' ';
 for(x=0; x<getz(); x++) // draw line of Xs
 cout << 'X';
 cout << endl;
 }
 }
//
class cap : public shape // cap (pyramid) shape
 {
 public: // 3-arg constructor
 cap(int x, int y, int s) : shape(x, y, s)
 { }
 void draw() const; // declaration
 };
void cap::draw() const // draw a cap
 {
 shape::down();
 for(int y=0; y<getz(); y++)
 {
 int x;
 for(x=0; x < getx()-y+1; x++)
 cout << ' ';
 for(x=0; x<2*y+1; x++)
 cout << 'X';
 cout << endl;
 }
 }
//
class bowl : public shape // bowl (inverted pyramid) shape
 {
 public: // 3-arg constructor
 bowl(int x, int y, int s) : shape(x, y, s)
 { }
 void draw() const; // declaration
 };
void bowl::draw() const // draw a bowl
 {
 shape::down();
 for(int y=0; y<getz(); y++)
 {
 int x;
 for(x=0; x < getx()-(getz()-y)+2; x++)
 cout << ' ';
 for(x=0; x < 2*(getz()-y)-1; x++)
 cout << 'X';
 cout << endl;
 }
 }
///
void main()
 {
 bowl bw(10, 0, 3); // make a bowl
 bw.draw(); // draw it
 square sq(20, 1, 5); // make a square
 sq.draw(); // draw it
 cap cp(30, 1, 7); // make a cap
 cp.draw(); // draw it
 }

In main(), I create and draw three shapes: a bowl 3 units high, a square 5 units high, and a cap 7
units high. Here’s the output from SHAPES:

XXXXX
 XXX
 X
 XXXXX
 XXXXX
 XXXXX
 XXXXX
 XXXXX
 X
 XXX
 XXXXX
 XXXXXXX
 XXXXXXXXX
 XXXXXXXXXXX
 XXXXXXXXXXXXX

A member function of shape, called down(), is responsible for moving the cursor down to the
top of the shape to be drawn. This function is called by each of the draw() functions in the
derived classes. The draw() functions for each shape move the cursor down line by line through
the shape and on each line space over from the left edge of the screen to the object, and then display
the appropriate number of Xs. How far to space over and the number of Xs to draw depend on the
shape being drawn, its size, and its location. I won’t dwell on the details of how the functions figure
this out. The point of this program is the relationship between the classes and the use of public and
private members in the base class.

Public and Private Inheritance

I’ve discussed how different access specifiers can be applied to base class data to control access
from the derived class. Now let’s look at a different use for access specifiers: controlling the way
classes are inherited.

In inheritance, you usually want to make the access specifier public.

class alpha
 { };
class beta : public alpha
 { };

This is called public inheritance (or sometimes public derivation). With this kind of inheritance,
objects of the derived class can access public members of the base class, as shown in the left side of
Figure 7-7.

Figure 7-7 Public and private inheritance

In public inheritance, the implication—as I’ve noted before—is that an object of the B class is a
“kind of” object of the A class. A derived class object has all the features of the base class, plus
some of its own.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Inheritance

http://www.itknowledge.com/reference/archive/1571690638/ch07/389-392.html [21-03-2000 19:17:09]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
javascript:displayWindow('images/07-07.jpg',472,434)
javascript:displayWindow('images/07-07.jpg',472,434)
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch07/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

The Compiler and Public Inheritance

The compiler takes the “kind of” relationship in public inheritance quite seriously. It will let you
use a derived class object in many situations where a base class object is expected simply because
the derived class object is a kind of base class object. The next example program, KINDOF,
demonstrates this tolerant approach (see Listing 7-11). (Incidentally, this program has no
definition for anyfunc() and is not meant to be linked or executed.)

Listing 7-11 KINDOF

// kindof.cpp
// a derived class object is a kind of base class object
class alpha // base class
 {
 public:
 void memfunc() // public member function
 { }
 };
class beta : public alpha // derived class
 { };
void main()
 {
 void anyfunc(alpha); // declaration; takes alpha argument
 alpha aa; // object of type alpha
 beta bb; // object of type beta
 aa = bb; // beta object assigned to alpha variable
 anyfunc(bb); // beta object passed as alpha argument
 }

As you already know, an object of a derived class can call a member function in the base class, as
long as the function has public access:

bb.memfunc();

However, you may be surprised to see that you can assign an object of a derived class to a variable
of the base class:

aa = bb;

The compiler is happy with this, because bb is a kind of alpha. Similarly, you can pass a derived
class object to a function that expects a base class argument:

anyfunc(bb);

The real payoff from this flexibility comes when you learn about pointers and virtual functions,
but this brief introduction hints at the possibilities.

Incidentally, it doesn’t work the other way. You can’t, for example, say

bb = aa;

because an alpha object is not a kind of beta object.

Private Inheritance

Now that you’ve seen how the compiler treats public inheritance, let’s look at private inheritance,
which looks like this:

class alpha
 { };
class beta : private alpha
 { };

By substituting private for public, you are changing the entire inheritance relationship in a
surprising way. (I’ll ignore the possibility of using protected for the moment; it’s quite similar
to private.)

Basically, when a class is privately inherited, its objects can’t access anything in the base class, no
matter what access specifier was used for the base class members. This is shown on the right side
of Figure 7-7.

The effect is that the base class is entirely hidden from objects of the derived class. As far as
derived class objects are concerned, there is no base class. (Of course, as in public inheritance,
statements within derived class member functions can access protected and public members of the
base class.)

Thus, objects of the derived class don’t see themselves as a “kind of” base class object; they don’t
know anything about the base class, even though the base class is part of the derived class. This is
more like composition—a “has a” relationship. (I introduced composition in Session 1 in this
chapter.) The derived class “has an” object of the base class, but objects of the derived class don’t
know about it.

Because private inheritance is so much like composition, it’s usually better to use composition
instead. In the fragment shown above, you would simply install an object of class alpha in class
beta and forget about inheritance:

class alpha
 { };
class beta
 {
 private:
 alpha obj;
 };

The alpha object is made private, so it is still concealed from beta objects. Composition results
in a cleaner, less complicated relationship between the two classes and, as far as derived class
objects are concerned, works the same way. You’ll see an example of composition in Session 7 in
this chapter.

The Compiler and Private Inheritance

The compiler understands that private inheritance is more like composition than it is like
inheritance. Accordingly, the compiler is no longer tolerant of derived class objects being used in
place of base class objects. An expanded version of the kindof program shows both public and
private inheritance. Listing 7-12 shows KINDOF2.

Listing 7-12 KINDOF2

// kindof2.cpp
// a derived class object is a kind of base class object,
// but not if it's privately derived
class alpha // base class
 {
 public:
 void memfunc() // public member function
 { }
 };
class beta : public alpha // public derivation
 { };
class gamma : private alpha // private derivation
 { };
void main()
 {
 void anyfunc(alpha); // function takes alpha argument
 alpha aa; // object of type alpha
 beta bb; // object of type beta
 gamma gg; // object of type gamma
 bb.memfunc(); // ok
 gg.memfunc(); // error: 'memfunc() not accessible'
 anyfunc(bb); // ok
 anyfunc(gg); // error: 'cannot convert gamma to alpha'
 aa = bb; // ok
 aa = gg; // error: 'cannot convert gamma to alpha'
 }

A new class gamma is privately derived from alpha. The compiler will not allow you to call an
alpha member function from a gamma object, pass a gamma object to a function expecting an
alpha argument, or assign a gamma object to an alpha variable.

Protected Inheritance

Protected inheritance is similar to private inheritance: they’re both like composition (the “has a”
relationship). However, statements in member functions of a protected derived class can access
public and protected members of the base class, whereas—as you’ve seen—statements in member
functions of a privately derived class cannot.

Protected inheritance is not used often and is included in the language mostly for completeness.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Inheritance

http://www.itknowledge.com/reference/archive/1571690638/ch07/392-395.html [21-03-2000 19:17:16]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch07/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Access Summary

Let’s summarize what you’ve learned about accessibility and the different
kinds of inheritance. Table 7-3 shows the access to base class members
(usually data) that is allowed to member functions of the derived class.
Private members are never accessible, and private inheritance makes all
members inaccessible.

Table 7-3 Access by members of the derived class
Private
Inheritance

Protected
Inheritance

Public
Inheritance

Private base class
data

Not accessible Not accessible Not accessible

Protected base class
data

Not accessible Accessible Accessible

Public base class data Not accessible Accessible Accessible

Table 7-4 shows the access to base class members (usually functions)
allowed to derived class objects that are defined outside the class
specifications, as in main(). Only publicly derived public members are
accessible.

Table 7-4 Access by objects of the derived class
Private
Inheritance

Protected
Inheritance

Public
Inheritance

Private base class
data

Not accessible Not accessible Not accessible

Protected base class
data

Not accessible Not accessible Not accessible

Public base class data Not accessible Not accessible Accessible

Quiz 5

1. In public inheritance, a derived class object can call, say from
main(), a

a. public member function of the base class.

b. public member function of the derived class.

c. protected member function of the base class.

d. protected member function of the derived class.

e. private member function of the derived class.

2. Making data protected in the base class

a. is the preferred approach.

b. is not acceptable to the compiler.

c. makes it easy to access this data from derived class objects.

d. typically requires the use of special functions to access base
class data.

e. can cause problems because the data can be mistakenly
altered by functions in a poorly written derived class.

3. In the Stack class in the STAPROFU program,

a. SIZE is protected so it can be used to define Stack’s
array st.

b. push() and pop() are public because they are called
from Stack2 objects.

c. the important data is private because this is the safest
approach.

d. the get_top() function is necessary because push()
and pop() are public.

e. member functions of Stack2 can find out what top is, but
can’t modify it.

4. In a “kind of” relationship, you can

a. do anything with a derived class object that you can with a
base class object.

b. assign a derived class object to a base class object.

c. assign a base class object to a derived class object.

d. call a derived class function from a base class object.

e. call a base class function from a derived class object.

5. When a class beta is privately derived from a class alpha,
beta’s public member functions

a. can access private data in alpha.

b. can access protected data in alpha.

c. can access public data in alpha.

d. are visible to objects of class beta.

e. are visible to objects of class alpha.

Exercise 1

Add a class called line to the SHAPES program. A line object displays
itself as a line of Xs, running either vertically or horizontally. (Other angles
aren’t allowed.) Member data should include the x and y coordinates of the
starting point, the line direction (down or right), and the length. Create
some sample line objects in main() and display them.

Exercise 2

Start with Exercise 2 of Session 3 in this chapter. Modify the Queue class
to use private data and provide the necessary access to Queue2 through
protected member functions, as in the STAPROFU program in this session.

Session 6: Grandparents

As you have perhaps surmised, there can be more than two levels of
inheritance. Not only can a class beta be derived from a class alpha, but
a class gamma can be derived from beta, a class delta can be derived
from gamma, and so on, as long as you like (or, in this example, until you
run out of Greek letters).

class alpha // first generation
 { };
class beta : public alpha // second generation
 { };
class gamma : public beta // third generation
 { };
class delta : public gamma // fourth generation
 { };

Everything works as you would expect. The relationship between delta
and gamma is just the same as that between beta and alpha.

A class has access to all its ancestors. In public inheritance, member
functions of delta can access public or protected data in gamma, beta,
and alpha. They can’t, of course, access private members of any class
except their own.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Inheritance

http://www.itknowledge.com/reference/archive/1571690638/ch07/396-398.html [21-03-2000 19:17:26]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch07/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Deriving foreman from laborer

In the EMPINH program in Session 2 in this chapter, I examined a program in which
several kinds of employees were derived from the employee class. Let’s add a foreman
to this program. A foreman is a special kind of laborer, so the foreman class is derived
from the laborer class, as shown in Figure 7-8.

Figure 7-8 Class hierarchy in EMPGRAND

Foremen oversee the laborers who operate the dangerous widget-stamping presses.
Foremen are responsible for the widget production quota for their group. A foreman’s
ability is measured by the percentage of production quotas he or she successfully meets.
The quotas data item in the foreman class represents this percentage (e.g., a typical
foreman meets 72.5 percent of the quotas). Listing 7-13 shows EMPGRAND.

Listing 7-13 EMPGRAND

// empgrand.cpp
// more than two levels of inheritance
// foreman derived from laborer
#include <iostream.h>
const int LEN = 80; // maximum length of names
class employee
 {
 private:
 char name[LEN]; // employee name
 unsigned long number; // employee number
 public:
 void getdata()
 {
 cout << "\n Enter last name: ";cin >> name;
 cout << " Enter number: "; cin >> number;
 }
 void putdata()
 {
 cout << "\n Name = " << name;
 cout << "\n Number = " << number;
 }
 };
class manager : public employee // management class
 {
 private:
 char title[LEN]; // "vice-president" etc.
 double dues; // golf club dues
 public:
 void getdata()
 {
 employee::getdata();
 cout << " Enter title: "; cin >> title;
 cout << " Enter golf club dues: "; cin >> dues;
 }
 void putdata()
 {
 employee::putdata();
 cout << "\n Title: " << title;
 cout << "\n Golf club dues: " << dues;
 }
 };
class scientist : public employee // scientist class
 {
 private:
 int pubs; // number of publications
 public:
 void getdata()
 {
 employee::getdata();
 cout << " Enter number of pubs: "; cin >> pubs;
 }
 void putdata()
 {
 employee::putdata();
 cout << "\n Number of publications: " << pubs;
 }
 };
class laborer : public employee // laborer class
 {
 };
class foreman : public laborer // foreman class
 {
 private:
 float quotas; // percent of quotas met successfully
 public:
 void getdata()
 {
 laborer::getdata();
 cout << " Enter quotas: "; cin >> quotas;
 }
 void putdata()
 {
 laborer::putdata();
 cout << "\n Quotas: " << quotas;
 }
 };
void main()
 {
 laborer labo;
 foreman fore;
 cout << endl;
 cout << "\nEnter data for laborer";
 labo.getdata();
 cout << "\nEnter data for foreman";
 fore.getdata();
 cout << endl;
 cout << "\nData on laborer";
 labo.putdata();
 cout << "\nData on foreman";
 fore.putdata();
 }

Notice that a class hierarchy is not the same as an organization chart. A class hierarchy
results from generalizing common characteristics. The more general the class, the higher it
is on the chart. A laborer is a more general type of employee than a foreman, so the
laborer class appears above the foreman class in the class hierarchy. On a company’s
organization chart, the foreman would appear above the laborer, because, on an
organization chart, the employees with the most authority have the highest positions.
Here’s some sample interaction with EMPGRAND:

Enter data for laborer
 Enter last name: Jones
 Enter number: 246137
Enter data for foreman:
 Enter last name: Smith
 Enter number: 4781
 Enter quotas: 78.5
Data for laborer
 Name = Jones
 Number = 246137
Data for foreman:
 Name = Smith
 Number = 4781
 Quotas = 78.5

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Inheritance

http://www.itknowledge.com/reference/archive/1571690638/ch07/398-401.html [21-03-2000 19:17:36]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
javascript:displayWindow('images/07-08.jpg',482,295)
javascript:displayWindow('images/07-08.jpg',482,295)
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch07/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Constructors

When there are more than two levels in the class hierarchy, handling constructors with
initialization lists can become rather clumsy looking. Listing 7-14, INHCON, shows an example of
such constructors.

Listing 7-14 INHCON

// inhcon.cpp
// tests constructors with arguments, in inheritance
#include <iostream.h>
class Gparent
 {
 private:
 int intv;
 float flov;
 public:
 Gparent(int i, float f) :
 intv(i), flov(f) // initialize Gparent
 { }
 void display()
 { cout << intv << ", " << flov << "; "; }
 };
class Parent : public Gparent
 {
 private:
 int intv;
 float flov;
 public:
 Parent(int i1, float f1, int i2, float f2) :
 Gparent(i1, f1), // initialize Gparent
 intv(i2), flov(f2) // initialize Parent
 { }
 void display()
 {
 Gparent::display();
 cout << intv << ", " << flov << "; ";
 }
 };
class Child : public Parent
 {
 private:
 int intv;
 float flov;
 public:
 Child(int i1, float f1,
 int i2, float f2, int i3, float f3) :
 Parent(i1, f1, i2, f2), // initialize Parent
 intv(i3), flov(f3) // initialize Child
 { }
 void display()
 {
 Parent::display();
 cout << intv << ", " << flov;
 }
 };
void main()
 {
 Child ch(1, 1.1, 2, 2.2, 3, 3.3);
 cout << "\nData in ch = ";
 ch.display();
 }

A Child class is inherited from a Parent class, which is in turn inherited from a Gparent
class. Each class has one int and one float data item. The constructor in each class takes
enough arguments to initialize the data for the class and all ancestor classes. This means two
arguments for the Gparent class constructor, four for Parent (which must initialize Gparent
as well as itself), and six for Child (which must initialize Gparent and Parent as well as
itself). Each constructor calls the constructor of its base class, which in turn calls the constructor
for its base class.

In main(), I create an object of type Child, initialize it to six values, and display it. Here’s the
output from INHCON:

Data in ch = 1, 1.1; 2, 2.2; 3, 3.3

The Child object ch, the Parent subobject within the Child object, and the Gparent
subobject within that Parent subobject, are all initialized before the Child constructor starts to
execute. That’s why all the calls to subobject constructors appear on the initialization list: They
must be initialized before the opening brace of the constructor. Thus, when your constructor starts
to execute, you’re guaranteed that all the subobject’s you’re working with are created and
initialized.

Incidentally, you can’t skip a generation when you call an ancestor constructor in an initialization
list. In the following modification of the Child constructor:

Child(int i1, float f1,
 int i2, float f2, int i3, float f3) :
 Gparent(i1, f1), // error: can't initialize Gparent
 intv(i3), flov(f3) // initialize Child
 { }

the call to Gparent() is illegal because the Gparent class is not the immediate base class of
Child.

Summary

Let me attempt to summarize some of the access situations in multigenerational inheritance.

• Private data is never accessible outside its class.

• Private derivation makes all data in the base class, whether public, protected, or private,
inaccessible to all generations of derived classes.

• Protected derivation makes protected and public data in the base class accessible to all
generations of derived classes, no matter what kind of inheritance is used to derive
subsequent generations from each other.

• Protected members of the base class are accessible to members of publicly derived and
protectedly derived classes, and to publicly derived and protectedly derived classes of these
derived classes.

• An object of a derived class that is defined outside the class hierarchy can access
members of the base class only if the base class member is public and the derivation from
the base class is public from each generation to the next. That is, if any of the derivations is
not public, the member will not be accessible.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Inheritance

http://www.itknowledge.com/reference/archive/1571690638/ch07/401-403.html [21-03-2000 19:17:43]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch07/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Tables 7-5 and 7-6 show how this looks with three generations: a first
generation base class, a second generation derived class, and a third
generation derived class.

Table 7-5 Access by members of third generation class C to members in
first generation class A

Type of Inheritance from Class A to Class B

Private Protected Public
Type of Inheritance from Class B to Class C

Priv Prot Pub Priv Prot Pub Priv Prot Pub
A’s data
private

No No No No No No No No No

A’s data
protected

No No No Yes Yes Yes Yes Yes Yes

A’s data
public

No No No Yes Yes Yes Yes Yes Yes

Table 7-6 Access by third generation objects to first generation members
Type of Inheritance from First to Second Generation

Private Protected Public
Type of Inheritance from Second to Third Generation

Priv Prot Pub Priv Prot Pub Priv Prot Pub
A’s
functions
private

No No No No No No No No No

A’s
functions
protected

No No No No No No No No No

A’s
functions
public

No No No No No No No No Yes

Quiz 6

1. If a class C is derived from a class B, which is derived from a class
A, all through public inheritance, then a class C member function can
access

a. protected and public data only in C and B.

b. protected and public data only in C.

c. private data in A or B.

d. protected data in A or B.

e. public data in A or B.

2. Assume a class C is derived from a class B, which is derived from
a class A. To call a nonoverloaded member function afunc() in
class A from a member function in class C, you would need to

a. use the expression A::B::afunc();

b. use the expression A::afunc();

c. use the expression afunc();

d. create an object of class A, say aObj, and use the function
call aObj.func();

e. create an object of class A, say aObj, and use the function
call aObj.A::func();

3. In an inheritance diagram,

a. a scientist specializing in metal alloys would be shown
above a laborer.

b. a racing bicycle would be shown above a bicycle.

c. a lion would be shown above a mammal.

d. a vehicle would be shown above a car.

e. a flea would be shown below a lion.

4. In an inheritance situation, when a constructor for a derived class
is called,

a. constructors of all subobjects, and subobjects of subobjects,
are called automatically.

b. only the members of the object itself are initialized, but not
those of its subobjects.

c. every subobject, and every subobject in a subobject, is
initialized before the constructor begins to execute.

d. as many objects and subobjects are created as there are
ancestor classes.

e. only a subobject of the base class is created.

5. If a class C is derived from a class B, which is derived from a class
A, then a class C constructor’s

a. arguments can be used to initialize only class C members.

b. arguments can be used to initialize members of any
ancestor class.

c. initialization list may contain a call to any ancestor’s
constructor.

d. initialization list may contain a call only to the constructor
in the immediate base class.

e. initialization list may be used to initialize class C data
members.

Exercise 1

Start with the EMPGRAND program in this session and add a manager
class. Managers oversee all the foremen in a particular factory. Like all
employees, managers have a name and number, and like foremen they have
a quotas data member, which is the average of the quotas members for
all the foremen in their factory. In addition, managers have an
absenteeism data member, type float, which is the average
percentage of work time missed by their foremen and laborers. Situate the
manager class appropriately in the inheritance diagram.

Exercise 2

From the line class in Exercise 1 in Session 5 in this chapter, derive a
horizLine class and a vertLine class. The arguments to the
constructors for these classes should comprise the starting coordinates of
the line and its length.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Inheritance

http://www.itknowledge.com/reference/archive/1571690638/ch07/403-405.html [21-03-2000 19:17:54]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch07/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Session 7: Composition

Composition is putting one object inside another object or, from the programmer’s viewpoint,
defining an object of one class inside another class specification. I’ve already mentioned
composition several times in this chapter: in Session 1 and in Session 5, where I compared
composition and private inheritance. Here’s the composition example I used then:

class alpha
 { };
class beta
 {
 private:
 alpha aObj;
 };

Of course, I’ve used a rudimentary kind of composition every time I placed instance data of
basic types such as int and char in an object. Because class objects can be considered data
types, there’s no conceptual difference between using class objects and variables of basic types
as data in other classes. However, when I speak of composition, I’m usually talking about
embedding a class object in the specification for another class.

Embedding airtime Objects in a flight Class

Here’s a typical example of composition. You’ve already seen numerous examples of the
airtime class, which represents hours and minutes time values. Now suppose I’m developing
an airline scheduling program and I want to work with objects representing airline flights (as in,
“Flight 962 to Atlanta is now ready for boarding at gate 32.”).

For simplicity, I’ll include only three data items in the flight class: the flight number and the
departure and arrival times, which are stored as airtime values. (One could imagine
including the origination city and destination city, among other data, but I’ll forego this in the
interest of a smaller listing.) Member functions in flight will get values for these three items
from the user and display them. Listing 7-15 shows AIRSCHED.

Listing 7-15 AIRSCHED

// airsched.cpp
// demonstrates composition: airtime objects in flight class
#include <iostream.h>
//
class airtime
 {
 private:
 int hours; // 0 to 23
 int minutes; // 0 to 59
 public:
 // no-arg constructor
 airtime() : hours(0), minutes(0)
 { }
 // two-arg constructor
 airtime(int h, int m) : hours(h), minutes(m)
 { }
 void display() const // output to screen
 {
 cout << hours << ':' << minutes;
 }
 void get() // input from user
 {
 char dummy;
 cout << "\n Enter time (format 12:59): ";
 cin >> hours >> dummy >> minutes;
 }
 }; // end class airtime
//
class flight
 {
 private:
 long fnumber; // flight number
 airtime departure; // airtime
 airtime arrival; // objects
 public:
 flight() : fnumber(0) // no-arg constructor
 { }
 void get() // input from user
 {
 char dummy;
 cout << "\nEnter flight number: ";
 cin >> fnumber;
 cout << " Departure";
 departure.get();
 cout << " Arrival";
 arrival.get();
 }
 void display() const // output to screen
 {
 cout << "Flight number = " << fnumber;
 cout << "\n Departure = ";
 departure.display();
 cout << "\n Arrival = ";
 arrival.display();
 }
 }; // end class flight
//
void main()
 {
 flight flarr[100]; // array holds 100 flight objects
 int total = 0; // number of flights in array
 char ch; // for 'y' or 'n'
 do // get data for flights
 {
 flarr[total++].get();
 cout << "Enter another flight (y/n)? ";
 cin >> ch;
 }
 while(ch != 'n');
 for(int j=0; j<total; j++) // display data for flights
 {
 cout << endl;
 flarr[j].display();
 }
 }

In main(), the program lets the user enter data for as many flights as desired. It stores these
flights in an array. It then displays the data for all flights stored in the array. Here’s some
sample interaction when two flights are entered:

Enter flight number: 940
 Departure
 Enter time (format 12:59): 22:15
 Arrival
 Enter time (format 12:59): 23:35
Enter another flight (y/n)? y
Enter flight number: 1474
 Departure
 Enter time (format 12:59): 10:45
 Arrival
 Enter time (format 12:59): 16:33
Enter another flight (y/n)? n
Flight number = 940
 Departure = 22:15
 Arrival = 23:35
Flight number = 1474
 Departure = 10:45
 Arrival = 16:33

In the AIRSCHED program, composition seems like a natural choice; I use airtime as you
would a float. I would probably not even be tempted to use inheritance to connect the
airtime class with the flight class, because airtime objects are so much like variables
of basic types. However, not all situations are so clear.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Inheritance

http://www.itknowledge.com/reference/archive/1571690638/ch07/406-408.html [21-03-2000 19:18:02]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch07/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

A safearay Object in a Stack Class

Here’s an example where the object being placed in another class doesn’t seem at all like a variable of a
basic type: It’s the safearay class developed in the ARROVER2 program in Chapter 6, Session 7. As
you no doubt recall, this class modeled an array and overloaded the [] operator to check that index
values supplied by the class user were in bounds.

I’m going to place a safearay object in the Stack class, last seen in the STACKINH program in
Session 3 in this chapter. In previous examples, the Stack class used a normal C++ array to store data,
but if I use a safearay object instead, I can incorporate its error-checking benefits into the stack.

In this situation, it’s not quite so clear whether Stack should use composition, by including a
safearay object as member data, or inherit the safearay class. However, composition is probably
the better approach. Why? Because the safearay is used in the internal workings of the Stack class.
It is completely hidden from the class user, who will therefore have no reason to consider a Stack to be
a “kind of” safearay.

Listing 7-16 shows SAFESTAK.

Listing 7-16 SAFESTAK

// safestak.cpp
// creates stack using safe array object as a member of Stack
#include <iostream.h>
#include <process.h> // for exit()
//
class safearay
 {
 private:
 enum {SIZE=100}; // array size
 int arr[SIZE]; // ordinary array
 public:
 int& operator [](int n); // function declaration
 };
int& safearay::operator [](int n) // overloaded []
 { // returns by reference
 if(n< 0 || n>=SIZE)
 { cout << "\nIndex out of bounds"; exit(1); }
 return arr[n];
 }
//
class Stack // stack stores ints in safe array
 {
 private:
 safearay st; // safe array object
 int top; // index of last item pushed
 public:
 Stack() // no-arg constructor
 { top = -1; }
 void push(int var) // place an item on the stack
 { st[++top] = var; }
 int pop() // remove an item from the stack
 { return st[top--]; }
 };
//
void main()
 {
 Stack s; // create a Stack object
 s.push(11); // push 3 items onto stack
 s.push(12);
 s.push(13);
 cout << s.pop() << endl; // pop items and display them
 cout << s.pop() << endl;
 cout << s.pop() << endl;
 cout << s.pop() << endl; // woops, popped one too many
 }

The Stack class works just the same as before, but now, even though no bounds-checking mechanism
is built into Stack itself (as there was in the Stack2 class in the stackinh example), errors are caught
by the safearay object. Here’s some sample output, in which the class user attempts to pop one too
many items:

13
12
11
Index out of bounds

The safearay object within Stack spots the incorrect value of top and complains.

Could I use inheritance to derive Stack from safearay? I could, but it’s not a great idea. If I used
public inheritance, then the user of the Stack class could access member functions in the safearay
class directly, leading to usage such as

Stack s;
s[3] = 77;

where a Stack object is treated as if it were an array. This subverts the purpose of a stack, which is to
restrict data access to the LIFO approach. I could make safearay invisible using private inheritance,
but this still leaves an unnecessarily complex relationship between Stack and safearay. To make
things simple and to minimize surprises, use composition.

Should a scientist “Have an” employee?

When is it better to use inheritance than composition? When the “kind of” relationship between classes
is important. Suppose you have an array of type employee. It would be nice to be able to store any
kind of employee in this array—manager, scientist, foreman, or whatever—like this:

employee emparray[SIZE];
emparray[0] = laborer1;
emparray[1] = scientist1;
emparray[2] = laborer2;
...

The only way you can do this is to inherit the various kinds of employees from employee.
Composition doesn’t create the necessary relationships between the classes. (Being able to store objects
of different derived classes in an array of the base class is an important feature of C++, but, as I noted
earlier, the reason it’s so important won’t be clear until I discuss virtual functions in Chapter 9.)

The same “kind of” relationship is true of the Shape class in the shapes program in Session 5 in this
chapter. If you used composition to place a shape object in square, cap, and bowl, you couldn’t
treat a square as a kind of shape.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Inheritance

http://www.itknowledge.com/reference/archive/1571690638/ch07/408-410.html [21-03-2000 19:18:10]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch07/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Summary

It may be helpful to summarize the various characteristics of composition,
as well as the three kinds of inheritance. Table 7-7 attempts to do this.

Table 7-7 Characteristics of composition and inheritance
Composition Private

Inheritance
Protected
Inheritance

Public
Inheritance

Relationship of
base class to
derived class

“Has a” “Has a” “Kind of” to
derived
classes“Has
a”to class user

“Kind of”

Derived class
members can
access base class
members that are

Public Public
Protected

Public
Protected

Public
Protected

Syntax for
derived class
access to base
class functions

Base b; b
func()

Base::func(); Base::func(); Base::func();

Can derived class
objects access
the public base
class interface?

No No No Yes

Can derived class
objects be treated
as a base class
object?

No No No Yes

Recommendation Use when
derived class
objects don’t
need to see
the base class
interface and
will not be
treated as a
kind of base
class object.

Not
recommended:
base class
protected data
is exposed.

Not
recommended:
base class
protected data
is exposed.
Use when
derived class
members must
have access to
base class
members.

Use when
derived class
objects will
be treated as
a kind of
base class
object and
you need to
see the base
class
interface.

Quiz 7

1. Composition means

a. private inheritance.

b. member functions of one class operating on objects of
another class.

c. using a class specification for one class inside another class.

d. using a variable of a basic type as instance data in another
class.

e. using a class object as instance data in another class.

2. You would probably use composition to relate

a. wing, tail, window, and landing_gear classes to an
airplane class.

b. lion, tiger, ocelot, and cheetah classes to the
feline class.

c. int, float, and long types to the Ship class.

d. living, dining, basement, and hall classes to the
room class.

e. hockey, baseball, and tennis to the sport class.

3. Composition

a. is a “has a” relationship.

b. is a “kind of” relationship.

c. is a “is a” relationship.

d. allows you to put objects of the derived class in an array of
the base class type.

e. allows you to hide objects of one class from the user of
another class.

4. Assume aObj is an object of class alpha and bObj is an object
of class beta. When composition is used to place an alpha in
beta, to access a member function afunc() of alpha from the
class beta, you would say

a. alpha::afunc();
b. beta::afunc();
c. aObj.afunc();
d. bObj.afunc();
e. a member function of beta must be used.

5. Objects of a class alpha, used as private instance data in a class
beta,

a. are named in alpha.

b. are named in beta.

c. are named in main().

d. can be accessed from beta.

e. can be accessed from main().

Exercise 1

Assume you want to store flight objects (as in the AIRSCHED program)
in a safearay object (as seen in the SAFESTAK program). Modify
safearay so this is possible. (You’ll see a way to avoid this kind of
modification when you learn about templates in Chapter 11.) In main(),
create a safearay object, get flight data from the user, and store it in the
safearay. You’ll need to decide what relationship to use between
flight and safearay.

Exercise 2

Suppose you want to store objects of class flight in an object of class
Stack, which uses the safearay class for its array. Write a program that
lets you do this. You’ll need to modify safearay to store flight
objects. In main(), create a Stack object, get flight data from the user,
store it on the stack, and then display the contents of the stack. Don’t worry
about why anyone would want to store flight data on a stack.

Session 8: Multiple Inheritance

Multiple inheritance occurs when a class inherits from two or more base
classes, like this:

class Base1
 { };
class Base2
 { };
class Derv : public Base1, public Base2
 { };

Derv is derived from both Base1 and Base2. In the specification for the
derived class, the base classes are separated by a comma (or commas, if
there are more than two base classes) and each base class has its own access
specifier. The derived class Derv inherits all the instance data and member
functions from both Base1 and Base2.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Inheritance

http://www.itknowledge.com/reference/archive/1571690638/ch07/411-413.html [21-03-2000 19:18:19]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch07/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Two Base Classes: employee and student

Let’s look at a situation in which multiple inheritance is used with the employee class, last
seen in the EMPGRAND program in Session 6 in this chapter. Suppose I’m developing the
employee class hierarchy and I decide I need to include the educational qualifications of
certain kinds of employees (namely, everyone except laborers). Fortunately, the local university
has developed a student class that incorporates all this educational data, along with member
functions to get and display it.

How can I combine the student and employee classes? One way is through multiple
inheritance. Those classes that need educational data can inherit from both employee and
student. Here’s a shorthand version of how that looks:

class student
 { ... };
class employee
 { ... };
class manager : public employee, public student
 { ... };
class scientist : public employee, public student
 { ... };
class laborer : public employee
 { ... };

The manager and scientist classes inherit from both employee and student, but
laborer inherits only from employee (the elitist assumption being that the educational
achievements of laborers are irrelevant).

Now let’s look at a full-scale version of this program, EMPMULT, shown in Listing 7-17.

Listing 7-17 EMPMULT

// empmult.cpp
// multiple inheritance with employees and students
#include <iostream.h>
const int LEN = 80;
class student // educational background
 {
 private:
 char school[LEN]; // name of school or university
 char degree[LEN]; // highest degree earned
 public:
 void getedu()
 {
 cout << " Enter name of school or university: ";
 cin >> school;
 cout << " Enter highest degree earned \n";
 cout << " (Highschool, Bachelor's, Master's, PhD): ";
 cin >> degree;
 }
 void putedu()
 {
 cout << "\n School or university = " << school;
 cout << "\n Highest degree earned = " << degree;
 }
 };
class employee
 {
 private:
 char name[LEN]; // employee name
 unsigned long number; // employee number
 public:
 void getdata()
 {
 cout << "\n Enter last name: "; cin >> name;
 cout << " Enter number: "; cin >> number;
 }
 void putdata()
 {
 cout << "\n Name = " << name;
 cout << "\n Number = " << number;
 }
 };
class manager : public employee, public student // management
 {
 private:
 char title[LEN]; // "vice-president" etc.
 double dues; // golf club dues
 public:
 void getdata()
 {
 employee::getdata();
 cout << " Enter title: "; cin >> title;
 cout << " Enter golf club dues: "; cin >> dues;
 student::getedu();
 }
 void putdata()
 {
 employee::putdata();
 cout << "\n Title = " << title;
 cout << "\n Golf club dues = " << dues;
 student::putedu();
 }
 };
class scientist : public employee, public student // scientist
 {
 private:
 int pubs; // number of publications
 public:
 void getdata()
 {
 employee::getdata();
 cout << " Enter number of pubs: "; cin >> pubs;
 student::getedu();
 }
 void putdata()
 {
 employee::putdata();
 cout << "\n Number of publications = " << pubs;
 student::putedu();
 }
 };
class laborer : public employee // laborer
 {
 };
void main()
 {
 manager m1;
 scientist s1, s2;
 laborer l1;
 cout << endl;
 cout << "\nEnter data for manager 1"; // get data for
 m1.getdata(); // several employees
 cout << "\nEnter data for scientist 1";
 s1.getdata();
 cout << "\nEnter data for scientist 2";
 s2.getdata();
 cout << "\nEnter data for laborer 1";
 l1.getdata();
 cout << "\nData on manager 1"; // display data for
 m1.putdata(); // several employees
 cout << "\nData on scientist 1";
 s1.putdata();
 cout << "\nData on scientist 2";
 s2.putdata();
 cout << "\nData on laborer 1";
 l1.putdata();
 }

Notice that, if there is a function with the same name in both base classes (employee and
student), then in a derived class, the scope resolution operator must be used to specify which
function is meant, for example, employee::getdata() or student::getdata().
Some sample interaction with the program might look like this:

Enter data for manager 1
 Enter last name: Webley
 Enter number: 111
 Enter title: President
 Enter golf club dues: 50000
 Enter name of school or university: Yale
 Enter highest degree earned
 (Highschool, Bachelors, Masters, PhD): Bachelors
Enter data for scientist 1
 Enter last name: Frish
 Enter number:222
 Enter number of pubs: 99
 Enter name of school or university: MIT
 Enter highest degree earned
 (Highschool, Bachelors, Masters, PhD): PhD
Enter data for scientist 2
 Enter last name: Wong
 Enter number:333
 Enter number of pubs: 204
 Enter name of school or university: Stanford
 Enter highest degree earned
 (Highschool, Bachelors, Masters, PhD): Masters
Enter data for laborer 1
 Enter last name: Jones
 Enter number: 482562
Data for manager 1
 Name = Webley
 Number = 111
 Title = President
 Golf club dues = 50000
 Name of school or university = Yale
 Highest degree earned
 (Highschool, Bachelors, Masters, PhD) = Bachelors
Data for scientist 1
 Name = Frish
 Number = 222
 Number of pubs = 99
 Name of school or university = MIT
 Highest degree earned
 (Highschool, Bachelors, Masters, PhD) = PhD
Data for scientist 2
 Name = Wong
 Number = 333
 Number of pubs = 204
 Name of school or university = Stanford
 Highest degree earned
 (Highschool, Bachelors, Masters, PhD) = Masters
Data for laborer 1
 Name = Jones
 Number = 482562

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Inheritance

http://www.itknowledge.com/reference/archive/1571690638/ch07/413-417.html [21-03-2000 19:18:29]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch07/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Repeated Base Classes

Incidentally, although it’s not clear why you would want to do this, you can’t repeat the
same base class when deriving another class:

class Base1
 { };
class Derv : public Base1, public Base1
 { };

The compiler would not be happy about this arrangement.

It’s Controversial

Multiple inheritance is controversial. In the simple case shown in EMPMULT, multiple
inheritance works as expected. In more complicated class hierarchies, however, problems
may arise. One of these problems results from the following kind of inheritance situation:

class Gparent
 { };
class Mother : public Gparent
 { };
class Father : public Gparent
 { };
class Child : public Mother, public Father
 { };

Both Mother and Father inherit from Gparent, and Child inherits from both
Mother and Father. This forms a diamond-shaped pattern. Recall that each object
created through inheritance contains a subobject of the base class. A Mother object and a
Father object will contain subobjects of Gparent, and a Child object will contain
subobjects of Mother and Father, so a Child object will also contain two Gparent
subobjects, one inherited via Mother and one inherited via Father, as shown in Figure
7-9.

Figure 7-9 The dreaded diamond pattern

Ambiguous Subobjects

This is a strange situation. There are two subobjects when really there should be one.
Suppose there’s a data item in Gparent:

class Gparent
 {
 protected:
 int gdata;
 };

and you try to access this item from Child:

class Child : public Mother, public Father
 {
 public:
 void Cfunc()
 {
 int temp = gdata; // error: ambiguous
 }
 };

The compiler will complain that the reference to gdata is ambiguous. It doesn’t know
which version of gdata to access: the one in the Gparent subobject in the Mother
subobject or the one in the Gparent subobject in the Father subobject.

Virtual Base Classes

You can fix this using a new keyword, virtual, when deriving Mother and Father
from Gparent :

class Gparent
 { };
class Mother : virtual public Gparent
 { };
class Father : virtual public Gparent
 { };
class Child : public Mother, public Father
 { };

The virtual keyword tells the compiler to inherit only one subobject from a class into
subsequent derived classes. That fixes the ambiguity problem, but other more complicated
problems arise that are too complex to delve into here.

In general, you should avoid multiple inheritance, although if you have considerable
experience in C++, you might find reasons to use it in unusual situations. In a simple
program like empmult, you probably won’t get into too much trouble if you do use it.
However, in a programming project of any size, where classes may be used—perhaps at
some time in the future—in ways you don’t anticipate today, it’s a good idea to steer clear of
multiple inheritance.

Composition to the Rescue

You can almost always avoid multiple inheritance. Perhaps the most common and effective
substitute is composition. I could create a variation of the EMPMULT program that uses
composition, rather than multiple inheritance, to place objects of the student class in
appropriate derived classes of employee. The student and employee classes would be
unchanged, but manager and scientist would incorporate a student object. I won’t
show the entire program, but here’s how a revised version of the manager class would
look:

class manager : public employee // management
 {
 private:
 char title[LEN]; // "vice-president" etc.
 double dues; // golf club dues
 student stu; // NOTE: student object
 public:
 void getdata()
 {
 employee::getdata();
 cout << " Enter title: "; cin >> title;
 cout << " Enter golf club dues: "; cin >> dues;
 stu.getedu(); // send message to student object
 }
 void putdata()
 {
 employee::putdata();
 cout << "\n Title = " << title;
 cout << "\n Golf club dues = " << dues;
 stu.putedu(); // send message to student object
 }
 };

The student object stu is placed in the manager class data using composition, and its
member functions are called using the dot operator. The scientist class would be
modified similarly. The main() part of the program would be unchanged, and any user
interaction with the program would be the same as well.

Including the student class by composition makes sense conceptually because, although a
manager and a scientist are kinds of employees, they aren’t really kinds of students
(although they may have been in their younger days).

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Inheritance

http://www.itknowledge.com/reference/archive/1571690638/ch07/417-420.html [21-03-2000 19:18:40]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
javascript:displayWindow('images/07-09.jpg',481,495)
javascript:displayWindow('images/07-09.jpg',481,495)
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch07/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Chapter

1. Which of the following are examples of multiple inheritance?

a. Class B is derived twice from class A.

b. Class C is derived from class B, which is derived from class
A.

c. Class D is derived from classes C and B, which are both
derived from class A.

d. Class C is derived from class B and class A.

e. Class B is derived from class A.

2. Which of the following are true?

a. No more than two classes can be used as base classes in
multiple inheritance.

b. A member function name cannot be used in more than one
multiply-inherited base class.

c. A comma is used to separate multiple base classes in the
specification of a derived class.

d. A manager object in EMPMULT could be treated as a kind
of student, but a laborer object could not.

e. The class creator in EMPMULT decided that no educational
data was needed for the laborer class.

3. Multiple inheritance is controversial because

a. it’s too complicated to imagine inheritance from more than
one class.

b. ambiguities may arise if a diamond-shaped inheritance
diagram is created.

c. the resulting objects would be too large.

d. it doesn’t make sense for an object to be a “kind of” A and a
“kind of” B at the same time.

e. hybrid objects are more prone to failure.

4. Virtual base classes

a. solve all problems associated with multiple inheritance.

b. are used as a programming convenience, but do not actually
exist.

c. have base classes of their own.

d. specify that only one copy of a multiply-inherited subobject
will be created in subsequent derived classes.

e. have only one copy of each subobject, even if they have
inherited from two classes, each containing that object.

5. Which of the following can often be used instead of multiple
inheritance?

a. single inheritance

b. integration

c. composition

d. virtual functions

e. the scope resolution operator

Exercise 1

Rewrite the entire empmult program to use composition instead of multiple
inheritance, following the example shown above for the manager class.

Exercise 2

Write a class DervStak that inherits from both the Stack class, from
which the array has been removed, and the safearay class (see the
SAFESTAK program in Session 7 in this chapter). The DervStak class
should have the same interface as the Stack class in SAFESTAK.

Summary: Chapter 7

Inheritance is the creation of a new class from an existing class without
modifying the existing class. The new class usually has additional features
that the old class does not. The new class is a specialized version of the old
class. Inheritance can be thought of as a “kind of” relationship, where a new
class object is a kind of old class object. This is different from composition,
which is a “has a” relationship: One class has objects of another class
embedded in it.

Inheritance can be used in the design of a program to specify a “kind of”
relationship between classes. It can also be used to create improved or
specialized versions of existing classes. An object of a derived class
contains a subobject of the base class. This subobject contains the base
class data.

The constructors of derived classes, if they need to call the constructors of
their base classes, do so by placing the call on the initialization list
following a colon in the constructor declarator. This ensures that all
subobjects in an object are initialized before the constructor starts to
execute.

Access specifiers determine whether class members will be accessible to
derived classes. Public and protected members are accessible to functions in
derived classes, but private members are not. Only public members are
accessible to objects of derived classes.

Inheritance itself can be public, protected, or private. Public inheritance is
the normal approach. In private inheritance, derived class objects are not a
“kind of” base class object, but, as in composition, they are a “have a” base
class object.

There can be several levels of inheritance, with the base class of one class
being derived from another class.

Composition, like inheritance, can be used to relate classes. Composition
means using objects of one class as instance data in another class.
Composition is cleaner and less complicated to use because there are fewer
connections between the classes involved, but the “kind of” relationship,
which you will discover later is important in OOP, is possible only with
inheritance.

Multiple inheritance means that a derived class has more than one base
class. Multiple inheritance should normally be avoided and composition
should be used instead.

End-of-Chapter Discussion

George: Correct me if I’m wrong, but I’d say it all boils down to two
simple rules. First, always use private data in a base class, with
protected functions to access it from derived classes. And
second...

Estelle: Always use public inheritance.
George: Exactly.
Don: Well, that’s about right. Of course those are just guidelines.

You may find situations where you need protected base class
data, or even public data. Or where nothing works but private
inheritance.

Estelle:
But it’s easy to get into trouble by not following Rule 1 and
Rule 2.

Don: Actually there’s a third rule. Something like use composition
unless you really need the “kind of” relationship.

Estelle: It’s too bad multiple inheritance turns out to be so messy. It
would be fun to create some really weird mixtures of classes.

George: Like what?
Estelle: I don’t know. What would happen if you inherited a scientist

object from both an employee object and a computer object?
Wouldn’t you have a supersmart scientist?

George: The mind boggles.
Don: Don’t get carried away. Classes aren’t exact models of things

in the real world; they’re just programming constructs used for
managing data.

Estelle: Too bad. I was hoping for a little Frankenstein action, sewing
different things together to make androids and monsters.

Don: Pointers are coming up in the next chapter, and lots of people
think they’re the Frankenstein of C++ programming.

George: Oh, fine, like it could get any more complicated. I’m going into
something simple, like astrophysics.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Inheritance

http://www.itknowledge.com/reference/archive/1571690638/ch07/421-424.html [21-03-2000 19:19:37]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch07/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

CHAPTER 8
POINTERS

Pointers have a reputation for being hard to understand. Fortunately, only some
of this reputation is deserved. In this chapter I’ll introduce pointers slowly and
gently and prove that, at least in concept, they really aren’t that tough.

I’ll spend the first several sessions discussing pointers in the abstract, mostly
using basic types (rather than objects) as examples. Once you have a firm grasp
of the fundamentals, I’ll show how pointers are typically used in the C++
environment.

One important use for pointers is in the dynamic allocation of memory, carried
out in C++ with the keyword new and its partner delete. I’ll examine this
issue in several examples. You’ll also learn about a very special pointer called
this that points to its own object.

Pointers are used to create complex structures for storing data. Toward the end
of this chapter, I’ll introduce examples of a memory-efficient string class, a
linked list, and a kind of array that is self-sorting.

Session 1: Addresses and Pointers

The basic ideas behind pointers are not complicated. You need to know about
memory addresses and you need to know that addresses can be stored, like
variables. I’ll explore these fundamental ideas in this session.

Addresses (Pointer Constants)

Every byte in the computer’s memory has an address. Addresses are numbers,
just as they are for houses on a street. The numbers start at 0 and go up from
there—1, 2, 3, and so on. If you have 1MB of memory, the highest address is
1,048,575; for 16 MB of memory, it is 16,777,215. Those would be large
numbers for street addresses, but computers, as you know, enjoy large numbers.

Any program, when it is loaded into memory, occupies a certain range of these
addresses. That means that every variable and every function in your program
starts at a particular address. Figure 8-1 shows how this looks.

Figure 8-1 Memory addresses

The addresses in the figure are numbered from the top down. To some people
this seems backward (actually upside down) because they think higher numbers
should be higher on the page. However, there is also logic in putting lower
numbers at the top in that you read text from the top down. In any case, in
whatever format it appears on the page, phrases such as higher addresses and
high memory mean larger numbers, not higher on the page.

The Address of Operator &

You can find out the address occupied by a variable by using the address of
operator &. Listing 8-1 shows a short program, VARADDR, that demonstrates
how to do this.

Listing 8-1 VARADDR

// varaddr.cpp
// addresses of variables
#include <iostream.h>

void main()
 {
 int var1 = 11; // define and initialize
 int var2 = 22; // three variables
 int var3 = 33;

 cout << endl << &var1 // print out the addresses
 << endl << &var2 // of these variables
 << endl << &var3;
 }

This simple program defines three integer variables and initializes them to the
values 11, 22, and 33. It then prints out the addresses of these variables.

The actual addresses occupied by the variables in a program depend on many
factors, such as what computer the program is running on, the size of the
operating system, and whether any other programs are currently in memory. For
these reasons, you probably won’t get the same addresses I did when you run
this program. Here’s the output on my machine:

0x8f4ffff4 <--address of var1
0x8f4ffff2 <--address of var2
0x8f4ffff0 <--address of var3

Remember that the address of a variable is not the same as its contents. The
contents of the three variables are 11, 22, and 33. Figure 8-2 shows the three
variables in memory.

Figure 8-2 Addresses and contents of addresses

The insertion operator (<<) displays the addresses in hexadecimal notation, as
indicated by the prefix 0x before each number. The address of var1 is 8f4ffff4.
This is the usual way to show memory addresses. If you aren’t familiar with the
hexadecimal number system, don’t worry. All you really need to know is that
each variable starts at a unique address. However, you might note in the output
above that each address differs from the next by exactly 2 bytes. That’s because,
on my machine, integers occupy 2 bytes of memory. If I had used variables of
type char, they would have adjacent addresses, because chars occupy 1 byte;
if I had used type double, the addresses would have differed by 8 bytes.

The addresses appear in descending order because automatic variables (those
defined within a function) are stored on the stack, which grows downward (from
higher to lower addresses) in memory. If I had used external variables (defined
outside of any function), the variables would have had ascending addresses,
because external variables are stored on the heap, which grows upward. Again,
you don’t need to worry too much about all this because the compiler keeps
track of the details for you.

Incidentally, don’t confuse the address of operator &, which precedes a variable
name, with the reference operator &, which follows the type name in a function
prototype or definition. (References are discussed in Chapter 4.)

Pointer Variables

Addresses by themselves are rather limited. It’s nice to know that you can find
out where things are in memory, as I did in VARADDR, but printing out address
values is not really that useful. The potential for increasing programming power
requires an additional idea: variables that hold address values. You’ve seen
variable types that store characters, integers, and floating-point numbers. An
address is a number too, and it can be stored in a variable. A variable that holds
an address value is called a pointer variable, or simply a pointer. If a pointer
contains the address of a variable, I can say the pointer points to the variable;
hence the name.

What is the data type of pointer variables? It’s not the same as the variable
whose address is being stored; a pointer to int is not type int. You might
think a pointer data type would be called something like pointer or ptr.
However, things are slightly more complicated.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Pointers

http://www.itknowledge.com/reference/archive/1571690638/ch08/425-429.html [21-03-2000 19:19:52]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
javascript:displayWindow('images/08-01.jpg',461,478)
javascript:displayWindow('images/08-01.jpg',461,478)
javascript:displayWindow('images/08-02.jpg',231,394)
javascript:displayWindow('images/08-02.jpg',231,394)
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch08/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Pointers to Basic Types

Listing 8-2, PTRVAR, shows the syntax for pointer variables that hold the addresses of
variables of the basic type int.

Listing 8-2 PTRVAR

// ptrvar.cpp
// pointers (address variables)
#include <iostream.h>
void main()
 {
 int var1 = 11; // two integer variables
 int var2 = 22;
 cout << endl << &var1 // print addresses of variables
 << endl << &var2;

 int* ptr; // pointer to integers

 ptr = &var1; // pointer points to var1
 cout << endl << ptr; // print pointer value

 ptr = &var2; // pointer points to var2
 cout << endl << ptr; // print pointer value
 }

This program defines two integer variables, var1 and var2, and initializes them to the
values 11 and 22. It then prints out their addresses. So far, this is similar to the VARADDR
program.

The program next defines a pointer variable in the line

int* ptr;

To the uninitiated, this may seem a rather bizarre syntax. The asterisk means pointer to.
Thus (reading from right to left, which is the proper way), the statement defines the
variable ptr as a pointer to int. This is another way of saying that this variable can hold
the addresses of integer variables.

What’s wrong with the idea of a general-purpose pointer type that holds addresses to any
data type? If I called it, for example, type pointer, I could write declarations such as

pointer ptr3;

The problem is that the compiler needs to know what kind of variable the pointer points to.
(You’ll see why when I talk about pointers and arrays later in this chapter.) The compiler
designers could have come up with a bunch of new names, such as pointer_to_int
and pointer_to_char, but they used a more compact notation that involves learning
only one new symbol. Here’s the syntax used in C++. It allows you to declare a pointer to
any type, using only the type name and an asterisk:

char* cptr; // pointer to char
int* iptr; // pointer to int
float* fptr; // pointer to float

and so on. The asterisk (in this context) is shorthand for pointer or, more completely,
pointer to the type on my left.

Syntax Quibbles

Many programmers write pointer definitions with the asterisk closer to the variable name
than to the type:

char *cptr3;

It doesn’t matter to the compiler, but placing the asterisk next to the type helps emphasize
that the asterisk is part of the type (pointer to char), and not part of the name itself.

If you define more than one pointer of the same type on one line, you need to insert the
type pointed to only once, but you must place an asterisk before each variable name:

char* ptr1, * ptr2, * ptr3; // three variables of type char*

Or you can use the asterisk-next-to-the-name approach:

char *ptr1, *ptr2, *ptr3; // three variables of type char*

Pointers Must Have a Value

An address such as 0x8f4ffff4 can be thought of as a pointer constant. Once a variable is
placed at a particular address in memory, it doesn’t move. (If it does, because of swapping
by the operating system, the effect is invisible to the programmer). Address values are
therefore constant as long as the program continues to run.

On the other hand, a pointer such as ptr can be thought of as a pointer variable. Just as
the integer variable var1 can be assigned the constant value 11, so can the pointer
variable ptr be assigned the constant value 0x8f4ffff4.

When I first define a variable, it holds no value (unless I initialize it at the same time). It
may hold a garbage value, but this has no meaning. In the case of pointers, a garbage value
is the address of something in memory, but probably not something that I want. So before a
pointer is used, a specific address must be placed in it. In the PTRVAR program, ptr is
first assigned the address of var1 in the line

ptr = &var1; <--put address of var1 in ptr

Then the program prints out the value contained in ptr, which should be the same address
printed for &var1. The same pointer variable ptr is then assigned the address of var2 and
this value is printed out. Figure 8-3 shows the operation of the PTRVAR program.

Figure 8-3 Changing values in ptr

Here’s the output of PTRVAR:

0x8f51fff4 <--address of var1
0x8f51fff2 <--address of var2
0x8f51fff4 <--ptr set to address of var1
0x8f51fff2 <--ptr set to address of var2

To summarize: A pointer can hold the address of any variable of the correct type; it’s a
receptacle awaiting an address. However, it must be given some value or else it will point
to an address you don’t want it to point to, such as into program code or the operating
system. Rogue pointer values can result in system crashes and are difficult to debug
because the compiler gives no warning. The moral: Make sure you give every pointer
variable a valid address value before using it.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Pointers

http://www.itknowledge.com/reference/archive/1571690638/ch08/429-431.html [21-03-2000 19:20:05]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
javascript:displayWindow('images/08-03.jpg',449,490)
javascript:displayWindow('images/08-03.jpg',449,490)
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch08/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Pointers to Objects

Objects are stored in memory, so pointers can point to objects just as they can to variables of basic
types. For example, you can define an object and then place its address in a pointer:

employee emp1; <--define object of class employee
employee* ptrobj = &emp1; <--place object's address in ptrobj

The ptrobj variable is of type employee*, or pointer to employee. Let’s rewrite the PTRVAR
program to work with objects of class employee. Listing 8-3 shows PTROBJ.

Listing 8-3 PTROBJ

// ptrobj.cpp
// pointers to class objects
#include <iostream.h>
#include <string.h> // for strcpy()
//
class employee // employee class
 {
 private:
 enum {LEN=30}; // length of name
 char name[LEN]; // employee name
 unsigned long number; // employee number

 public: // 2-arg constructor
 employee(char* na, unsigned long nu) : number(nu)
 { strcpy(name, na); }
 };
//
void main()
 { // employee objects
 employee emp1(“Donlevy”, 123123L);
 employee emp2(“LeBlanc”, 234234L);

 cout << “Address values”;
 cout << endl << &emp1 // print addresses of objects
 << endl << &emp2;

 employee* ptr; // pointer to employees

 cout << “\nPointer values”;
 ptr = &emp1; // pointer points to emp1
 cout << endl << ptr; // print pointer value

 ptr = &emp2; // pointer points to emp2
 cout << endl << ptr; // print pointer value
 }

The operation of this program is analogous to that of PTRVAR. However, you can see from the
output that employee objects occupy more space than int variables:

Address values
0x29072222
0x29072200
Pointer values
0x29072222
0x29072200

If you subtract 200 from 222, you get 22 hexadecimal, which is 34 decimal. This makes sense
because an employee object contains a 30-character string and a 4-byte unsigned long
number.

Accessing the Variable Pointed To

Suppose I don’t know the name of a variable but I do know its address. Can I access the contents of
the variable? (It may seem like mismanagement to lose track of a variable’s name, but, as you’ll
see, there are many variables whose names we don’t know.)

There is a special syntax to access the value of a variable by using its address instead of its name.
Listing 8-4, PTRACC, shows how it’s done.

Listing 8-4 PTRACC

// ptracc.cpp
// accessing the variable pointed to
#include <iostream.h>
void main()
 {
 int var1 = 11; // two integer variables
 int var2 = 22;

 int* ptr; // pointer to integers

 ptr = &var1; // pointer points to var1
 cout << endl << *ptr; // print contents of pointer (11)

 ptr = &var2; // pointer points to var2
 cout << endl << *ptr; // print contents of pointer (22)
 }

This program is very similar to PTRVAR, except that instead of printing the address value in ptr, it
prints the integer value stored at the address that’s stored in ptr. Here’s the output:

11
22

The expression that accesses the variables var1 and var2 is *ptr, which occurs in each of the
two cout statements.

When the asterisk is used to the left of a variable name, as it is in the *ptr expression, it is called
the indirection operator. It means the value of the variable pointed to by the variable on its right.
Thus, the expression *ptr represents the value of the variable pointed to by ptr. When ptr is set
to the address of var1, the expression *ptr has the value 11 because that’s the value of var1.
When ptr is changed to the address of var2, the expression *ptr acquires the value 22 because
var2 is 22. The indirection operator is sometimes called the contents of operator, which is another
way of saying the same thing. Figure 8-4 shows how this looks.

Figure 8-4 Access via pointer

You can use a pointer not only to display a variable’s value, but to perform any operation you
would perform on the variable directly. Listing 8-5 shows a program, PTRTO, that uses a pointer to
assign a value to a variable and then to assign that value to another variable.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Pointers

http://www.itknowledge.com/reference/archive/1571690638/ch08/431-434.html [21-03-2000 19:20:25]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
javascript:displayWindow('images/08-04.jpg',451,488)
javascript:displayWindow('images/08-04.jpg',451,488)
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch08/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Listing 8-5 PTRTO

// ptrto.cpp
// other access using pointers
#include <iostream.h>

void main()
 {
 int var1, var2; // two integer variables

 int* ptr; // pointer to integers

 ptr = &var1; // set pointer to address of var1
 *ptr = 37; // same as var1=37
 var2 = *ptr; // same as var2=var1

 cout << endl << var2; // verify var2 is 37
 }

Remember that the asterisk used as the indirection operator has a different meaning than the
asterisk used to declare pointer variables. The indirection operator precedes the variable name
and means value of the variable pointed to by. The asterisk used in a declaration means pointer
to.

int* ptr; // declaration:
*ptr = 37; // indirection:

Using the indirection operator to access the value stored in an address is called indirect
addressing, or sometimes dereferencing, the pointer.

Here’s a capsule summary of what you’ve learned so far:

int v; // defines variable v of type int
int* p; // defines p as a pointer to int
p = &v; // assigns address of variable v to pointer p
v = 3; // assigns 3 to v
*p = 3; // also assigns 3 to v

The last two statements show the difference between normal or direct addressing, where you
refer to a variable by name, and pointer or indirect addressing, where you refer to the same
variable using a pointer that holds its address.

These two approaches are vaguely analogous to delivering a letter to a friend. If you drive to
the friend’s house and stick the letter in the mail slot, that’s direct addressing. You can also
write the address on the envelope and put the letter in a public mailbox. The mail personnel will
read the address and see that the letter gets to the right place. That’s indirect addressing because
it is directed by a third party.

In the example programs I’ve shown so far in this chapter, there’s really no advantage to using
the pointer expression to access variables because I can access them directly. Pointers come
into their own when you can’t access a variable, as you’ll see.

Pointer to void

Before I go on to show pointers at work, I should note one peculiarity of pointer data types.
Ordinarily, the address that you put in a pointer must be the same type as the pointer. You can’t
assign the address of a float variable to a pointer to int, for example. However, there is an
exception to this rule. There is a sort of general purpose pointer that can point to any data type.
It’s called a pointer to void, and it is defined like this:

void* ptr; // ptr can point to any data type

Such pointers have certain specialized uses, such as passing pointers to functions that operate
on several different data types.

The next example uses a pointer to void and also shows that, if you don’t use void, you must
be careful to assign pointers an address of the same type as the pointer. Listing 8-6 shows
PTRVOID.

Listing 8-6 PTRVOID

// ptrvoid.cpp
// pointers to type void
#include <iostream.h>

void main()
 {
 int intvar; // integer variable
 float flovar; // float variable

 int* ptrint; // define pointer to int
 float* ptrflo; // define pointer to float
 void* ptrvoid; // define pointer to void

 ptrint = &intvar; // ok, int* to int*
// ptrint = &flovar; // error, float* to int*

// ptrflo = &intvar; // error, int* to float*
 ptrflo = &flovar; // ok, float* to float*

 ptrvoid = &intvar; // ok, int* to void*
 ptrvoid = &flovar; // ok, float* to void*
 }

You can assign the address of intvar to ptrint because they are both type int*, but you
can’t assign the address of flovar to ptrint because the first is type float* and the
second is type int*. However, ptrvoid can be assigned any pointer type, such as int* or
float*, because it is a pointer to void.

Whenever possible you should avoid void (sorry about that). The insistence of C++ that
pointers contain only addresses of a specific type is an important way of avoiding programming
mistakes. Using void circumvents this safety feature. However, it’s occasionally important, as
you’ll see.

Quiz 1

1. The address of a variable temp of type float is

a. *temp
b. &temp
c. float& temp
d. float* temp
e. float temp&

2. If the statements

airtime at1;
airtime* x = &at1;

have been executed, then

a. x is an airtime object.

b. the contents of x can be changed.

c. &at1 is a variable.

d. x is a pointer to type airtime.

e. &at1 is the address of an airtime object.

3. If the statements

float fv;
fv = 3.14159;
float* holdaddr = &fv;

have been executed, which expressions have the value 3.14159?

a. &holdaddr
b. *holdaddr
c. holdaddr
d. &fv
e. None of the above

4. If the statements

int j, k;
j = 123;
k = 234;
int* q, * r;
cout << *q << ' ' << *r;

are executed, what will be displayed?

a. The values in q and r.

b. The addresses of q and r.

c. The addresses of j and k.

d. 123, 234.

e. None of the above.

5. If these statements are executed:

employee emp1;
airtime air1;
void* p;
employee* d = &emp1;
airtime* q = &air1;

which of the following statements will compile correctly?

a. p = d;
b. p = &emp1;
c. p = &d;
d. q = &d;
e. q = p;

Due to the theoretical nature of this session, there are no exercises.

Session 2: Pointers, Arrays, and Functions

Pointers are used in some situations you may find surprising. Two interesting ones occur when
pointers are used to access array elements and when they are used as function arguments.
Putting these two situations together, I will show that pointers can be very useful when arrays
are passed as function arguments.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Pointers

http://www.itknowledge.com/reference/archive/1571690638/ch08/434-438.html [21-03-2000 19:20:32]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch08/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Pointers and Arrays

There is a close association between pointers and arrays. You saw in Chapter 3 how array
elements are accessed. The following program fragment provides a review:

int intarray[5] = { 31, 54, 77, 52, 93 }; // array

for(int j=0; j<5; j++) // for each element,
 cout << endl << intarray[j]; // print value

The cout statement prints each array element in turn. For instance, when j is 3, the
expression intarray[j] takes on the value intarray[3], which is the fourth array
element, the integer 52. Here’s the output of ARRNOTE:

31
54
77
52
93

Array Elements and Pointer Notation

Surprisingly, array elements can be accessed using pointer notation as well as array notation.
The next example is similar to the previous one except it uses pointer notation:

int intarray[5] = { 31, 54, 77, 52, 93 }; // array

for(int j=0; j<5; j++) // for each element,
 cout << endl << *(intarray+j); // print value

The expression *(intarray+j) here has exactly the same effect as intarray[j] in the
first example, and their output is identical. But how do we interpret the expression
*(intarray+j)? Suppose j is 3, so the expression is equivalent to *(intarray+3). I
want this to represent the contents of the fourth element of the array (52). Remember that the
name of an array represents its address. The expression intarray+j is thus an address with
something added to it. You might expect that intarray+3 would cause 3 bytes to be added
to intarray. But that doesn’t produce the result we want: intarray is an array of
integers, and 3 bytes into this array is the middle of the second element, which is not very
useful. We want to obtain the fourth integer in the array, not the fourth byte, as shown in
Figure 8-5.

Figure 8-5 Counting by integers

The C++ compiler is smart enough to take the size of the data into account when it performs
arithmetic on data addresses. It knows that intarray is an array of type int because it was
declared that way. When it sees the expression intarray+3, it interprets it as the address of
the fourth integer in intarray, not the fourth byte.

But I want the value of this fourth array element, not the address. To take the value, I use the
indirection operator *. The resulting expression, when j is 3, is *(intarray+3), which is
the contents of the fourth array element, or 52.

Now you see why a pointer declaration must include the type of the variable pointed to. The
compiler needs to know whether a pointer is a pointer to int or a pointer to double so it
can perform the correct arithmetic to access elements of the array. It multiplies the index
value by 2 in the case of type int, but by 8 in the case of double.

Pointer Constants and Pointer Variables

Suppose that, instead of adding j to intarray to step through the array addresses, I want to
use the increment operator. Could I write *(intarray++)?

The answer is no, and the reason is that I can’t increment a constant (or indeed change it in
any way). The expression intarray is the address where the system has chosen to place the
array. The array will remain at this address until the program terminates; thus, intarray is
a constant. I can’t say intarray++ any more than I can say 7++.

However, although I can’t increment an address, I can increment a pointer that holds an
address. The next code fragment shows how:

int intarray[] = { 31, 54, 77, 52, 93 }; // array

int* ptrint; // pointer to int
ptrint = intarray; // points to intarray
for(int j=0; j<5; j++) // for each element,
 cout << endl << *(ptrint++); // print value

Here I define a pointer to int—ptrint—and give it the value intarray, the address of
the array. Now I can access the contents of the array elements with the expression

*(ptrint++)

The variable ptrint starts off with the same address value as intarray, thus allowing the
first array element, intarray[0], which has the value 31, to be accessed as before. But,
because ptrint is a variable and not a constant, it can be incremented. After it is
incremented, it points to the second array element, intarray[1]. The expression
*(ptrint++) then represents the contents of the second array element, or 54. The loop
causes the expression to access each array element in turn. The output of PTRINC is the same
as that for PTRNOTE.

Pointers and Functions

In Chapter 4 I noted that there are three ways to pass arguments to a function: by value, by
reference, and by pointer. If the function is intended to modify variables in the calling
program, then these variables cannot be passed by value because the function would obtain
only a copy of the variable. However, either a reference argument or a pointer argument can
be used by the function to modify a variable in the calling program.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Pointers

http://www.itknowledge.com/reference/archive/1571690638/ch08/438-440.html [21-03-2000 19:20:47]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
javascript:displayWindow('images/08-05.jpg',358,307)
javascript:displayWindow('images/08-05.jpg',358,307)
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch08/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Passing Simple Variables

I’ll first review how arguments are passed by reference and then compare this to passing pointer
arguments. This fragment shows passing by reference:

void main()
 {
 void centimize(double&); // prototype
 double var = 10.0; // var has value of 10 inches

 cout << endl << “var=” << var << “ inches”;
 centimize(var); // change var to centimeters
 cout << endl << “var=” << var << “ centimeters”;
 }

void centimize(double& v)
 {
 v *= 2.54; // v is the same as var
 }

Here I want to convert a variable var in main() from inches to centimeters. I pass the variable
by reference to the function centimize(). (Remember that the & following the data type
double in the prototype for this function indicates that the argument is passed by reference.)
The centimize() function multiplies the original variable by 2.54. Notice how the function
refers to the variable. It simply uses the argument name v; v and var are different names for the
same thing.

Once it has converted var to centimeters, main() displays the result. Here’s the output:

var=25.4 centimeters

The next example shows an equivalent situation using pointers:

void main()
 {
 void centimize(double*); // prototype
 double var = 10.0; // var has value of 10 inches

 cout << endl << “var=” << var << “ inches”;
 centimize(&var); // change var to centimeters
 cout << endl << “var=” << var << “ centimeters”;
 }

void centimize(double* ptrd)
 {
 *ptrd *= 2.54; // *ptrd is the same as var
 }

The output is the same as before. The function centimize() is declared as taking an
argument that is a pointer to double:

void centimize(double*); // argument is pointer to double

When main() calls this function, it supplies the address of a variable as the argument:

centimize(&var);

Remember that this is not the variable itself, as it is in passing by reference, but the variable’s
address. Because the centimize() function is passed an address, it must use the indirection
operator, *ptrd, to access the value stored at this address:

*ptrd *= 2.54; // multiply the contents of ptrd by 2.54

Of course, this is the same as

*ptrd = *ptrd * 2.54; // multiply the contents of ptrd by 2.54

where the standalone asterisk means multiplication. (The asterisk symbol really gets around.)

Because ptrd contains the address of var, anything done to *ptrd is actually done to var.
Figure 8-6 shows how changing *ptrd in the function changes var in the calling program.

Figure 8-6 Pointer passed to function

Passing a pointer as an argument to a function is in some ways similar to passing a reference.
They both permit the variable in the calling program to be modified by the function. However,
the mechanism is different. A reference is an alias for the original variable, whereas a pointer is
the address of the variable.

Passing Arrays as Arguments

You’ve already seen examples of arrays passed as arguments to functions and their elements
being accessed by the function. This was done using array notation (at least until this chapter),
because you had not yet learned about pointers. However, it’s more common to use pointer
notation instead of array notation when arrays are passed to functions. The following fragment
shows how this looks:

const int MAX = 5; // number of array elements
void main()
 {
 void centimize(double*); // prototype
 double varray[MAX] = { 10.0, 43.1, 95.9, 59.7, 87.3 };

 centimize(varray); // change elements of varray to cm
 for(int j=0; j<MAX; j++) // display new array values
 cout << endl << “varray[” << j << “]=”
 << varray[j] << “ centimeters”;
 }
void centimize(double* ptrd)
 {
 for(int j=0; j<MAX; j++)
 *ptrd++ *= 2.54; // ptrd points to elements of varray
 }

The prototype for the function is the same in both examples; the function’s single argument is a
pointer to double. In array notation, this is written

void centimize(double[]);

That is, double* is equivalent here to double[], although the pointer syntax is more
commonly used.

Because the name of an array is the array’s address, there is no need for the address operator &
when the function is called:

centimize(varray); // pass array address

In centimize(), this array address is placed in the variable ptrd. To point to each element
of the array in turn, I need only increment ptrd:

*ptrd++ *= 2.54;

Figure 8-7 shows how the array is accessed.

Figure 8-7 Accessing an array from function

The output of both these examples is the same:

varray[0]=25.4 centimeters
varray[1]=109.474 centimeters
varray[2]=243.586 centimeters
varray[3]=151.638 centimeters
varray[4]=221.742 centimeters

Here’s a syntax question: How do you know that the expression *ptrd++ increments the
pointer and not the pointer contents? In other words, does the compiler interpret it as
*(ptrd++), which is what I want, or as (*ptrd)++? It turns out that the asterisk * (at least
when used as the indirection operator) and ++ have the same precedence. However, operators of
the same precedence are distinguished in a second way: by associativity. Associativity is
concerned with whether the compiler performs operations starting with an operator on the right
or an operator on the left. If a group of operators have right associativity, the compiler performs
the operation on the right side of the expression first, then it works its way to the left. The unary
operators such as * and ++ do have right associativity, so the expression is interpreted as
*(ptrd++), which increments the pointer, not what it points to. That is, the pointer is
incremented first and the indirection operator is applied to the result.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Pointers

http://www.itknowledge.com/reference/archive/1571690638/ch08/440-443.html [21-03-2000 19:21:05]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
javascript:displayWindow('images/08-06.jpg',492,262)
javascript:displayWindow('images/08-06.jpg',492,262)
javascript:displayWindow('images/08-07.jpg',532,385)
javascript:displayWindow('images/08-07.jpg',532,385)
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch08/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Quiz 2

1. The expression sales[month], expressed in pointer notation, is

a. sales[month] (the same as in array notation)

b. sales + *month.

c. &sales+month.

d. sales+month.

e. *(sales+month).

2. If the name of an array is jules, an expression that can be made to represent the
address of each element of jules is

a. jules.

b. jules++.

c. jules+index.

d. *(jules++).

e. *(jules+index).

3. The essential difference between array notation and pointer notation is that

a. the compiler understands array notation more completely.

b. they are written differently.

c. a function that an array is passed to can modify only array elements using pointer
notation.

d. a function that an array is passed to can modify only array elements using array
notation.

e. there is no difference.

4. If a value is stored in a variable, then passing it by pointer differs from passing it by
reference in that you pass ______ of the variable rather than ____________.

a. the contents, an alias

b. the address, an alias

c. the contents, the value

d. the value, an alias

e. the address, the value

5. If you have the following function declaration:

float rigel(float* alpha);

then, within rigel(), to refer to the float value being passed to it, you would use the
expression

a. *alpha.

b. alpha.

c. &alpha.

d. float* alpha.

e. float& alpha.

Exercise 1

Write a function that takes two variables, passed to it by pointer, and swaps (interchanges) their
values. Write a main() to test this function.

Exercise 2

Write a function that will take every element of an array of type float, whose address is passed
to it, and, using pointer notation, average the elements and return the average. Write a main()
that calls the function.

Session 3: Pointers and Strings

As I noted in Chapter 3 in my introduction to arrays, strings are simply arrays of type char. Thus,
pointer notation can be applied to the characters in strings just as it can to the elements of any
array. This is a common idiom in C++, as for example in the declarations of string library
functions such as strcpy(). In this session I’ll examine several aspects of the relationship
between strings and pointers.

Pointers to String Constants

Here’s an example in which two strings are defined, one using array notation as you’ve seen in
previous examples, and the other using pointer notation:

 char str1[] = “Defined as an array”;
 char* str2 = “Defined as a pointer”;

 cout << endl << str1; // display both strings
 cout << endl << str2;

// str1++; // can't do this; str1 is a constant
 str2++; // this is OK, str2 is a pointer

 cout << endl << str2; // now str2 starts “efined...”

In many ways, these two types of string constants are equivalent. You can print out both strings as
the example shows, use them as function arguments, and so on. But there is a subtle difference:
str1 is an address—that is, a pointer constant—whereas str2 is a pointer variable. So str2
can be changed, whereas str1 cannot, as indicated in the program. Figure 8-8 shows how these
two kinds of strings look in memory.

Figure 8-8 Strings as arrays and pointers

I can increment str2 because it is a pointer, but once I do, it no longer points to the first
character in the string. Here’s the output:

Defined as an array
Defined as a pointer
efined as a pointer <--following str2++

A string defined as a pointer is considerably more versatile than one defined as an array. The
following examples make use of this flexibility.

Strings as Function Arguments

Here’s an example that shows a string used as a function argument. The function dispstr()
simply prints the string defined in main() by accessing each character in turn:

void main()
 {
 void dispstr(char*); // prototype
 char str[] = “Idle people have the least leisure.”;
 dispstr(str); // display the string
 }

void dispstr(char* ps)
 {
 cout << endl; // start on new line
 while(*ps) // until null character,
 cout << *ps++; // print character
 }

The array address str is used as the argument in the call to function dispstr(). This address
is a constant but because it is passed by value, a copy of it is created in dispstr(). This copy is
a pointer, ps. A pointer can be changed so the function increments ps to display each character in
the string. The expression *ps++ returns the successive characters. The loop cycles until it finds
the null character (‘\0’) at the end of the string. Because this character has the value 0, which
represents false, the while loop terminates at that point. Such space-saving idioms are common
in C++ (and even more common in C).

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Pointers

http://www.itknowledge.com/reference/archive/1571690638/ch08/443-446.html [21-03-2000 19:21:14]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
javascript:displayWindow('images/08-08.jpg',411,382)
javascript:displayWindow('images/08-08.jpg',411,382)
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch08/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Copying a String Using Pointers

I just showed an example of a pointer that obtained character values from a string array.
Pointers can also be used to insert characters into a string. The next code fragment
demonstrates a function that copies one string to another:

void main()
 {
 void copystr(char*, char*); // prototype

 char* str1 = “Self-conquest is the greatest victory.”;
 char str2[80]; // empty string

 copystr(str2, str1); // copy str1 to str2
 cout << endl << str2; // display str2
 }

void copystr(char* dest, char* src)
 {
 while(*src) // until null character,
 *dest++ = *src++; // copy chars from src to dest
 *dest = '\0'; // terminate dest
 }

Here the main() part of the program calls the function copystr() to copy str1 to str2.
In this function, the expression

*dest++ = *src++;

takes the character value at the address pointed to by src and places it in the address pointed
to by dest. Both pointers are then incremented, so the next time through the loop the next
character will be copied. The loop terminates when a null character is found in src; at this
point, a NULL is inserted in dest and the function returns. Figure 8-9 shows how the pointers
move through the strings.

Figure 8-9 Copying a string using pointers

Library String Functions

Many of the library functions I have already used for strings have string arguments that are
specified using pointer notation. As an example, look at the description of strcpy() in your
compiler’s documentation (or in the STRING.H header file). This function copies one string to
another, so you can compare it with my homemade copystr() function. Here’s the syntax
for a typical strcpy() library function:

char* strcpy(char* dest, const char* src);

This function takes two arguments of type char*. What is the effect of the const modifier in
the second argument? It indicates that strcpy() cannot change the characters pointed to by
src. (It does not imply that the src pointer itself cannot be modified. To do that, the argument
declaration would be char * const src. I’ll talk more about const and pointers in
Session 5.)

The strcpy() function also returns a pointer to char; this is the address of the dest string.
In other respects, this function works very much like the homemade copystr() function.

Arrays of Pointers to Strings

Just as there are arrays of variables of type int or type float, there can also be arrays of
pointers. A common use for this construction is an array of pointers to strings.

In Chapter 3, Session 6, I demonstrated an array of strings. As I noted, there is a disadvantage
to using an array of strings in that the subarrays that hold the strings must all be the same
length, so that space is wasted when strings are shorter than the length of the subarrays (see
Figure 3-10).

Figure 8-10 Array of pointers to strings

Let’s see how to use pointers to solve this problem. I’ll modify the code fragment from the
earlier session to create an array of pointers to strings, rather than an array of strings:

char* arrptrs[DAYS] = { “Sunday”, “Monday”, “Tuesday”,
 “Wednesday”, “Thursday”,
 “Friday”, “Saturday” };

for(int j=0; j<DAYS; j++) // display every string
 cout << arrptrs[j] << endl;

Here’s the output of this fragment:

Sunday
Monday
Tuesday
Wednesday
Thursday
Friday
Saturday

When strings are not part of an array, C++ places them contiguously in memory so there is no
wasted space. However, there must be an array that holds pointers to the strings to find them. A
string is itself an array of type char, so an array of pointers to strings is an array of pointers to
char. That is the meaning of the definition of arrptrs in the code above. Now recall that a
string is always represented by a single address: the address of the first character in the string. It
is these addresses that are stored in the array. Figure 8-10 shows how this looks.

An array of pointers is a powerful construction in C++. I’ll explore many examples of this in
future sessions.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Pointers

http://www.itknowledge.com/reference/archive/1571690638/ch08/447-450.html [21-03-2000 19:21:27]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
javascript:displayWindow('images/08-09.jpg',460,388)
javascript:displayWindow('images/08-09.jpg',460,388)
javascript:displayWindow('images/08-10.jpg',440,589)
javascript:displayWindow('images/08-10.jpg',440,589)
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch08/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Membership Access Operator (->)

The next topic, although not exactly related to strings, nevertheless should be mentioned
before the next session. Here’s the question: Suppose you know that a pointer points to
an object. Can you access the object’s member functions using only the pointer? The
following example demonstrates how to do this. First, I demonstrate the usual way,
using the object name itself and the dot operator. Then I show the pointer approach.
Listing 8-7 shows DASHGRAT.

Listing 8-7 DASHGRAT

// dashgrat.cpp
// demonstrates access to members using pointer
// and dash greater-than (->) operator
#include <iostream.h>

class English // English class
 {
 private:
 int feet;
 float inches;
 public:
 void getdist() // get length from user
 {
 cout << “\nEnter feet: ”; cin >> feet;
 cout << “Enter inches: ”; cin >> inches;
 }
 void showdist() // display distance
 { cout << feet << “\'-” << inches << '\“'; }
 };

void main()
 {
 English edist; // make English object

 English* ptreng = &edist; // make pointer to object

 edist.getdist() // access object members
 edist.showdist(); // with dot operator

 ptreng->getdist(); // access object members
 ptreng->showdist(); // with -> operator
 }

You might guess that you could use the dot (.) membership access operator with
pointers as well as with objects, as in

ptreng.getdist(); // won't work; ptreng is not an object

but this won’t work. The dot operator requires the identifier on its left to be an object.
Because ptreng is a pointer to an object, we need another syntax. One approach is to
dereference (get the object pointed to by) the pointer:

(*ptreng).getdist(); // ok but inelegant

The expression *ptreng is an object, not a pointer, so I can use it with the dot
operator. However, this syntax is a bit cumbersome. A more concise approach is
furnished by the membership access operator ->, which consists of a hyphen and a
greater-than sign:

ptreng->getdist(); // better approach

The -> operator works with pointers to objects in just the same way that the dot
operator works with objects.

Quiz 3

1. Which of the following are differences between a string constant defined as
(1) an array and as (2) a pointer?

a. You can display (1) normally, but (2) must be dereferenced.

b. You cannot increment (1) but you can increment (2).

c. The data type of (1) is char[], whereas the data type of (2) is char*.

d. An individual array element in (1) is a character, whereas in (2) it’s a
pointer.

e. There are no differences except for the notation.

2. If a string is passed by value as a function argument, then the function

a. works with the original address of the string.

b. works with a copy of the address.

c. works with a pointer.

d. cannot access individual characters.

e. cannot access the string as a whole.

3. The loop while(*ps) can be made to terminate at the end of the string
pointed to by ps because

a. *ps is always 0.

b. ps is the length of the string.

c. *ps is 0 at the end of the string.

d. ‘\0’ is false.

e. ps can be made to point to each character in turn.

4. The definition

char* julio[4] = { “one”, “two”, “three”, “four” };

means that

a.“one”, “two”, and so on are elements of an array.

b. the addresses of “one”, “two”, and so on are elements of an array.

c. the array julio holds pointers to characters.

d. the array julio holds strings.

e. the array julio holds pointers to strings.

5. If ptrobj is a pointer that points to an object, and func() is one of that
object’s member functions, then

a. ptrobj must contain the address of an object.

b. func() must be a member function of ptrobj.

c. you can call func() with the syntax ptrobj->func().

d. you can call func() with the syntax ptrobj.func().

e. you can’t call func() unless you know an object’s name.

Exercise 1

Write a homemade string function that is similar to copystr() in the example above,
except that it concatenates one string to another rather than copying it. That is, if str1
is “dog” and str2 is “fight”, the execution of this function:

concatstr(str1, str2);

will cause str1 to become “dog fight”. Assume there’s enough space in str1 to hold
the new string. Use pointer notation throughout.

Exercise 2

Write a function that contains a list of passwords in the form of an array of pointers to
strings. A string representing a potential password is passed to this function and the
function returns true if the string is on the list and false otherwise. Write a main() that
repeatedly gets a sample string from the user, calls this function to see if the string is on
the list of approved passwords, and then displays Accepted or Denied, as
appropriate.

Session 4: Memory Management with new and delete

The most commonly used mechanism for storing a large number of variables or objects
is the array. You’ve seen many examples in which arrays are used to allocate storage.
The statement

int arr1[100];

reserves memory for 100 integers. Arrays are a useful approach to data storage, but they
have a serious drawback: You must know at the time you write the program how large
the array will be. You can’t wait until the program is running to specify the array size.
The following approach won’t work:

cin >> size; // get size from user
int arr[size]; // error; array size must be a constant

The compiler requires the array size to be a constant.

Unfortunately, in many situations you don’t know how much memory you need until
runtime. You might want to let the user enter data for a number of employee objects, for
example, and you can’t predict how many such objects the user might want to enter.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Pointers

http://www.itknowledge.com/reference/archive/1571690638/ch08/450-453.html [21-03-2000 19:21:48]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch08/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

The new Operator

C++ provides another approach to obtaining blocks of memory: the new operator. This operator
allocates memory of a specific size from the operating system and returns a pointer to its starting point.
The following code fragment shows how new might be used to obtain memory for a string:

char* str = “Idle hands are the devil's workshop.”;
int len = strlen(str); // get length of str

char* ptr; // make a pointer to char
ptr = new char[len+1]; // allocate memory: size = str + '\0'

strcpy(ptr, str); // copy str to new memory area

cout << “ptr=” << ptr; // show that str is now in ptr

delete[] ptr; // release ptr's memory

In the expression

ptr = new char[len+1];

the keyword new is followed by the type of the variables to be allocated and then, in brackets, the
number of such variables. Here I’m allocating variables of type char and I need len+1 of them,
where len is the length of str (which I found with the strlen() library function) and the 1 creates
an extra byte for the null character that terminates the string.

The new operator returns a pointer that points to the beginning of the section of memory. Figure 8-11
shows the syntax of a statement using the new operator.

Figure 8-11 Syntax of the new operator

When using new, remember to use brackets around the numerical size; the compiler won’t object if
you use parentheses, but the results will be incorrect. Figure 8-12 shows the memory obtained by new
and the pointer to it.

Figure 8-12 Memory obtained by new operator

In the code above, the program uses strcpy() to copy string str to the newly created memory area
pointed to by ptr. Because I made this area equal in size to the length of str, the string fits exactly.
The program then displays the contents of ptr. The output is

ptr=Idle hands are the devil's workshop.

The new operator obtains memory dynamically; that is, while the program is running. This memory is
allocated from an area called the heap (or sometimes the free store). The heap is the third area of
memory commonly used in C++ programs. As you’ve learned, automatic variables are stored in the
stack and static and external variables are stored in the static storage area.

C programmers will recognize that new plays a role similar to the malloc() family of library
functions. However, the new approach is far superior. When you use new with objects, it not only
allocates memory for the object, it also creates the object in the sense of invoking the object’s
constructor. This guarantees that the object is correctly initialized, which is vital for avoiding
programming errors. Also, new returns a pointer to the appropriate data type, whereas malloc()’s
pointer must be cast to the appropriate type. You should always use new for objects, never
malloc().

The delete Operator

If your program reserves many chunks of memory using new, eventually all the available memory will
be reserved and the system will crash. To ensure safe and efficient use of memory, the new operator is
matched by a corresponding delete operator that releases the memory back to the operating system.
In the code shown above, the statement

delete[] ptr;

returns to the system whatever memory was pointed to by ptr.

Actually, in this example there is no need for delete, because memory is automatically released
when the program terminates. However, suppose you use new in a function. If the function uses a local
variable as a pointer to newly acquired memory, then when the function terminates, the pointer will be
destroyed but the memory will continue to be owned by the program. The memory will become an
orphan, taking up space that is forever inaccessible. Thus, it is always good practice to delete memory
when you’re through with it.

Deleting the memory doesn’t delete the pointer that points to it (str in the example) and doesn’t
change the address value in the pointer. However, this address is no longer valid; the memory it points
to may be changed to something entirely different. Be careful that you don’t use pointers to memory
that has been deleted.

The brackets following delete in the example indicate that I’m deleting an array. If you create a
single variable with new, you don’t need the brackets when you delete it:

ptr = new int; // allocate a single int variable

. . .

delete ptr; // no brackets following delete

However, don’t forget the brackets when deleting arrays of objects. Using them ensures that all the
members of the array are deleted and that the destructor is called for each one. If you forget the
brackets, only the first element of the array will be deleted.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Pointers

http://www.itknowledge.com/reference/archive/1571690638/ch08/453-455.html [21-03-2000 19:22:00]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
javascript:displayWindow('images/08-11.jpg',346,217)
javascript:displayWindow('images/08-11.jpg',346,217)
javascript:displayWindow('images/08-12.jpg',315,433)
javascript:displayWindow('images/08-12.jpg',315,433)
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch08/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

A String Class That Uses new

The new operator often appears in constructors. As an example, let’s modify the xString
class, last seen in examples such as STRPLUS in Chapter 6, Session 1. You may recall that a
potential defect of that class was that all xString objects occupied the same fixed amount of
memory. A string shorter than this fixed length wasted memory, and a longer string—if one
were mistakenly generated—could crash the system by extending beyond the end of the array.
The next example uses new to obtain exactly the correct amount of memory. Listing 8-8 shows
NEWSTR.

Listing 8-8 NEWSTR

// newstr.cpp
// using new to get memory for strings
#include <iostream.h>
#include <string.h> // for strcpy(), etc

class xString // user-defined string type
 {
 private:
 char* str; // pointer to string
 public:
 xString(char* s) // constructor, one arg
 {
 int length = strlen(s); // length of string argument
 str = new char[length+1]; // get memory
 strcpy(str, s); // copy argument to it
 }
 ~xString() // destructor
 {
 delete[] str; // release memory
 }
 void display() // display the xString
 {
 cout << str;
 }
 }; // end class xString

void main()
 { // uses 1-arg constructor
 xString s1(“Who knows nothing doubts nothing.”);

 cout << endl << “s1=”; // display string
 s1.display();
 }

The xString class has only one data item: a pointer to char, called str. This pointer will
point to the ordinary string held by the xString object. However, there is no array within the
object to hold the string. The string is stored elsewhere; only the pointer to it is a member of
xString.

Constructor in NEWSTR

The one-argument constructor in this example takes a normal (char*) string as its argument.
It obtains space in memory for this string with new and sets the member str to point to the
newly obtained memory. The constructor then uses strcpy() to copy the string into this
newly obtained space.

Destructor in NEWSTR

You haven’t seen many destructors in the examples so far, but now that I’m allocating memory
with new, destructors become increasingly important. If you allocate memory when you create
an object, it’s important to deallocate the memory when the object is no longer needed. As you
may recall from Chapter 5, a destructor is a routine that is called automatically when an object
is destroyed. The destructor in NEWSTR looks like this:

~String()
 {
 delete[] str;
 }

This destructor gives back to the system the memory obtained when the object was created.
Objects (like other variables) are typically destroyed when the function in which they were
defined terminates. This destructor ensures that memory obtained by the String object will
be returned to the system. If it weren’t explicitly returned to the system, such memory would
become inaccessible (at least until the system was rebooted) and would constitute a “memory
leak,” which, if repeated often enough, would eventually crash the system.

Glitch in xString Class

I should note a potential glitch in using destructors as shown in NEWSTR. If you copy one
xString object to another, say with a statement like s2 = s1, you’re really only copying
the pointer to the actual (char*) string, because the pointer is the only data that’s actually in
the object. Both objects now point to the same string in memory. But if you now delete one
xString, the destructor will delete the char* string, leaving the other object with an invalid
pointer. This can be subtle, because objects can be deleted in nonobvious ways, such as when a
function, in which a local object has been created returns. In Session 6, you’ll see how to make
a smarter destructor that counts how many xString objects are pointing to a string and
doesn’t delete the string until there are no more xStrings pointing to it.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Pointers

http://www.itknowledge.com/reference/archive/1571690638/ch08/455-457.html [21-03-2000 19:22:15]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch08/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Creating Objects with new

Objects, as well as variables of basic types, can be created with the new operator. You’ve seen many
examples of objects defined and given memory by the compiler:

English dist; // definition

Here an object called dist is defined to be of the English class.

Sometimes, however, you don’t know at the time you write the program how many objects you want to
create. When this is the case, you can use new to create objects while the program is running. As you’ve
seen, new returns a pointer to an unnamed object. Listing 8-9 shows a short example program, ENGLPTR,
that demonstrates this use of new.

Listing 8-9 ENGLPTR

// englptr.cpp
// accessing member functions by pointer
#include <iostream.h>

class English // English class
 {
 private:
 int feet;
 float inches;
 public:
 void getdist() // get distance from user
 {
 cout << “\nEnter feet: ”; cin >> feet;
 cout << “Enter inches: ”; cin >> inches;
 }
 void showdist() // display distance
 { cout << feet << “\'-” << inches << '\“'; }
 };

void main()
 {
 English* distptr; // pointer to English
 distptr = new English; // points to new English object
 distptr->getdist(); // access object members
 distptr->showdist(); // with -> operator
 delete distptr; // delete object from memory
 }

The program creates an object of type English using the new operator and returns a pointer to it called
distptr. It uses this pointer with the -> operator to access getdist() and showdist(). Here’s the
output of the program:

Enter feet: 6
Enter inches: 4.75
6'-4.75”

Note that, just before the program terminates, it explicitly deletes the English object obtained earlier with
new. As I discussed, it is always good practice to ensure that anything allocated with new is eventually
deallocated with delete.

An Array of Pointers to Objects

A common OOP construction is an array of pointers to objects. This arrangement allows easy access to a
group of objects and is more flexible than placing the objects themselves in an array. (For instance, in
Session 8 I’ll show how a group of objects can be sorted by rearranging the pointers to them, rather than
moving the objects themselves.)

Listing 8-10, PTROBJS, creates an array of pointers to the person class.

Listing 8-10 PTROBJS

// ptrobjs.cpp
// array of pointers to objects
#include <iostream.h>

class person // class of persons
 {
 protected:
 char name[40]; // person's name
 public:
 void setName(void) // set the name
 {
 cout << “Enter name: ”;
 cin >> name;
 }
 void printName(void) // get the name
 {
 cout << “\n Name is: ”
 << name;
 }
 };

void main(void)
 {
 person* persPtr[100]; // array of pointers to persons
 int n = 0; // number of persons in array
 char choice;

 do // put persons in array
 {
 persPtr[n] = new person; // make new object
 persPtr[n]->setName(); // set person's name
 n++; // count new person
 cout << “Enter another (y/n)? ”; // enter another person?
 cin >> choice;
 }
 while(choice=='y'); // quit on 'n'

 for(int j=0; j<n; j++) // print names of
 { // all persons
 cout << “\nPerson number ” << (j+1);
 persPtr[j]->printName();
 } while(n) // delete all persons
 delete persPtr[--n]; // from memory
 } // end main()

The class person has a single data item, name, that holds a string representing a person’s name. Two
member functions, setName() and printName(), allow the name to be set and displayed.

At the end of the program, I use a while loop to delete the objects pointed to by all the pointers in the
persPtr array.

Program Operation

The main() function defines an array, persPtr, of 100 pointers to type person. In a do loop, it then
uses new to create a person object. It then asks the user to enter a name and gives this name to the new
person object. The pointer to the person object is stored in the array persPtr. To demonstrate how easy it
is to access the objects using the pointers, main() then prints out the name data for each person object,
using a simple for loop.

Here’s some sample interaction with program:

Enter name: Stroustrup <--user enters names
Enter another (y/n)? y
Enter name: Ritchie
Enter another (y/n)? y
Enter name: Kernighan
Enter another (y/n)? n
Person number 1 <--program displays all names stored
 Name is: Stroustrup
Person number 2
 Name is: Ritchie
Person number 3
 Name is: Kernighan

Accessing Member Functions

I need to access the member functions setName() and printName() in the person objects pointed to
by the pointers in the array persPtr. Each of the elements of the array persPtr is specified in array
notation to be persPtr[j] (or equivalently by pointer notation to be *(persPtr+j)). The elements are
pointers to objects of type person. Also, as you know, to access a member of an object using a pointer, you
use the -> operator. Putting this all together, we have the following syntax for getname():

persPtr[j]->getName()

This statement executes the getname() function for the person object pointed to by element j of the
persPtr array. (It’s a good thing we don’t have to write programs using English syntax.)

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Pointers

http://www.itknowledge.com/reference/archive/1571690638/ch08/457-460.html [21-03-2000 19:22:24]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch08/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Quiz 4

1. The new operator

a. is used to declare objects or variables.

b. can create and initialize an object.

c. names an object or variable.

d. returns a pointer to an object or variable.

e. can allocate an appropriate amount of memory for an object or
variable.

2. The delete operator

a. deallocates memory obtained with a variable or object definition.

b. deallocates memory obtained when a variable or object is created
with new.

c. can destroy an object.

d. can destroy a variable.

e. must be used with brackets, as in delete[].

3. If you define and initialize an xString object with a copy constructor,
like this:

xString x2(x1);

then it’s true that

a. the value of the pointer str in x1 will be copied to str in x2.

b. both xString objects will refer to the same char* string.

c. the char* string will be copied from x1 to x2.

d. x2 is an alias for x1.

e. you can change the text in x1 without affecting x2.

4. If you’ve created a new object using the statement

p = new X;

then to access a normal member function f() in the new object, you would
say

a. X.f();
b. X->f();
c. p.f();
d. p->f();
e. X::f();

5. If you have an array A of pointers to objects, then to call a member function
f() for the fourth object in the array you would say

a. A.f(3)
b. A->f(3)
c. A[3].f()
d. A->f()
e. A[3]->f()

Exercise 1

Write a program along the lines of the PTROBJS example in this session, but make it
work with airtime objects rather than with person objects. The program should
allow the user to enter an arbitrary number of airtime objects. It should then
display them.

Exercise 2

Create a class that obtains storage for integers. It should have a store() function
to insert an int value at the next available location and a get() function to read
the value in any specified location. To conserve memory, the class should use new to
get memory one chunk at a time. For example, a chunk could store 10 int values.
When store() is called for the 11th value, it must obtain another chunk of
memory using new. To the class user, the chunks are invisible; it appears as if the
integers are stored contiguously, as they would be in an array. The class, however,
maintains an array of pointers to chunks and accesses any given value by figuring
out what chunk it’s in and what number it has in the chunk.

Midchapter Discussion

George: I hate pointers! When I look at code that has pointers in it, my mind
just goes blank.

Estelle: I know what you mean. All those asterisks.
Don: Actually I think the asterisks are a big part of the problem. The idea

behind pointers is simple, but the notation is obscure. If they’d just
used a keyword like pointer_to to define each pointer, and maybe
a operator like contents_of() to get the contents of a pointer,
things would be a lot more understandable for beginners.

George: Why have both pointer notation and array notation for accessing array
elements?

Don: There’s not much point in actually accessing array elements with
pointer notation. It’s just educational to see that *(array+j) is the same
as array[j]. The assembly language code generated by the compiler
actually works with pointers, but it’s easier for humans to work with
arrays.

Estelle: Then what are pointers really for?

Don:
I think the most critical use is connecting together the parts of complex
data structures.

George: Like what?
Don: Linked lists and stuff like that, which I suppose we’ll get to later in this

chapter. We’ve already seen an array of pointers to objects, and the
pointer returned from new is important. I don’t know how you would
access dynamically allocated memory without a pointer.

Session 5: this and const

In this session, I discuss two short and somewhat unrelated topics: the this pointer,
with which a member function can access the object that called it, and const used
with pointers.

The this Pointer

If you’re an object, can you find out where you’re located in memory? You can, and
being able to do so has some surprising benefits.

The member functions of every C++ object have access to a sort of magic pointer
named this, which points to the object itself. Thus, any member function can
discover the address of the object that invoked it. Listing 8-11 is a short example,
WHERE, that shows the mechanism.

Listing 8-11 WHERE

// where.cpp
// the this pointer
#include <iostream.h>

class where
 {
 private:
 char charray[10]; // occupies 10 bytes
 public:
 void reveal()
 { cout << “\nMy object's address is ” << this; }
 };

void main()
 {
 where w1, w2, w3; // make three objects
 w1.reveal(); // see where they are
 w2.reveal();
 w3.reveal();
 }

The main() program in this example creates three objects of type where. It then
asks each object to print its address using the reveal() member function. This
function prints out the value of the this pointer. Here’s the output:

My object's address is 0x8f4effec
My object's address is 0x8f4effe2
My object's address is 0x8f4effd8

Because the data in each object consists of an array of 10 bytes, the objects are
spaced 10 bytes apart in memory (EC minus E2 is 10 decimal, and so is E2 minus
D8).

Incidentally, I should note that the this pointer is not available in static member
functions, because they are not associated with a particular object but with the class
as a whole.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Pointers

http://www.itknowledge.com/reference/archive/1571690638/ch08/460-463.html [21-03-2000 19:22:34]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch08/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Accessing Member Data with this

When you call a member function, it comes into existence with the value of its this
pointer set to the address of the object for which it was called. The this pointer can be
treated like any other pointer to an object, and can thus be used to access the data in the
object it points to, as shown in the DOTHIS program (Listing 8-12).

Listing 8-12 DOTHIS

// dothis.cpp
// the this pointer referring to data
#include <iostream.h>

class what
 {
 private:
 int alpha;
 public:
 void tester()
 {
 this->alpha = 11; // same as alpha = 11;
 cout << this->alpha; // same as cout << alpha;
 }
 };

void main()
 {
 what w;
 w.tester();
 }

This program simply prints out the value 11. The tester() member function accesses the
variable alpha using the expression

this->alpha

which has exactly the same effect as referring to alpha directly. This syntax works, but
there is no reason for it except to show that this does indeed point to w, the object that
invoked the member function tester().

Using this for Returning Values

A more practical use for this is returning values from member functions and overloaded
operators. What help is this in such situations?

As I’ve noted before, it’s always a good idea to return by reference when returning an
object, because this avoids the creation of unnecessary objects. However, you’ve seen that
you can’t return an automatic (defined within the function) variable by reference, because
such variables are destroyed when the function returns and the reference would refer to
something that no longer existed. For example, in the ASSIGN2 program in Chapter 6,
Session 6, I could not return the object by reference.

It would be nice to have something more permanent than a local object if I’m going to return
it by reference. What about returning the object for which a function was called? An object
is more permanent than its individual member functions. Member functions are created and
destroyed every time they’re called, but the object itself endures until it is destroyed by
some outside agency (e.g., when it is deleted). Thus, returning the object that called a
member function is a better bet than returning a temporary object created within the
function. The this pointer makes this easy.

Let’s rewrite the ASSIGN2 program from Chapter 6 to demonstrate returning an object.
Listing 8-13 shows ASSIGN3, in which the operator=() function returns by reference the
object that invoked it.

Listing 8-13 ASSIGN3

// assign3.cpp
// returns contents of the this pointer
#include <iostream.h>

class alpha
 {
 private:
 int data;
 public:
 alpha() // no-arg constructor
 { }
 alpha(int d) // one-arg constructor
 { data = d; }
 void display() // display data
 { cout << data; }
 alpha& operator = (alpha& a) // overloaded = operator
 {
 data = a.data; // (not done automatically)
 cout << “\nAssignment operator invoked”;
 return *this; // return ref to this alpha
 }
 };

void main()
 {
 alpha a1(37);
 alpha a2, a3;

 a3 = a2 = a1; // invoke overloaded =

 cout << “\na2=”; a2.display(); // display a2

 cout << “\na3=”; a3.display(); // display a3
 }

In this program, I declare the overloaded = operator as

alpha& operator = (alpha& a)

which returns by reference. The last statement in this function is

return *this;

Because this is a pointer to the object that invoked the function, *this is that object
itself, and the statement returns this object. Here’s the output of ASSIGN3:

Assignment operator invoked
Assignment operator invoked
a2=37
a3=37

Each time the equal sign is encountered in

a3 = a2 = a1;

the overloaded operator=() function is called, which displays Assignment
operator invoked. The three objects all end up with the same value, as shown by the
output.

Returning by reference from member functions and overloaded operators is a powerful and
commonly used approach that avoids the creation of unnecessary objects. This makes your
program smaller, faster, and less prone to errors.

Pointers and the const Modifier

I’ll finish this session with a different topic: the application of the const modifier to
pointers. I’ll begin by recalling how const is used with nonpointer variables, and then go
on to show how const can apply to either the address in the pointer or the contents of the
variable at that address.

const Variables

You’ve seen that if you want an ordinary (nonpointer) variable to be unchanged for the
duration of the program, you make it const. For example, following the definition

const int var1 = 123;

any attempt to modify var1 will elicit an error message from the compiler. It will have the
value 123 throughout the program.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Pointers

http://www.itknowledge.com/reference/archive/1571690638/ch08/463-465.html [21-03-2000 19:22:41]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch08/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Two Places for const

Things get more complicated when pointers enter the picture. When you define a pointer, you
can specify that the pointer itself is const, or that the value of what it points to is const, or
both. Let’s look at these possibilities. I’ll start with an ordinary variable and define three
pointers to it:

int a; // int variable

const int* p = &a; // pointer to constant int
++p; // ok
++(*p); // error: can't modify a const a

int* const q = &a; // constant pointer to int
++q; // error: can't modify a const q
++(*q); // ok

const int* const r = &a; // constant pointer to constant int
++r; // error: can't modify a const r
++(*r); // error: can't modify a const a

If const is placed before the data type (as in the definition of p), the result is a pointer to a
constant variable. If const is placed after the data type (as in the definition of q), the result
is a constant pointer to a variable. In the first case, you can’t change the value in the variable
the pointer points to; in the second, you can’t change the address in the pointer. Using const
in both places (as in the definition of r) means that neither the pointer nor the variable it
points to can be modified.

You should use const whenever possible. If a pointer value should never change, make the
pointer const. If the pointer should never be used to change what it points to, make it a
pointer to const.

All this may not seem vital in this example, because the variable a itself isn’t const. Why
worry about modifying it with a pointer if it can be modified directly? Things become more
realistic when you have a variable that’s already const and you want to define a pointer to
it:

const int b = 99; // const variable
int* r = &b; // error: can't convert const to non-const
const int* s = &b; // ok
int* const t = &b; // error: can't convert const to non-const

The compiler protects you from writing statements that could lead to the value of a const
variable being changed, even if the change takes place via a pointer. You can’t assign the
address of a const variable such as b to a pointer unless it’s defined as a pointer to a
constant variable (as is pointer s in the example). This maintains “constness” because you
can’t use such a pointer to modify the original const variable:

++(*s); // error:can't modify a const

Function Arguments and const

One place the use of const is important is when passing pointers to functions. The code
calling the function often wants to be sure that the function won’t modify whatever the
pointer points to. The function can guarantee this by specifying a pointer to a constant
variable:

void func(const int* p)
 {
 ++p; // ok
 ++(*p); // error: can't modify a constant int
 }

Better yet, the function can guarantee that both the pointer and what it points to will be
unchanged:

void func(const int* const p)
 {
 ++p; // error: can't modify a constant pointer
 ++(*p); // error: can't modify a constant int
 }

These techniques help reduce unexpected side effects when you call a function.

Returning const Values

To put the shoe on the other foot, a function that returns a pointer is in danger of having the
code that called the function mistakenly use the pointer to modify the constant that the pointer
points to. (This is only an issue with static or external variables, because variables local to the
function are automatically destroyed when the function returns.)

To avoid this, the compiler requires you to use a const return value for a function returning
a pointer to a constant. For example, if you define an external constant j:

const int j = 77;

then you can’t say

int* func()
 {
 return &j; // error: can't convert const to non-const
 }

because this would allow you to use the pointer returned by the function to modify j:

int* p = func();
*p = 88; // bad; modifies j

Instead, you must declare the function as

const int* func()
 {
 return &j; // ok
 }

Then the code that calls the function must assign the return value to a const:

const int* p = func() // ok

Because you can’t modify the contents of what p points to, j continues to be safe from
modification. Constness is preserved.

This discussion of const may seem complicated, but the reason for using const is simple:
It keeps constant variables from being modified. The beauty of this approach is that mistakes
are caught by the compiler, so there’s seldom any need for the debugging session that’s
necessary when you find your constants are being mysteriously modified at runtime.

Of course, you don’t absolutely need to use const with pointers (or anywhere else), but it is
an important aid in creating more robust and error-free programs.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Pointers

http://www.itknowledge.com/reference/archive/1571690638/ch08/465-467.html [21-03-2000 19:22:48]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch08/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Quiz 5

1. The this pointer

a. must never be accessed directly by the programmer.

b. must be initialized by the programmer.

c. is different in different versions of the same member
function that are invoked by different objects.

d. is different in different member functions called by the
same object.

e. points to the object that invoked a member function.

2. When you return *this from a function,

a. the return type of the function must be the same class as the
object that invoked the function.

b. the return type of the function must be a pointer to the same
class as the object that invoked the function.

c. you can usually return by reference.

d. you cannot return by value.

e. the object that invoked the function is destroyed.

3. By using const appropriately, you can define a pointer that
prevents any change to

a. the variable the pointer points to.

b. the contents of the pointer.

c. the address of the pointer.

d. the address of what the pointer points to.

e. the contents of what the pointer points to.

4. If a function is declared as

void f(const int* arg1);

a. it can’t change the contents of arg1.

b. it can’t change the value of the variable whose address is in
arg1.

c. it can’t access the contents of arg1.

d. it can’t access the value of the variable whose address is in
arg1.

e. the compiler will flag an error.

5. If a function is declared as

const int* f();

a. it can return a pointer to a constant variable.

b. it cannot return a pointer to a nonconstant variable.

c. the return value can’t be changed.

d. the value pointed to by the return value can’t be changed.

e. the return value must be assigned to a const variable.

Due to its theoretical nature, this session contains no exercises.

Session 6: A Memory-Efficient String Class

In this session, I’ll put together some of what you’ve learned about pointers,
and many other topics besides, to make an improved version of the
oft-encountered xString class.

To Copy or Not to Copy?

The versions of the xString class shown in previous chapters were not
very powerful. For example, they lacked an obvious feature of a good string
class: overloading the = operator so that the class user can assign the value
of one xString object to another with a statement such as

s2 = s1;

The next example will contain an xString class with an overloaded =
operator. Before I can write this operator, however, I need to decide how I
will handle the actual string (the variable of type char*), which is the
principal data item in the xString class.

One possibility is for each xString object to have its own char* string.
If I assign one xString object to another (from s1 into s2 in the
statement above), I simply copy the string from the source into the
destination object. The problem with this is that the same string now exists
in two (or maybe more) places in memory. This is not very efficient,
especially if the strings are long. Figure 8-13 shows the situation.

Figure 8-13 Replicating strings

Instead of having each xString object contain its own string, I could
arrange for each xString object to contain only a pointer to a string.
Now, if I assign one xString object to another, I need only copy the
pointer from one object to another. Both pointers will point to the same
string. This saves space because only a single copy of the string itself needs
to be stored in memory. Figure 8-14 shows how this looks.

Figure 8-14 Replicating pointers to strings

However, if I use this system, I need to be careful when I destroy an
xString object. If an xString’s destructor uses delete to free the
memory occupied by the string, and if there are other objects with pointers
pointing to the same string, then these other objects will be left with
pointers pointing to memory that no longer holds the string they think it
does; they become dangling pointers.

To use pointers to strings in xString objects successfully, I need a way to
keep track of how many xString objects point to a particular string so I
can avoid deleting the string until the last xString that points to it is itself
deleted. In the following section, you’ll see an example program, STRIMEM,
that shows one way to do this.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Pointers

http://www.itknowledge.com/reference/archive/1571690638/ch08/468-470.html [21-03-2000 19:22:59]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
javascript:displayWindow('images/08-13.jpg',328,226)
javascript:displayWindow('images/08-13.jpg',328,226)
javascript:displayWindow('images/08-14.jpg',328,223)
javascript:displayWindow('images/08-14.jpg',328,223)
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch08/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

A String Counter Class

Suppose I have several xString objects pointing to the same string and I want to keep a
count of how many xStrings point to the string. Where will I store this count?

It would be cumbersome for every xString object to maintain a count of how many of its
fellow xStrings were pointing to a particular string, so I don’t want to use a member variable
in xString for the count. Could I use a static variable? This is a possibility; I could create a
static array and use it to store a list of string addresses and counts. However, this requires
considerable overhead. It’s more efficient to create a new class to store the count. Each object
of this class, which I’ll call strCount, contains a count and also a pointer to the string itself.
Each xString object contains a pointer to the appropriate strCount object. Figure 8-15
shows the arrangement.

Figure 8-15 xString and strCount classes

A strCount object manages the char* string. Its constructor uses new to create the string,
and its destructor uses delete to delete it. To provide xString objects with access to the
count and the string within their strCount object, I supply strCount with a number of
short member functions: getstr(), getCount(), incCount(), and
decCount().Listing 8-14 shows STRIMEM.

Listing 8-14 STRIMEM

// strimem.cpp
// memory-saving xString class
// the this pointer in overloaded assignment
#include <iostream.h>
#include <string.h> // for strcpy(), etc
//
class strCount // keep track of number
 { // of unique strings
 private:
 int count; // number of xStrings
 char* str; // pointer to string
 public:
 strCount(const char* const s) // one-arg constructor
 {
 int length = strlen(s); // length of string argument
 str = new char[length+1]; // get memory for string
 strcpy(str, s); // copy argument to it
 count=1; // start count at 1
 }
 ~strCount() // destructor
 { delete[] str; }
 char* getstr() // get string
 { return str; }
 int getCount() // get count
 { return count; }
 void incCount() // increment count
 { ++count; }
 void decCount() // decrement count
 { --count; }
 }; // end class strCount
//
class xString // xString class
 {
 private:
 strCount* psc; // pointer to strCount
 public:
 xString() // no-arg constructor
 {
 psc = new strCount(“NULL”);
 }
 xString(const char* const s) // 1-arg constructor
 {
 psc = new strCount(s);
 }
 xString(const xString& S) // copy constructor
 {
 cout << “\nCOPY CONSTRUCTOR”;
 psc = S.psc;
 psc->incCount();
 }
 ~xString() // destructor
 {
 if(psc->getCount()==1) // if we are its last user,
 delete psc; // delete our strCount
 else // otherwise,
 psc->decCount(); // decrement its count
 }
 void display() // display the xString
 {
 cout << psc->getstr(); // print string
 cout << “ (addr=” << psc << “)”; // print address
 }
 // assignment operator
 xString& operator = (const xString& S)
 {
 cout << “\nASSIGNMENT”;
 if(psc->getCount()==1) // if we are its last user,
 delete psc; // delete our strCount
 else // otherwise,
 psc->decCount(); // decrement its count
 psc = S.psc; // use argument's strCount
 psc->incCount(); // increment count
 return *this; // return this object
 }
 }; // end class xString
//
void main()
 { // 1-arg constructor
 xString s1 = “When the fox preaches, look to your geese.”;
 cout << “\ns1=”; s1.display(); // display s1
 xString s2; // define s2
 s2 = s1; // set equal to s1
 cout << “\ns2=”; s2.display(); // display s2
 xString s3(s1); // initialize s3 to s1
 cout << “\ns3=”; s3.display(); // display s3
 }

In the main() part of STRIMEM, the program defines an xString object, s1, to contain the
proverb “When the fox preaches, look to your geese.” It defines another
xString s2 and sets it equal to s1; then it defines s3 and initializes it to s1. Setting s2
equal to s1 invokes the overloaded assignment operator, and initializing s3 to s1 invokes the
overloaded copy constructor. The program displays all three xStrings and the address of the
strCount object pointed to by each object’s psc pointer to show that they all refer to the
same strCount object (and hence the same char* string). Here’s the output from STRIMEM:

s1=When the fox preaches, look to your geese. (addr=0x8f510e3e)
ASSIGNMENT
s2=When the fox preaches, look to your geese. (addr=0x8f510e3e)
COPY CONSTRUCTOR
s3=When the fox preaches, look to your geese. (addr=0x8f510e3e)

Notice how short and simple main() is. Once you’ve written the classes, using them is easy.
The duties of the xString class are divided between the xString and strCount classes.
Let’s see what they do.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Pointers

http://www.itknowledge.com/reference/archive/1571690638/ch08/470-473.html [21-03-2000 19:23:07]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
javascript:displayWindow('images/08-15.jpg',400,488)
javascript:displayWindow('images/08-15.jpg',400,488)
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch08/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

The strCount Class

As I noted, the strCount class contains the pointer to the actual string
and the count of how many xString class objects point to this string. Its
single constructor takes a pointer to a string as an argument and creates a
new memory area for the string. It copies the string from the argument into
this area and sets the count to 1, because just one xString points to it
when it is created. The destructor in strCount frees the memory used by
the string. I use delete[] with brackets because a string is an array.
You’ll see in a moment under what circumstances the strCount object is
destroyed.

The xString Class

The xString class has three constructors. If a new string is being created,
as in the zero- and one-argument constructors, a new strCount object is
created to hold the string and the psc pointer is set to point to this object. If
an existing xString object is being copied, as in the copy constructor and
the overloaded assignment operator, then the pointer psc is set to point to
the old strCount object and the count in this object is incremented. The
overloaded assignment operator must also delete the old strCount object
pointed to by psc. (Here I don’t need brackets on delete because I’m
deleting only a single strCount object.) Figure 8-16 shows the action of
the overloaded assignment operator, and Figure 8-17 shows the copy
constructor.

Figure 8-16 Assignment operator in STRIMEM

Figure 8-17 Copy constructor in STRIMEM

Returning *this by Reference

To make possible the chaining of multiple assignment operators for
xString objects, as in the statement

s4 = s5 = s6;

I provide a return value from the operator=() function. Using the this
pointer, I can return by reference, thus avoiding the creation of extra
objects.

In this program, I provide communication between xString and
strCount using member functions in strCount. Another approach is to
make the xString class a friend of the strCount class. This obviates
the need for the access functions like getstr() and incCount() in
strCount. You’ll learn about friend classes in Chapter 9.

Quiz 6

1. The advantage of the xString class in the STRIMEM program,
compared with earlier versions of xString, is that

a. memory is saved.

b. the + operator is overloaded.

c. you can set one xString object equal to another.

d. objects can be initialized more quickly.

e. if you set one object equal to another, you can delete one
without invalidating the other.

2. When you set one xString object from STRIMEM equal to
another, as in

s2 = s1;

a. s1 is copied memberwise into s2.

b. a char* string is copied from s1 to s2.

c. a pointer is copied from s1 to s2.

d. the pointer-to-strCount in s2 is changed.

e. the count in the strCount pointed to by s1 is changed.

3. The count stored in objects of the strCount class represents

a. how many xString objects the strCount object points
to.

b. how many char* strings the strCount object points to.

c. the number of xString objects in the program.

d. the number of xString objects using that strCount.

e. how many times the corresponding xString object has
been referenced.

4. The const in the argument in the copy constructor declarator for
xString in STRIMEM means that

a. the object for which the copy constructor is invoked can’t
be modified.

b. the object for which the copy constructor is invoked will
point to the same strCount as the argument to the copy
constructor.

c. the newly initialized object is const.

d. the copy constructor can’t modify the original object.

e. the copy constructor can’t modify the new object.

5. The fact that the overloaded = operator uses a reference return for
the object that invoked it means that

a. the = operator can be chained.

b. no extra xString objects are created if the = operator
used, whether it assigns the return value to a variable or not.

c. no extra xString objects are created if the = operator is
chained.

d. the = operator can be used to set one xString equal to
another.

e. the copy constructor can use the same code as the =
operator.

Exercise 1

Create a member function of xString, called mid(), that returns a new
xString that is a substring from the middle part of the xString that
invoked the function The first argument to this function is the character
number where the substring starts (starting at 0 on the left), and the second
argument is the number of characters in the substring. For example, if s2 is
“dogs and chickens”, then the statement

s1 = s2.mid(5, 3)

will set s1 to “and”.

Exercise 2

Overload the + operator in the xString class so you can concatenate
xString objects. For example, if s1 is “Harry”, s2 is “ ”, and s3 is
“Brown” and you execute

name = s1 + s2 + s3;

then name should have the value “Harry Brown”.

Session 7: A Linked List Class

The next example demonstrates a simple linked list. What is a linked list?
It’s another way to store data. You’ve seen numerous examples of data
stored in arrays and examples of arrays of pointers to data objects. Both the
array and the array of pointers suffer from the necessity to declare a
fixed-size array before running the program. The linked list allows you to
use exactly as much memory as you need, even when you don’t know how
much this will be until the program is running.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Pointers

http://www.itknowledge.com/reference/archive/1571690638/ch08/473-477.html [21-03-2000 19:23:21]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
javascript:displayWindow('images/08-16.jpg',385,634)
javascript:displayWindow('images/08-16.jpg',385,634)
javascript:displayWindow('images/08-17.jpg',384,471)
javascript:displayWindow('images/08-17.jpg',384,471)
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch08/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

A Chain of Pointers

The linked list provides a more flexible storage system in that it doesn’t use arrays at all. Instead,
space for each data item is obtained as needed with new and each item is connected, or linked, to
the next item using a pointer. The individual items don’t need to be located contiguously in
memory as array elements are; they can be scattered anywhere there’s room for them.

In the example, the entire linked list is an object of class linklist. The individual data items,
or links, are represented by structures of type link. (I could have used class objects for the
links, but there’s no point because they don’t need member functions.) Each such structure
contains an integer—representing the object’s single data item—and a pointer to the next link.
The linklist object itself stores a pointer to the link at the head of the list; this is its only data
item. The arrangement is shown in Figure 8-18.

Figure 8-18 A linked list

The linklist class contains member functions that allow the class user to add a link to the list
and to display the data in all the links. Of course, in a real program there would be much more
data than a single int stored in each link. A link might contain a complete personnel file or the
inventory data on a car part, for example. Listing 8-15 shows LINKLIST.

Listing 8-15 LINKLIST

// linklist.cpp
// linked list
#include <iostream.h>

struct link // one element of list
 {
 int data; // data item
 link* next; // pointer to next link
 };

class linklist // a list of links
 {
 private:
 link* first; // pointer to first link
 public:
 linklist() // no-argument constructor
 { first = NULL; } // no first link yet
 void additem(int d); // add data item (one link)
 void display(); // display all links
 };

void linklist::additem(int d) // add data item
 {
 link* newlink = new link; // make a new link
 newlink->data = d; // give it data
 newlink->next = first; // it points to next link
 first = newlink; // now first points to this
 }

void linklist::display() // display all links
 {
 link* current = first; // set ptr to first link
 while(current != NULL) // quit on last link
 {
 cout << endl << current->data; // print data
 current = current->next; // move to next link
 }
 }

void main()
 {
 linklist li; // make linked list
 li.additem(25); // add four items to list
 li.additem(36);
 li.additem(49);
 li.additem(64);
 li.display(); // display entire list
 }

The linklist class has only one member data item: the pointer to the start of the list. When
the list is first created, the constructor initializes this pointer, first, to NULL. The NULL
constant is defined in the mem.h header file (which is #included in the iostream.h file) to be
0. This value serves as a signal that a pointer does not hold a valid address. In the program, a link
whose next member has a value of NULL is assumed to be at the end of the list.

Adding an Item to the List

The additem() member function adds an item to the linked list. A new link is inserted at the
beginning of the list. (I could write the additem() function to insert items at the end of the
list, but that would be a more complex program because I would need to step through the list to
the end before inserting the new item.) Let’s look at the steps involved in inserting a new link in
additem().

First, a new structure of type link is created by the line

link* newlink = new link;

This creates memory for the new link structure with new and saves the pointer to it in the
newlink variable.

Next, I want to set the members of the newly created structure to appropriate values. A structure
is just like a class in that when it is referred to by pointer rather than by name, its members are
accessed using the -> member access operator. The following two lines set the data variable to
the value passed as an argument to additem() and the next pointer to point to whatever
address was in first, which holds the pointer to the start of the list.

newlink->data = d;
newlink->next = first;

Finally, I want the first variable to point to the new link:

first = newlink;

The effect is to uncouple the connection between first and the old first link and insert the new
link, moving the old first link into the second position. Figure 8-19 shows this process.

Figure 8-19 Adding a link to a linked list

Displaying the List Contents

Once the linked list is created, it’s easy to step through all the members, displaying them (or
performing other operations). All I need to do is follow from one next pointer to another until I
find a next that is NULL, signaling the end of the list. In the function display(), the line

cout << endl << current->data;

prints the value of the data, and

current = current->next;

moves me along from one link to another, until

current != NULL

in the while expression becomes false. Here’s the output of LINKLIST:

64
49
36
25

Linked lists are perhaps the most commonly used data storage arrangements after arrays. As I
noted, they avoid the wasted memory space engendered by arrays. The disadvantage is that
finding a particular item on a linked list requires following the chain of links from the head of the
list until the desired link is reached. This can be time-consuming. An array element, on the other
hand, can be accessed quickly, provided its index is known in advance.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Pointers

http://www.itknowledge.com/reference/archive/1571690638/ch08/477-480.html [21-03-2000 19:23:44]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
javascript:displayWindow('images/08-18.jpg',500,245)
javascript:displayWindow('images/08-18.jpg',500,245)
javascript:displayWindow('images/08-19.jpg',476,297)
javascript:displayWindow('images/08-19.jpg',476,297)
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch08/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Self-Containing Classes

I should note a possible pitfall in the use of self-referential classes and
structures. The link structure in LINKLIST contained a pointer to the same
kind of structure. You can do the same with classes:

class sampleclass
 {
 sampleclass* ptr; // this is fine
 };

However, although a class can contain a pointer to an object of its own
type, it cannot contain an object of its own type:

class sampleclass
 {
 sampleclass obj; // can't do this
 };

This is true of structures as well as classes.

Augmenting the linklist Program

The general organization of LINKLIST can be used in a more complex
situation than that shown. As I noted, there could be more data in each link.
Instead of an integer, a link could hold a number of data items or it could
hold a pointer to a structure or object.

Additional member functions of the linklist class could perform such
activities as adding and removing links from an arbitrary location in the
chain. Another important member function is a destructor. As I mentioned,
it’s important to delete blocks of memory that are no longer in use. A
destructor that performs this task would be a highly desirable addition to the
linklist class. It could go through the list using delete to free the
memory occupied by each link.

Containers

The linklist class is an example of a container class. Container classes
are used for storing (containing) data. In Chapter 12 I’ll investigate the
Standard Template Library (STL), which includes such containers as
vectors, lists, sets, and deques.

The linked list stores integers and only integers. Most commercial container
classes (including the STL) allow containers to store any kind of object or
basic type by implementing the container as a template. You’ll learn more
about templates in Chapter 11.

Quiz 7

1. Which of the following are advantages of a linked list as a
data-storage device?

a. You can quickly access an item with specified
characteristics.

b. The size of the data storage area can expand and contract
dynamically.

c. You can quickly insert a new item.

d. You can quickly delete an existing item with specified
characteristics.

e. The first item entered is the first to be removed.

2. The end of the linked list is signaled by

a. the current link number equaling the total number of links.

b. a 0 value in the data item in any link.

c. a NULL value in the next variable of the last link.

d. a NULL value in the first variable in linklist.

e. a pointer pointing back to first.

3. To add a new link to the linked list, using the scheme in INKLIST,
a member function must

a. ask the program’s user to enter the data that will be stored
in the link.

b. change first so it points to the new link.

c. leave the value of first unchanged.

d. set the next pointer in the new link so it points to the last
link.

e. set the next pointer in the new link so it has whatever
value was previously in first.

4. If a member function of linklist’s purpose is to delete a link
that held specific data, this function would need to

a. step through the list, looking for the link to be deleted.

b. create a temporary link with a NULL pointer.

c. use delete to delete a link.

d. put the address of the deleted link in first.

e. rearrange the pointer in the previous link to bypass the
deleted link.

5. Suppose you define a linklist object, as specified in the
LINKLIST program above, as an automatic variable in a standalone
(nonmember) function f(). Then, within f(), you add numerous
links to the list. Which of the following will happen when f()
terminates?

a. The linklist object will continue to occupy memory.

b. The first pointer will point to an invalid address.

c. The links will continue to occupy memory.

d. The data in the links can be accessed by calling f() again
and creating a new linklist object.

e. The list can be accessed from some other function.

Exercise 1

Write a destroy_list() member function for the linklist class. It
should follow the chain from link to link, deleting each link as it goes, and
set first to NULL.

Exercise 2

Write a remove_item() member function for the linklist class. It
should chain through the list, looking for a link with a data item that
matches a value supplied by the program’s user. When remove_item()
finds this link, it should delete it and rearrange the pointers so the previous
link points to the next link. (That is, if you delete link 6, then the pointer in
link 5 should end up pointing to link 7.)

Session 8: A Sorted Array Class

In this session I’ll examine another container class. This one, called
SortedArray, models an array that automatically arranges its elements
in sorted order. The meaning of “sorted” depends on what’s stored in the
array. In this example, I store pointers to objects of class employee. The
data in each employee object includes an employee number; the
SortedArray object will ensure that the pointers-to-employee are
arranged in order of increasing employee number.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Pointers

http://www.itknowledge.com/reference/archive/1571690638/ch08/481-483.html [21-03-2000 19:24:02]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch08/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Inserting Objects in Sorted Order

When you insert a new employee object in SortedArray, its pointer is automatically
placed in the appropriate location and the pointers above it in the array are moved up to give it
room, as shown in Figure 8-20.

Figure 8-20 Insertion into a SortedArray

Listing 8-16 shows SORTEMPS.

Listing 8-16 SORTEMPS

// sortemps.cpp
// sorted array class holds sorted employee objects
#include <iostream.h>
//
class employee // employee class
 {
 private:
 enum { LEN=30 }; // maximum length of names
 char name[LEN]; // employee name
 unsigned long number; // employee number
 public:
 void getdata() // get data from user
 {
 cout << “\n Name: ”; cin >> name;
 cout << “ Number: ”; cin >> number;
 }
 void putdata() const // display data
 {
 cout << “\n Name = ” << name;
 cout << “\n Number = ” << number;
 }
 unsigned long get_number() const // return emp number
 { return number; }
 };
//
class SortedArray
 {
 private:
 enum {SIZE=100};
 employee* arr[SIZE]; // array of pointers to emps
 int total; // number of emps in array
 public:
 SortedArray() : total(0) // no-arg constructor
 { }
 employee* operator[](int) const; // declarations
 void insert(employee*);
 };
 // read data from element n
employee* SortedArray::operator[](int n) const
 { return arr[n]; }
 // insert in sorted order
void SortedArray::insert(employee* data)
 {
 int j = 0;
 while(j < total && // find correct place
 data->get_number() > arr[j]->get_number())
 j++;
 for(int k=total; k>j; k--) // move higher elements up
 arr[k] = arr[k-1];
 arr[j] = data; // insert new data
 total++; // now it has one more element
 }
//
void main()
 {
 SortedArray sa; // a sorted array
 employee* ptr; // utility pointer
 char answer; // 'y' or 'n'
 int total = 0; // number of employees in array
 do
 {
 ptr = new employee; // make an employee
 cout << “Enter data for employee ” << ++total << “: ”;
 ptr->getdata(); // get employee data from user
 sa.insert(ptr); // put employee in sorted array
 cout << “Do another (y/n)? ”;
 cin >> answer;
 }
 while(answer != 'n');
 cout << “\nCONTENTS SORTED BY NUMBER” << endl;
 for(int j=0; j<total; j++) // display data in order
 {
 cout << “\nEmployee ” << (j+1);
 sa[j]->putdata();
 }
 }

Here’s some sample interaction with SORTEMPS in which the user enters data for five
employees:

Enter data for employee 1:
 Name: Wesley
 Number: 456
Do another (y/n)? y
Enter data for employee 2:
 Name: McDonald
 Number: 234
Do another (y/n)? y
Enter data for employee 3:
 Name: O'Hara
 Number: 345
Do another (y/n)? y
Enter data for employee 4:
 Name: Chang
 Number: 123
Do another (y/n)? y
Enter data for employee 5:
 Name: Aaron
 Number: 567
Do another (y/n)? n

CONTENTS SORTED BY NUMBER

Employee 1
 Name = Chang
 Number = 123
Employee 2
 Name = McDonald
 Number = 234
Employee 3
 Name = Wesley
 Number = 345
Employee 4
 Name = O'Hara
 Number = 456
Employee 5
 Name = Aaron
 Number = 567

The program has three parts: the employee class, the SortedArray class, and main().

The employee Class

The data in class employee consists of a name (a char* string) and the employee number. A
getdata() member function gets data for an employee object from the user, and a
putdata() function displays the data. There’s also a get_number() function, which is
needed by the SortedArray class to find an employee’s number. It uses the number to insert
new employees in the correct location.

The SortedArray Class

The important data item in the SortedArray class is an array of pointers to employees.
There’s also an integer, total, that indicates how many objects are stored in the sorted array.
A no-argument constructor sets total to 0 because the array starts out empty.

There are two member functions in SortedArray. The overloaded [] operator allows access
to the element with a specified index. This is a read-only operator; it can’t be used to set the
value of a specified element. That’s because the SortedArray itself, rather than the user,
determines where each element will be inserted. If the user could insert an object at an arbitrary
location, the order could be disrupted.

To insert an element in the SortedArray, the user calls the insert() member function.
This function’s only argument is a pointer to the object to be inserted. First, insert()
examines the employee objects that are pointed to by the pointers in its array. The pointers
are arranged in order of increasing employee numbers in the objects they point to.

When insert() finds an object with a higher employee number than the one it’s trying to
insert, it knows it should insert the new object just before this one. But first, insert() must
move all the pointers that have higher employee numbers up one space to create room for the
new element. This is handled by the for loop. Finally, a pointer to the new object is inserted in
the newly vacated element.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Pointers

http://www.itknowledge.com/reference/archive/1571690638/ch08/483-487.html [21-03-2000 19:24:15]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
javascript:displayWindow('images/08-20.jpg',450,465)
javascript:displayWindow('images/08-20.jpg',450,465)
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch08/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

In main()

The main() program creates a sorted array; then, in a do loop, it repeatedly creates
employee objects, using new, and asks the user to fill them with data. The address of each
employee object is then inserted into the sorted array. When the user is done inserting
employees, the contents of the entire sorted array are displayed. Because they were inserted in
sorted order, it’s easy to display them in sorted order by accessing each element in turn.

Searching for a Specific Element

One of the advantages of a sorted array is that you can quickly locate a data item with a
particular value for some variable (provided the array has been sorted using this same variable).
In the next example, I’ll show how you can search for an employee object with a specified
employee number.

In a sorted array, you can use a binary search to locate the specified element. A binary search is
very fast. In an array of 1,000 elements, for example, a binary search would require you to
examine only 10 elements; whereas if the array were not sorted, you would need to look through
all the elements one by one, requiring, on average, the examination of 500 elements, a lengthy
process.

A binary search consists of repeatedly dividing the array in half. An analogy is when someone
asks you to guess a number between, say, 1 and 100, and the person agrees to tell you if your
guess is too big or too small. You start by guessing 50. If that guess is too small, you guess 75
(halfway between 50 and 100). If that’s too big, you guess 62 (halfway between 50 and 75). If
that’s too big, you guess 56 (halfway between 50 and 62); if that’s too small, you guess 59; if
that’s too small, you guess 60, and either that or 61 must be the answer. The process is shown in
Figure 8-21.

Figure 8-21 A binary search

In the SortedArray of employee objects, you first examine the object in the middle of the
array. If the employee number you’re looking for is larger than that contained in this middle
element, you can forget the bottom half of the array and concentrate on the top half. Or, if the
number you’re looking for is less than the middle element, you can concentrate on the bottom
half. You repeat this process, dividing the relevant half into quarters, and the relevant quarter
into eighths, and so on, until you’ve narrowed the search to a single element. If this element
doesn’t have a matching number, the search fails. Listing 8-17 shows FINDEMP.

Listing 8-17 FINDEMP

// findemp.cpp
// sorted array class holds sorted employee objects
// finds employee with binary search
#include <iostream.h>
#include <string.h>
//
class employee // employee class
 {
 private:
 enum { LEN=30 }; // maximum length of names
 char name[LEN]; // employee name
 unsigned long number; // employee number
 public:
 // 2-arg constructor
 employee(char* na, unsigned long nu) : number(nu)
 { strcpy(name, na); }

 void putdata() const // display data
 {
 cout << “\n Name = ” << name;
 cout << “\n Number = ” << number;
 }
 // return employee number

 unsigned long get_number() const
 { return number; }
 };
//
class SortedArray
 {
 private:
 enum {SIZE=100}; // size of array
 employee* arr[SIZE]; // define array
 int total; // number of objects in array
 public:
 SortedArray() : total(0)
 { }
 employee* operator[](int) const;
 void insert(employee*);
 employee* search(unsigned long);
 };
 // read data from element n
employee* SortedArray::operator[](int n) const
 { return arr[n]; }
 // insert in sorted order
void SortedArray::insert(employee* data)
 {
 int j = 0;
 while(j < total && // find correct place
 data->get_number() > arr[j]->get_number())
 j++;
 for(int k=total; k>j; k--) // move higher elements up
 arr[k] = arr[k-1];
 arr[j] = data; // insert new data
 total++; // now it has one more element
 }

// binary search for employee with specified employee number
employee* SortedArray::search(unsigned long num_to_find)
 {
 int lower = 0; // range of index numbers
 int upper = total; // to be searched
 int index; // place to look

 while(upper > lower) {
 if(upper-lower > 1)
 index = lower + (upper-lower)/2; // find middle
 else // side-by-side
 index = upper = lower; // merge them

 employee* ptr = arr[index]; // get ptr to emp
 unsigned long num = ptr->get_number(); // get emp number
 if(num == num_to_find) // if exactly right,
 return ptr; // return pointer to emp
 if(num < num_to_find) // if emp number too low,
 lower = index; // move lower bound up
 else // if too high,
 upper = index; // move upper bound down
 }
 return NULL; // no match
 }
//
void main()
 {
 int j;
 SortedArray sa; // a sorted array
 unsigned long number; // number to find
 employee* pemp; // ptr to found employee
 const int LIMIT = 10; // number of employees

 employee emparr[LIMIT] = // array of employees
 { employee(“Webley”, 468L), // (note use of constructors
 employee(“Suzuki”, 672L), // for initialization)
 employee(“Smith”, 371L),
 employee(“Gonzalez”, 274L),
 employee(“Wong”, 431L),
 employee(“LeMonde”, 789L),
 employee(“Weinstein”, 147L),
 employee(“DeCarlo”, 223L),
 employee(“Nguyen”, 390L),
 employee(“O'Grady”, 573L) };

 for(j=0; j<LIMIT; j++) // insert address of each
 sa.insert(emparr+j); // employee into SortedArray

 for(j=0; j<LIMIT; j++) // display data in order
 {
 cout << “\nEmployee ” << (j+1);
 sa[j]->putdata();
 }
 cout << “\n\nEnter employee number to search for: ”;
 cin >> number;
 pemp = sa.search(number); // search for employee
 if(pemp != NULL)
 {
 cout << “\nEmployee with that number is”;
 pemp->putdata();
 }
 else
 cout << “\No such employee number in database.”;
}

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Pointers

http://www.itknowledge.com/reference/archive/1571690638/ch08/487-491.html [21-03-2000 19:24:25]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
javascript:displayWindow('images/08-21.jpg',396,624)
javascript:displayWindow('images/08-21.jpg',396,624)
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch08/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

The Binary Search

The search() member function of SortedArray carries out the binary search. It
takes as its only argument the number of the employee to be found. If it succeeds in
finding the desired employee, it returns a pointer to it. If it can’t find a match, it returns
NULL.

The function begins by defining a range specified by an upper bound and a lower bound
(the variables lower and upper). It also defines an index (index) that is set to the
midpoint of the range. It’s the element at this index whose employee number will be
examined. Initially, the range is the entire array, but each time the function finds that the
element at the index has an employee number greater or less than the one it’s looking
for, it changes either the upper or the lower bound to be the same as the index. This
divides the range in half, and the function then sets index to the middle of the new range
and examines the object there. When the upper and lower bounds differ by only one
element, it sets them equal, and after one more comparison, the loop ends whether a
match has been found or not.

You could also use a binary search in the insert() member function in
SortedArray to find where to insert a new member. This would speed up the
insertion process, especially for large arrays.

Constructors Used to Initialize Array

In this program, rather than ask the user to supply employee data, I provide an ordinary
C++ array of employee objects already initialized to values. This requires a
two-argument constructor in employee:

employee(char* na, unsigned long nu) : number(nu)
 { strcpy(name, na); }

This constructor is called for each element when I define the array in main():

 { employee(“Webley”, 468L),
 employee(“Suzuki”, 672L),
 ...
 employee(“O'Grady”, 573L) };

You might think you could initialize an array of objects as you would a structure:

employee emparr[LIMIT] = { {“Webley”, 468L}, // not
 {“Suzuki”, 672L}, // a
 . . . // legal
 {“O'Grady”, 573L} }; // syntax

However, this won’t work. When you initialize a class object, its constructor must
always be called.

Quiz 8

1. Suppose pointers to person objects are placed in a sorted array according to
a characteristic called height, with lower height values occupying lower
array indexes. This is a good arrangement if

a. the height of many person objects is not known when they are
inserted in the array.

b. no two objects have the same value for height.

c. the array index occupied by an object must reflect the order in which it
was inserted.

d. single objects will be retrieved using their height characteristic.

e. all the objects in the array will be accessed in order, from shortest to
tallest.

2. Storing pointers to objects in an array, rather than storing the objects
themselves, has the advantage that

a. objects stored in an array take up less space than those allocated with
new.

b. an object with a given index can be accessed more quickly.

c. the objects can be sorted more easily.

d. it’s quicker to organize storage for a new object.

e. an object with a specified characteristic can be accessed more quickly.

3. In the FINDEMP program, when you insert a pointer to a new employee
object into a SortedArray object,

a. you must examine every array element with an employee number less
than the one you’re going to insert.

b. the total member of SortedArray is incremented.

c. the pointer goes at the smallest empty index.

d. you must move the pointers to all objects that have employee numbers
greater than that of the new object.

e. you must move all the pointers that have index values greater than that
of the new object.

4. In a binary search of a sorted array,

a. each comparison divides the range to be searched into thirds.

b. from an efficiency standpoint, it doesn’t really matter whether the array
contains objects or pointers to objects.

c. if the array has 32 elements, you’ll need to do about 6 (or possibly
fewer) comparisons.

d. from an efficiency standpoint, it doesn’t really matter whether the array
is sorted or not.

e. the array should be sorted using the same characteristic that’s being
searched for.

5. To initialize three objects of class X, which require a one-argument
constructor and are elements in an array A, you might say

a. X A[SIZE] = { 121, 232, 343 };
b. X A[SIZE] = { X(121), X(232), X(343) };
c. X A[SIZE] = { A(121), A(232), A(343) };
d. X A[SIZE] = X(121, 232, 343);
e. The objects can be initialized only after the array is defined.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Pointers

http://www.itknowledge.com/reference/archive/1571690638/ch08/491-493.html [21-03-2000 19:24:33]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch08/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Exercise 1

Change the insert() member function in SortedArray so it uses a
binary search to find where to insert a new element, rather than simply
stepping through all the elements from the beginning.

Exercise 2

Change the SortedArray class in FINDEMP so the array is sorted
according to employee name rather than number. The names should be in
alphabetical order. You can use the strcmp() library function to compare
two names.

Summary: Chapter 8

In this chapter I’ve introduced pointers and shown some typical uses for
them.

A pointer is a variable that holds the memory address of some other
variable. Pointers are a way of connecting parts of a program: A pointer in
one part of a program points to another part of the program. For example,
the new operator returns a pointer to a section of memory. Links in a linked
list contain a pointer to the next link. An array of pointers allows access to
any object whose pointer is in the array, and so on.

The this pointer, generated by the compiler, is automatically defined
within most member functions and always points to the object that invoked
the function. For example, if you say

objA.func();

then when func() is executed, it will contain a this pointer to objA.

It’s good to use const wherever possible to avoid mistakenly changing
values that shouldn’t be changed. A pointer can be const in two different
ways: The variable pointed to by the pointer may be const or the address
in the pointer, specifying what variable is pointed to, may be const.

End-Of-Chapter Discussion

Estelle: The this pointer is just as cute as can be.
Don: It is useful for returning objects.
George: Why is it such a big deal to keep from making extra copies of

objects?
Estelle: Objects can be a lot bigger than basic type variables, so

copying them takes time and memory.
Don: And there can be weird side effects to making copies. Some

programs really care how many objects there are and get
confused if there are extra ones.

Estelle: That’s why it’s nice to pass and return objects by reference,
and that’s why you need to return *this, so you have a more
or less permanent object to return by reference. If you don’t
mind making a copy, you can make a temporary object and
return it by value.

George: Putting const everywhere sure clutters up the listing. I never
use it; it makes things look too messy.

Estelle: Well, in small programs you can get away with not using
const. But when projects get big and hairy and complicated,
you really want the compiler to help you find errors. The more
you use const, the more the compiler can stop you from
trying to change a constant.

Don: Absolutely. But if const bothers you, it probably doesn’t hurt
to write the code first without it and then go back and put it in
later after you’ve conceptualized everything.

George: All of a sudden we’re spending all our time talking about
container classes. What’s that got to do with C++?

Don: You need to know about data storage structures whether you’re
using a procedural language or OOP. But in C++, containers
make really good examples. You can make them into objects
and put other objects in them.

Estelle:
And you learn a lot about pointers when you write a container
class.

Don: That’s for sure. But don’t worry too much if you don’t follow
all the details of the containers. It’s the stuff you’d normally
learn in a Data Structures and Algorithms class in computer
science. In the real world, you’ll probably buy a set of
containers from someone or use the ones that come with your
compiler. In the meantime, just try to follow the OOP aspects
of containers.

George: Yeah, well, I’ll get to that as soon as I figure out what all these
asterisks mean.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Pointers

http://www.itknowledge.com/reference/archive/1571690638/ch08/493-494.html [21-03-2000 19:24:41]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch08/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

CHAPTER 9
VIRTUAL FUNCTIONS AND FRIEND
FUNCTIONS

The first and largest part of this chapter is concerned with virtual functions, one of the
major features of C++. Virtual functions make it possible to change the overall architecture
of programs in surprising and powerful ways. The ideas involved in virtual functions are
not trivial, so I’ll introduce them gradually, covering the fundamentals first, then showing
some expanded examples of their use, and then covering some additional features.

Later in this chapter, I’ll examine friend functions and classes. Friends are a C++
concession to reality. Strict encapsulation and data hiding are usually highly desirable, but
occasionally situations arise where an exception to the rules makes life easier. Friends
provide an organized approach to liberalizing C++ strictness and, as it turns out, don’t
compromise data integrity in a serious way. I’ll show the common situations in which
friends are used.

Session 1: Introduction to Virtual Functions

There are three major concepts in object-oriented programming. The first is classes and the
second is inheritance. You’ve already seen these ideas at work. In this chapter I’ll examine
the third major concept: polymorphism, which is implemented in C++ by virtual functions.

Polymorphism

In real life, there is often a collection of different kinds of things that, given identical
instructions, should take different actions. Take students, for example. There may be many
kinds of students in a university: language students, premed students, computer science
majors, athletes. Suppose you are the dean of this university and you want to send a
directive to all students: “Fill out your registration forms!” Different kinds of students have
different registration forms because they’re in different departments. But as the dean, you
don’t need to send a different message to each group (“Fill out the premed registration
form” to the premed students; “Fill out the engineering registration form” to engineers; and
so on). One message works for everyone because everyone knows how to fill out his or her
own particular version of the registration form.

Polymorphism means “taking many shapes.” The dean’s single instruction is polymorphic
because it looks different to different kinds of students. To the premed student, it’s an
instruction to fill out the premed form, whereas to the English major, it’s an instruction to
fill out the liberal arts form.

Typically, polymorphism occurs in classes that are related by inheritance. In C++,
polymorphism means that a call to a member function will cause a different function to be
executed depending on the type of object that invokes the function.

This sounds a little like function overloading, but polymorphism is a different, and much
more powerful, mechanism. One difference between overloading and polymorphism has to
do with which function to execute when the choice is made. With function overloading, the
choice is made by the compiler. With polymorphism, it’s made while the program is
running. Function overloading is merely a convenience for a class user, whereas
polymorphism affects the entire architecture of a program.

This is all rather abstract, so let’s start with some short programs that show parts of the
situation, and put everything together later. In practice, virtual functions are associated
with pointers to objects, so let’s see how they work together.

Normal Member Functions Accessed with Pointers

The first example shows what happens when a base class and derived classes all have
functions with the same name and these functions are accessed using pointers but without
using virtual functions. Listing 9-1 shows NOTVIRT.

Listing 9-1 NOTVIRT

// notvirt.cpp
// normal member functions accessed using pointers to objects
#include <iostream.h>

class Base // base class
 {
 public:
 void show() // normal function
 { cout << “\nBase”; }
 };
class Derv1 : public Base // derived class 1
 {
 public:
 void show()
 { cout << “\nDerv1”; }
 };
class Derv2 : public Base // derived class 2
 {
 public:
 void show()
 { cout << “\nDerv2”; }
 };
void main()
 {
 Derv1 dv1; // object of derived class 1
 Derv2 dv2; // object of derived class 2
 Base* ptr; // pointer to base class

 ptr = &dv1; // put address of dv1 in pointer
 ptr->show(); // execute show()

 ptr = &dv2; // put address of dv2 in pointer
 ptr->show(); // execute show()
 }

The Derv1 and Derv2 classes are derived from class Base. All three classes have a
member function show(). In main(), the program creates objects of class Derv1 and
Derv2 and a pointer to class Base. Then it puts the address of a derived class object in
the base class pointer in the line

ptr = &dv1; // derived class address in base class pointer

Remember that it’s perfectly all right to assign an address of one type (Derv1) to a pointer
of another (Base), because pointers to objects of a derived class are type compatible with
pointers to objects of the base class.

Now the question is, when you execute the next statement

ptr->show();

what function is called? Is it Base::show() or Derv1::show()?

I can ask the same question after I put the address of an object of class Derv2 in the
pointer and again try to execute its show() function:

ptr = &dv2; // put address of dv2 in pointer
ptr->show();

Which of the show() functions is called here: Base::show() or Derv2::show()?
The output from the program answers these questions:

Base
Base

The function in the base class is executed in both cases. The compiler ignores the contents
of the pointer ptr and chooses the member function that matches the type of the pointer,
as shown in Figure 9-1.

Figure 9-1 Nonvirtual pointer access {Fig 13-1 in “OOP in C++”}

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Virtual Functions and Friend Functions

http://www.itknowledge.com/reference/archive/1571690638/ch09/495-498.html [21-03-2000 19:25:00]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
javascript:displayWindow('images/09-01.jpg',398,355)
javascript:displayWindow('images/09-01.jpg',398,355)
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch09/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Virtual Member Functions Accessed with Pointers

Let’s make a single change in the program: I’ll place the keyword virtual in front
of the declarator for the show() function in the base class. Listing 9-2 shows the
resulting program, VIRT.

Listing 9-2 VIRT

// virt.cpp
// virtual functions accessed from pointer
#include <iostream.h>
class Base // base class
 {
 public:
 virtual void show() // virtual function
 { cout << “\nBase”; }
 };
class Derv1 : public Base // derived class 1
 {
 public:
 void show()
 { cout << “\nDerv1”; }
 };
class Derv2 : public Base // derived class 2
 {
 public:
 void show()
 { cout << “\nDerv2”; }
 };
void main()
 {
 Derv1 dv1; // object of derived class 1
 Derv2 dv2; // object of derived class 2
 Base* ptr; // pointer to base class

 ptr = &dv1; // put address of dv1 in pointer
 ptr->show(); // execute show()

 ptr = &dv2; // put address of dv2 in pointer
 ptr->show(); // execute show()
 }

The output of this program is

Derv1
Derv2

Now the member functions of the derived classes, not the base class, are executed. I
change the contents of ptr from the address of Derv1 to that of Derv2, and the
particular instance of show() that is executed also changes. So the same function
call,

ptr->show();

executes different functions, depending on the contents of ptr. The compiler selects
the function based on the contents of the pointer ptr, not on the type of the pointer,
as in NOTVIRT. This is polymorphism at work. I’ve made show() polymorphic by
designating it virtual. Figure 9-2 shows how this looks.

Figure 9-2 Virtual pointer access

Late Binding

The astute reader may wonder how the compiler knows what function to compile. In
NOTVIRT, the compiler has no problem with the expression

ptr->show();

It always compiles a call to the show() function in the base class. But in VIRT, the
compiler doesn’t know what class the contents of ptr may be a pointer to. It could
be the address of an object of the Derv1 class or the Derv2 class. Which version of
draw() does the compiler call? In fact, at the time it’s compiling the program, the
compiler doesn’t know what to do, so it arranges for the decision to be deferred until
the program is running.

At runtime, when the function call is executed, code that the compiler placed in the
program finds out the type of the object whose address is in ptr and calls the
appropriate show() function: Derv1::show() or Derv2::show(), depending
on the class of the object.

Selecting a function at runtime is called late binding or dynamic binding. (Binding
means connecting the function call to the function.) Connecting to functions in the
normal way, during compilation, is called early binding or static binding. Late
binding requires a small amount of overhead (the call to the function might take
something like 10 percent longer) but provides an enormous increase in power and
flexibility, as you’ll see.

How It Works

You now know the bare bones of using virtual functions, but sometimes it’s nice to
understand a little of what goes on behind the scenes.

Remember that, stored in memory, a normal object—that is, one with no virtual
functions—contains only its own data, nothing else. When a member function is
called for such an object, the compiler passes to the function the address of the object
that invoked it. This address is available to the function in the this pointer, which
the function uses (usually invisibly) to access the object’s data. The address in this
is generated by the compiler every time a member function is called; it’s not stored
in the object and does not take up space in memory. The this pointer is the only
connection that’s necessary between an object and its normal member functions.

With virtual functions, things are more complicated. When a derived class with
virtual functions is specified, the compiler creates a table—an array—of function
addresses called the virtual table. (It is named something like vtbl or vtable,
depending on the compiler.) In the VIRT example, the Derv1 and Derv2 classes
each have their own virtual table. There is an entry in each virtual table for every
virtual function in the class. Because they are both derived from Base, Derv1 and
Derv2 have the same virtual functions. The virtual table arrays for Derv1 and
Derv2 can therefore contain entries for the same function names, arranged in the
same order. However, the addresses in the table are different for the two classes.
Figure 9-3 shows this arrangement. It also shows additional functions in each class,
func1() and func2(), to make it clear that the virtual tables each have many
entries (pointers to the appropriate member functions).

Figure 9-3 Virtual function linkage

Every object of Derv1 or Derv2, when it’s constructed, contains an extra pointer in
addition to its own data. This is true of any object of a class that has one or more
virtual functions. This pointer, called something like vptr or vpointer, contains
the address of the class virtual table. Thus, objects of classes with virtual functions
are slightly larger than normal objects.

Including the address to a class specific vtbl in an object’s vptr amounts to
allowing an object to “know” what class it is. In the example, when a virtual function
is called for an object of Derv1 or Derv2, the compiler, instead of specifying what
function will be called, creates code that will first look at the object’s vptr and then
uses this to access the appropriate member function address in the class vtable.
Thus, for virtual functions, the object itself determines what function is called, rather
than the compiler.

The VIRT example is not very realistic in that the pointers to objects used with virtual
functions are not usually stored in standalone variables, but in arrays. The next
example shows a more typical situation.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Virtual Functions and Friend Functions

http://www.itknowledge.com/reference/archive/1571690638/ch09/498-502.html [21-03-2000 19:25:12]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
javascript:displayWindow('images/09-02.jpg',357,323)
javascript:displayWindow('images/09-02.jpg',357,323)
javascript:displayWindow('images/09-03.jpg',431,604)
javascript:displayWindow('images/09-03.jpg',431,604)
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch09/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Arrays of Pointers to Objects

Perhaps the most common way to use virtual functions is with an array of pointers to objects.
Listing 9-3 shows a version of the VIRT program modified to demonstrate this arrangement. The
classes are the same, but main() is different. The program is called ARRVIRT.

Listing 9-3 ARRVIRT

// arrvirt.cpp
// array of pointers to objects with virtual functions
#include <iostream.h>

class Base // base class
 {
 public:
 virtual void show() // virtual function
 { cout << “\nBase”; }
 };
class Derv1 : public Base // derived class 1
 {
 public:
 void show()
 { cout << “\nDerv1”; }
 };
class Derv2 : public Base // derived class 2
 {
 public:
 void show()
 { cout << “\nDerv2”; }
 };
void main()
 {
 Base* arrBase[2]; // array of pointers to Base
 Derv1 dv1; // object of derived class 1
 Derv2 dv2; // object of derived class 2

 arrBase[0] = &dv1; // put address of dv1 in array
 arrBase[1] = &dv2; // put address of dv2 in array

 for(int j=0; j<2; j++) // for all array elements,
 arrBase[j]->show(); // execute show()
 }

I’ve put the addresses of the objects dv1 and dv2 into the array arrBase, which is of type
Base. As in the VIRT program, the compiler uses the type of the pointers stored in the array, not
the type of the array, to figure out which version of show() to call. The output is

Derv1
Derv2

Notice how easy it is for the for loop in main() to call show() for any number of objects.
This is the heart of polymorphism: A single function call can invoke many different functions,
depending on the type of object doing the calling.

Don’t Try This with Objects

Be aware that the virtual function mechanism works only with pointers to objects (and, as you’ll
see later, with references), not with objects themselves. You can’t rewrite main() in arrvirt
to use an array of objects, like this:

void main()
 {
 Base arrObjs[2]; // array holds base class objects
 Derv1 dv1; // object of derived class 1
 Derv2 dv2; // object of derived class 2

 arrObjs[0] = dv1; // put dv1 object in array
 arrObjs[1] = dv2; // put dv2 object in array

 for(j=0; j<2; j++) // for all array elements,
 arrObjs[j].show(); // execute show()
 }

Although the compiler will let you put a derived class object in a base class array, the results
probably won’t be what you hoped for. The output from this version of main() is

Base
Base

Why aren’t the derived class versions of show() executed? Well, for one thing, objects of a
derived class may not be the same size as objects of the base class. They’re usually bigger
(although not in this example) because they include additional data that makes them a “kind of”
base class object. Thus, they don’t fit in the base class array. If you try to stick a derived class
object in a base class array, the parts of the object that are specific to the derived class will be
sliced off, leaving you with a base class object. Even if there’s no size difference, the compiler
regards derived class objects as base class objects. The moral is, never put derived class objects in
base class variables; they’ll forget what they are.

Pointers, on the other hand, are the same size no matter what class they point to, so you don’t lose
any information putting a derived class address in an array of base class pointers. The moral: To
use polymorphism, invoke virtual functions with pointers to objects (or with references, which are
pointers in disguise), but not with objects.

Quiz 1

1. If you put the address of a derived class object into a variable whose type is a pointer to
the base class, then the object, when accessed using this pointer,

a. continues to act like a derived class object.

b. acts like a base class object.

c. will cause the compiler to issue an error message.

d. continues to act like a derived class object if virtual functions are called.

e.can determine which of several virtual functions to call.

2. Virtual functions are appropriate when

a. you don’t know, at the time you write the program, what class to use.

b. pointers (or references) to objects are used to access the object.

c. the function bodies are empty.

d. objects of different types should respond to the same message in different ways.

e. objects of the base class will never be invoked.

3. Late binding

a. concerns connecting a function call to a function.

b. relies on an object to know what its own member functions are.

c. happens at compile time.

d. happens at link time.

e. happens at runtime.

4. If you have an array of pointers to objects called arr_of_ptrs_to_objs, and this
array is of type alpha*, and there is a class beta derived from alpha, and alpha and
beta have a virtual function called mayday(), then which of the following statements are
reasonable?

a. alpha->mayday();
b. beta->mayday();
c. arr_of_ptrs_to_objs[3]->mayday();
d. beta* arr_of_ptrs_to_objs[77];
e. alpha arr_of_ptrs_to_objs[77];

5. When you put a derived class object in a base class variable

a. it continues to act like a derived class object.

b. it starts to act like a base class object.

c. the compiler issues an error message.

d. only the object’s virtual functions can be executed.

e. only the object’s nonvirtual functions can be executed.

Due to its theoretical nature, this session contains no exercises.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Virtual Functions and Friend Functions

http://www.itknowledge.com/reference/archive/1571690638/ch09/503-505.html [21-03-2000 19:25:19]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch09/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Session 2: Examples of Virtual Functions

Now that you understand the mechanics of virtual functions, let’s look at some situations where
it makes sense to use them. I’ll introduce two programs in this session. In the first, you’ll
discover which kinds of people are outstanding; in the second, you’ll see how to use the same
function to draw different shapes. In both examples, the use of virtual functions significantly
simplifies the programming.

A Personnel Example

This example models the kinds of people one finds in a school or university. The major
categories are students and teachers. Noticing that these categories have some features in
common, I’ll arrange for the student and teacher classes to be derived from a person
class. In addition, other people may be connected with the university who are neither students
nor teachers (administrators, alumni, consultants, and so on). I’ll assume I don’t want to bother
creating specific classes for these miscellaneous categories, so I’ll lump them all into the
person class.

For simplicity, the only data in the person class is a name. One can imagine the other
variables that might be appropriate to include as well, such as address, telephone number, and
social security number. The student class includes the student’s grade point average (GPA),
and the teacher class includes the number of scholarly papers the teacher has published.

All the classes contain getData() and putData() functions for basic input and output.
They also contain a function called isOutstanding(), which makes it easy for the school
administrators to create a list of outstanding students and teachers for the venerable Awards
Day ceremony. Listing 9-4 shows VIRTPERS.

Listing 9-4 VIRTPERS

// virtpers.cpp
// virtual functions with person class
#include <iostream.h>

class person // person class
 {
 protected:
 char name[40];
 public:
 virtual void getData()
 { cout << “ Enter name: ”; cin >> name; }
 virtual void putData()
 { cout << “\nName = ” << name; }
 virtual void isOutstanding()
 { } // note: empty function body
 }; // student class
class student : public person
 {
 private:
 float gpa; // grade point average
 public:
 void getData() // get student data from user
 {
 person::getData();
 cout << “ Enter student's GPA: ”;
 cin >> gpa;
 }
 void putData()
 {
 person::putData();
 cout << “ GPA = ” << gpa;
 }
 void isOutstanding()
 {
 if (gpa > 3.5)
 cout << “ (This person is outstanding)”;
 }
 }; // teacher class
class teacher : public person
 {
 private:
 int numPubs; // number of papers published
 public:
 void getData() // get teacher data from user
 {
 person::getData();
 cout << “ Enter number of teacher's publications: ”;
 cin >> numPubs;
 }
 void putData()
 {
 person::putData();
 cout << “ Publications = ” << numPubs;
 }
 void isOutstanding()
 {
 if(numPubs > 100)
 cout << “(This person is outstanding)”;
 }
 };
void main(void)
 {
 person* persPtr[100]; // list of pointers to persons
 int n = 0; // number of persons on list
 char choice; // 'p', 's', etc.
 do
 {
 cout << “Enter person, student or teacher (p/s/t): ”;
 cin >> choice;
 if(choice=='s') // put new student
 persPtr[n] = new student; // in array
 else if(choice=='t') // put new teacher
 persPtr[n] = new teacher; // in array
 else // put new person
 persPtr[n] = new person; // in array
 persPtr[n++]->getData(); // get data for person
 cout << “ Enter another (y/n)? ”; // do another person?
 cin >> choice;
 } while(choice=='y'); // cycle until not 'y'
 for(int j=0; j<n; j++)
 { // print names of all
 persPtr[j]->putData(); // persons, and
 persPtr[j]->isOutstanding(); // say if outstanding
 }
} // end main()

The main() Program

In main(), the program first lets the user enter any number of person, student, and teacher
names. For students, the program also asks for the GPA; for teachers, it asks for the number of
publications. When the user is finished, the program prints out the names and other data for all
persons, noting those students and teachers who are outstanding. Here’s some sample
interaction:

Enter person, student or teacher (p/s/t): p
 Enter name: Bob
 Enter another (y/n)? y
Enter person, student or teacher (p/s/t): s
 Enter name: Timmy
 Enter student's GPA: 1.2
 Enter another (y/n)? y
Enter person, student or teacher (p/s/t): s
 Enter name: Brenda
 Enter student's GPA: 3.9
 Enter another (y/n)? y
Enter person, student or teacher (p/s/t): s
 Enter name: Sandy
 Enter student's GPA: 2.4
 Enter another (y/n)? y
Enter person, student or teacher (p/s/t): t
 Enter name: Shipley
 Enter number of teacher's publications: 714
 Enter another (y/n)? y
Enter person, student or teacher (p/s/t): t
 Enter name: Wainright
 Enter number of teacher's publications: 13
 Enter another (y/n)? n
Name = Bob
Name = Timmy
 GPA = 1.2
Name = Brenda
 GPA = 3.9 (This person is outstanding)
Name = Sandy
 GPA = 2.4
Name = Shipley
 Publications = 714 (This person is outstanding)
Name = Wainright
 Publications = 13

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Virtual Functions and Friend Functions

http://www.itknowledge.com/reference/archive/1571690638/ch09/506-509.html [21-03-2000 19:25:26]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch09/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

The Classes

The person class contains a single data item, a string representing the person’s name. The
student and teacher classes add new data items to the person base class. The student
class contains a variable gpa of type float, which represents the student’s GPA. The
teacher class contains a variable numPubs of type int, representing the number of papers
the teacher has published. Students with a GPA over 3.5 and teachers who have published more
than 100 papers are considered outstanding. (I’ll refrain from comment on the desirability of
these criteria for judging educational excellence.)

Virtual Functions

In the person class, all three functions, getData(), putData(), and
isOutstanding(), are declared virtual. This is necessary because functions with these
names exist in the derived classes as well, and objects of these derived classes will be accessed
using pointers. The only way for the program to know what kind of object the pointer in
persPtr[j] points to, in an expression such as

persPtr[j]->putData();

is if the putData() function is virtual. If it’s declared virtual, the version of putData()
appropriate to the class of object pointed to by persPtr[j] will be executed.

The isOutstanding() Function

In the student class, isOutstanding() displays the message This person is
outstanding if the student’s GPA is greater than 3.5, and in teacher class, it displays the
same message if the teacher’s numPubs variable is greater than 100. However, this function
has an empty function body in the person class. The assumption is that there is no criterion
for outstandingness in a mere person.

Because person::isOutstanding() doesn’t do anything, could I remove it? No, it’s
required by the statement

persPtr[j]->isOutstanding();

in main(), because persPtr can hold pointers of type person*, even though it can also
hold pointers of type student* or teacher*.

If I were sure I would never instantiate any person objects, I could insert an error message
into the function body for person::isOutstanding(), as I’ll do in the next example. An
even better solution is to use a pure virtual function, which I’ll discuss in Session 4.

Virtual Functions in Other Classes

Notice that a member function in a derived class can call a virtual member function of the base
class using the scope resolution operator in the same way that overloaded functions can be
accessed. For example, the getData() function in student calls the getData() function
in person:

class student : public person
 {
 ...
 void getData()
 {
 person::getData(); // call base class virtual function
 cout << “ Enter student's GPA: ”;
 cin >> gpa;
 }
 ...
 };

Virtual functions behave the same as nonvirtual functions, except when they are busy
implementing polymorphism.

A Graphics Example

Let’s explore another example of virtual functions, this one a graphics example derived from
the shapes program from Chapter 7, Session 5. Classes representing a number of specific
shapes (cap, bowl, and square) are derived from a general shape class.

One easy way to display a complex picture made out of such shape objects is to put pointers to
the different shapes in an array and then draw all the shapes using a simple for loop:

for(int j=0; j<N; j++)
 sharray[j]->draw();

The VIRTSHAP (Listing 9-5) program makes this possible by declaring the draw() function to
be virtual in the shape class.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Virtual Functions and Friend Functions

http://www.itknowledge.com/reference/archive/1571690638/ch09/509-510.html [21-03-2000 19:25:41]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch09/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Listing 9-5 VIRTSHAP

// virtshap.cpp
// draws shapes made from Xs on character-based display
// uses virtual draw() function
#include <iostream.h>
//
class shape
 {
 private:
 int xCo, yCo; // coordinates of shape
 int size; // size of shape
 protected: // read-only functions
 int getx() const { return xCo; }
 int gety() const { return yCo; }
 int getz() const { return size; }
 void down() const; // declaration
 public: // 3-arg constructor
 shape(int x, int y, int s) : xCo(x), yCo(y), size(s)
 { }
 virtual void draw() const
 { cout << “Error: base virtual” << endl; }
 };
void shape::down() const // move cursor down to top of shape
 {
 for(int y=0; y<yCo; y++)
 cout << endl;
 }
//
class square : public shape // square shape
 {
 public: // 3-arg constructor
 square(int x, int y, int s) : shape(x, y, s)
 { }
 void draw() const; // declaration
 };
void square::draw() const // draw a square
 {
 shape::down(); // position y at top of shape
 for(int y=0; y<getz(); y++) // move y down across shape
 {
 int x;
 for(x=1; x<getx(); x++) // space over to shape
 cout << ' ';
 for(x=0; x<getz(); x++) // draw line of Xs
 cout << 'X';
 cout << endl;
 }
 }
//
class cap : public shape // cap (pyramid) shape
 {
 public: // 3-arg constructor
 cap(int x, int y, int s) : shape(x, y, s)
 { }
 void draw() const; // declaration
 };
void cap::draw() const // draw a cap
 {
 shape::down();
 for(int y=0; y<getz(); y++)
 {
 int x;
 for(x=0; x < getx()-y+1; x++)
 cout << ' ';
 for(x=0; x<2*y+1; x++)
 cout << 'X';
 cout << endl;
 }
 }
//
class bowl : public shape // bowl (inverted pyramid) shape
 {
 public: // 3-arg constructor
 bowl(int x, int y, int s) : shape(x, y, s)
 { }
 void draw() const; // declaration
 };
void bowl::draw() const // draw a bowl
 {
 shape::down();
 for(int y=0; y<getz(); y++)
 {
 int x;
 for(x=0; x < getx()-(getz()-y)+2; x++)
 cout << ' ';
 for(x=0; x < 2*(getz()-y)-1; x++)
 cout << 'X';
 cout << endl;
 }
 }
///
void main()
 {
 const int N = 3; // number of shapes
 shape* sharray[N]; // array of pointers to shapes
 bowl bw(10, 0, 3); // make a bowl
 square sq(20, 1, 5); // make a square
 cap cp(30, 1, 7); // make a cap

 sharray[0] = &bw; // put their addresses in array
 sharray[1] = &sq;
 sharray[2] = &cp;
 cout << endl << endl; // start two lines down
 for(int j=0; j<N; j++)
 // display all three shapes
 sharray[j]->draw();
 }

The class specifiers in VIRTSHAP are similar to those in SHAPES, except that the draw() function in the
shape class has been made into a virtual function.

In main(), the program sets up an array, ptrarr, of pointers to shapes. Next, it creates three objects,
one each of the bowl, square, and cap classes, and places their addresses in the array. Now it’s easy
to draw all three shapes using the for loop. Figure 9-4 shows the output from VIRTSHAP (it’s the same
as that from SHAPES):

Figure 9-4 Output of the VIRTSHAP program

This is a powerful approach to combining graphics elements, especially when a large number of objects
need to be grouped together and drawn as a unit.

No shape Objects, Please

In the VIRTSHAP program, the user should never try to create a shape object. The shape class serves
only as a base class for the square, cap, and bowl classes. In case anybody ever does try to make a
shape and draw it, I put an error message in the body of the shape::draw() function.

However, this is an inelegant way to find errors. It’s always better to arrange things so the compiler will
find the errors, rather than waiting for them to appear at runtime. Here I want the compiler to tell me if
the class user has tried to instantiate a base class (shape) object. I’ll show you how to do this using
pure virtual functions in Session 4.

Initializing the Array

Incidentally, rather than using separate statements to create objects and place their addresses in the
array, I could have simply initialized the array using object constructors:

shape* sharray[N] = { &bowl(10, 0, 3), // initialize array
 &square(20, 1, 5),
 &cap(30, 1, 7) };

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Virtual Functions and Friend Functions

http://www.itknowledge.com/reference/archive/1571690638/ch09/510-513.html [21-03-2000 19:25:52]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
javascript:displayWindow('images/09-04.jpg',298,300)
javascript:displayWindow('images/09-04.jpg',298,300)
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch09/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Virtual Functions and Constructors

The constructors in the classes in VIRTSHAP are not virtual. Are
constructors ever virtual? No, they can’t be, because an object’s constructor
sets up its virtual mechanism (the vptr) in the first place. (You don’t see
the code for this, of course, just as you don’t see the code that allocates
memory for an object.) Virtual functions can’t even exist until the
constructor has finished its job, so constructors can’t be virtual.

Also, when you’re creating an object, you usually already know what kind
of object you’re creating and can specify this to the compiler. Thus, there’s
not as much need for virtual constructors as there is for virtual functions
that access pointers to already created objects.

Destructors, on the other hand, can and often should be virtual. I’ll explore
virtual destructors in Session 4.

Quiz 2

1. The getData() function in the person class in VIRTPERS
needs to be virtual because

a. it is called from within member functions of derived
classes.

b. it will be invoked by base class objects.

c. it will be invoked by pointers to derived class objects.

d. it appears in both base and derived classes.

e. it is used only in derived classes, not in the base class.

2. Which of the following are true statements about the VIRTPERS
program?

a. An array of pointers to person objects is more useful than
an array of person objects.

b. The isOutstanding() function would not need to be
virtual if only person objects, not student or teacher
objects, were outstanding.

c. The isOutstanding() function cannot be accessed
from main() without using pointers.

d. Because person objects are never outstanding, you can
remove the isOutstanding() function from the person
class without altering the operation of the program.

e. Because person objects are never outstanding, you can
remove the isOutstanding() function from the person
class without altering the operation of the program, provided
that you make the function virtual in the student and
teacher classes.

3. If the main() part of the VIRTPERS example did nothing but put
person, student, and teacher objects in an array of type
person and access them using statements such as

persArr[2].getData();

then

a. everything would work just as it does in VIRTPERS.

b. you could not access a student’s GPA or a teacher’s number
of publications.

c. there would be error messages from the compiler.

d. there would be no need for virtual functions.

e. none of the above.

4. The error message in the body of the draw() function in the
shape class in VIRTSHAP

a. will never be displayed if shape objects are always
accessed using pointers.

b. is not the most effective solution to keeping the user from
using base class objects.

c. is not necessary because it’s impossible to create a shape
object.

d. is not necessary because it’s impossible to create a pointer
to a shape object.

e. will be displayed at compile time, if at all.

5. The constructor in the shapes class in VIRTSHAP is not virtual
because

a. constructors can never be virtual.

b. there are no constructors in the derived classes.

c. the constructors in the derived classes call the constructor in
the base class.

d. you don’t need to specify what kind of object you’re
creating when you create it.

e. constructors have no return type.

Exercise 1

Add an erase() member function to all the appropriate classes in the
VIRTSHAP program. It should erase its shape by drawing over the shape
with spaces (the “” character) wherever there were X characters before.

Exercise 2

Add a move() member function to all the appropriate classes in the
VIRTSHAP program. It should be able to move a shape by erasing it with
erase() (see Exercise 1), incrementing or decrementing one of the
shape’s coordinates and then redrawing it with draw(). Use this function
to animate a shape; that is, to cause it to appear to move across the screen.

Session 3: Decoupling with Polymorphism

In the last session you saw two examples in which polymorphism was
exploited in an array of pointers to objects. However, this is not the only
situation where polymorphism and virtual functions are important.
Polymorphism can also be used to help isolate, or decouple, one part of a
program from another.

As I noted earlier, OOP programs are divided into two parts, which are
often written by different programmers at different times. First, classes are
written by one set of programmers (the class creators); then, at some later
time, code that uses these classes is written by another set of programmers
(the class users). One benefit of reusability is realized when the same set of
classes can be used over and over by different class users.

In most of the examples in this book, the class-user code is contained in a
single function, main(). This makes the examples easier to understand,
but it’s not completely realistic. The user code in serious programs will
normally be divided into many functions, which will be invoked from
main() or from each other.

Where does polymorphism appear in this situation? The programming can
often be simplified if the user code can work with a generic class, rather
than trying to be aware of many different classes. This is because objects
(or references or pointers to objects) will probably be passed and returned
from one function to another, and if all these arguments and return values
can be of a single class, coding is simplified. Another way of saying this is
that it can be helpful to decouple the user code from specific classes.

The first example will show how polymorphism can be used when
references are used as function arguments. Another example shows how
polymorphism can be used with pointers as function arguments. Finally, I’ll
examine a larger program that demonstrates a more realistic programming
situation.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Virtual Functions and Friend Functions

http://www.itknowledge.com/reference/archive/1571690638/ch09/513-516.html [21-03-2000 19:26:08]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch09/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Passing References

As a simple example of using polymorphism to decouple user code from classes, imagine a
base class with many derived classes. Suppose that main() calls a global (nonmember)
function, func(), that will do something to objects of all the derived classes. If func()
needed to worry about handling many different kinds of objects in different ways, its code
would become very complicated. However, using references and virtual functions, I can
employ the same version of func() for many different classes.

When an object is passed to a function by reference, the syntax makes it appear that the object
itself is being passed, but actually a pointer to the object is passed instead. As you’ve seen,
pointers are always the same size no matter what they point to, so there’s no loss of
information if a reference to a derived class object is passed to a function that is expecting a
reference to a base class object.

In the example, there is a base class Base and two derived classes, Derv1 and Derv2.
Statements in main() call func(), using reference arguments to pass Derv1 and Derv2
objects. Notice that the same func() handles both Derv1 and Derv2 objects. Listing 9-6
shows VIRTREF.

Listing 9-6 VIRTREF

// virtref.cpp
// tests virtual functions and passing objects by reference
#include <iostream.h>

class Base
 {
 public:
 virtual void speak()
 { cout << “\nBase speaks”; }
 };

class Derv1 : public Base
 {
 public:
 void speak()
 { cout << “\nDerv1 speaks”; }
 };
class Derv2 : public Base
 {
 public:
 void speak()
 { cout << “\nDerv2 speaks”; }
 };

void main()
 {
 void func(Base&); // prototype
 Derv1 d1; // create derived class object d1
 Derv2 d2; // create derived class object d2
 func(d1); // pass d1 by reference to func()
 func(d2); // pass d2 by reference to func()
 }

void func(Base& obj) // (note reference argument)
 {
 obj.speak();
 }

The func() function tells the object passed to it to call its speak() member function,
which displays what class of object it is. Here’s the output from VIRTREF:

Derv1 speaks
Derv2 speaks

Because the argument to func() is passed by reference, and because the speak() member
function is virtual, func() doesn’t need to know what kind of object it’s sending the
speak() message to. It knows the object is derived from Base, but that’s all it needs to
know. The object itself takes care of figuring out which version of speak() to call, as
demonstrated by the output.

By contrast, suppose polymorphism could not be used and func() had to be aware of what
kind of object it was working with. Either it would need something like a big switch
statement to handle the different classes (and a way to figure out what class an object was) or
main() would need to select one of many different versions of func(), depending on the
class. Each of these solutions is unnecessarily complicated. By leaving an object’s response to
a message up to the object itself, you can make the user code independent of the actual class
being used, with a resulting simplification in the code.

One advantage of this approach is that the same user code will work with classes that haven’t
even been invented. For example, in VIRTREF, if a Derv3 class is added to the class
hierarchy, func() will be happy to work with it, just as it does with Derv1 and Derv2.

Of course, this decoupling effect works only if you use reference (or pointer) arguments. If
you pass a derived class object itself to a function, it will be sliced down to the size of a base
class object, just as it would be if you assigned it to a base class variable. Also, you must use
virtual functions. If speak() were not virtual, the output of VIRTREF would be

Base speaks
Base speaks

In C++, polymorphism depends on virtual functions.

Although there’s not much gain by using polymorphism in this short example, in a larger
program, with many derived classes and many functions in the class-user code, it would be
much more efficient for these functions to be written in terms of a single base class rather than
a multiplicity of derived classes.

Passing Pointers

The same decoupling effect is achieved whether you pass references to objects or pointers to
objects. I’ll rewrite the VIRTREF program to use pointers instead of references. Listing 9-7
shows VIRTPTR.

Listing 9-7 VIRTPTR

// virtptr.cpp
// tests virtual functions and passing objects by pointer
#include <iostream.h>

class Base
 {
 public:
 virtual void speak()
 { cout << “\nBase speaks”; }
 };
class Derv1 : public Base
 {
 public:
 void speak()
 { cout << “\nDerv1 speaks”; }
 };
class Derv2 : public Base
 {
 public:
 void speak()
 { cout << “\nDerv2 speaks”; }
 };
void main()
 {
 void func(Base*); // prototype (note reference argument)
 Derv1 d1; // create derived class object d1
 Derv2 d2; // create derived class object d2

 func(&d1); // pass address of d1 to func()
 func(&d2); // pass address of d2 to func()
 }
void func(Base* ptr)
 {
 ptr->speak();
 }

The classes are identical to those in VIRTREF, but main() passes addresses of objects,
rather than references to them, to func() and uses the -> operator to access speak().
Otherwise, the program works the same, and again the output is

Derv1
Derv2

Typically, references are appropriate when objects are created through definitions so their
names are known, whereas pointers are used when objects are created with new and only
pointers to them are available. References are safer than pointers. The value of a pointer can
be changed by the programmer, possibly inadvertently, whereas a reference, once initialized,
can’t be changed.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Virtual Functions and Friend Functions

http://www.itknowledge.com/reference/archive/1571690638/ch09/516-519.html [21-03-2000 19:26:28]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch09/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

A person Class Example

Let’s look at a larger example that gives more of the flavor of how polymorphism can make your
code independent of specific classes. I’ll rewrite the class-user part of the VIRTPERS example
from Session 2. The goal is to give the end user more control over the program. The program
will display a list of options, and the user can select whether to add a person to the database, to
display all the persons on the database, or to exit the program. The user can add as many persons
as seems desirable and display them all at any time.

To implement this increased capability, I’ll divide the class-user part of the program into several
functions. A switch statement in main() calls the appropriate function, depending on which
key the user presses. There are two of these functions: getPerson() gets data from the user
about a person to be added to the database and displayPerson() displays a person’s data.
The classes are the same as in virtpers. Listing 9-8 shows PERSFUNC.

Listing 9-8 PERSFUNC

// persfunc.cpp
// passing pointers to objects that use virtual functions
#include <iostream.h>
#include <process.h> // for exit()
//
class person // person class
 {
 protected:
 char name[40];
 public:
 virtual void getData()
 { cout << “ Enter name: ”; cin >> name; }
 virtual void putData()
 { cout << “\nName = ” << name; }
 virtual void isOutstanding()
 { } // note: empty function body
 };
//
class student : public person // student class
 {
 private:
 float gpa; // grade point average
 public:
 void getData() // get student data from user
 {
 person::getData();
 cout << “ Enter student's GPA: ”;
 cin >> gpa;
 }
 void putData()
 {
 person::putData();
 cout << “ GPA = ” << gpa;
 }
 void isOutstanding()
 {
 if (gpa > 3.5)
 cout << “ (This person is outstanding)”;
 }
 };
//
class teacher : public person // teacher class
 {
 private:
 int numPubs; // number of papers published
 public:
 void getData() // get teacher data from user
 {
 person::getData();
 cout << “ Enter number of teacher's publications: ”;
 cin >> numPubs;
 }
 void putData()
 {
 person::putData();
 cout << “ Publications = ” << numPubs;
 }
 void isOutstanding()
 {
 if(numPubs > 100)
 cout << “ (This person is outstanding)”;
 }
 };
//
void main(void)
 {
 person* persPtr[100]; // list of pointers to persons
 int n = 0; // number of persons on list
 char choice;
 int j;
 person* getPerson(); // prototypes
 void displayPerson(person*);
 while(1) // cycle until exit
 {
 cout << endl
 << “'a' to add new person” << endl
 << “'d' to display all persons” << endl
 << “'x' to exit program” << endl
 << “Enter selection: ”;
 cin >> choice;
 switch(choice)
 {
 case 'a':
 persPtr[n++] = getPerson();
 break;
 case 'd':
 for(j=0; j<n; j++)
 displayPerson(persPtr[j]);
 break;
 case 'x':
 for(j=0; j<n; j++)
 delete persPtr[j]; // delete all person objects
 exit(0);
 break;
 default:
 cout << “\nNo such selection”;
 } // end switch
 } // end while
 } // end main()
//
person* getPerson() // function returns a person
 {
 person* tp; // pointer to person
 char choice;
 cout << “Enter person, student or teacher (p/s/t): ”;
 cin >> choice;
 if(choice=='s') // put new student
 tp = new student; // in array
 else if(choice=='t') // put new teacher
 tp = new teacher; // in array
 else // put new person
 tp = new person; // in array
 tp->getData(); // get data for person
 return tp; // return pointer to person
 } // end getPerson()'
//
void displayPerson(person* pp) // function displays a person
 {
 pp->putData(); // display data, and
 pp->isOutstanding(); // say if outstanding
 } // end displayPerson()

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Virtual Functions and Friend Functions

http://www.itknowledge.com/reference/archive/1571690638/ch09/519-521.html [21-03-2000 19:26:43]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch09/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Here’s some sample interaction with the program in which the user adds a person,
two students, and a teacher to the database and then displays all four.

'a' to add new person,
'd' to display all persons
'x' to exit program
Enter selection: a
Enter person, student or teacher (p/s/t): p
 Enter name: Harriet

'a' to add new person,
'd' to display all persons
'x' to exit program
Enter selection: a
Enter person, student or teacher (p/s/t): s
 Enter name: Steve
 Enter student's GPA: 2.5

'a' to add new person,
'd' to display all persons
'x' to exit program
Enter selection: a
Enter person, student or teacher (p/s/t): s
 Enter name: Francine
 Enter student's GPA: 3.9

'a' to add new person,
'd' to display all persons
'x' to exit program
Enter selection: a
Enter person, student or teacher (p/s/t): t
 Enter name: Marshall
 Enter number of teacher's publications: 50

'a' to add new person,
'd' to display all persons
'x' to exit program
Enter selection: d

Name = Harriet
Name = Steve GPA = 2.5
Name = Francine GPA = 3.9 (This person is outstanding)
Name = Marshall Publications = 50

You can continue to add persons and display the contents of the database as long
as you like (at least until you exceed the size of the persPtr array). When you
select x, the program terminates.

Note that there is no mention at all in main() and displayPerson() of any
class other than person. The displayPerson() function takes a pointer to
person as an argument, and the getPerson() function returns a pointer to a
person. The only place student and teacher objects are explicitly
mentioned in the user code is in getPerson(), where an object of the type
requested by the user is created with new.

This isolation of the user code from specific classes makes these functions
surprisingly immune to any changes in the class hierarchy. Even if the class
creators issued a new revision of the classes, adding new derived classes to the
program, say

class administrator : public person
 { };
and
class football_coach : public person
 { };

you would not need to make any changes at all to main() or
displayPerson(), and you would need to add only a few lines to
getPerson().

Quiz 3

1. In C++, polymorphism

a. requires virtual functions.

b. allows increased separation of classes and class-user code.

c. requires inheritance.

d. allows increased separation of code in one class and code in
another class.

e. requires pointers or references to objects.

2. To use polymorphism, when an object is passed to a function by
reference,

a. the object must be a base class object.

b. the object must be a derived class object.

c. the function’s argument type must be a reference to the base class.

d. the function’s argument type must be a reference to the object’s
class.

e. statements within the function will affect an object created within
the function.

3. To use polymorphism to decouple specific classes from the class-user
code,

a. the classes to be decoupled must be base classes.

b. the classes to be decoupled must be derived classes.

c. requires a class hierarchy with virtual functions in the base class.

d. can result in significantly simpler code for the class user.

e. doesn’t make sense.

4. If you derive a class called gradStudent from the student class in
PERSFUNC, then

a. main(), getPerson(), and displayPerson() will
require extensive rewriting.

b. the compiler will issue an error message because virtual functions
can’t be used with more than one level of inheritance.

c. you’ll need to add some lines to the switch statement in
main().

d. you’ll need to add some lines to the getPerson() function.

e. no change is necessary to the user code.

5. You can’t pass a pointer to a derived class object to a function whose
argument type is a pointer to a base class object because

a. the parts of the object specific to the derived class will be sliced
off.

b. the function will treat the object as a base class object.

c. polymorphic functions must operate on base class pointers.

d. the data in the object that’s specific to the derived class will be
inaccessible.

e. none of the above.

Exercise 1

Add an administrator class to the PERSFUNC program. It should be derived
from person. What distinguishes an administrator object from other
person objects is a member variable called salary, which is a floating-point
number with values from $75,000 on up. Administrators with a salary value
greater than $200,000 are considered to be outstanding. Make the necessary
changes to the user code so that administrator objects can be added to the
database.

Exercise 2

Add an option to the PERSFUNC program that allows the user to search the
database for a specific person. This option can be accessed with the letter s, for
search. The user will be prompted to enter the name of the person to be found. An
appropriate function, called findPerson(), will be called from main() with
this name as an argument and will carry out the search, displaying any matching
names. To the extent possible, use polymorphism for this function.

Session 4: Abstract Classes and Virtual Destructors

I’ll cover two topics in this session, both related to virtual functions. The first is
abstract classes, which are classes from which no objects will be instantiated, but
serve as the base for derived classes. Abstract classes are enforced in C++ using
pure virtual functions. The second topic is virtual destructors, which are often a
good idea if you don’t want pieces of old objects left lying around in memory.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Virtual Functions and Friend Functions

http://www.itknowledge.com/reference/archive/1571690638/ch09/521-524.html [21-03-2000 19:27:01]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch09/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Abstract Classes

In the VIRTPERS program in Session 2, I instantiated base class person objects as well as derived class
student and teacher objects. In the VIRTSHAP program, on the other hand, I don’t instantiate any
base class shape objects, but only derived class cap, bowl, and square objects. In VIRTPERS, I
assume that a generic person object will be useful in the program, whereas in VIRTSHAP, I assume that
the shape class exists only as a starting point for deriving other classes and that it doesn’t make sense
to instantiate a generic shape object (which would not, after all, even have a specific shape).

I can call the shape class in VIRTSHAP an abstract class, which means that no actual objects will be
derived from it. Abstract classes arise in many situations. A factory can make a sportscar or a truck or an
ambulance, but it can’t make a generic vehicle. The factory must know the details about what kind of
vehicle to make before it can actually make one. Similarly, you’ll see sparrows, wrens, and robins flying
around, but you won’t see any generic birds.

Some situations require an abstract base class, whereas others don’t. More often than not, using abstract
base classes is a good idea. There’s a certain clarity about treating the base class as something special,
something that doesn’t need to worry about having its own objects. In the VIRTPERS program, for
example, it might be better to make person an abstract class and derive a miscellaneous class
from it for all the person objects that aren’t teachers or students.

Actually, the shape class in VIRTSHAP is an abstract class only in the eyes of humans. The compiler is
ignorant of our decision to make it an abstract class, and would not complain if we said

shape s3(5, 6, 7); // legal but doesn't make sense

I have arranged for the draw() function in shape to display an error message:

class Base // base class
 {
 public:
 virtual void show() // virtual function
 { cout << “\nError: base version of show()”; }
 };

This keeps me from trying to draw a shape, but it’s not a complete solution. I can still create shape
objects, even if I can’t draw them; and, if I do try to draw a shape, I won’t discover the error until the
message is displayed at runtime.

Pure Virtual Functions

It would be nice if, having decided to create an abstract base class, I could instruct the compiler to
actively prevent any class user from ever making an object of that class. This would give me more
freedom in designing the base class because I wouldn’t need to plan for actual objects of the class, but
only for data and functions that would be used by derived classes. As you may have guessed, there is a
way to tell the compiler that a class is abstract: You define at least one pure virtual function in the class.

A pure virtual function is a virtual function with no body (another OOP sentence that sounds as if it
describes an esoteric religious concept). The body of the virtual function in the base class is removed,
and the notation =0 is added to the function declaration.

A Short Example

The first example of a pure virtual function is adapted from the VIRT program in Session 1. Listing 9-9
shows VIRTPURE.

Listing 9-9 VIRTPURE

// virtpure.cpp
// pure virtual function
#include <iostream.h>
class Base // base class

 {
 public:
 virtual void show() = 0; // pure virtual function
 };

class Derv1 : public Base // derived class 1
 {
 public:
 void show()
 { cout << “\nDerv1”; }
 };

class Derv2 : public Base // derived class 2
 {
 public:
 void show()
 { cout << “\nDerv2”; }
 };

void main()
 {
 Derv1 dv1; // object of derived class 1
 Derv2 dv2; // object of derived class 2

// Base ba; // Error: cannot create instance of
// abstract base class
 }

Now the virtual function is declared as

virtual void show() = 0; // pure virtual function

The equal sign here has nothing to do with assignment; the value 0 is not assigned to anything. The =0
syntax is simply how you tell the compiler that a function will be pure—that is, will have no body.

You might wonder, if you can remove the body of the virtual show() function in the base class, why
you can’t remove the function altogether. That would be even cleaner, but it doesn’t work. Without a
virtual function show() in the base class, statements such as

Base list[3];
list[0] = new Derv1;
list[0]->show(); // can't do this

would not be valid because the base class version of show() would always be executed.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Virtual Functions and Friend Functions

http://www.itknowledge.com/reference/archive/1571690638/ch09/524-526.html [21-03-2000 19:27:16]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch09/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

The shape Example

If I rewrite the shape class from VIRTSHAP to use a pure virtual function for show(), I can
prohibit the instantiation of any base class objects. Listing 9-10 shows PURESHAP.

Listing 9-10 PURESHAP

// pureshap.cpp
// draws shapes made from Xs on character-based display
// uses pure virtual draw() function in base class
#include <iostream.h>
//
class shape
 {
 private:
 int xCo, yCo; // coordinates of shape
 int size; // size of shape
 protected: // read-only functions
 int getx() const { return xCo; }
 int gety() const { return yCo; }
 int getz() const { return size; }
 void down() const; // declaration
 public: // 3-arg constructor
 shape(int x, int y, int s) : xCo(x), yCo(y), size(s)
 { }
 virtual void draw() const = 0; // pure virtual function
 };

void shape::down() const // move cursor down to top of shape
 {
 for(int y=0; y<yCo; y++)
 cout << endl;
 }
//
class square : public shape // square shape
 {
 public: // 3-arg constructor
 square(int x, int y, int s) : shape(x, y, s)
 { }
 void draw() const; // declaration
 };

void square::draw() const // draw a square
 {
 shape::down(); // position y at top of shape
 for(int y=0; y<getz(); y++) // move y down across shape
 {
 int x;
 for(x=1; x<getx(); x++) // space over to shape
 cout << ' ';
 for(x=0; x<getz(); x++) // draw line of Xs
 cout << 'X';
 cout << endl;
 }
 }
//
class cap : public shape // cap (pyramid) shape
 {
 public: // 3-arg constructor
 cap(int x, int y, int s) : shape(x, y, s)
 { }
 void draw() const; // declaration
 };

void cap::draw() const // draw a cap
 {
 shape::down();
 for(int y=0; y<getz(); y++)
 {
 int x;
 for(x=0; x < getx()-y+1; x++)
 cout << ' ';
 for(x=0; x<2*y+1; x++)
 cout << 'X';
 cout << endl;
 }
 }
//
class bowl : public shape // bowl (inverted pyramid) shape
 {
 public: // 3-arg constructor
 bowl(int x, int y, int s) : shape(x, y, s)
 { }
 void draw() const; // declaration
 };

void bowl::draw() const // draw a bowl
 {
 shape::down();
 for(int y=0; y<getz(); y++)
 {
 int x;
 for(x=0; x < getx()-(getz()-y)+2; x++)
 cout << ' ';
 for(x=0; x < 2*(getz()-y)-1; x++)
 cout << 'X';
 cout << endl;
 }
 }
///
void main()
 {

// shape x(1, 2, 3); // error: can't instantiate abstract object
 const int N = 3; // number of shapes
 // array of pointers to shapes
 shape* sharray[N] = { &bowl(10, 0, 3),
 &square(20, 1, 5),
 &cap(30, 1, 7) };

 cout << endl << endl; // start two lines down
 for(int j=0; j<N; j++) // display all three shapes
 sharray[j]->draw();
 }

The Compiler on Watch

You can’t create an object of a class that includes a pure virtual function and you can’t write a
function call that passes or returns an object of such a class by value. Thus, in main() in the
PURESHAP program I couldn’t declare functions such as

void func(shape); // error

or

shape func(); // error

The compiler knows that passing and returning by value will create an object and it won’t let this
happen with an abstract class. Passing and returning objects of an abstract class by reference or
pointer is OK because the pointers will actually point to derived class objects.

Abstract Classes and Pure Virtual Functions

It might seem arbitrary to use pure virtual functions as the signal to the compiler that a class will be
abstract. However, pure virtual functions and abstract classes are two sides of a coin. If you will
never instantiate any objects from the base class, then it does no harm to have functions in that class
that can’t be executed. Also, an abstract class will, by definition, have other classes derived from it.
To make use of polymorphism, these derived classes will require virtual functions in the base class.
Usually at least one such function doesn’t do anything in the base class. We call such functions pure
virtual functions and let the compiler know about them with the notation =0.

Pure Virtual Functions with Bodies

Sometimes you might want to make a base class into an abstract class, but this class needs member
functions that don’t need bodies. All the base class functions may be accessed by functions in
derived classes, for example. Fortunately, you can make a function with a body into a pure virtual
function just as you can a function without a body. Here’s an example from the EMPINH program in
Chapter 7, Session 2. To make the employee class into an abstract class (which is how it’s used in
this example), add the =0 notation to the getdata() function in the employee class, but leave
the function body intact:

virtual void getdata() = 0
 {
 employee::getdata();
 cout << “ Enter title: ”; cin >> title;
 cout << “ Enter golf club dues: ”; cin >> dues;
 }

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Virtual Functions and Friend Functions

http://www.itknowledge.com/reference/archive/1571690638/ch09/526-529.html [21-03-2000 19:27:22]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch09/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Virtual Destructors

If you use any virtual functions in a class, pure or otherwise, you will probably want to make
the destructor for that class virtual. Why? To understand the problem, examine Listing 9-11
which features a base class and a derived class, both with nonvirtual destructors. It’s called
NOVIDEST.

Listing 9-11 NOVIDEST

// novidest.cpp
// non-virtual function used as base class destructor
#include <iostream.h>

class Base
 {
 public:
 ~Base()
 { cout << “\nBase destructor”; }
 };
class Derv : public Base
 {
 public:
 ~Derv()
 { cout << “\Derv destructor”; }
 };

void main()
 {
 Base* pb = new Derv;
 delete pb; // output is “Base Destructor”
 cout << “\nProgram terminates”;
 }

Is the Derived Class Destructor Executed?

Recall that a derived class object typically contains data from both the base class and the
derived class (although that’s not true in NOVIDEST, which doesn’t have any data). To ensure
that such data is properly disposed of, it may be essential that destructors for both base and
derived classes are called. But the output of NOVIDEST is

Base Destructor
Program terminates

This is the same problem you saw before with ordinary (nondestructor) functions. If a function
isn’t virtual, only the base class version of the function will be called when it’s invoked using a
base class pointer, even if the contents of the pointer is the address of a derived class object.
Thus in NOVIDEST, the Derv class destructor is never called. This could be a problem if this
destructor did something important.

Not Unless It’s Virtual

To fix this problem, I can make the base class destructor virtual, as shown in VIRTDEST
(Listing 9-12).

Listing 9-12 VIRTDEST

// virtdest.cpp
// tests virtual destructors
#include <iostream.h>

class Base
 {
 public:
 virtual ~Base() = 0
 { cout << “\nBase destructor”; }
 };

class Derv : public Base
 {
 public:
 ~Derv()
 { cout << “\Derv destructor”; }
 };

void main()
 {
 Base* pb = new Derv;
 delete pb; // output is “Derv Destructor, Base Destructor”
 cout << “\nProgram terminates”;
 }

The output from VIRTDEST is

Derv Destructor
Base Destructor
Program terminates

Now both destructors are called. Of course in this simple example, it doesn’t matter if the
derived class constructor is called because there’s nothing for it to do. Let’s look at an example
where there’s more point to calling the derived class destructor.

A More Realistic Example

Derived class objects may use system resources that need to be released when the object is
destroyed. Perhaps the derived class objects use new to allocate memory. It is essential to have
a matching delete in the derived class destructor and that this destructor be called when the
derived class object is destroyed. Otherwise, the memory allocated by the derived class object
would become an orphan, inaccessible but still allocated, wasting system resources and
potentially leading to catastrophic memory problems.

The next example, an extension of the PERSFUNC program, shows how this might look. It
features a person class and a gradStudent class derived from it. I’ll assume in this
program that I want to use new to obtain memory for a grad student’s name and thesis topic,
rather than storing these strings in arrays.

The data item in person is a pointer to the name, and in gradStudent it’s a pointer to the
thesis topic. I’ll use constructors to obtain memory for the name and topic, and destructors to
delete this memory. Listing 9-13 shows DESTPERS.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Virtual Functions and Friend Functions

http://www.itknowledge.com/reference/archive/1571690638/ch09/529-531.html [21-03-2000 19:27:30]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch09/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Listing 9-13 DESTPERS

// destpers.cpp
// virtual destructors and the person class
#include <iostream.h>
#include <string.h> // for strlen(), strcpy()
//
class person // person class
 {
 protected:
 char* nameptr;
 public:
 person(char* np) // 1-arg constructor
 {
 int length = strlen(np); // find length of name
 nameptr = new char[length+1]; // allocate memory
 strcpy(nameptr, np); // put name in memory
 }
 virtual ~person() = 0 // destructor
 {
 cout << “\nperson Destructor”;
 if(nameptr != NULL) // if it has it been used,
 delete[] nameptr; // delete name
 }
 virtual void putData()
 { cout << “\nName = ” << nameptr; }
 }; // end person class
//
class gradStudent : public person // gradStudent class
 {
 private:
 char* topicptr; // ptr to thesis topic
 public:
 gradStudent(char* n, char* t) : // 2-arg constructor
 person(n), topicptr(NULL)
 {
 int length = strlen(t); // find length of topic
 topicptr = new char[length+1]; // allocate memory
 strcpy(topicptr, t); // put topic in memory
 }
 ~gradStudent() // destructor
 {
 cout << “\ngradStudent destructor”;
 if(topicptr != NULL) // if it has it been used,
 delete[] topicptr; // delete thesis topic
 }
 virtual void putData()
 {
 person::putData();
 cout << “\n Thesis topic = ” << topicptr;
 }
 }; // end gradStudent class
//
void main(void)
 {
 int j;
 const int total = 3;
 person* persPtr[3]; // list of pointers to persons
 char name[40]; // temporary storage
 char topic[80];
 for(j=0; j<total; j++) // get data, make gradStudents
 {
 cout << “\nEnter name: ”;
 cin >> name;
 cout << “ Enter thesis topic: ”;
 cin >> topic;
 persPtr[j] = new gradStudent(name, topic);
 }
 for(j=0; j<total; j++) // display gradStudents
 persPtr[j]->putData();
 for(j=0; j<total; j++) // delete gradStudents
 delete persPtr[j];
 } // end main()

The constructors in person and gradStudent obtain memory with new for the grad student’s name
and thesis topic, respectively. Their destructors delete this memory. Both destructors are called for each
object, as shown by the output, so all allocated memory is guaranteed to be freed. Here’s some sample
interaction with destpers. (I’ve used the unsophisticated stream operator cin>> for text input, so
only one-word strings are acceptable.)

Enter name: Wiffington
 Enter thesis topic: SomeAspectsOfGastropodBehavior

Enter name: Brown
 Enter thesis topic: SocksWornByRevolutionaryGenerals

Enter name: Pennybrook
 Enter thesis topic: ColorsThatEnhanceMoodOfValleyGirls

Name = Wiffington
 Thesis topic = SomeAspectsOfGastropodBehavior
Name = Brown
 Thesis topic = SocksWornByRevolutionaryGenerals
Name = Pennybrook
 Thesis topic = ColorsThatEnhanceMoodOfValleyGirls

gradStudent destructor
person destructor
gradStudent destructor
person destructor
gradStudent destructor
person destructor

When Do You Use Virtual Functions?

I noted at the beginning of this section that it’s a good policy to make a destructor virtual in any class
that has virtual functions. This is actually essential only when the following conditions are true: First,
classes will be derived from the class in question; second, objects of derived classes will be deleted
using base class pointers; third, the destructors in any of these related classes do something important
like deallocating resources. If a class has virtual functions, it’s likely that all these conditions will be
met, if not now then at some point during the development or use of the class. (Remember, you can’t
predict today how a class may be used tomorrow.)

Once one function in a class is virtual, there’s no additional overhead to making other functions virtual
because as soon as one function is virtual, a virtual table is added to every object. Thus it doesn’t cost
you much to follow the rule of making the destructor virtual in any class with virtual functions.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Virtual Functions and Friend Functions

http://www.itknowledge.com/reference/archive/1571690638/ch09/531-533.html [21-03-2000 19:27:39]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch09/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Quiz 4

1. An abstract class

a. may represent a generic category such as “geographical
locations” or “trees”.

b. tells the compiler what it is by including a virtual function.

c. tells the compiler what it is by including a pure virtual
function.

d. tells the compiler what it is with the keyword abstract.

e. is one from which no objects will be instantiated.

2. Usually, a pure virtual function

a. has no function body.

b. will never be called.

c. will be called only to delete an object.

d. tells the compiler what it is, using the notation =0.

e. is defined only in derived classes.

3. Which of the following statements are true?

a. It’s acceptable to use a pure virtual function in an abstract
class because you will always invoke abstract objects using
pointers.

b. A pure virtual function guarantees that no object can be
instantiated from the class in which it’s defined.

c. A pure virtual function is useful whether the class in which
it’s defined is used as a base class or not.

d. It’s all right to use a function with no body in an abstract
class because you never execute any of the functions in an
abstract class.

e. If you have one or more pure virtual functions in a class, the
class is abstract.

4. If a base class destructor is not virtual, then

a. it can’t be called.

b. it can’t be called when accessed through a pointer.

c. destructors in derived classes can’t be called.

d. destructors in derived classes can’t be called when accessed
through a pointer to the base class.

e. it cannot have a function body.

5. Which of the following make it more likely that you would use a
virtual destructor in a particular class?

a. The class is used as a base class.

b. The class contains no virtual functions.

c. Objects of derived classes will be deleted using a variable
whose type is a pointer to the base class.

d. Objects of the base class will be deleted using a variable
whose type is a pointer to the derived class.

e. Destructors in the base or derived classes are necessary to
deallocate system resources.

Exercise 1

Start with the program from Exercise 1 of Session 2 in this chapter which
added an erase() function to the shape class in VIRTSHAP. Make this
erase() function into a pure virtual function and make any necessary
changes to the rest of the program to accommodate this change.

Exercise 2

Consider the EMPINH program in Chapter 7, Session 2. Retrofit the classes
in this program with virtual functions or pure virtual functions as
appropriate. Fix things so it’s impossible to instantiate an employee
object. Write a main() that fills an array of type employee* with
pointers to different kinds of employees whose data is supplied by the user
and then displays all the employee data.

Midchapter Discussion

George: What’s all the fuss about virtual functions? It looks to me like
they’re useful only in this one particular situation, where you
use base class pointers to refer to derived class objects. If I just
avoid that situation, then I don’t need to worry about virtual
functions at all.

Estelle: I must admit that thought crossed my mind too. But aren’t
virtual functions one of the three pillars of OOP, or something?
So they must be important.

Don: I think the point is that using base class pointers to derived
class objects gives you so much power that you’ll want to use
them all the time.

Estelle: Or at least when you have derived classes.
Don: But that’s probably most of the time. It looks like inheritance

isn’t just a way of organizing classes. It’s also a stepping stone
to polymorphism.

George: So what does polymorphism buy you? I mean, it sounds like
something the vice squad should investigate.

Estelle: With polymorphism, one statement can draw any shape, one
statement can display data for any kind of person, one global
function can operate on many different kinds of objects.

Don: Polymorphism lets the class user stop worrying about how
something will be done and concentrate on what will be done.
To draw an object, all you do is send it a message saying
“Draw yourself.” You don’t even need to know what kind of
object it is.

Estelle: As long as it’s stored in a base class array or something like
that.

Don: Right. You do need to set things up a little.
George: Well, I’ve decided I don’t need to understand virtual functions.
Don: Because you’re never going to use them?
George: No, because I’m joining the foreign legion.
Estelle: Poor fellow, he’s polymorphically impaired.

Session 5: Runtime Type Identification

Sometimes you need to find the class of an object. You may wonder how
you could lose track of an object’s class. However, imagine that you have
an array of pointers to objects and these pointers may point to objects of
several different derived classes, as in the VIRTPERS program Session 2 in
this chapter. If you’re a global function that has accessed one of these
pointers, how can you find out what kind of object it points to?

I know I can use such a pointer to call a virtual function for the object and
the appropriate function will be called depending on the type of object. The
virtual function mechanism knows what kind of object the pointer points to.
However, this information is not immediately available to the programmer.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Virtual Functions and Friend Functions

http://www.itknowledge.com/reference/archive/1571690638/ch09/533-536.html [21-03-2000 19:27:47]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch09/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

A Simple Example

Fortunately, most recent C++ compilers include a special function, typeid(), that allows you to find
the type (or class, which is the same thing) of an object. This is called Runtime Type Identification, or
RTTI. Listing 9-14, TYPEID, shows how typeid() works.

Listing 9-14 TYPEID

// typeid.cpp
// demonstrates typeid() function
#include <iostream.h>
#include <typeinfo.h> // for typeid()

class ClassA
 { };

class ClassB
 { };

void main()
 {
 ClassA ObjA;
 ClassB ObjB;

 if(typeid(ObjA) == typeid(ClassA))
 cout << “\nObjA is an object of ClassA”;
 else
 cout << “\nObjA is not a member of ClassA”;

 if(typeid(ObjB) == typeid(ClassA))
 cout << “\nObjB is an object of ClassA”;
 else
 cout << “\nObjB is not an object of ClassA”;
 }

Here’s the output from the program:

ObjA is an object of ClassA
ObjB is not an object of ClassA

You need to include the TYPINFO.H header file. You can use either an object name or a class name as an
operand for typeid(), so it’s easy to see if an object is from a particular class. The return value from
typeid() is a pointer that is useful for comparison purposes, as with the == and != operators. The
typeid() function also works with basic types such as int and float.

A More Realistic Example

You’ll typically need RTTI when you have base class pointers that contain addresses of derived class
objects. This is the situation described earlier in this chapter where virtual functions make a class
polymorphic. It may occur when you have an array of pointers to objects or when functions take
references or a pointers to a base class as arguments.

Suppose, for example, that I want to modify the VIRTPERS program from Session 2 in this chapter so it
indicates what kind of person object (student, teacher, or person) is being displayed. Listing
9-15 shows RTTIPERS, which does exactly that.

Listing 9-15 RTTIPERS

// rttipers.cpp
// runtime type identification with person class
#include <iostream.h>
#include <typeinfo.h> // for typeid()

class person // person class
 {
 protected:
 char name[40];
 public:
 virtual void getData()
 { cout << “ Enter name: ”; cin >> name; }
 virtual void putData()
 { cout << “Name=” << name; }
 }; // student class

class student : public person
 {
 private:
 float gpa; // grade point average
 public:
 void getData() // get student data from user
 {
 person::getData();
 cout << “ Enter student's GPA: ”;
 cin >> gpa;
 }
 void putData()
 {
 person::putData();
 cout << “ GPA=” << gpa;
 }
 }; // teacher class
class teacher : public person
 {
 private:
 int numPubs; // number of papers published
 public:
 void getData() // get teacher data from user
 {
 person::getData();
 cout << “ Enter number of teacher's publications: ”;
 cin >> numPubs;
 }
 void putData()
 {
 person::putData();
 cout << “ Publications=” << numPubs;
 }
 };
void main(void)
 {
 person* persPtr[100]; // list of pointers to persons
 int n = 0; // number of persons on list
 char choice; // 'p', 's', etc.
 do
 {
 cout << “Enter person, student or teacher (p/s/t): ”;
 cin >> choice;
 if(choice=='s') // put new student
 persPtr[n] = new student; // in array
 else if(choice=='t') // put new teacher
 persPtr[n] = new teacher; // in array
 else // put new person
 persPtr[n] = new person; // in array
 persPtr[n++]->getData(); // get data for person
 cout << “ Enter another (y/n)? ”; // do another person?
 cin >> choice;
 } while(choice=='y'); // cycle until not 'y'
 for(int j=0; j<n; j++)
 { // display class name
 if(typeid(*persPtr[j]) == typeid(student))
 cout << “\nStudent, ”;
 else if(typeid(*persPtr[j]) == typeid(teacher))
 cout << “\nTeacher, ”;
 else if(typeid(*persPtr[j]) == typeid(person))
 cout << “\nPerson, ”;
 else
 cout << “\nError: unknown type”;
 persPtr[j]->putData(); // display name
 } // end for
 for(int j=0; j<n; j++) // delete all objects
 delete persPtr[j];
 } // end main()

Here’s some typical interaction with the program. The user enters data for four persons, and the program
then displays this data, including the class of the person.

Enter person, student or teacher (p/s/t): p
 Enter name: Smith
 Enter another (y/n)? y
Enter person, student or teacher (p/s/t): p
 Enter name: Johnson
 Enter another (y/n)? y
Enter person, student or teacher (p/s/t): s
 Enter name: Harrison
 Enter student's GPA: 3.3
 Enter another (y/n)? y
Enter person, student or teacher (p/s/t): t
 Enter name: McConnel
 Enter number of teacher's publications: 104
 Enter another (y/n)? n

Person, Name=Smith
Person, Name=Johnson
Student, Name=Harrison GPA=3.3
Teacher, Name=McConnel Publications=104

As you can see, RTTI can save you the trouble of storing, say, a string specifying the class of each object.
Instead, you can find out from the object itself what it is (although you do need to know all the
possibilities in advance).

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Virtual Functions and Friend Functions

http://www.itknowledge.com/reference/archive/1571690638/ch09/536-539.html [21-03-2000 19:27:57]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch09/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Quiz 5

1. RTTI

a. takes place at compile time.

b. is seldom useful because you always know what class something is.

c. is applicable to base class objects.

d. is applicable to derived class objects.

e. is an acronym for Random True Type Identification.

2. In the TYPEID program,

a. the type ID of objects is compared with the type ID of classes.

b. comparison operators are required.

c. the argument to typeid() is a pointer.

d. the argument to typeid() is a string.

e. the header file TYPEID.H must be included.

3. In the RTTIPERS program,

a. the class creator arranges for type information to be stored in each object.

b. the class user arranges for type information to be stored in each object.

c. the compiler arranges for type information to be stored in each object.

d. typeid() uses contextual analysis of the source code to determine the type of
an object.

e. typeid() and a comparison operator determine the type of an object.

4. Using RTTI in the RTTIPERS program

a. gives extra information to the end user.

b. could be avoided, but at the expense of object size.

c. isn’t necessary if you use virtual functions.

d. isn’t necessary if you instantiate only objects of the base class.

e. makes all objects slightly larger.

5. The return value from typeid() is

a. a pointer to the object used as an argument.

b. for classes with virtual functions, possibly the address of the class vtable.

c. useful for comparison with other typeid() calls.

d. a pointer to a string representing the class name.

e. useful only with abstract classes.

Exercise 1

Start with the EMPINH program from Chapter 7, Session 2. Change main() so that when
members of the various derived classes are instantiated, pointers to them are placed in an array of
type employee*. Assume you can’t change the existing class hierarchy. Use RTTI in main()
to display the type of each object whose pointer is stored in the array at the same time you invoke
putdata() to display the object’s data.

Session 6: Friend Functions

A friend function is a function that is not a member of a class, but nevertheless has access to the
private and protected members of the class.

Ordinarily, the policies of encapsulation and data hiding dictate that nonmember functions should
not be able to access an object’s private or protected data. The policy is, if you’re not a member,
you can’t get in. However, there are situations where such rigid discrimination leads to
considerable inconvenience. Friend functions are a way around this inconvenience.

One such situation arises when you want to use a nonobject on the left side of an overloaded
operator. Another place where friend functions are helpful is when you want to use functional
notation with an object as the argument. I’ll examine these uses for friend functions in this session.
In Session 7 I’ll explore a related topic, friend classes.

The “Left-Side” Problem

In the ADDAIR example (Chapter 6, Session 1), I overloaded the + operator to add two airtime
objects together. This worked fine as long as the objects being added together really were
airtime objects:

at3 = at1 + at2;

No Problem on the Right

Suppose that, as a class creator, I want to make it possible for class users to write expressions that
add an integer, representing hours, to an airtime:

at2 = at1 + 3;

For example, 2:33 + 5 would be 7:33. It’s fairly easy to make this happen when the integer is on
the right side of the operator, as shown here. If there’s a one-argument constructor in the
airtime class, the compiler will automatically use it to convert the integer to an airtime
value and then add the two airtimes. Listing 9-16, AIRNOFRI, shows a possible scenario.

Listing 9-16 AIRNOFRI

// airnofri.cpp
// overloads the + operator for airtime class,
// integer cannot be used for on left of operator
#include <iostream.h>

class airtime
 {
 private:
 int hours; // 0 to 23
 int minutes; // 0 to 59
 public: // 0, 1 or 2 arg constructor
 airtime(int h = 0, int m = 0) : hours(h), minutes(m)
 { }
 void display() // output to screen
 { cout << hours << ':' << minutes; }
 void get() // input from user
 {
 char dummy;
 cin >> hours >> dummy >> minutes;
 } // overloaded + operator
 airtime operator + (airtime right)
 {
 airtime temp; // make a temporary object
 temp.hours = hours + right.hours; // add data
 temp.minutes = minutes + right.minutes;
 if(temp.minutes >= 60) // check for carry
 {
 temp.hours++;
 temp.minutes -= 60;
 }
 return temp; // return temporary object by value
 }
 }; // end class airtime
void main()
 {
 airtime at1, at2;

 cout << “Enter an airtime: ”;
 at1.get();

 at2 = at1 + 3; // add integer to airtime
 cout << “airtime + 3 = ”;
 at2.display(); // display sum

// at2 = 3 + at1; // error: illegal structure operation

 }

The constructor in this program handles three situations: no arguments, one argument, or two
arguments. (I could also have used three separate constructors.) In its role as a one-argument
constructor, the constructor is used by the compiler to convert the 3 in main() into an
airtime(3, 0) value, which is then added to whatever airtime value the user entered for
at1. Here’s some sample interaction:

Enter an airtime: 6:45
airtime + 3 = 9:45

The operator+() function, with a little help from the constructor, has no problem when a
nonobject (an integer) appears on the right side of the + operator.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Virtual Functions and Friend Functions

http://www.itknowledge.com/reference/archive/1571690638/ch09/539-542.html [21-03-2000 19:28:09]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch09/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Not So Easy on the Left

As you can see from the commented last line in the AIRNOFRI listing, however, the compiler
will signal an error if you attempt to put an integer value on the left of the + operator:

at2 = 3 + at1; // no good

Why doesn’t this work? Overloading disguises what’s actually happening. Remember that the
overloaded + operator is really just a member function, called by the object on its left and
taking the object on its right as an argument. If I write things out as the compiler sees it, the
problem will be clearer. Here’s what a call to operator+() really means, when the integer is
on the right:

at2 = at1.operator+(3); // ok

This looks all right. But here’s the corresponding situation when the integer is on the left:

at2 = 3.operator+(at1); // illegal; '3' isn't an object

Member functions must be invoked by an object of their class, and 3 is not an airtime
object. So although you can add an integer to an airtime, you can’t add an airtime to an integer.
This is a serious inconsistency for class users.

Friends to the Rescue

In this situation, there’s nothing like a friend function. A friend can be defined outside of any
class or other function, as if it were a normal (nonmember) global function. Its connection to
the class is that, within the class, it’s declared to be a friend. Listing 9-17 shows AIRFRI.

Listing 9-17 AIRFRI

// airfri.cpp
// overloads + operator for airtime class,
// uses friend function to permit integer on left of + operator
#include <iostream.h>
//
class airtime
 {
 private:
 int hours; // 0 to 23
 int minutes; // 0 to 59
 public: // 0, 1, or 2 arg constructor
 airtime(int h = 0, int m = 0) : hours(h), minutes(m)
 { }

 void display() // output to screen
 { cout << hours << ':' << minutes; }

 void get() // input from user
 {
 char dummy;
 cin >> hours >> dummy >> minutes;
 }

 friend airtime operator+(airtime, airtime); // declaration

 }; // end class airtime
//
 // friend function: overloaded + operator
airtime operator + (airtime left, airtime right)
 {
 airtime temp; // make a temporary object
 temp.hours = left.hours + right.hours; // add data
 temp.minutes = left.minutes + right.minutes;
 if(temp.minutes >= 60) // check for carry
 {
 temp.hours++;
 temp.minutes -= 60;
 }
 return temp; // return temporary object by value
 }
//
void main()
 {
 airtime at1, at2;
 cout << “Enter an airtime: ”;
 at1.get();

 at2 = at1 + 3; // add integer to airtime
 cout << “airtime + 3 = ”;
 at2.display(); // display sum

 at2 = 3 + at1; // add airtime to integer
 cout << “\n3 + airtime = ”
;
 at2.display(); // display sum
 }

A function declaration (the last statement in the airtime class) makes operator+() a
friend:

friend airtime operator+(airtime, airtime);

This declaration can be placed anywhere in the class; it doesn’t matter, at least to the compiler,
if it goes in the public or the private section. However, it belongs conceptually in the
public section because it’s part of the public interface to the class. That is, any class user can
invoke the friend function; it’s not accessible only to class members. Therefore, friend function
declarations are commonly placed in the public section.

As you can see, the operator+() function (which appears just after the airtime class in
the listing) is not a member function of airtime; if it were, its declarator would be

airtime airtime::operator + (airtime left, airtime right)

Nevertheless, it can access hours and minutes, which are private data members of
airtime. It can do this because it has declared a friend within the class.

The operator+() friend function takes two arguments, called left and right. Because
it’s a standalone function and not a class member, it’s not invoked by an object; it’s simply
called from main() like any other global function. Both objects to be added are therefore
available as arguments.

As a general rule, the friend version of a function always takes one more argument than the
member version. Internally, the friend operator+() function in AIRFRI is similar to the
member version in AIRNOFRI, except that it refers to the data in the airtime arguments as
left.hours and right.hours, whereas the member version uses hours and
right.hours. The function returns the sum as a third airtime value.

If either argument, whether on the left or right, is an integer, the compiler will use the
one-argument constructor to convert the integer to an airtime and then add the two airtimes.
Statements in main() show both situations, and the compiler has no problem with either one.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Virtual Functions and Friend Functions

http://www.itknowledge.com/reference/archive/1571690638/ch09/542-544.html [21-03-2000 19:28:17]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch09/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Breaching the Walls

I should note that, during the development of C++, friend functions were controversial. Conflict raged over
the desirability of including this feature. On the one hand, it adds flexibility to the language; on the other, it
is not in keeping with the philosophy that only member functions can access a class’s private data.

How serious is the breach of data integrity when friend functions are used? A friend function must be
declared as such within the class whose data it will access. Thus, a programmer who does not have access to
the source code for the class cannot make a function into a friend. In this respect, the integrity of the class is
still protected. Current thinking is that friends are not a serious threat to data integrity.

Even so, friend functions are conceptually messy and potentially can lead to a spaghetti-code situation if
numerous friends muddy the clear boundaries between classes. For this reason, friend functions should be
used sparingly. Always use a member function unless there’s a compelling reason to use a friend. If you find
yourself using a lot of friends, you might want to rethink the design of the program.

Friends for Functional Notation

Sometimes a friend function allows a more obvious syntax for calling a function than does a member
function. For example, suppose I want a function that will square (multiply by itself) an object of the
English class and return the result in square feet, as a type float. The MISQ example (Listing 9-18)
shows how this might be done with a member function.

Listing 9-18 MISQ

// misq.cpp
// member square() function for Distance
#include <iostream.h>

class English // English class
 {
 private:
 int feet;
 float inches;
 public:
 English(int ft, float in) // 2-arg constructor
 { feet = ft; inches = in; }
 void showdist() // display
 { cout << feet << “\'-” << inches << '\”'; }
 float square(); // member function declaration
 };
float English::square() // return square of
 { // this English object
 float fltfeet = feet + inches/12; // convert to float
 float feetsqrd = fltfeet * fltfeet; // find the square
 return feetsqrd; // return square feet
 }

void main()
 {
 English dist(3, 6.0); // 1-arg constructor (3'-6")
 float sqft = dist.square(); // return square of dist
 // display distance and square
 cout << "\nDistance = "; dist.showdist();
 cout << "\nSquare = " << sqft << " square feet";
 }

The main() part of the program creates an English distance value, squares it, and prints out the result.
The output shows the original distance and the square:

Distance = 3’-6”
Square = 12.25 square feet

That is, if there’s a table 3’-6” on each side, it has an area of 12.25 square feet. In main(), I use the
statement

sqft = dist.square();

to find the square of dist and assign it to sqft. This works all right, but if you want to work with
English objects using the same syntax that you use with ordinary numbers, you would probably prefer a
functional notation:

sqft = square(dist);

You can achieve this effect by making square() a friend of the English class, as shown in FRISQ
(Listing 9-19).

Listing 9-19 FRISQ

// frisq.cpp
// friend square() function for English class
#include <iostream.h>

class English // English class
 {
 private:
 int feet;
 float inches;
 public:
 English(int ft, float in) // 2-arg constructor
 { feet = ft; inches = in; }
 void showdist() // display
 { cout << feet << "\'-" << inches << '\"'; }

 friend float square(English); // friend function
 };

float square(English d) // return square of
 { // the argument
 float fltfeet = d.feet + d.inches/12; // convert to float
 float feetsqrd = fltfeet * fltfeet; // find the square
 return feetsqrd; // return square feet
 }
void main()
 {
 English dist(3, 6.0); // two-arg constructor (3'-6")

 float sqft = square(dist); // return square of dist

 // display distance and square
 cout << "\nDistance = "; dist.showdist();
 cout << "\nSquare = " << sqft << " square feet";
 }

Now you can use the more intuitive

float sqft = square(dist);

Although, as a member function in MISQ, square() takes no arguments, it takes one as a friend function in
FRISQ. Again, the friend version of a function always requires one more argument than the member version.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Virtual Functions and Friend Functions

http://www.itknowledge.com/reference/archive/1571690638/ch09/544-547.html [21-03-2000 19:28:24]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch09/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Friends as Bridges

Here’s another situation in which friend functions might come in handy. Imagine that you want a
function to operate on objects of two different classes. Perhaps the function will take objects of the
two classes as arguments and operate on their private data. If the two classes are inherited from the
same base class, then you may be able to put the function in the base class. But what if the classes are
unrelated?

Listing 9-20 shows a simple example, BRIDGE, that shows how friend functions can act as a bridge
between two classes.

Listing 9-20 BRIDGE

// bridge.cpp
// friend functions
#include <iostream.h>

class beta; // needed for frifunc declaration
class alpha
 {
 private:
 int data;
 public:
 alpha() { data = 3; } // no-arg constructor
 friend int frifunc(alpha, beta); // friend function
 };
class beta
 {
 private:
 int data;
 public:
 beta() { data = 7; } // no-arg constructor
 friend int frifunc(alpha, beta); // friend function
 };
int frifunc(alpha a, beta b) // function definition
 {
 return(a.data + b.data);
 }
void main()
 {
 alpha aa;
 beta bb;
 cout << frifunc(aa, bb); // call the function
 }

In this program, the two classes are alpha and beta. The constructors in these classes initialize
their single data items to fixed values (3 in alpha and 7 in beta).

I want the function frifunc() to have access to both these private data members, so I make it a
friend function. It’s declared with the friend keyword in both classes:

friend int frifunc(alpha, beta);

An object of each class is passed as an argument to the function frifunc() and accesses the
private data member of both classes through these arguments. The function doesn’t do much: It
adds the data items and returns the sum. The main() program calls this function and prints the
result.

A minor point: Remember that a class can’t be referred to until it has been declared. Class beta is
referred to in the declaration of the function frifunc() in class alpha, so beta must be declared
before alpha. Hence the declaration

class beta;

at the beginning of the program.

Quiz 6

1. A friend function

a. must be a member function of the class that declares it a friend.

b. must be invoked by the class that declares it a friend.

c. must be invoked by an object of the class that declares it a friend.

d. can access the private data of the class that declares it a friend.

e. can access the nonpublic data of any class derived from the class that declares it a
friend.

2. Typically, the private class data accessed by a friend function

a. is in an object created by the friend function.

b. is in the object that invoked the friend function.

c. is in an object sent to the friend function as an argument.

d. must be static class data.

e. is in an object of a different class than that in which the function is declared to be a
friend.

3. Friend functions are helpful in functional notation because they

a. use parentheses following the function name.

b. take no arguments.

c. aren’t related to a specific class.

d. operate on an object passed as an argument.

e. allow other functions to access their class data.

4. Which of the following statements are true?

a. Any function can use a friend function to access the private data of the class with
which the friend function is associated.

b. For a function to be a friend, the keyword friend must appear in its definition.

c. A friend function must be declared in the class whose friend it will be.

d. A friend function is specified by its location in the listing.

e. Friends are especially useful for overloaded operators.

5. Which of the following statements are true?

a. A function can be a friend of more than one class.

b. A class can be a friend of a function.

c. More than one function can be a friend of a class.

d. Member functions from different classes could use a friend function to exchange
private data between the classes.

e. A friend function can be called in a statement in main().

Exercise 1

Write an operator-() function that subtracts two airtime values. Assume a larger airtime
will never be subtracted from a smaller. Make it possible for an integer, representing hours, to be
subtracted from an airtime and for an airtime to be subtracted from an integer.

Exercise 2

Create a function for the English class that returns the square of an English value, in square
feet, type float. Write a main() that tests this function.

Session 7: Friend Classes

Classes, as well as functions, can be friends. The usual reason for using friend classes is to facilitate
interclass communication. In this session I’ll start with some skeleton examples of such
communication and then show a more ambitious program that models a horse race, with track and
horse classes that need to communicate with each other.

Interclass Communication

Suppose you have two classes, alpha and beta, that are closely associated with each other. In fact,
they are so closely associated that one class needs to access the other’s private data directly (without
using public access functions). You don’t want to make the data public because then anyone could
alter it by mistake. Also, neither class is a “kind of” the other, so you don’t want to relate them using
inheritance. How do you arrange for one class to access another’s private members? The answer is to
use friend classes, but there’s more to it than that.

In interclass communication, it makes a difference which class specification appears first in the
listing. You can’t refer to members of a class that hasn’t been specified yet because the compiler
won’t know anything about them. If alpha is specified before beta, then it’s easy for member
functions of beta to refer to private members of alpha, but harder for functions in alpha to
access private data in beta. I’ll start with an easy case.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Virtual Functions and Friend Functions

http://www.itknowledge.com/reference/archive/1571690638/ch09/547-550.html [21-03-2000 19:28:36]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch09/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Accessing Private Members in a Previously Defined Class

Listing 9-21, INTERC1, shows how a member function of class beta, whose specification follows
that of class alpha, can access the private data in alpha.

Listing 9-21 INTERC1

// interc1.cpp
// a class accesses data in a previously-defined class
#include <iostream.h>
class alpha
 {
 private:
 friend class beta; // so beta can access alpha data
 int adata; // alpha's private data
 };
class beta
 {
 public:
 void bfunc()
 {
 alpha objA; // make an object to
 objA.adata = 3; // access private alpha data
 }
 };

The key here is declaring class beta a friend of class alpha:

friend class beta; // so beta can access alpha data

This gives any member function of class beta access to any private or protected data in class
alpha. Both keywords friend and class are necessary. Notice that the declaration is placed in
the private section of alpha. As with friend functions, the compiler doesn’t care where the
declaration is placed, but it’s conceptually more accurate to place it in the private section because
the friend connection between alpha and beta is used only within the two classes; it’s not part of
the public interface (accessed by the class user).

It’s important to recognize that (unless they are related by inheritance) a class member cannot
access data in another class in the abstract. That is, you can’t say

alpha::adata = 3; // Error: object is required

as you could if beta were derived from alpha. They are separate classes, and friendship is not the
same as family. There must be an actual object (or a pointer to an actual object, as you’ll see later)
in which the data resides:

alpha objA;
objA.adata = 3;

Accessing Private Members in a Not Yet Defined Class

Now suppose a member function of alpha wants to access private data in beta. This is a problem
because the specification for beta appears after that for alpha and the compiler needs to see a
class specified before it can access its members. (Yes, you could reverse them, but suppose you
want beta to access alpha’s data as well?)

In this case, the trick is to move the afunc() member function definition out of alpha and place
it after the specification for beta. Listing 9-22 shows INTERC2.

Listing 9-22 INTERC2

// interc2.cpp
// class accesses data in a not-yet-defined class

class alpha
 {
 public:
 void afunc(); // function declaration
 }; // (definition must follow beta)
class beta
 {
 private:
 friend class alpha; // so alpha can access beta data
 int bdata; // beta's data
 };
void alpha::afunc() // alpha's function
 {
 beta objB; // create beta object
 objB.bdata = 3; // access its private data
 };

I declare afunc() in alpha, but define it later, following the beta specification. The compiler
therefore knows what beta looks like when it compiles afunc() and, because alpha is a friend
of beta, can handle statements that access beta’s private data. Again, notice that this data must
be in an actual object.

Pointers in Interclass Communication

In real programs, when one class accesses data in another, it’s more common to refer to objects
using pointers to them than it is to refer to them directly, as I did in INTERC1 and INTERC2. The next
example not only shows how objects can be accessed with pointers, it also demonstrates two-way
communication: alpha accessing beta’s private data and beta accessing alpha’s private data.

The idea in using pointers for interclass communication is that each class contains pointers to
objects of the other class. In the kind of interclass communication I’m describing here, there are
often different numbers of objects of the two classes. In the example, I’ll assume that each alpha
object is associated with two beta objects. It follows that class alpha has two pointers to beta
(so alpha can access beta data) and class beta has one pointer to alpha (so beta can access
alpha data).

In addition, each class is declared to be a friend of the other. Listing 9-23 shows INTERC3.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Virtual Functions and Friend Functions

http://www.itknowledge.com/reference/archive/1571690638/ch09/550-552.html [21-03-2000 19:28:44]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch09/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Listing 9-23 INTERC3

// interc3.cpp
// interclass communication using pointers and friend classes
#include <iostream.h>
//
class alpha // an alpha is associated with
 { // several betas
 private:
 friend class beta; // for beta access to alpha data
 beta* bptr1; // pointers to betas
 beta* bptr2;
 int adata;
 public:
 alpha(); // constructor (defined after beta)
 void afunc(); // function (defined after beta)
 };
//
class beta // several betas are
 { // associated with an alpha
 private:
 friend class alpha; // for alpha access to beta data
 alpha* aptr; // pointer to "our" alpha
 int bdata; // data
 // note: constructor is private
 beta(alpha* ap) : aptr(ap) // 1-arg construtor
 { }
 // initializes pointer to alpha
 public:
 void bfunc()
 {
 aptr->adata = 3; // access private alpha data
 }
 };
//
alpha::alpha() // alpha constructor
 { // (must be defined after beta)
 bptr1 = new beta(this); // make betas
 bptr2 = new beta(this);
 }
void alpha::afunc() // alpha function
 {
 // (must be defined after beta)
 bptr1->bdata = 4; // accesses private beta data
 bptr2->bdata = 5;
 }
//
void main()
 {
 alpha objA;
 objA.afunc();
 }

I again use the trick of defining alpha’s functions after the beta specification because both the
alpha constructor and afunc() require access to beta data. You can see that alpha’s
function afunc() accesses the bdata in both beta objects and that beta’s function
bfunc() accesses the adata in the alpha object.

How are all these objects created? Let’s assume that the class user creates only alpha objects. If
the user could create beta objects, the two-beta-one-alpha arrangement could be violated. To
ensure that the user can’t create a beta, we make the beta constructor private, so only friends of
beta can make betas.

When an alpha object is created, its constructor creates two beta objects. It does this by calling
the beta constructor and passing it its own this pointer. Thus, every beta can locate the
alpha that it’s associated with. Because alpha’s constructor uses new to create its two beta
objects, it can access them by pointer as well. Everyone knows where everyone else is.

A Horse Race Example

Let’s put what you’ve learned about friend classes and interclass communication together in a
horse race game program. This is a simulation program in which a number of horses appear on the
screen and, starting from the left, race to a finish line on the right. Each horse’s speed is
determined randomly so there is no way to figure out in advance which one will win. The
spectators can (although we do not condone this) place bets on which horse will win. The program
uses character graphics, so the horses are easily (although somewhat crudely) displayed.

This program has some peculiarities. First, in the version shown here, it works only with Borland
compilers because it uses several library functions specific to Borland. These are delay(),
gotoxy(), clrscr(), random(), and randomize(). Second, it’s a DOS program because
the delay() function doesn’t work in Windows. That means you can’t develop it as a Borland
EasyWin target, you must develop it as a DOS program, as described in Appendix C. Other
compilers have similar but not identical functions, so you may need to adapt the program
appropriately.

Operation of FRIHORSE

When the program, FRIHORSE, is started, it asks the user to supply the race’s distance and the
number of horses that will run in it. The classic unit of distance for horse racing (at least in
English-speaking countries) is the furlong, which is 1/8 of a mile. Typical races are 6, 8, 10, or 12
furlongs. You can specify from 1 to 10 horses. The program draws vertical start and finish lines
and lines corresponding to furlongs. Each horse is represented by a rectangle with a number in the
middle. Figure 9-5 shows the screen with a race in progress.

Figure 9-5 Output of the HORSE program

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Virtual Functions and Friend Functions

http://www.itknowledge.com/reference/archive/1571690638/ch09/552-553.html [21-03-2000 19:28:54]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
javascript:displayWindow('images/09-05.jpg',473,253)
javascript:displayWindow('images/09-05.jpg',473,253)
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch09/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Designing the Horse Race

How do we approach an object-oriented design for the horse race? Your first question might be, is
there a group of similar entities that you’re trying to model? Yes, the horses. So it seems reasonable
to make each horse an object. There will be a class called horse which will contain data specific to
each horse, such as its number and the distance it has run so far (which is used to display the horse in
the correct screen position).

However, there is also data that applies more to the track as a whole than to each horse, such as the
track length, the elapsed time (starting from 0:00 at the start of the race), and the total number of
horses. What do we do with this track-related (as opposed to horse-related) data? One possibility is to
make a class called, say, track, and install this data in it. Then we’ll have a single track object
and many horse objects.

How should the track and the horses communicate? We could use inheritance to make the horses
descendants of the track, but this doesn’t make much sense because the horses aren’t a “kind of” race
track; they’re a completely different thing.

The approach I use here is to make the horse class a friend of track so that the horses can access
private track data. Also, I don’t want the class user to be able to create or access horse objects, which
(unlike their real-life counterparts) can’t exist without a track. Therefore, I make the constructor and
member functions of the horse class private. However, the track needs to access these horse
member functions, so I make track a friend of horse.

The class user creates a single track object, and the track creates the horses. The track and the horses
communicate with each other using pointers and the friend relationships, as demonstrated in the
INTERC3 example. (You’ll see other ways to organize the track and horses in Session 8.) Listing 9-24
shows FRIHORSE.

Listing 9-24 FRIHORSE

// frihorse.cpp
// models horse race, uses friends
// (Note: Borland specific. See text.)
#include <iostream.h>
#include <dos.h> // for delay()
#include <conio.h> // for gotoxy(), etc.
#include <stdlib.h> // for random()
#include <time.h> // for randomize()
const int CPF = 5; // screen columns/furlong
//
class track
 {
 private:
 friend class horse; // let horses access data
 horse* hptr; // pointer to horse memory
 int total; // total number of horses
 int count; // horses created so far
 int track_length; // track length in furlongs
 float elapsed_time; // time since start of race
 public:
 track(float, int); // 2-arg constructor
 void track_tick(); // time tick; entire track
 ~track(); // destructor
 }; // end track class
//
class horse
 {
 private:
 friend class track; // let track access functions
 track* ptr_track; // pointer to track
 int horse_number; // this horse's number
 float finish_time; // this horse's finish time
 float distance_run; // distance since start
 // note: private member functions
 horse() : distance_run(0.0) // construct a horse
 { }
 void horse_init(track* pt) // initialize a horse
 {
 ptr_track = pt;
 horse_number = (ptr_track->count)++;
 }
 void horse_tick(); // time tick for one horse
 }; // end class horse
//
void horse::horse_tick() // for each horse
 { // display horse & number
 gotoxy(1 + int(distance_run * CPF), 2 + horse_number*2);
 cout << " \xDB" << horse_number << "\xDB";
 if(distance_run < ptr_track->track_length + 1.0/CPF)
 {
 if(random(3) % 3) // skip about 1 of 3 ticks
 distance_run += 0.2; // advance 0.2 furlongs
 finish_time = ptr_track->elapsed_time; // update finish time
 }
 else
 { // display finish time
 int mins = int(finish_time)/60;
 int secs = int(finish_time) - mins*60;
 cout << " Time=" << mins << ":" << secs;
 }
 }
//
 // two-arg constructor
track::track(float l, int t) : track_length(l), total(t),
 count(0), elapsed_time(0.0)
 {
 randomize();
 // initialize random numbers
 clrscr(); // clear screen
 // display track
 for(int f=0; f<=track_length; f++)
 // for each furlong
 for(int r=1; r<=total*2 + 1; r++)
 // for each screen row
 {
 gotoxy(f*CPF + 5, r);
 if(f==0 || f==track_length)
 cout << '\xDE';
 // draw start or finish line
 else
 cout << '\xB3';
 // draw furlong marker
 }
 // create horses
 hptr = new horse[total];
 // get memory for all horses
 for(int j=0; j<total; j++)
 // initialize each horse
 (hptr+j)->horse_init(this);
 // with track pointer
 }
void track::track_tick()
 {
 elapsed_time += 1.75;
 // update time
 for(int j=0; j<total; j++)
 // for each horse,
 (hptr+j)->horse_tick();
 // update horse
 }
track::~track()
 // destructor
 {
 delete hptr;
 // delete memory for horses
 }
//
void main()
 {
 float length;
 int nhorses;
 cout << "\nEnter track length (furlongs, 6 to 12): ";
 cin >> length;
 cout << "\nEnter number of horses (1 to 10): ";
 cin >> nhorses;
 track t(length, nhorses); // create track and horses
 while(!kbhit()) // exit on keypress
 {
 t.track_tick(); // move and display all horses
 delay(500); // wait 1/2 second
 }
 t.~track(); // destroy track and horses
 }

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Virtual Functions and Friend Functions

http://www.itknowledge.com/reference/archive/1571690638/ch09/553-556.html [21-03-2000 19:29:01]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch09/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Creating the Horses

In track::create_horses(), I use new to obtain memory for all the
horse objects at once. (I can’t use an array because I don’t know in
advance how many horses the user will specify.) Member functions in
track can then access each horse through the pointer returned from new,
plus an index j to specify the particular horse.

As each horse is created, its constructor numbers it sequentially, using the
track’s count of how many horses have been created so far.

Keeping Time

Simulation programs usually involve an activity taking place over a period
of time. To model the passage of time, such programs typically energize
themselves at fixed intervals. In the FRIHORSE program, the main()
program uses a while loop to call a track function, tick_track(),
repeatedly; the time tick is sent to the track as a whole. The
tick_track() function then makes a series of calls, one for each horse,
to the horse function horse_tick() (which should not be confused with
the insect that carries equine fever). This function then redraws each horse
in its new position.

Quiz 7

1. For all the members of a class B to be able to access the private
data of a previously defined (and unrelated) class A,

a. class A must be defined as a friend.

b. member function definitions of B must follow the class
specification for A in the listing.

c. the member functions of class B must be defined outside the
class.

d. within A, B must be declared to be a friend of A.

e. within B, A must be declared to be a friend of B.

2. For the members of a class A to be able to access the private data
of a class B, whose specification follows A in the listing,

a. class B must be defined as a friend.

b. member function definitions of A must follow the class
specification for B, in the listing.

c. the member functions of class A must be defined outside the
class.

d. within A, B must be declared to be a friend of A.

e. within B, A must be declared to be a friend of B.

3. Which of the following statements, describing the INTERC3
program, are true?

a. An alpha object knows where related beta objects are
because it created them with new.

b. The pointer to an alpha object, defined within beta, is
used by alpha to access private beta data.

c. Member functions of beta must be defined following the
specification for alpha.

d. The friend relationship is unnecessary when each class
contains pointers to objects of the other.

e. The beta objects know where their related alpha object
is because they are friends of alpha.

4. Which of the following statements, concerning the FRIHORSE
program, are true?

a. The track class does not need to know where the horse
objects are stored in memory.

b. The new operator is called once to create each horse
object.

c. The horse objects find out what time it is by accessing
private data in track.

d. The horse objects find out how far they’ve gone by
accessing private data in track.

e. The track class does not need to be a friend of the horse
class.

5. In the FRIHORSE program,

a. a single call to the horse_tick() function moves all the
horses.

b. the horse class creates the track.

c. the track class contains data specific to each horse.

d. the track class communicates with the horses using a
pointer.

e. the horse objects are stored contiguously in memory.

Exercise 1

Modify the INTERC3 program so that each alpha object is associated with
100 beta objects. Store pointers to the beta objects in an array in
alpha. As before, each class should be able to access the other’s private
data.

Exercise 2

Add a third class gamma to the INTERC3 program. Arrange for each alpha
object to be associated with one beta object and one gamma object.
Organize things so that alpha and beta objects can access one another’s
private data, alpha and gamma can do the same, but there is no such
communication between beta and gamma.

Session 8: Nested Classes and Static Member
Data

Let’s look at two variations of the FRIHORSE program from the last session.
The first program uses a new idea: nested classes. The second uses a
concept you encountered in Chapter 4, static data. These examples provide
evidence that there is often more than one way to design an object-oriented
program.

Nested Classes

You can place one class specification inside another:

class alpha
 {
 private:
 class beta;
 {
 };
 };

Here, beta is said to be nested inside alpha. What’s the advantage of
this? For one thing, it can help mirror the conceptual relationship of the
classes. If beta is used only by alpha and will never be accessed or
instantiated outside alpha, then it makes sense to place it completely
within alpha.

There’s another advantage to nested classes. Remember that normal class
names and member names have global scope; that is, they are visible
throughout the entire program. However, in this example, because beta
(along with its members, if it had any) is hidden inside alpha, beta’s
member names can be used for other purposes elsewhere in the program
without fear of conflict. Such name clashes can be a problem in large
programs with thousands of names. It’s always good practice to minimize
the number of names in the global name space. (Another solution to name
clashes is a recently adopted C++ feature called namespaces, which I’ll
describe in Chapter 11, Session 7.)

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Virtual Functions and Friend Functions

http://www.itknowledge.com/reference/archive/1571690638/ch09/557-559.html [21-03-2000 19:29:13]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch09/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Communication Between Nested Classes

How do nested classes communicate with each other? They don’t have automatic access to each
other’s data just because they’re nested. As with ordinary nonnested classes, special efforts must be
made to allow communication. One approach is to use friend classes. Listing 9-25 shows an example,
called NESTED.

Listing 9-25 NESTED

// nested.cpp
// one class nested inside another

class alpha
 {
 private:
 int adata;
 /////////////////////////
 class beta
 {
 private:
 int bdata;
 friend class alpha; // alpha is a friend of beta
 public:
 void bfunc()
 {
 alpha objA;
 objA.adata = 3; // access private alpha data
 }
 }; // end class beta
 ////////////////////////
 friend class alpha::beta;
 // beta is a friend of alpha
 // (must follow beta)
 public:
 void afunc()
 {
 beta objB;
 objB.bdata = 2;
 // access private beta data
 objB.bfunc();
 }
 }; // end class alpha

void main()
 {
 alpha objA;
 objA.afunc();
 }

The member function afunc() in alpha can access the private bdata in beta, and bfunc() in
beta can access the private adata in alpha. As in the examples in the last session, access must be
to variables in actual objects. Notice too that the statement

friend class alpha::beta;

must follow the specification for beta within the alpha specification. It must also use the complete
name of beta, which, because it is nested within alpha, is alpha::beta. Within beta, alpha
is made a friend in the usual way.

Because beta is hidden in alpha, you can’t write something like

void main()
 {
 alpha::beta objB; // Error: can't make a beta object
 }

The beta class is unknown outside of alpha.

Horse Racing and Nested Classes

The larger-scale example of nested classes is similar to the FRIHORSE program, but the horse class
specification has been placed inside the track specification. (See the warnings about FRIHORSE
before attempting to compile NESHORSE.) Listing 9-26 shows NESHORSE.

Listing 9-26 NESHORSE

// neshorse.cpp
// models horse race, uses friends and nested classes
// (Note: Borland specific. See text.)
#include <iostream.h>
#include <dos.h> // for delay()
#include <conio.h> // for kbhit()
#include <stdlib.h> // for random()
#include <time.h> // for randomize()
const int CPF = 5; // screen columns/furlong
class horse;
//
class track
 {
 private:
 //
 class horse // nested class
 {
 private:
 track* ptr_track; // pointer to track
 int horse_number; // this horse's number
 float finish_time; // this horse's finish time
 float distance_run; // distance since start
 public:
 horse() : distance_run(0.0) // construct a horse
 { }
 void horse_init(track* pt) // initialize a horse
 {
 ptr_track = pt;
 horse_number = (ptr_track->count)++;
 }
 void horse_tick(); // time tick for one horse
 }; // end class horse
 //
 horse* hptr; // pointer to horse memory
 // (must follow horse class)
 int total;
 // total number of horses
 int count;
 // horses created so far
 int track_length;
 // track length in furlongs
 float elapsed_time;
 // time since start of race
 friend class track::horse;
 public:
 track(float, int);
 // two-arg constructor
 void track_tick();
 // time tick for entire track
 ~track()
 // destructor
 {
 delete hptr;
 // delete horse memory
 }
 }; // end track class
//
// 2-arg constructor
track::track(float l, int t) : track_length(l), total(t),
 count(0), elapsed_time(0.0)
 {
 randomize(); // initialize random numbers
 clrscr();
 // clear screen
 // display track
 for(int f=0; f<=track_length; f++)
 // for each furlong
 for(int r=1; r<=total*2 + 1; r++) // for each screen row
 {
 gotoxy(f*CPF + 5, r);
 if(f==0 || f==track_length)
 cout << '\xDE';
 // draw start or finish line
 else
 cout << '\xB3';
 // draw furlong marker
 }
 // create horses
 hptr = new horse[total];
 // get memory for all horses
 for(int j=0; j<total; j++)
 // initialize each horse
 (hptr+j)->horse_init(this);
 // with track pointer
 }

void track::track_tick()
 {
 elapsed_time += 1.75;
 // update time
 for(int j=0; j<total; j++)
 // for each horse,
 (hptr+j)->horse_tick();
 // update horse
 }
void track::horse::horse_tick()
 // for each horse
 {
 // display horse & number
 gotoxy(1 + int(distance_run * CPF), 2 + horse_number*2);
 cout << " \xDB" << horse_number << "\xDB";
 if(distance_run < ptr_track->track_length + 1.0/CPF)
 {
 if(random(3) % 3)
 // skip about 1 of 3 ticks
 distance_run += 0.2;
 // advance 0.2 furlongs
 finish_time = ptr_track->elapsed_time; // update finish time
 }
 else
 {
 // display finish time
 int mins = int(finish_time)/60;
 int secs = int(finish_time) - mins*60;
 cout << " Time=" << mins << ":" << secs;
 }
 }
//
void main()
 {
 float length;
 int nhorses;
 cout << "\nEnter track length (furlongs): ";
 cin >> length;
 cout << "\nEnter number of horses (1 to 10): ";
 cin >> nhorses;
 track t(length, nhorses); // create track and horses
 while(!kbhit())
 // exit on keypress
 {
 t.track_tick();
 // move and display all horses
 delay(500);
 // wait 1/2 second
 }
 t.~track();
 // delete horses
 }

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Virtual Functions and Friend Functions

http://www.itknowledge.com/reference/archive/1571690638/ch09/559-562.html [21-03-2000 19:29:30]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch09/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Because horse is nested within track, the class user, represented by main(), can’t make the
potential mistake of instantiating a horse object:

void main()
 {
 horse h; // Error: undefined class
 ...
 }

This is true even though the member functions of horse, including the constructor, are public.

Horse Racing and Static Data

For the final example in this chapter, I’ll return to a topic touched on in Chapter 4: static member
data. As you may recall, static data and functions are specific to a class, not to an object. Only static
functions may manipulate static data. Can I use static data in the horse racing program?

I start off the design, as with other versions of the horse racing program, by creating a horse class.
But when I start to think about things, I realize that I don’t need to make the track-related data, (track
length, elapsed time, and total number of horses) into a separate class. Because static members occur
only once for an entire class, I can use them to represent data and functions common to all members
of the horse class. The track is common to all the horses, so it can be represented by static data and
functions.

To modify FRIHORSE to use static data, I can take all the members that were formerly in the track
class and make them static members of the horse class.

The horse constructor operates on each horse individually, so it’s convenient to have another
function, which I call init_track(), to initialize the various static (track-oriented) data. This is a
static function because it’s called only once for the entire class, not in connection with a particular
horse object. The nonstatic member functions, which operate on each horse individually, need not
be accessed from outside the class, so they are made private. Only the track-related functions,
init_track() and track_tick(), require public access. (Again, read the warnings for
FRIHORSE before attempting to compile STAHORSE.) Listing 9-27 shows STAHORSE.

Listing 9-27 STAHORSE

// stahorse.cpp
// models a horse race, uses static data for track
// (Note: Borland specific. See text.)
#include <iostream.h>
#include <dos.h> // for delay()
#include <conio.h> // for kbhit()
#include <stdlib.h> // for random()
#include <time.h> // for randomize()
const int CPF = 5; // screen columns per furlong
class horse
 {
 private:
 // track characteristics (declarations only)
 static horse* hptr; // pointer to horse memory
 static int total; // total number of horses
 static int count; // horses created so far
 static int track_length; // track length in furlongs
 static float elapsed_time; // time since start of race

 // horse characteristics
 int horse_number; // this horse's number
 float finish_time; // this horse's finish time
 float distance_run; // distance since start
 // note: private horse-related member functions
 horse() // constructor for each horse
 {
 horse_number = count++; // set our horse's number
 distance_run = 0.0; // haven't moved yet
 }
 void horse_tick(); // time tick for one horse
 public:
 static void init_track(float l, int t); // initialize track
 static void track_tick(); // time tick for entire track
 static void kill_track() // delete all the horses
 {
 delete hptr;
 }
 };

horse* horse::hptr; // define static (track) vars
int horse::total;
int horse::count = 0;
int horse::track_length;
float horse::elapsed_time = 0.0;
void horse::init_track(float l, int t) // static (track) function
 {
 total = t; // set number of horses
 track_length = l; // set track length
 randomize(); // initialize random numbers
 clrscr(); // clear screen
 // display track
 for(int f=0; f<=track_length; f++) // for each furlong
 for(int r=1; r<=total*2 + 1; r++) // for each screen row
 {
 gotoxy(f*CPF + 5, r);
 if(f==0 || f==track_length)
 cout << '\xDE'; // draw start or finish line
 else
 cout << '\xB3'; // draw furlong marker
 }
 hptr = new horse[total]; // get memory for all horses
 }
void horse::track_tick() // static (track) function
 {
 elapsed_time += 1.75; // update time
 for(int j=0; j<total; j++) // for each horse,
 (hptr+j)->horse_tick(); // update horse
 }
void horse::horse_tick() // for each horse
 { // display horse & number
 gotoxy(1 + int(distance_run * CPF), 2 + horse_number*2);
 cout << " \xDB" << horse_number << "\xDB";
 if(distance_run < track_length + 1.0/CPF) // until finish,
 {
 if(random(3) % 3) // skip about 1 of 3 ticks
 distance_run += 0.2; // advance 0.2 furlongs
 finish_time = elapsed_time; // update finish time
 }
 else
 { // display finish time
 int mins = int(finish_time)/60;
 int secs = int(finish_time) - mins*60;
 cout << " Time=" << mins << ":" << secs;
 }
 }
void main()
 {
 float length;
 int nhorses;
 cout << "\nEnter track length (furlongs): ";
 cin >> length;
 cout << "\nEnter number of horses (1 to 10): ";
 cin >> nhorses; // initialize track and horses
 horse::init_track(length, nhorses);
 while(!kbhit()) // exit on keypress
 {
 horse::track_tick(); // move and display all horses
 delay(500); // wait 1/2 second
 }
 horse::kill_track(); // delete horses from memory
 }

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Virtual Functions and Friend Functions

http://www.itknowledge.com/reference/archive/1571690638/ch09/562-565.html [21-03-2000 19:29:45]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch09/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Of the three approaches to the horse race program, FRIHORSE in Session 7,
and NESHORSE and STAHORSE in this session, which is best? The track is
an entity, so it may make more sense to represent it with a class rather than
with static functions in the horse class. Also, horse objects should only
be created by a track object, so nesting horse inside track is
conceptually more appropriate. Thus, NESHORSE seems to be the winner.
But a slightly different situation might profit from the static data approach.
Look at each programming situation individually and maybe try different
approaches to see which is best.

Quiz 8

1. When a class B is nested within a class A,

a. member functions of B can always access the private data in
A.

b. member functions of A can always access the private data
in B.

c. every object of class A automatically contains one object of
class B.

d. the names used for B and its members are not visible
outside A.

e. class A can access class B members only if B is in the public
part of A.

2. Which of the following are true?

a. If you nest the same specification for a class C within both
A and B, which are otherwise unrelated classes, then every
object of C, created in A, is automatically accessible to B.

b. If you nest a class C within a class B, which is itself nested
within a class A, then every object of C, created in B, is
automatically accessible to A.

c. If you nest a class B within a class A, then within A you
must refer to bdata, a member of B, as A::B::bdata.

d. If you nest a class B within the public part of a class A, then
outside of A (e.g., in main()) you must refer to the B class as
A::B.

e. If you nest a class B within a class A, then to declare that B
is a friend of A, you must use the name B::A.

3. In the NESHORSE program, statements in main() can’t access
horse objects. Which of the following prevents this?

a. The horse class is nested within the track class.

b. The horse class is nested within the private part of the
track class.

c. The horse constructor is private.

d. All horse objects are created in the track class.

e. All horse objects are created in the private part of the
track class.

4. Static data

a. is defined within a class but declared outside the class.

b. can be modified only by static functions.

c. represents data common to all objects of a class.

d. is global data that is visible to any function, including
main().

e. continues to exist even if all objects of a class are destroyed.

5. In the STAHORSE program,

a. there are no horse objects, which are instead represented
by static data and functions.

b. static data and functions in the horse class play the same
role as the track class in the FRIHORSE example.

c. because it’s a nested class, the function init_track()
must be accessed from main() using the full name
horse::init_track().

d. the constructor for the horse class is private so horses
can’t be instantiated from main().

e. the track class is a static friend of horse.

Exercise 1

Rewrite the NESTED program so that each alpha object is associated with
two beta objects, which it creates. Have these alpha and beta objects
access each other’s private data using pointers. Make the access possible
using friends. In main(), create an alpha object.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Virtual Functions and Friend Functions

http://www.itknowledge.com/reference/archive/1571690638/ch09/565-566.html [21-03-2000 19:30:00]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch09/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Exercise 2

Rewrite the NESTED program so that class beta is represented by static
data and functions in alpha.

Summary: Chapter 9

In this chapter I’ve focused on two major topics: virtual functions and
friends. Virtual functions are the mechanism that C++ uses to implement
polymorphism. In a general sense, polymorphism means that one thing
takes different forms; in C++ it means that one function call causes
different functions to be executed, depending on the class of the object that
made the call.

Virtual functions are used in the context of addresses of derived class
objects stored in base class pointers. These pointers may be array elements
or function arguments. If a member function is declared virtual in a base
class, then, when the function is invoked by a base class pointer, the
compiler will examine the type of object whose address is stored in the
pointer, rather than the type of the pointer, to determine which function to
call. This allows a very simple and intuitive way to perform a series of
function calls to related objects or to create a global function that can work
with objects of many related classes.

Pure virtual functions are denoted with the =0 notation. They are associated
with an abstract base class, that is, a class from which no objects will be
instantiated and that serves only as a common ancestor of other classes. If a
class has one or more pure virtual functions, it is defined as an abstract
class because the compiler will not allow objects to be instantiated from it.

A friend function is a global function (or a member function of a class) that
is granted access to the nonpublic data of a class. The class grants this
access by declaring the function to be a friend. Friend functions are useful
in overloaded operators when the variable on the left side of an operator is
not a class member. They are also useful when functional notation, rather
than member access syntax (the . or -> operators), is desired for objects.

If an entire class is declared to be a friend of a second class, it has access to
all the member functions and data of the second class, whether they are
public or private. This provides a method for closely related classes to
communicate. Actually, only objects of such classes communicate with
each other; classes can’t access each other’s data in the abstract (unless the
data is static).

A class can be nested within another class. When this happens, the inside
class is known to the outside class, but is hidden from the outside world.
Communication between objects of nested classes requires the same use of
friends as does communication between unrelated classes.

End-of-Chapter Discussion

Estelle: There don’t seem to be any rules for how to design
object-oriented programs. How are you supposed to know
whether one class should be derived from another, or should be
its friend, or should not be related at all?

George: Or maybe two classes should be merged into one class, or one
of the classes should be made into static data inside the other.
Or we should all go back to procedural programming!

Don: I guess you learn by experience. And trial and error. You’ve
got to experiment to get the best program design.

Estelle: There’s definitely more to getting comfortable with OOP than
with procedural programming.

George: But there are shortcuts. I had this revelation. I don’t need to use
virtual functions because I can figure out the class of an object
using RTTI and then use a switch statement, or maybe an
else if ladder, to figure out what function to call.

Don: That’s very clever, but I think you’ve just defeated the whole
purpose of virtual functions. You’ve expanded a one-statement
function call into all those decisions.

Estelle: And if someone adds a new derived class or something, you’ll
need to add new code to your switch statement.

George: Oops. I see what you mean. Maybe there’s something in this
virtual function business after all.

Don: There’s hope for you yet, George.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Virtual Functions and Friend Functions

http://www.itknowledge.com/reference/archive/1571690638/ch09/566-568.html [21-03-2000 19:30:16]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch09/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

CHAPTER 10
STERAMS AND FILES

This chapter focuses on the C++ stream classes. I’ll start off with a look at
the hierarchy in which these classes are arranged and I’ll summarize their
important features. I’ll show how to use the error-handling capabilities built
into these classes. A substantial part of this chapter is devoted to showing
how to perform disk file activities using C++ streams. You’ll learn how to
read and write data to files in a variety of ways, and how files and OOP are
related. Later in the chapter, I’ll introduce several other features of C++ that
are related to files, including in-memory text formatting and overloading
the << and >> operators to work with files. I’ll finish with some
character-related file activities: command-line arguments, sending data to
the printer, and redirection.

SESSION 1: Stream Classes

A stream is a general name given to a flow of data in an input/output
situation. For this reason, streams in C++ are often called iostreams. An
iostream can be represented by an object of a particular class. For example,
you’ve already seen numerous examples of the cin and cout stream
objects used for input and output.

Up to this point, I’ve approached stream classes and objects on an ad hoc
basis, introducing just what I needed to discuss other aspects of C++. In this
session, I’ll be a little more systematic, focusing on stream classes, their
member functions, and how they all fit together.

Advantages of Streams

Old-fashioned C programmers may wonder what advantages there are to
using the stream classes for I/O instead of traditional C functions such as
printf() and scanf() and—for files—fprintf(), fscanf(), and
so on.

One reason is that the stream classes are less prone to errors. If you’ve ever
used a %d formatting character when you should have used a %f in
printf(), you’ll appreciate this. There are no such formatting characters
in streams, because each object already knows how to display itself. This
removes a major source of program bugs.

Second, you can overload existing operators and functions, such as the
insertion (<<) and extraction (>>) operators, to work with classes you
create. This makes your classes work in the same way as the built-in types,
which again makes programming easier and more error free (not to mention
more aesthetically satisfying).

You may wonder if C++ stream I/O is important if you plan to program in
an environment with a Graphics User Interface (GUI) such as Windows,
where direct text output to the screen is not used. Yes, iostreams are still
important because they are the best way to write data to files and to format
data in memory for later use in dialog boxes and other GUI elements.

The Stream Class Hierarchy

The stream classes are arranged in a rather complex hierarchy. You don’t
need to know everything about this hierarchy to perform I/O, but you may
find an overview helpful. Figure 10-1 shows the arrangement of the most
important of these classes.

I’ve already made extensive use of some stream classes. The extraction
operator >> is a member of the istream class, and the insertion operator
<< is a member of the ostream class. Both of these classes are derived
from the ios class. The cout object, representing the standard output
stream, which is usually directed to the video display, is a predefined object
of the ostream_withassign class, which is derived from the
ostream class. Similarly, cin is an object of the
istream_withassign class, which is derived from istream.

Figure 10-1 Stream class hierarchy

The classes used for input and output to the video display and keyboard are
declared in the header file IOSTREAM.H, which I routinely included in my
examples in previous chapters. The classes used specifically for disk file
I/O are declared in the file FSTREAM.H. Figure 10-1 shows which classes
are in each of these two header files. (Also, some manipulators are declared
in IOMANIP.H and in-memory classes are declared in STRSTREA.H.) You
may find it educational to print out the contents of these header files and
trace the relationships among the various classes. Many questions about
streams can be answered by studying their class and constant declarations.
They’re in your compiler’s INCLUDE subdirectory.

As you can see in Figure 10-1, the ios class is the base class for the
iostream hierarchy. It contains many constants and member functions
common to input and output operations of all kinds. Some of these, such as
the showpoint and fixed formatting flags, you’ve seen already. The
ios class also contains a pointer to the streambuf class, which contains
the actual memory buffer into which data is read or written and the
low-level routines for handling this data. Ordinarily, you don’t need to
worry about the streambuf class, which is referenced automatically by
other classes, but sometimes access to this buffer is helpful.

The istream and ostream classes are derived from ios and are
dedicated to input and output, respectively. The istream class contains
such member functions as get(), getline(), read(), and the
extraction (>>) operators, whereas ostream contains put() and
write() and the insertion (<<) operators.

The iostream class is derived from both istream and ostream by
multiple inheritance. Classes derived from the iostream class can be
used with devices, such as disk files, that may be opened for both input and
output at the same time. Three classes—istream_withassign,
ostream_withassign, and iostream_withassign—are inherited
from istream, ostream, and iostream, respectively. They add
assignment operators to these classes so that cin, cout, and so on can be
assigned to other streams. (You’ll see what this means when I talk about
redirection.)

The summary of stream classes in this session contains considerable
information. You may want to skim this session now and return to it later
when you need to know how to perform a particular stream-related activity.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Streams and Files

http://www.itknowledge.com/reference/archive/1571690638/ch10/569-572.html [21-03-2000 19:30:41]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
javascript:displayWindow('images/10-01.jpg',455,460)
javascript:displayWindow('images/10-01.jpg',455,460)
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch10/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

The ios Class

The ios class is the granddaddy of all the stream classes and contains the majority of the features
you need to operate C++ streams. The three most important features are the formatting flags, the
error-status bits, and the file operation mode. I’ll look at formatting flags and error-status bits now.
I’ll save the file operations mode for later, when I talk about disk files.

Formatting Flags

Formatting flags are a set of enum definitions in ios. They act as on/off switches that specify
choices for various aspects of input and output format and operation. I won’t provide a detailed
discussion of each flag because you’ve already seen some of them in use and others are more or less
self-explanatory. Some I’ll discuss later in this chapter. Table 10-1 presents a complete list of the
formatting flags.

Table 10-1 ios formatting flags
Flag Meaning

skipws Skip (ignore) whitespace on input.
left Left adjust output [12.34].
right Right adjust output [12.34].
internal Use padding between sign or base indicator and number [+12.34].
dec Convert to decimal.
oct Convert to octal.
hex Convert to hexadecimal.
showbase Use base indicator on output (0 for octal, 0x for hex).
showpoint Show decimal point on output.
uppercase Use uppercase X, E, and hex output letters ABCDEF (the default is lowercase).
showpos Display ‘+’ before positive integers.
scientific Use exponential format on floating-point output [9.1234E2].
fixed Use fixed format on floating-point output [912.34].
unitbuf Flush all streams after insertion.
stdio Flush stdout, stderror after insertion.

There are several ways to set the formatting flags, and different flags can be set in different ways.
Because they are members of the ios class, flags must usually be preceded by the name ios and the
scope-resolution operator (e.g., ios::skipws). All the flags can be set using the setf() and
unsetf() ios member functions. For example,

cout.setf(ios::left); // left justify output text
cout >> "This text is left-justified";
cout.unsetf(ios::left); // return to default (right justified)

Many formatting flags can be set using manipulators, so let’s look at them now.

Manipulators

Manipulators are formatting instructions inserted directly into a stream. You’ve seen examples
before, such as the manipulator endl, which sends a new line to the stream and flushes it:

cout << "To each his own." << endl;

I’ve also used the setiosflags() manipulator:

cout << setiosflags(ios::fixed) // use fixed decimal point
 << setiosflags(ios::showpoint) // always show decimal point
 << var;

As these examples demonstrate, manipulators come in two flavors: those that take an argument and
those that don’t. Table 10-2 summarizes the no-argument manipulators.

Table 10-2 No-argument ios manipulators
Manipulator Purpose

ws Turn on whitespace skipping on input.
dec Convert to decimal.
oct Convert to octal.
hex Convert to hexadecimal.
endl Insert new line and flush the output stream.
ends Insert null character to terminate an output string.
flush Flush the output stream.
lock Lock file handle.
unlock Unlock file handle.

You insert these manipulators directly into the stream. For example, to output var in hexadecimal
format, you can say

cout << hex << var;

The states set by no-argument manipulators remain in effect until the stream is destroyed, so you can,
for example, output many numbers in hex format with only one insertion of the hex manipulator.

Table 10-3 summarizes the manipulators that take arguments. You need the IOMANIP.H header file
for these functions.

Table 10-3 ios manipulators with arguments
Manipulator Argument Purpose

setw() field width (int) Set field width for output.
setfill() fill character (int) Set fill character for output

(default is a space).
setprecision() precision (int) Set precision (number of digits

displayed).
setiosflags() formatting flags (long) Set specified flags.
resetiosflags() formatting flags (long) Clear specified flags.

Manipulators that take arguments affect only the next item in the stream. For example, if you use
setw to set the width of the field in which one number is displayed, you’ll need to use it again for
the next number.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Streams and Files

http://www.itknowledge.com/reference/archive/1571690638/ch10/572-574.html [21-03-2000 19:30:52]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch10/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Functions

The ios class contains a number of functions that you can use to set the
formatting flags and perform other tasks. Table 10-4 shows most of these
functions, except those that deal with errors, which I’ll examine in the next
session.

Table 10-4 ios functions
Function Purpose

ch = fill(); Return the fill character (fills unused part of field;
default is space).

fill(ch); Set the fill character.
p = precision() Get the precision (number of digits displayed for

floating point).
precision(p); Set the precision.
w = width(); Get the current field width (in characters).
width(w); Set the current field width.
setf(flags); Set specified formatting flags (e.g., ios::left).
unsetf(flags); Unset specified formatting flags.
setf(flags,
field);

First clear field, then set flags.

These functions are called for specific stream objects using the normal dot
operator. For example, to set the field width to 14, you can say

cout.width(14);

Similarly, the following statement sets the fill character to an asterisk (as
for check printing):

cout.fill('*');

You can use several functions to manipulate the ios formatting flags
directly. For example, to set left justification, use

cout.setf(ios::left);

To restore right justification, use

cout.unsetf(ios::left);

A two-argument version of setf() uses the second argument to reset all
the flags of a particular type or field. Then the flag specified in the first
argument is set. This makes it easier to reset the relevant flags before
setting a new one. Table 10-5 shows the arrangement.

Table 10-5 Two-argument version of setf()
First argument: flags to set Second argument; field to clear

dec, oct, hex basefield

left, right, internal adjustfield

scientific, fixed floatfield

For example,

cout.setf(ios::left, ios::adjustfield);

clears all the flags dealing with text justification and then sets the left
flag for left-justified output.

By using the techniques shown here with the formatting flags, you can
usually figure out a way to format I/O not only for the keyboard and
display, but, as you’ll see later in this chapter, for files as well.

The istream Class

The istream class, which is derived from ios, performs input-specific
activities, or extraction. It’s easy to confuse extraction and the related
output activity, insertion. Figure 10-2 emphasizes the difference.

Figure 10-2 Input and output

Table 10-6 lists the functions you’ll most commonly use from the
istream class.

Table 10-6 istream functions
Function Purpose

>> Formatted extraction for all basic (and
overloaded) types.

get(ch); Extract one character into ch.
get(str) Extract characters into array str, until ‘\0’.
get(str, MAX) Extract up to MAX characters into array.
get(str, DELIM) Extract characters into array str until

specified delimiter (typically ‘\n’). Leave
delimiting char in stream.

get(str, MAX, DELIM) Extract characters into array str until MAX
characters or the DELIM character. Leave
delimiting char in stream.

getline(str, MAX,
DELIM)

Extract characters into array str until MAX
characters or the DELIM character. Extract
delimiting character.

putback(ch)
Insert last character read back into input
stream.

ignore(MAX, DELIM) Extract and discard up to MAX characters
until (and including) the specified delimiter
(typically ‘\n’).

peek(ch) Read one character, leave it in stream.
count = gcount() Return number of characters read by a

(immediately preceding) call to get(),
getline(), or read().

read(str, MAX) For files. Extract up to MAX characters into
str until EOF.

seekg(position) Sets distance (in bytes) of file pointer from
start of file.

seekg(position,
seek_dir)

Sets distance (in bytes) of file pointer from
specified place in file: seek_dir can be
ios::beg, ios::cur, ios::end.

position =
tellg(pos)

Return position (in bytes) of file pointer
from start of file.

You’ve seen some of these functions, such as get(), before. Most of them
operate on the cin object, representing the keyboard as well as disk files.
However, the last four deal specifically with disk files. You’ll see how they
work later in this chapter.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Streams and Files

http://www.itknowledge.com/reference/archive/1571690638/ch10/574-577.html [21-03-2000 19:31:08]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
javascript:displayWindow('images/10-02.jpg',325,256)
javascript:displayWindow('images/10-02.jpg',325,256)
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch10/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

The ostream Class

The ostream class handles output or insertion activities. Table 10-7
shows the most commonly used member functions of this class.

Table 10-7 ostream functions
Function Purpose

<< Formatted insertion for all basic (and overloaded)
types.

put(ch) Insert character ch into stream.
flush() Flush buffer contents and insert new line.
write(str,
SIZE)

Insert SIZE characters from array str into file.

seekp(position)
Sets distance in bytes of file pointer from start of
file.

seekp(position,
seek_dir)

Set distance in bytes of file pointer from specified
place in file. seek_dir can be ios::beg,
ios::cur, or ios::end.

position =
tellp()

Return position of file pointer, in bytes.

The last four functions deal specifically with disk files.

The iostream and the _withassign Classes

The iostream class, which is derived from both istream and
ostream, acts only as a base class from which other classes, specifically
iostream_withassign, can be derived. It has no functions of its own
(except constructors and destructors). Classes derived from iostream can
perform both input and output.

There are three _withassign classes:

istream_withassign, derived from istream
ostream_withassign, derived from ostream
iostream_withassign, derived from iostream

These _withassign classes are much like those they’re derived from
except they include overloaded assignment operators so their objects can be
copied.

Why do you need separate copyable and uncopyable stream classes? In
general, it’s not a good idea to copy stream class objects. Each such object
is associated with a particular streambuf object, which includes an area
in memory to hold the object’s actual data. If you copy the stream object, it
causes confusion if you also copy the streambuf object. However, in a
few cases it’s important to be able to copy a stream object, as in the case of
redirection of the predefined objects cout and cin. (I’ll discuss
redirection later in this chapter.)

Accordingly, the istream, ostream, and iostream classes are made
uncopyable (by making their overloaded copy constructors and assignment
operators private), whereas the _withassign classes derived from them
can be copied.

Predefined Stream Objects

I’ve already made extensive use of two predefined stream objects that are
derived from the _withassign classes: cin and cout. These are
normally connected to the keyboard and display, respectively. The two
other predefined objects are cerr and clog. Table 10-8 lists all four.

Table 10-8 Predefined stream objects
Name Class Used for

cin istream_withassign Keyboard input
cout ostream_withassign Normal screen output
cerr ostream_withassign Error output
clog ostream_withassign Log output

The cerr object is often used for error messages and program diagnostics.
Output sent to cerr is displayed immediately, rather than being buffered,
as output sent to cout is. Also, output to cerr cannot be redirected. For
these reasons, you have a better chance of seeing a final output message
from cerr if your program dies prematurely. Another object, clog, is
similar to cerr in that it is not redirected, but its output is buffered,
whereas cerr’s is not.

1. Which of the following are advantages of C++ iostreams over the
old C language printf() and scanf() approach?

a. Most people are already familiar with printf() and
scanf().

b. Iostreams allow the same interface for user-created classes
as for built-in types.

c. With iostreams, you don’t need to learn weird formatting
codes such as %d and %f.

d. With iostreams, errors are more likely to be caught at
compile time rather than at runtime.

e. You don’t need to specify the type of data being input or
output because the compiler can figure it out.

2. The iostream class hierarchy

a. has no user-accessible member functions.

b. has as a base class the iostream class.

c. can handle the keyboard and display, but not files.

d. relates various classes from which objects, representing
data streams, can be instantiated.

e. uses multiple inheritance.

3. ios formatting flags

a. work only with output.

b. can be set using manipulators.

c. can be set using ios member functions.

d. include fill().

e. include fixed.

4. Manipulators

a. include endl.

b. include fill().

c. are inserted directly into a stream.

d. are called with the dot operator, like any member function.

e. cannot take arguments.

5. The ostream class

a. is used to instantiate the cout object.

b. is used to instantiate the cin object.

c. is used to derive the ostream_withassign class.

d. contains a member function that inserts a character into a
stream.

e. is directly derived from the iostream class.

Due to its theoretical nature, this session contains no exercises.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Streams and Files

http://www.itknowledge.com/reference/archive/1571690638/ch10/577-580.html [21-03-2000 19:31:22]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch10/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Stream Errors

So far, I’ve used a rather straightforward approach to input and output in this book, using
statements of the form

cout << "Good morning";

and

cin >> var;

However, as you may have discovered, this approach assumes that nothing will go wrong
during the I/O process. This isn’t always the case, especially on input. What happens if a user

enters the string “nine” instead of the integer 9, or pushes without entering anything?
What happens if there’s a hardware failure? I’ll explore such problems in this session. Many
of the techniques you’ll see here are applicable to file I/O as well.

Error-Status Bits

The stream error-status bits are an ios enum member that report errors that occurred in an
input or output operation. They’re summarized in Table 10-9.

Table 10-9 Error-status bits
Name Meaning

goodbit No errors (no bits set, value = 0).
eofbit Reached end of file.
failbit Operation failed (user error, premature EOF).
badbit Invalid operation (no associated streambuf).
hardfail Unrecoverable error.

Figure 10-3 shows the position of these bits in the error-status byte.

Figure 10-3 Error-status byte

Various ios functions can be used to read (and even set) these error bits, as summarized in
Table 10-10.

Table 10-10 Functions for error bits
Function Purpose

int = eof(); Returns true if EOF bit set.
int = fail(); Returns true if fail bit or bad bit or hard-fail bit set.
int = bad(); Returns true if bad bit or hard-fail bit set.
int = good(); Returns true if everything OK; no bits set.
clear(int=0); With no argument, clears all error bits; otherwise sets specified

bits, as in clear(ios::failbit).

Inputting Numbers

Let’s see how to handle errors when inputting numbers. This approach applies to numbers
read both from the keyboard and from disk, as you’ll see later. The idea is to check the value
of goodbit, signal an error if it’s not true, and give the user another chance to enter the
correct input.

while(1) // cycle until input OK
 {
 cout << "\nEnter an integer: ";
 cin >> i;
 if(cin.good()) // if no errors
 {
 cin.ignore(10, '\n'); // remove newline
 break; // exit loop
 }
 cin.clear(); // clear the error bits
 cout << "Incorrect input";
 cin.ignore(10, '\n'); // remove newline
 }
cout << "integer is " << i; // error-free integer

The most common error this scheme detects when reading keyboard input is the user typing
nondigits (such as “nine” instead of 9). This causes the failbit to be set. However, it also
detects system-related failures that are more common with disk files.

Floating-point numbers (float, double, and long double) can be analyzed for errors
in the same way as integers.

Too Many Characters

Too many characters sounds like a difficulty experienced by movie directors, but extra
characters can also present a problem when reading from input streams. This is especially true
when there are errors. Typically, extra characters are left in the input stream after the input is
supposedly completed. They are then passed along to the next input operation even though
they are not intended for it. Often a new line remains behind, but sometimes other characters
are left over as well. To get rid of these extraneous characters, the ignore(MAX, DELIM)
member function of istream is used. It reads and throws away up to MAX characters,
including the specified delimiter character. In the example, the line

cin.ignore(10, '\n');

causes cin to read up to 10 characters, including the (‘\n’), and removes them from the
input.

No-Input Input

Whitespace characters, such as , and ‘\n’, are normally ignored (skipped)
when inputting numbers. This can have some undesirable side effects. For example, users,

prompted to enter a number, may simply press the key without typing any digits.
(Perhaps they think that this will enter 0, or perhaps they are simply confused.) In the code
shown above, as well as the simple statement

cin >> i;

pressing causes the cursor to drop down to the next line while the stream continues to
wait for the number. What’s wrong with the cursor dropping to the next line? First,

inexperienced users, seeing no acknowledgment when they press , may assume the

computer is broken. Second, pressing repeatedly normally causes the cursor to drop
lower and lower until the entire screen begins to scroll upward. This is all right in
teletype-style interaction where the program and the user simply type at each other. In
text-based graphics programs, however, scrolling the screen disarranges and eventually
obliterates the display.

Thus it’s important to be able to tell the input stream not to ignore whitespace. This is done by
clearing the skipws flag:

cout << "\nEnter an integer: ";
cin.unsetf(ios::skipws); // don't ignore whitespace
cin >> i;
if(cin.good())
 {
 // no error
 }
// error

Now if the user types without any digits, failbit will be set and an error will be
generated. The program can then tell the user what to do or reposition the cursor so the screen
does not scroll.

Inputting Strings and Characters

The user can’t really make any mistakes inputting strings and characters because all input,
even numbers, can be interpreted as a string. However, if coming from a disk file, characters
and strings should still be checked for errors in case an EOF or something worse is
encountered. Unlike the situation with numbers, you often do want to ignore whitespace when
inputting strings and characters.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Streams and Files

http://www.itknowledge.com/reference/archive/1571690638/ch10/580-583.html [21-03-2000 19:32:12]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
javascript:displayWindow('images/10-03.jpg',341,208)
javascript:displayWindow('images/10-03.jpg',341,208)
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch10/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Error-Free Distances

Let’s look at a program in which user input to the English Distance class is checked for errors. This
program accepts Distance values in feet and inches from the user and displays them. If the user
commits an entry error, the program rejects the input with an appropriate explanation to the user and
prompts for new input.

The program is very simple except that the member function getdist() has been expanded to
handle errors. Parts of this new code follow the approach of the fragment shown previously. I’ve also
added some statements to ensure that the user does not enter a floating-point number for feet. This is
important because, whereas the feet value is an integer, the inches value is floating point, and the user
could easily become confused.

Ordinarily, if it’s expecting an integer, the extraction operator simply terminates without signaling an
error when it sees a decimal point. The program wants to know about such an error, so it reads the feet
value as a string instead of an int. It then examines the string with a homemade function isint(),
which returns true if the string proves to be an int. To pass the int test, the string must contain only
digits and they must evaluate to a number between -32,768 and 32,767 (the range of type int). If the
string passes the int test, the program converts it to an actual int with the library function atoi().

The inches value is an integer. The program checks its range, which should be 0 or greater and less
than 12.0. The program also checks it for ios error bits. Most commonly, the fail bit will be set
because the user typed nondigits instead of an integer. Listing 10-1 shows ENGLERR.

Listing 10-1 ENGLERR

// englerr.cpp
// input checking with English Distance class
#include <iostream.h>
#include <string.h> // for strchr()
#include <stdlib.h> // for atoi()

int isint(char*); // prototype
const int IGN = 10; // characters to ignore

class Distance // English Distance class
 {
 private:
 int feet;
 float inches;
 public:
 Distance() // constructor (no args)
 { feet = 0; inches = 0.0; }
 Distance(int ft, float in) // constructor (two args)
 { feet = ft; inches = in; }
 void showdist() // display distance
 { cout << feet << "\'-" << inches << '\"'; }
 void getdist(); // get length from user
 };

void Distance::getdist() // get length from user
 {
 char instr[80]; // for input string

 while(1) // cycle until feet are right
 {
 cout << "\n\nEnter feet: ";
 cin.unsetf(ios::skipws); // do not skip white space
 cin >> instr; // get feet as a string
 if(isint(instr)) // is it an integer?
 { // yes
 cin.ignore(IGN, '\n'); // eat chars, including newline
 feet = atoi(instr); // convert to integer
 break; // break out of 'while'
 } // no, not an integer
 cin.ignore(IGN, '\n'); // eat chars, including newline
 cout << "Feet must be an integer\n"; // start again
 } // end while feet

 while(1) // cycle until inches are right
 {
 cout << "Enter inches: ";
 cin.unsetf(ios::skipws); // do not skip white space
 cin >> inches; // get inches (type float)
 if(inches>=12.0 || inches<0.0)
 {
 cout << "Inches must be between 0.0 and 11.99\n";
 cin.clear(ios::failbit); // "artificially" set fail bit
 }
 if(cin.good()) // check for cin failure
 { // (most commonly a non-digit)
 cin.ignore(IGN, '\n'); // eat the newline
 break; // input is OK, exit 'while'

 }
 cin.clear(); // error; clear the error state
 cin.ignore(IGN, '\n'); // eat chars, including newline
 cout << "Incorrect inches input\n"; // start again
 } // end while inches
 }
int isint(char* str) // return true if the string
 { // represents type int
 int slen = strlen(str); // get length
 if(slen==0 || slen > 5) // if no input, or too long
 return 0; // not an int
 for(int j=0; j<slen; j++) // check each character
 // if not digit or minus

 if((str[j] < '0' || str[j] > '9') && str[j] != '-')
 return 0; // string is not an int
 long n = atol(str); // convert to long int
 if(n< -32768L || n>32767L) // is it out of int range?
 return 0; // if so, not an int
 return 1; // it is an int
 }

void main()
 {
 Distance d; // make a Distance object
 char ans;
 do
 {
 d.getdist(); // get its value from user
 cout << "\nDistance = ";
 d.showdist(); // display it
 cout << "\nDo another (y/n)? ";
 cin >> ans;
 cin.ignore(IGN, '\n'); // eat chars, including newline
 } while(ans != 'n'); // cycle until 'n'
 }

I’ve used another dodge here: setting an error-state flag manually. I do this because I want to ensure
that the inches value is greater than 0 but less than 12.0. If it isn’t, I turn on the failbit with the
statement

cin.clear(ios::failbit); // set failbit

When the program checks for errors with cin.good(), it will find the failbit set and signal that
the input is incorrect.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Streams and Files

http://www.itknowledge.com/reference/archive/1571690638/ch10/583-585.html [21-03-2000 19:32:36]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch10/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

All-Character Input

Another approach to error handling is to read all input, even numbers, as
strings. Your code can then parse the string, character by character, to
determine whether the user has typed something reasonable. If so, it can be
converted to the appropriate kind of number. The details of this approach
depend on the specific input you expect, so I won’t show an example; if
you’re trying to write the most bullet-proof code possible, this is probably
the best way to go.

Of course, even when reading characters, you should still check for errors
using the error-status bits.

Quiz 2

1. The error-status bits

a. can be read but not altered by user code.

b. can be used to determine if end-of-file has occurred.

c. are part of the iostream class.

d. can be checked using functions such as fail() and
bad().

e. are all set if good() returns false.

2. The ignore(MAX, DELIM) member function of istream

a. always reads exactly MAX characters.

b. reads up to MAX characters or until a DELIM character is
encountered, whichever comes first.

c. is used to format output.

d. causes the same effect as setting the ios::skipws
flag.

e. gets rid of unwanted input.

3. The clear() function

a. is a friend of the iostream class.

b. is a member of the iostream class.

c. can be used to set the goodbit.

d. can be used to clear all the error bits at once.

e. can be used to clear the entire display screen.

4. In the ENGLERR program, the user cannot enter

a. a floating-point value for feet.

b. an integer value for inches.

c. a value for feet that’s greater than 32,767.

d. an inches value greater than or equal to 11.99.

e. letters in place of numbers.

5. The safest way to handle user input is

a. to convert numbers to character strings after reading them.

b. to not worry about the error-status bits.

c. to handle things exactly as in the englerr program.

d. to read all input as strings of characters and then to analyze
them.

e. to read only integers.

Exercise 1

Rewrite get() the member function of the airtime class in the
addair program (from Chapter 6, Session 1) so that it incorporates the
same kind of input error checking that is found in ENGLERR. Notify the user
if the hours value is not between 0 and 23 and the minutes value is not
between 0 and 59.

Exercise 2

Rewrite the get() function referred to in Exercise 1 so user input is read
as a string and then is parsed and converted into hours and minutes values.

Session 3: Disk File I/O with Streams

Disk files require a different set of classes than files used with the keyboard
and screen. These are ifstream for input, fstream for input and
output, and ofstream for output. Objects of these classes can be
associated with disk files and you can use their member functions to read
and write to the files.

Referring back to Figure 10-1, you can see that ifstream is derived from
istream, fstream is derived from iostream, and ofstream is
derived from ostream. These ancestor classes are in turn derived from
ios. Thus the file-oriented classes derive many of their member functions
from more general classes. The file-oriented classes are also derived, by
multiple inheritance, from the fstreambase class. This class contains an
object of class filebuf, which is a file-oriented buffer with associated
member functions derived from the more general streambuf class. For
many file-based operations, streambuf is accessed automatically, but
you’ll see cases where you can access it directly as well.

The ifstream, ofstream, and fstream classes are declared in the
FSTREAM.H file. This file also includes the IOSTREAM.H header file, so
there is no need to include it explicitly; FSTREAM.H takes care of all stream
I/O.

C programmers will note that the approach to disk I/O used in C++ is quite
different from that used in C. The old C functions, such as fread() and
fwrite(), will work in C++, but they are not well suited to the
object-oriented environment. As with printf() and scanf(), they
aren’t extensible, whereas you can extend the C++ iostream approach to
work with your own classes. Incidentally, be careful about mixing the old C
functions with C++ streams. They don’t always work together gracefully
(although there are ways to make them cooperate).

Formatted File I/O

There are two basic kinds of disk I/O in C++: formatted and binary. In
formatted I/O, numbers are stored on disk as a series of characters. Thus
6.02, rather than being stored as a 4-byte type float or an 8-byte type
double, is stored as the characters ‘6’, ‘.’, ‘0’, and ‘2’. This can be
inefficient for numbers with many digits, but it’s appropriate in many
situations and easy to implement. Characters and strings are stored more or
less normally.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Streams and Files

http://www.itknowledge.com/reference/archive/1571690638/ch10/585-587.html [21-03-2000 19:33:00]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch10/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Writing Data

The following program writes a character, an integer, a type double, and two strings to a disk file
called FDATA.TXT. There is no output to the screen. Listing 10-2 shows FORMATO

Listing 10-2 FORMATO

// formato.cpp
// writes formatted output to a file, using <<

#include <fstream.h> // for file I/O

void main()
 {
 char ch = 'x'; // character
 int j = 77; // integer
 double d = 6.02; // floating point
 char str1[] = "Kafka"; // strings
 char str2[] = "Proust"; // (no embedded spaces)

 ofstream outfile("fdata.txt"); // create ofstream object

 outfile << ch // insert (write) data
 << j
 << ' ' // needs space between numbers
 << d
 << str1
 << ' ' // needs space between strings
 << str2;
 }

Here the program defines an object called outfile to be a member of the ofstream class. At the
same time, it initializes the object to the file name FDATA.TXT. This initialization sets aside various
resources for the file, and accesses or opens the file of that name on the disk. If the file doesn’t exist, it
is created. If it does exist, it is truncated and the new data replaces the old. The outfile object acts
much as cout did in previous programs, so the insertion operator (<<) is used to output variables of
any basic type to the file. This works because the insertion operator is appropriately overloaded in
ostream, from which ofstream is derived.

When the program terminates, the outfile object goes out of scope. This calls its destructor, which
closes the file, so you don’t need to close the file explicitly.

There are several potential formatting glitches. First, you must separate numbers (such as 77 and 6.02)
with nonnumeric characters. Because numbers are stored as a sequence of characters rather than as a
fixed-length field, this is the only way the extraction operator will know, when the data is read back
from the file, where one number stops and the next one begins. Second, strings must be separated with
whitespace for the same reason. This implies that strings cannot contain imbedded blanks. In this
example, I use the space character (“ “) for both kinds of delimiters. Characters need no delimiters,
because they have a fixed length.

You can verify that FORMATO has indeed written the data by examining the FDATA.TXT file with any
text-based editor.

Reading Data

Any program can read the file generated by FORMATo by using an ifstream object that is initialized to the name of the
file. The file is automatically opened when the object is created. The program can then read from it using the extraction
(>>) operator.

Listing 10-3 shows the FORMATI program, which reads the data back in from the FDATA.TXT file.

Listing 10-3 FORMATI

// formati.cpp
// reads formatted output from a file, using >>

#include <fstream.h>
const int MAX = 80;

void main()
 {
 char ch; // empty variables
 int j;
 double d;
 char str1[MAX];
 char str2[MAX];
 ifstream infile("fdata.txt"); // create ifstream object
 // extract (read) data from it
 infile >> ch >> j >> d >> str1 >> str2;

 cout << ch << endl // display the data
 << j << endl
 << d << endl
 << str1 << endl
 << str2 << endl;
 }

Here the ifstream object, which I name infile, acts much the way cin did in previous programs. Provided I have
formatted the data correctly when inserting it into the file, there’s no trouble extracting it, storing it in the appropriate
variables, and displaying their contents. The program’s output looks like this:

x
77
6.02
Kafka
Proust

Note that the numbers are converted back to their binary representations for storage in the program. That is, the 77 is
stored in the variable j as a type int, not as two characters, and the 6.02 is stored as a double.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Streams and Files

http://www.itknowledge.com/reference/archive/1571690638/ch10/587-589.html [21-03-2000 19:33:20]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch10/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Strings with Embedded Blanks

The technique of the last examples won’t work with strings containing embedded blanks. To
handle such strings, you need to write a specific delimiter character after each one and use the
getline() function, rather than the extraction operator, to read them in. The next program,
OLINE (Listing 10-4), outputs some strings with blanks embedded in them.

Listing 10-4 OLINE

// oline.cpp
// file output with strings
#include <fstream.h> // for file functions

void main()
 {
 ofstream outfile("TEST.TXT"); // create file for output
 // send text to file
 outfile << "I fear thee, ancient Mariner!\n";
 outfile << "I fear thy skinny hand\n";
 outfile << "And thou art long, and lank, and brown,\n";
 outfile << "As is the ribbed sea sand.\n";
 }

When you run the program, the lines of text (from Samuel Taylor Coleridge’s The Rime
of the Ancient Mariner) are written to a file. Each one is specifically terminated
with a newline (‘\n’) character.

To extract the strings from the file, the program creates an ifstream and reads from it one
line at a time using the getline() function, which is a member of istream. This function
reads characters, including whitespace, until it encounters the ‘\n’ character and places the
resulting string in the buffer supplied as an argument. The maximum size of the buffer is
given as the second argument. The contents of the buffer are displayed after each line. Listing
10-5 shows ILINE.

Listing 10-5 ILINE

// iline.cpp
// file input with strings
#include <fstream.h> // for file functions
void main()

 {
 const int MAX = 80; // size of buffer
 char buffer[MAX]; // character buffer
 ifstream infile("TEST.TXT"); // create file for input
 while(infile) // until end-of-file
 {
 infile.getline(buffer, MAX); // read a line of text
 cout << buffer; // display it
 }
 }

The output of ILINE to the screen is the same as the data written to the TEST.TXT file by
OLINE: the four-line Coleridge stanza. The program has no way of knowing in advance how
many strings are in the file, so it continues to read one string at a time until it encounters an
EOF. Incidentally, don’t use this program to read random text files. It requires all the text
lines to terminate with the ‘\n’ character, and if you encounter a file in which this is not the
case, the program may hang.

Detecting End-of-File

As you have seen, objects derived from ios contain error-status bits that can be checked to
determine the results of operations. When you read a file little by little, as we do in OLINE,
you will eventually encounter an end-of-file condition. The EOF is a signal sent to the
program from the hardware when there is no more data to read. In ILINE, I could have used
the following construction to check for this:

while(!infile.eof()) // until eof encountered

However, checking specifically for an eofbit means that I won’t detect the other error bits,
such as the failbit and badbit, which may also occur, although more rarely. To do this,
I could change the loop condition:

while(infile.good()) // until any error encountered

But even more simply, I can test the stream directly, as I do in OLINE:

while(infile) // until any error encountered

Any stream object, such as infile, has a value that can be tested for the usual error
conditions, including EOF. If any such condition is true, the object returns a zero value. If
everything is going well, the object returns a nonzero value. This value is actually a pointer,
but the “address” returned has no significance except to be tested for a zero or nonzero value.

Character I/O

The put() and get() functions, which are members of ostream and istream,
respectively, can be used to output and input single characters. Listing 10-6 shows, OCHAR,
which outputs a string one character at a time.

Listing 10-6 OCHAR

// ochar.cpp
// file output with characters
#include <fstream.h> // for file functions
#include <string.h> // for strlen()

void main()
 {
 char str[] = "Time is a great teacher, but unfortunately "
 "it kills all its pupils. Berlioz";

 ofstream outfile("TEST.TXT"); // create file for output
 for(int j=0; j<strlen(str); j++) // for each character,
 outfile.put(str[j]); // write it to file
 }

In this program, an ofstream object is created as it was in OLINE. The length of the string is
found using the strlen() function and the characters are output using put() in a for
loop. The aphorism by Hector Berlioz (a 19th-century composer of operas and program
music) is written to the file TEST.TXT. I can read this file back in and display it using the
ICHAR program (Listing 10-7).

Listing 10-7 ICHAR

// ichar.cpp
// file input with characters
#include <fstream.h> // for file functions

void main()
 {
 char ch; // character to read
 ifstream infile("TEST.TXT"); // create file for input
 while(infile) // read until EOF
 {
 infile.get(ch); // read character
 cout << ch; // display it
 }
 }

This program uses the get() function and continues reading until the EOF is reached. Each
character read from the file is displayed using cout, so the entire aphorism appears on the
screen.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Streams and Files

http://www.itknowledge.com/reference/archive/1571690638/ch10/589-592.html [21-03-2000 19:33:36]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch10/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Direct Access to the streambuf Object

Another approach to reading characters from a file is the rdbuf() function, a member of the
ios class. This function returns a pointer to the streambuf (or filebuf) object
associated with the stream object. This object contains a buffer that holds the characters read
from the stream so you can use the pointer to it as a data object in its own right. Listing 10-8
shows ICHAR2.

Listing 10-8 ICHAR2

// ichar2.cpp
// file input with characters
#include <fstream.h> // for file functions

void main()
 {
 ifstream infile("TEST.TXT"); // create file for input
 cout << infile.rdbuf(); // send its buffer to cout
 }

This program has the same effect as ICHAR. It also takes the prize for the shortest file-oriented
program.

Binary I/O

You can write a few numbers to disk using formatted I/O, but if you’re storing a large amount
of numerical data, it’s more efficient to use binary I/O in which numbers are stored as they are
in the computer’s RAM memory rather than as strings of characters. In binary I/O an integer
is always stored in 2 bytes, whereas its text version might be 12345, requiring 5 bytes.
Similarly, a float is always stored in 4 bytes, whereas its formatted version might be
6.02314e13, requiring 10 bytes.

The next example shows how an array of integers is written to disk and then read back into
memory using binary format. I use two new functions: write(), a member of ofstream,
and read(), a member of ifstream. These functions think about data in terms of bytes
(type char). They don’t care how the data is formatted, they simply transfer a buffer full of
bytes from and to a disk file. The parameters to write() and read() are the address of the
data buffer and its length. The address must be cast to type char, and the length is the length
in bytes (characters), not the number of data items in the buffer. Listing 10-9 shows BINIO.

Listing 10-9 BINIO

// binio.cpp
// binary input and output with integers
#include <fstream.h> // for file streams

const int MAX = 100; // number of ints

int buff[MAX]; // buffer for integers
void main()
 {
 int j;
 for(j=0; j<MAX; j++) // fill buffer with data
 buff[j] = j; // (0, 1, 2, ...)
 // create output stream
 ofstream os("edata.dat", ios::binary);
 // write to it
 os.write((char*)buff, MAX*sizeof(int));
 os.close(); // must close it

 for(j=0; j<MAX; j++) // erase buffer
 buff[j] = 0; // create input stream
 ifstream is("edata.dat", ios::binary);
 // read from it
 is.read((char*)buff, MAX*sizeof(int));

 for(j=0; j<MAX; j++) // check data
 if(buff[j] != j)
 { cerr << "\nData is incorrect"; return; }
 cout << "\nData is correct";
 }

You must use the ios::binary argument in the second paramter to write() and
read() when working with binary data. This is because the default, text mode, takes some
liberties with the data. For example, in text mode, the ‘\n’ character is expanded into 2
bytes—a carriage return and a linefeed—before being stored to disk. This makes a formatted
text file more readable for simple text editors, but causes confusion when applied to binary
data because every byte that happens to have the ASCII value 10 is translated into 2 bytes.

So far in the examples, there has been no need to close streams explicitly because they are
closed automatically when they go out of scope; this invokes their destructors and closes the
associated file. However, in BINIO, because both the output stream os and the input stream
is are associated with the same file, EDATA.DAT, the first stream must be closed before the
second is opened. I use the close() member function for this.

Object I/O

Because C++ is an object-oriented language, it’s reasonable to wonder how objects can be
written to and read from disk. The next examples show the process. The person class, used
in several previous examples (e.g., the VIRTPERS program in Chapter 9, Session 2) supplies
the objects.

Writing an Object to Disk

When writing an object, you generally want to use binary mode. This writes the same bit
configuration to disk that was stored in memory and ensures that numerical data contained in
objects is handled properly. Listing 10-10 shows OPERS, which asks the user for information
about an object of class person and then writes this object to the disk file PERSON.DAT.

Listing 10-10 OPERS

// opers.cpp
// saves person object to disk
#include <fstream.h> // for file streams

class person // class of persons
 {
 protected:
 char name[40]; // person's name
 int age; // person's age
 public:
 void getData(void) // get person's data
 {
 cout << "Enter name: "; cin >> name;
 cout << "Enter age: "; cin >> age;
 }
 };

void main(void)
 {
 person pers; // create a person
 pers.getData(); // get data for person
 // create ofstream object
 ofstream outfile("PERSON.DAT", ios::binary);
 outfile.write((char*)&pers, sizeof(pers)); // write to it
 }

The getData() member function of person is called to prompt the user for information,
which it places in the pers object. Here’s some sample interaction:

Enter name: Coleridge
Enter age: 62

The contents of the pers object are then written to disk using the write() function. I use
the sizeof operator to find the size of the pers object.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Streams and Files

http://www.itknowledge.com/reference/archive/1571690638/ch10/592-594.html [21-03-2000 19:33:51]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch10/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Reading an Object from Disk

Reading an object back from the PERSON.DAT file requires the read() member function.
Listing 10-11 shows IPERS.

Listing 10-11 IPERS

// ipers.cpp
// reads person object from disk
#include <fstream.h> // for file streams

class person // class of persons
 {
 protected:
 char name[40]; // person's name
 int age; // person's age
 public:
 void showData(void) // display person's data
 {
 cout << "\n Name: " << name;
 cout << "\n Age: " << age;
 }
 };

void main(void)
 {
 person pers; // create person variable
 ifstream infile("PERSON.DAT", ios::binary); // create stream
 infile.read((char*)&pers, sizeof(pers)); // read stream
 pers.showData(); // display person
 }

The output from IPERS reflects whatever data the OPERS program placed in the PERSON.DATfile:

Name: Coleridge
Age: 62

Compatible Data Structures

To work correctly, programs that read and write objects to files, as do opers and ipers, must
be talking about the same class of objects. Objects of class person in these programs are
exactly 42 bytes long, with the first 40 occupied by a string representing the person’s name and
the last 2 containing an int representing the person’s age. If two programs thought the name
field was a different length, for example, neither could accurately read a file generated by the
other.

Notice, however, that although the person classes in OPERS and IPERS have the same data, they
may have different member functions. The first includes the single function getData(),
whereas the second has only showData(). It doesn’t matter what member functions you use,
because members functions are not written to disk along with the object’s data. The data must
have the same format, but inconsistencies in the member functions have no effect. This is true
only in simple classes that don’t use virtual functions.

If you read and write objects of derived classes to a file, you must be even more careful. Objects
of derived classes that use virtual functions include the vptr (discussed in Chapter 9, Session
1). This pointer holds the address of the table of virtual functions used in the class. When you
write an object to disk, this number is written along with the object’s other data. If you change a
class’s member functions, this number changes as well. If you write an object of one class to a
file and then read it back into an object of a class that has identical data but different member
functions, you’ll encounter big trouble if you try to use virtual functions on the object. The
moral: Make sure a class that reads an object is identical to the class that wrote it.

I/O with Multiple Objects

The OPERS and IPERS programs wrote and read only one object at a time. The next example
opens a file and writes as many objects as the user wants. Then it reads and displays the entire
contents of the file. Listing 10-12 shows DISKFUN.

Listing 10-12 DISKFUN

// diskfun.cpp
// reads and writes several objects to disk
#include <fstream.h> // for file streams

class person // class of persons
 {
 protected:
 char name[40]; // person's name
 int age; // person's age
 public:
 void getData(void) // get person's data
 {
 cout << "\n Enter name: "; cin >> name;
 cout << " Enter age: "; cin >> age;
 }
 void showData(void) // display person's data
 {
 cout << "\n Name: " << name;
 cout << "\n Age: " << age;
 }
 };

void main(void)
 {
 char ch;
 person pers; // create person object
 fstream file; // create input/output file
 // open for append
 file.open("PERSON.DAT", ios::app | ios::out
 | ios::in | ios::binary);

 do // data from user to file
 {
 cout << "\nEnter person's data:";
 pers.getData(); // get one person's data
 // write to file
 file.write((char*)&pers, sizeof(pers));
 cout << "Enter another person (y/n)? ";
 cin >> ch;
 }
 while(ch=='y'); // quit on 'n'

 file.seekg(0); // reset to start of file
 // read first person
 file.read((char*)&pers, sizeof(pers));
 while(!file.eof()) // quit on EOF
 {
 cout << "\nPerson:"; // display person
 pers.showData();
 file.read((char*)&pers, sizeof(pers)); // read another
 } // person
 }

Here’s some sample interaction with DISKFUN. The output shown assumes that the program has
been run before and that two person objects have already been written to the file.

Enter person's data:
 Enter name: McKinley
 Enter age: 22
Enter another person (y/n)? n

Person:
 Name: Whitney
 Age: 20
Person:
 Name: Rainier
 Age 21
Person:
 Name: McKinley
 Age: 22

One additional object is added to the file and the entire contents, consisting of three objects, are
then displayed.

The fstream Class

So far in this chapter, the file objects I created were for either input or output. In DISKFUN, I want
to create a file that can be used for both input and output. This requires an object of the fstream class, which is
derived from iostream, which is derived from both istream and ostream, so it can handle both input and
output.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Streams and Files

http://www.itknowledge.com/reference/archive/1571690638/ch10/594-597.html [21-03-2000 19:34:06]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch10/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

The open() Function

In previous examples, I created a file object and initialized it in the same
statement:

ofstream outfile("TEST.TXT");

In DISKFUN, I use a different approach: I create the file in one statement
and open it in another using the open() function, which is a member of
the fstream class. This is a useful approach in situations where the open
may fail. You can create a stream object once and then try repeatedly to
open it without the overhead of creating a new stream object each time.

The Mode Bits

You’ve seen the mode bit ios::binary before. In the open() function,
I include several new mode bits. The mode bits, defined in ios, specify
various aspects of how a stream object will be opened. Table 10-11 shows
the possibilities.

Table 10-11 Mode bits for open() function
Mode Bit Result

in Open for reading (default forifstream).
out Open for writing (default for ofstream).
ate Start reading or writing at end-of-file(AT End).
app Start writing at end-of-file(APPend).

trunc
Truncate file to zero length if it exists
(TRUNCate).

nocreate Error when opening if file does not already exist.
noreplace Error when opening for output if file already exists,

unless ate or app is set.
binary Open file in binary (not text) mode.

In DISKFUN, I use app because I want to preserve whatever was in the file
before; whatever I write to the file will be added at the end of the existing
contents. I use in and out because I want to perform both input and output
on the file, and I use binary because I’m writing binary objects. The
vertical bars between the flags cause the bits representing these flags to be
combined (ORed) together into a single integer so that several flags can
apply simultaneously.

I write one person object at a time to the file using the write()
function. When I’ve finished writing, I want to read the entire file. Before
doing this, I must reset the file’s current position. I do this with the
seekg() function (which I’ll examine in the next session, on file
pointers). It ensures I’ll start reading at the beginning of the file. Then, in a
while loop, I repeatedly read a person object from the file and display it
on the screen.

This continues until I’ve read all the person objects—a state that I
discover using the eof() function, which returns the state of the
ios::eofbit.

Quiz 3

1. To perform stream I/O with disk files in C++, you should

a. open and close files as in procedural languages.

b. create objects that are associated with specific files.

c. include the IOSTREAM.H header file.

d. use classes derived from ios.

e. use C language library functions to read and write data.

2. In formatted file I/O,

a. you read data directly into individual variables.

b. an integer requires the same number of bytes in the file as it
does when converted to a string.

c. an integer requires the same number of bytes in the file as it
does in RAM.

d. a carriage return is stored as 1 byte.

e. you must explicitly write an EOF character at the end of
every file.

3. In binary file I/O,

a. you use the iostream::binary mode bit.

b. writing each variable requires a separate call to write().

c. an integer requires the same number of bytes in the file as it
does when converted to a string.

d. an integer requires the same number of bytes in the file as it
does in RAM.

e. the stream objects think of the data as a buffer of bytes.

4. When using streams to write objects to a disk file,

a. you must use the iostream::out flag.

b. each object’s data and member functions are stored on the
disk.

c. you should use formatted I/O.

d. you can write to an object of the fstream class.

e. objects should be read back into variables of the identical
class from which they were written.

5. Which of the following statements, concerning stream I/O with
disk files, are true?

a. Objects cannot be stored on disk as objects; their data must
be stored as individual variables.

b. For an object of a user-defined class to be written to disk,
the class must contain member functions for this purpose.

c. You can write to a stream object, and then, without closing
it, read from it.

d. A mode bit can be used with open() to specify that an
attempt to open a nonexistent file will fail.

e. You cannot send output to a file without destroying any
data already in the file.

Exercise 1

Start with the airtime class (as in the ADDAIR program from Chapter 6,
Session 1) and write a main() that asks for an indefinite number of
airtime values from the user and writes them all, with a single statement, to
a disk file. Destroy whatever was in the file before.

Exercise 2

Add code to the above example to read the contents of the file and display
it.

Session 4: File Errors and File Pointers

This session comprises two short topics: how to handle errors in file I/O
and how to specify the exact place in a file where data will be written or
read.

Error Handling in File I/O

In the file-related examples presented so far, I have not concerned myself
with error situations. In particular, I have assumed that the files I opened for
reading already existed and that those opened for writing could be created
or appended to. I’ve also assumed that there were no failures during reading
or writing. In a real program, it is important to verify such assumptions and
take appropriate action if they turn out to be incorrect. A file that you think
exists may not, or a file name that you assume you can use for a new file
may already apply to an existing file. Or there may be no more room on the
disk or a diskette drive door may be open.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Streams and Files

http://www.itknowledge.com/reference/archive/1571690638/ch10/597-600.html [21-03-2000 19:34:24]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch10/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Reacting to Errors

The next program shows how such errors are most conveniently handled. All disk operations are
checked after they are performed. If an error has occurred, a message is printed and the program
terminates. I’ve used the technique, discussed earlier, of checking the return value from the object itself
to determine its error status. The program opens an output stream object, writes an entire array of
integers to it with a single call to write(), and closes the object. Then it opens an input stream object
and reads the array of integers with a call to read(). Listing 10-13 shows REWERR.

Listing 10-13 REWERR

// rewerr.cpp
// handles errors during input and output

#include <fstream.h> // for file streams
#include <process.h> // for exit()

const int MAX = 1000;
int buff[MAX];

void main()
 {
 int j;
 for(j=0; j<MAX; j++) // fill buffer with data
 buff[j] = j;

 ofstream os; // create output stream
 // open it
 os.open("a:edata.dat", ios::trunc | ios::binary);
 if(!os)
 { cerr << "\nCould not open output file"; exit(1); }
 cout << "\nWriting..."; // write buffer to it
 os.write((char*)buff, MAX*sizeof(int));
 if(!os)
 { cerr << "\nCould not write to file"; exit(1); }
 os.close(); // must close it

 for(j=0; j<MAX; j++) // clear buffer
 buff[j] = 0;

 ifstream is; // create input stream
 is.open("a:edata.dat", ios::binary);
 if(!is)

 { cerr << "\nCould not open input file"; exit(1); }

 cout << "\nReading..."; // read file
 is.read((char*)buff, MAX*sizeof(int));
 if(!is)
 { cerr << "\nCould not read from file"; exit(1); }

 for(j=0; j<MAX; j++) // check data
 if(buff[j] != j)
 { cerr << "\nData is incorrect"; exit(1); }
 cout << "\nData is correct";
 }

Analyzing Errors

In the REWERR example, I determined whether an error occurred in an I/O operation by examining the
return value of the entire stream object.

if(!is)
 // error occurred

Here, is returns a pointer value if everything went well, but 0 if it didn’t. This is the shotgun approach
to errors: No matter what the error is, it’s detected in the same way and the same action is taken.
However, it’s also possible, using the ios error-status bits, to find out more specific information about a
file I/O error. You’ve already seen some of these status bits at work in screen and keyboard I/O. The
next example, FERRORS (Listing 10-14), shows how they can be used in file I/O.

Listing 10-14 FERRORS

// ferrors.cpp
// checks for errors opening file
#include <fstream.h> // for file functions

void main()
 {
 ifstream file;
 file.open("GROUP.DAT", ios::nocreate);

 if(!file)
 cout << "\nCan't open GROUP.DAT";
 else
 cout << "\nFile opened successfully.";
 cout << "\nfile = " << file;
 cout << "\nError state = " << file.rdstate();
 cout << "\ngood() = " << file.good();
 cout << "\neof() = " << file.eof();
 cout << "\nfail() = " << file.fail();
 cout << "\nbad() = " << file.bad();
 file.close();
 }

This program first checks the value of the object file. If its value is zero, the file probably could not
be opened because it didn’t exist. Here’s the output from ferrors when that’s the case:

Can't open GROUP.DAT
file = 0x1c730000
Error state = 4
good() = 0
eof() = 0
fail() = 4
bad() = 4

The error state returned by rdstate() is 4. This is the bit that indicates the file doesn’t exist; it’s set
to 1. The other bits are all set to 0. The good() function returns 1 (true) only when no bits are set, so it
returns 0 (false). I’m not at EOF, so eof() returns 0. The fail() and bad() functions return
nonzero because an error occurred.

In a serious program, some or all of these functions should be used after every I/O operation to ensure
that things have gone as expected.

File Pointers

Each file object has associated with it two integer values called the get pointer and the put pointer.
These are also called the current get position and the current put position, or—if it’s clear which one is
meant—simply the current position. These values specify the byte number in the file where writing or
reading will take place. (The term pointer in this context should not be confused with C++ pointers used
as address variables.)

You’ll often want to start reading an existing file at the beginning and continue until the end. When
writing, you may want to start at the beginning, deleting any existing contents, or at the end, in which
case you can open the file with the ios::app mode specifier. These are the default actions, so no
manipulation of the file pointers is necessary. However, there are times when you must take control of
the file pointers yourself so that you can read from or write to an arbitrary location in the file. The
seekg() and tellg() functions allow you to set and examine the get pointer, and the seekp() and
tellp() functions perform the same actions on the put pointer.

Specifying the Position

I showed an example of positioning the get pointer in the DISKFUN program, where the seekg()
function set it to the beginning of the file so that reading would start there. This form of seekg() takes
one argument, which represents the absolute byte position in the file. The start of the file is byte 0, so
that’s what I used in DISKFUN. Figure 10-4 shows how this looks.

Figure 10-4 The seekg() function with one argument

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Streams and Files

http://www.itknowledge.com/reference/archive/1571690638/ch10/600-603.html [21-03-2000 19:35:02]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
javascript:displayWindow('images/10-04.jpg',320,184)
javascript:displayWindow('images/10-04.jpg',320,184)
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch10/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Specifying the Offset

The seekg() function can be used in two ways. You’ve seen the first, where the single
argument represents the position from the start of the file. You can also use it with two
arguments, where the first argument represents an offset from a particular location in the file
and the second specifies the location from which the offset is measured. There are three
possibilities for the second argument: beg is the beginning of the file, cur is the current
pointer position, and end is the end of the file. The statement

seekp(-10, ios::end);

for example, will set the put pointer to 10 bytes before the end of the file. Figure 10-5 shows
this arrangement.

Figure 10-5 The seekg() function with two arguments

Listing 10-15 shows an example that uses the two-argument version of seekg() to find a
particular person object in the PERSON.DAT file already created with DISKFUN and to display
the data for that particular person.

Listing 10-15 SEEKG

// seekg.cpp
// seeks particular person in file

#include <fstream.h> // for file streams
class person // class of persons
 {
 protected:
 char name[40]; // person's name
 int age; // person's age
 public:
 void showData(void) // display person's data
 {
 cout << "\n Name: " << name;
 cout << "\n Age: " << age;
 }
 };

void main(void)
 {
 person pers; // create person object
 ifstream infile; // create input file
 infile.open("PERSON.DAT", ios::binary); // open file

 infile.seekg(0, ios::end); // go to 0 bytes from end
 int endposition = infile.tellg(); // find where we are
 int n = endposition / sizeof(person); // number of persons
 cout << "\nThere are " << n << " persons in file";

 cout << "\nEnter person number: ";
 cin >> n;
 int position = (n-1) * sizeof(person); // number times size
 infile.seekg(position); // bytes from begin
 // read one person
 infile.read((char*)&pers, sizeof(pers));
 pers.showData(); // display the person
 }

Here’s the output from the program, assuming that the PERSON.DAT file is the same as that just
accessed in the DISKFUN example:

There are 3 persons in file
Enter person number: 2

 Name: Rainier
 Age: 21

For the user, I number the items starting at 1, although the program starts numbering at 0, so
person 2 is the second person of the three in the file.

The first thing the program does is figure out how many persons are in the file. The first step is
to position the get pointer at the end of the file with the statement

infile.seekg(0, ios::end);

The tellg() Function

The tellg() function returns the current position of the get pointer. After positioning the
pointer at the end of the file, the program uses tellg() to return the get pointer position; this
is the length of the file in bytes. Next, the program calculates how many person objects are in
the file by dividing the file size by the size of a person; it then displays the result.

In the output shown, the user specifies the second object in the file and the program calculates
how many bytes into the file this is using seekg(). It then uses read() to read one
person’s worth of data starting from that point. Finally, it displays the data with
showData().

Quiz 4

1. If an error occurs when you use open() on an ofstream object called ofile,
then

a. it’s just an EOF, so you can always go ahead and write to the file.

b. the ofile object has not been created.

c. the file associated with ofile has not been opened.

d. ofile will be true.

e. ofile will be false.

2. If an error occurs when you use read() on an ifstream object called ifile,
then

a. it could be an EOF.

b. you can discover the type of error by examining the value of ifile.

c. you must immediately destroy the ifile object.

d. ifile will be true.

e. ifile will be false.

3. Which of the following statements, concerning member functions of ifstream, are
true?

a. The rdstate()function returns the error-status byte.

b. The ferror() function reports the error status.

c. The good() function returns 0 if an error occurred.

d. No function exists to tell if an EOF occurred.

e. No function exists to tell if the diskette door is open.

4. Which of these statements are true?

a. The file pointer value handled by seekg() and similar functions is an
address.

b. The tellg() function tells the disk drive where to position the file pointer.

c. You need to know how your data is formatted in a file to make any use of
seekg() and tellg().

d. The two-argument version of seekg() can use the ios::beg constant.

e. You must always start reading at the beginning of a file.

5. The seekg() member function

a. can be used with one argument to position the get pointer to a specified
number of bytes from the end of the file.

b. can be used to read the position of the get pointer.

c. can position the get pointer relative to its previous location.

d. works with binary files.

e. works with formatted files.

Exercise 1

Rewrite the DISKFUN example from Session 3 so that every file operation is checked for errors.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Streams and Files

http://www.itknowledge.com/reference/archive/1571690638/ch10/603-606.html [21-03-2000 19:35:27]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
javascript:displayWindow('images/10-05.jpg',320,414)
javascript:displayWindow('images/10-05.jpg',320,414)
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch10/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Exercise 2

Write a variation of the SEEKG program in this session that allows the user to overwrite a specified
record in the PERSON.DAT file with new data for a single person. You can use the seekp() member
function.

MidChapter Discussion

George: Well, I already know C, so I’m just going to go on using printf() and scanf()
and all that stuff. It works and I don’t want to waste my time learning all these new
member functions and this weird class structure.

Estelle: What about the errors you get when you use the wrong formatting character, like %f
with a integer? You can blow up the program. If you use iostreams, you can’t make
that mistake.

George: I don’t make those mistakes any more.
Don: Of course not. But I’ve got a feeling you’ll regret that approach, even aside from the

errors. Wait until we hear about overloading the insertion and extraction operators.
George: I can wait.

Session 5: File I/O Using Member Functions

So far, I’ve let the main() function handle the details of file I/O. This is nice for demonstrations, but
in real object-oriented programs, it’s natural to include file I/O operations as member functions of the
class. In this session I’ll show two programs that do this. The first program uses ordinary member
functions in which each object is responsible for reading and writing itself to a file. The second
program shows how static member functions can read and write all the objects of a class at once.

Objects That Read and Write Themselves

More often than not, it makes sense to let each member of a class read and write itself to a file. This is
a simple approach and works well if there aren’t many objects to be read or written at one time. In this
example, I add member functions—diskOut() and diskIn()—to the person class. These
functions allow a person object to write itself to disk and read itself back in.

I’ve made some simplifying assumptions. First, all objects of the class will be stored in the same file,
called PERSON.DAT. Second, new objects are always appended to the end of the file. An argument to
the diskIn() function allows me to read the data for any person in the file. To prevent attempts to
read data beyond the end of the file, I include a static member function, diskCount(), that returns
the number of persons stored in the file. Listing 10-16 shows REWOBJ.

Listing 10-16 REWOBJ

// rewobj.cpp
// person objects do disk I/O
#include <fstream.h> // for file streams

class person // class of persons
 {
 protected:
 char name[40]; // person's name
 int age; // person's age
 public:
 void getData(void) // get person's data
 {
 cout << "\n Enter name: "; cin >> name;
 cout << " Enter age: "; cin >> age;
 }
 void showData(void) // display person's data
 {
 cout << "\n Name: " << name;
 cout << "\n Age: " << age;
 }
 void diskIn(int); // read from file
 void diskOut(); // write to file
 static int diskCount(); // return number of
 // persons in file
 };
void person::diskIn(int pn) // read person number pn
 { // from file
 ifstream infile; // make stream
 infile.open("PERSON.DAT", ios::binary); // open it
 infile.seekg(pn*sizeof(person)); // move file ptr
 infile.read((char*)this, sizeof(*this)); // read one person
 }

void person::diskOut() // write person to end of file
 {
 ofstream outfile; // make stream
 // open it
 outfile.open("PERSON.DAT", ios::app | ios::binary);
 outfile.write((char*)this, sizeof(*this)); // write to it
 }

int person::diskCount() // return number of persons
 { // in file
 ifstream infile;
 infile.open("PERSON.DAT", ios::binary);
 infile.seekg(0, ios::end); // go to 0 bytes from end
 // calculate number of persons
 return infile.tellg() / sizeof(person);
 }

void main(void)
 {
 person p; // make an empty person
 char ch;
 do // save persons to disk
 {
 cout << "\nEnter data for person:";
 p.getData(); // get data
 p.diskOut(); // write to disk
 cout << "Do another (y/n)? ";
 cin >> ch;
 }
 while(ch=='y'); // until user enters 'n'

 int n = person::diskCount(); // how many persons in file?
 cout << "\nThere are " << n << " persons in file";
 for(int j=0; j<n; j++) // for each one,
 {
 cout << "\nPerson #" << (j+1);
 p.diskIn(j); // read person from disk
 p.showData(); // display person
 }
 }

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Streams and Files

http://www.itknowledge.com/reference/archive/1571690638/ch10/606-608.html [21-03-2000 19:35:40]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch10/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

There shouldn’t be too many surprises here: You’ve seen most of the elements of this
program before. It operates in the same way as the DISKFUN program. Notice, however,
that all the details of disk operation are invisible to main(), having been hidden away in
the person class.

I don’t know in advance where the data is that I’m going to read and write because each
object is in a different place in memory. However, the this pointer always tells me
where I am when I’m in a member function. In the read() and write() stream
functions, the address of the object to be read or written is this and its size is
sizeof(*this).

Here’s some output, assuming there were already two persons in the file when the
program was started:

Enter data for person:
 Enter name: Acheson
 Enter age: 63
Enter another (y/n)? y

Enter data for person:
 Enter name: Dulles
 Enter age: 72
Enter another (y/n)? n

Person #1
 Name: Stimson
 Age: 45
Person #2
 Name: Hull
 Age: 58
Person #3
 Name: Acheson
 Age: 63
Person #4
 Name: Dulles
 Age: 72

If you want the user to be able to specify the file name used by the class, instead of
hard-wiring it into the member functions as I do here, you could create a static member
variable (say, char fileName[]) and a static function to set it. Or, you might want to
associate each object with a different file using a nonstatic function.

Classes That Read and Write Themselves

Let’s assume you have many objects in memory and you want to write them all to a file.
It’s not efficient to have a member function for each object open the file, write one object
to it, and then close it, as in the REWOBJ example. It’s much faster—and the more objects
there are, the truer this is—to open the file once, write all the objects to it, and then close
it.

Static Functions

One way to write many objects at once is to use a static member function, which applies
to the class as a whole rather than to each object. This function can write all the objects at
once. How will such a function know where all the objects are? It can access an array of
pointers to the objects, which can be stored as static data. As each object is created, a
pointer to it is stored in this array. A static data member also keeps track of how many
objects have been created. The static write function can open the file; then, in a loop, it
can go through the array, writing each object in turn; finally, it can close the file.

Size of Derived Objects

To make things really interesting, let’s make a further assumption: The objects stored in
memory are different sizes. Why would this be true? This situation typically arises when
several classes are derived from a base class. For example, consider the EMPINH program
from Chapter 7, Session 2. Here I have an employee class that acts as a base class for
the manager, scientist, and laborer classes. Objects of these three derived
classes are different sizes because they contain different amounts of data. Specifically, in
addition to the name and employee number, which apply to all employees, there are title
and golf club dues for the manager and a number of publications for the scientist. There
is nothing additional for the laborer.

I would like to write the data from a list containing all three types of derived objects
(manager, scientist, and laborer) using a simple loop and the write()
member function of ofstream. But to use this function, I need to know how large the
object is because that’s the second argument to write().

Suppose I have an array of pointers (call it arrap[]) to objects of type employee.
These pointers can point to objects of the three derived classes. (See the VIRTPERS
program in Chapter 9, Session 2 for an example of an array of pointers to objects of
derived classes.) I know that if I’m using virtual functions, I can make statements such as

arrap[j]->putdata();

The version of the putdata() function that matches the object pointed to by the
pointer will be used rather than the function in the base class. But can I also use the
sizeof() function to return the size of a pointer argument? That is, can I say

ouf.write((char*)arrap[j], sizeof(*arrap[j])); // no good

No, because sizeof() isn’t a virtual function. It doesn’t know that it needs to consider
the type of object pointed to rather than the type of the pointer. It will always return the
size of a base class object.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Streams and Files

http://www.itknowledge.com/reference/archive/1571690638/ch10/608-610.html [21-03-2000 19:36:00]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch10/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Using the typeid() Function

How can I find the size of an object if all I have is a pointer to it? One answer is the typeid()
function, introduced in Chapter 9, Session 5. I can use this function to find the class of an object, and
then use this class name in sizeof(). The next example shows how this works. Once I know the
size of the object, I can use it in the write() function to write the object to disk.

I’ve added a simple user interface to the EMPLOY program and made the member-specific functions
virtual so I can use an array of pointers to objects. I’ve also incorporated some of the error-detection
techniques discussed in the last session.

This is a rather ambitious program. It demonstrates many techniques that could be used in a full-scale
database application. It also shows the real power of OOP. How else could you use a single statement
to write objects of different sizes to a file? Listing 10-17 shows EMPL_IO.

Listing 10-17 EMPL_IO

// empl_io.cpp
// performs file I/O on employee objects
// handles different sized objects

#include <fstream.h> // for file-stream functios
#include <conio.h> // for getche()
#include <process.h> // for exit()
#include <typeinfo.h> // for typeid()

const int LEN = 32; // maximum length of last names
const int MAXEM = 100; // maximum number of employees

enum employee_type {tmanager, tscientist, tlaborer};

class employee // employee class
 {
 private:
 char name[LEN]; // employee name
 unsigned long number; // employee number
 static int n; // current number of employees
 static employee* arrap[]; // array of ptrs to emps
 public:
 virtual void getdata()
 {
 cout << "\n Enter last name: "; cin >> name;
 cout << " Enter number: "; cin >> number;
 }
 virtual void putdata()
 {
 cout << "\n Name: " << name;
 cout << "\n Number: " << number;
 }
 virtual employee_type get_type(); // get type
 static void add(); // add an employee
 static void display(); // display all employees
 static void read(); // read from disk file
 static void write(); // write to disk file
 static void destroy(); // delete objects from memory
 };

// static variables
int employee::n; // current number of employees
employee* employee::arrap[MAXEM]; // array of ptrs to emps

// manager class
class manager : public employee
 {
 private:
 char title[LEN]; // "vice-president" etc.
 double dues; // golf club dues
 public:
 void getdata()
 {
 employee::getdata();
 cout << " Enter title: "; cin >> title;
 cout << " Enter golf club dues: "; cin >> dues;
 }
 void putdata()
 {
 employee::putdata();
 cout << "\n Title: " << title;
 cout << "\n Golf club dues: " << dues;
 }
 };

// scientist class
class scientist : public employee
 {
 private:
 int pubs; // number of publications
 public:
 void getdata()
 {
 employee::getdata();
 cout << " Enter number of pubs: "; cin >> pubs;
 }
 void putdata()
 {
 employee::putdata();
 cout << "\n Number of publications: " << pubs;
 }
 };

// laborer class
class laborer : public employee
 {
 };

// add employee to list in memory
void employee::add()
 {
 cout << "\n'm' to add a manager"
 "\n's' to add a scientist"
 "\n'l' to add a laborer"
 "\nType selection: ";
 switch(getche())
 { // create specified employee type
 case 'm': arrap[n] = new manager; break;
 case 's': arrap[n] = new scientist; break;
 case 'l': arrap[n] = new laborer; break;
 default: cout << "\nUnknown employee type"; return;
 }
 arrap[n++]->getdata(); // get employee data from user
 }
// display all employees
void employee::display()
 {
 for(int j=0; j<n; j++)
 {
 cout << '\n' << (j+1); // display number
 switch(arrap[j]->get_type()) // display type
 {
 case tmanager: cout << ". Type: Manager"; break;
 case tscientist: cout << ". Type: Scientist"; break;
 case tlaborer: cout << ". Type: Laborer"; break;
 default: cout << ". Unknown type"; return;
 }
 arrap[j]->putdata(); // display employee data
 }
 }

// return the type of this object
employee_type employee::get_type()
 {
 if(typeid(*this) == typeid(manager))
 return tmanager;
 else if(typeid(*this)==typeid(scientist))
 return tscientist;
 else if(typeid(*this)==typeid(laborer))
 return tlaborer;
 else
 { cout << "\nBad employee type"; exit(1); }
 return tmanager;
 }

// write all current memory objects to file
void employee::write()
 {
 int size;
 cout << "\nWriting " << n << " employees.";
 ofstream ouf; // open ofstream in binary
 employee_type etype; // type of each employee object
 ouf.open("EMPLOY.DAT", ios::trunc | ios::binary);
 if(!ouf)
 { cout << "\nCan't open file"; return; }
 for(int j=0; j<n; j++) // for every employee object
 { // get it's type
 etype = arrap[j]->get_type(); // write type to file
 ouf.write((char*)&etype, sizeof(etype));
 switch(etype) // find its size
 {
 case tmanager: size=sizeof(manager); break;
 case tscientist: size=sizeof(scientist); break;
 case tlaborer: size=sizeof(laborer); break;
 } // write employee object to file
 ouf.write((char*)(arrap[j]), size);
 if(!ouf)
 { cout << "\nCan't write to file"; return; }
 }
 }

// read data for all employees from file into memory
void employee::read()
 {
 int size; // size of employee object
 employee_type etype; // type of employee
 ifstream inf; // open ifstream in binary
 inf.open("EMPLOY.DAT", ios::binary);
 if(!inf)
 { cout << "\nCan't open file"; return; }
 n = 0; // no employees in memory yet
 while(1)
 { // read type of next employee
 inf.read((char*)&etype, sizeof(etype));
 if(inf.eof()) // quit loop on eof
 break;
 if(!inf) // error reading type
 { cout << "\nCan't read type from file"; return; }
 switch(etype)
 { // make new employee
 case tmanager: // of correct type
 arrap[n] = new manager;
 size=sizeof(manager);
 break;
 case tscientist:
 arrap[n] = new scientist;
 size=sizeof(scientist);
 break;
 case tlaborer:
 arrap[n] = new laborer;
 size=sizeof(laborer);
 break;
 default: cout << "\nUnknown type in file"; return;
 } // read data from file into it
 inf.read((char*)arrap[n], size);
 if(!inf) // error but not eof
 { cout << "\nCan't read data from file"; return; }
 n++; // count employee
 } // end while
 cout << "\nReading " << n << " employees";
 }

// delete memory allocated for employees
void employee::destroy()
 {
 for(int j=0; j<n; j++)
 delete arrap[j];
 }

void main()
 {
 while(1)
 {
 cout << "\n'a' -- add data for an employee"
 "\n'd' -- display data for all employees"
 "\n'w' -- write all employee data to file"
 "\n'r' -- read all employee data from file"
 "\n'x' -- exit"
 "\nType selection: ";
 switch(getche())
 {
 case 'a': // add an employee to list
 employee::add();
 break;
 case 'd': // display all employees
 employee::display();
 break;
 case 'w': // write employees to file
 employee::write();
 break;
 case 'r': // read all employees from file
 employee::read();
 break;
 case 'x': // exit program
 employee::destroy();
 return;
 default: cout << "\nUnknown command";
 }
 } // end while
 }

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Streams and Files

http://www.itknowledge.com/reference/archive/1571690638/ch10/610-615.html [21-03-2000 19:36:22]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch10/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Code Number for Object Type

You’ve learned how to find the class of an object that’s in memory, but how do you know the
class of the object whose data you’re about to read from the disk? There’s no magic function to
help you with this one. When I write an object’s data to disk, I need to write a code number (the
enum variable employee_type) directly to the disk just before the object’s data. Then when
I am about to read an object back from the file to memory, I read this value and create a new
object of the type indicated. Finally, I copy the data from the file into this new object.

No Homemade Objects, Please

Incidentally, you might be tempted to read an object’s data into just any place, say into an array
of type char, and then set a pointer to object to point to this area, perhaps with a cast to make
it kosher:

char someArray[MAX]; // object's data is in this array
aClass* aPtr_to_Obj; // create pointer
aPtr_to_Obj = (aClass*)someArray; // don't do this

However, an array of type char, even if it contains an object’s data, is not an object. Attempts
to use the array, or a pointer to the array, as if it points to an object will lead to trouble. There
are only two legitimate ways to create an object. You can define it explicitly at compile time:

aClass anObj; // ok

or you can create it with new at runtime, and assign its location to a pointer:

aPtr_to_Obj = new aClass; // ok

When you create an object properly, its constructor is invoked. This is necessary even if you
have not defined a constructor and are using the default constructor. An object is more than an
area of memory with data in it; it is also a set of member functions, some of which, like a
default constructor, you don’t even see.

Interaction with empl_io

Here’s some sample interaction with the program in which the user creates a manager, a
scientist, and a laborer in memory, writes them to disk, reads them back in, and displays them.
(For simplicity, multiword names and titles are not allowed; say “VicePresident,” not “Vice
President”)

'a' -- add data for an employee
'd' -- display data for all employees
'w' -- write all employee data to file
'r' -- read all employee data from file
'x' -- exit
Type selection: a
'm' to add a manager
's' to add a scientist
'l' to add a laborer
Type selection: m
 Enter last name: Johnson
 Enter number: 1111
 Enter title: President
 Enter golf club dues: 20000

'a' -- add data for an employee
'd' -- display data for all employees
'w' -- write all employee data to file
'r' -- read all employee data from file
'x' -- exit
Type selection: a
'm' to add a manager
's' to add a scientist
'l' to add a laborer
Type selection: s
 Enter last name: Faraday
 Enter number: 2222
 Enter number of pubs: 99

'a' -- add data for an employee
'd' -- display data for all employees
'w' -- write all employee data to file
'r' -- read all employee data from file
'x' -- exit
Type selection: a
'm' to add a manager
's' to add a scientist
'l' to add a laborer
Type selection: l
 Enter last name: Smith
 Enter number: 3333

'a' -- add data for an employee
'd' -- display data for all employees
'w' -- write all employee data to file
'r' -- read all employee data from file
'x' -- exit
Type selection: w
Writing 3 employees

'a' -- add data for an employee
'd' -- display data for all employees
'w' -- write all employee data to file
'r' -- read all employee data from file
'x' -- exit
Type selection: r
Reading 3 employees

'a' -- add data for an employee
'd' -- display data for all employees
'w' -- write all employee data to file
'r' -- read all employee data from file
'x' -- exit
Type selection: d
1. Type: Manager
 Name: Johnson
 Title: President
 Golf club dues: 20000
2. Type: Scientist
 Name: Faraday
 Number: 2222
 Number of publications: 99
3. Type: Laborer
 Name: Smith
 Number: 3333

Of course, you can also exit the program after writing the data to disk. When you start it up
again, you can read the file back in and all the data will reappear.

It would be easy to add functions to this program to delete an employee, retrieve data for a
single employee from the file, search the file for employees with particular characteristics, and
so forth.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Streams and Files

http://www.itknowledge.com/reference/archive/1571690638/ch10/615-617.html [21-03-2000 19:36:37]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch10/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Quiz 5

1. In the REWOBJ program, how does each person object identify
itself so it can insert itself in the same place in memory when it is
read back from the disk?

a. There’s a table of pointers to all person objects so each
one knows where it came from and where it should go.

b. The diskIn() and diskOut() functions operate on
generic person objects so these objects don’t need to identify
themselves.

c. The data for each person object, stored in the disk file,
includes the this pointer value for the object so it can be
restored to the same spot in memory.

d. The data for each person object, stored in the disk file,
includes an index number for the object so it can be restored to
the same spot in memory.

e. Objects don’t need to go back into the same place in
memory.

2. The person objects in rewobj are arranged in the
person.dat file

a. by employee name.

b. by employee number.

c. in the same order as in the table of this pointers.

d. randomly.

e. in the order they were entered by the user.

3. In the EMPL_IO program, how does the class employee know
what objects of the class exist?

a. The class doesn’t need to know anything about its objects.

b. Each object contains a code number that indicates if it
exists.

c. The associated company class contains a table of
employee objects.

d. The employee class contains, in static data, a table of
pointers to all existing employee objects.

e. It examines its own this pointer.

4. In the EMPL_IO program, the object type is discovered by
_______ when writing to the disk file and by _________ when
reading from the disk file.

a. values of the this pointer; array index values

b. typeid(); code numbers

c. code numbers; array index values

d. array index values; typeid()

e. All objects are of the same type so there is no need for such
determination.

5. If you read the data for an object of class alpha from a disk file
into an array of type char,

a. you can then identify the type of the object using the
typeid() function on the array.

b. the section of the array occupied by the data becomes an
object of class alpha.

c. all will be well if you know the type of the object before
accessing the array.

d. you should then create an empty object of class alpha and
copy the data into it.

e. the compiler will signal an error.

Exercise 1

Apply the technique of REWOBJ, where objects read and write themselves,
to the airtime class, as seen in the ADDAIR example in Chapter 6,
Session 1. That is, create diskIn() and diskOut() member functions
for airtime. In main(), get data for many airtime values from the
user, write them to disk, read them back in, and display them.

Exercise 2

Write a function for the EMPL_IO program that will search the file for an
employee with a given employee number and display all the employee’s
information.

Session 6: Overloading the << and >> Operators

In this session I’ll show how to overload the extraction and insertion
operators. This is a powerful feature of C++. It lets you treat I/O for
user-defined data types in the same way as for basic types such as int and
double. For example, if you have an object of class crawdad called
cd1, you can display it with the statement

cout << cd1;

just as if it were a basic data type.

You can overload the extraction and insertion operators so they work with
the display and keyboard (cout and cin). With a little more care, you can
also overload them so they work with disk files as well. In this session, I’ll
look at examples of both these approaches.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Streams and Files

http://www.itknowledge.com/reference/archive/1571690638/ch10/617-619.html [21-03-2000 19:36:56]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch10/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Overloading for cout and cin

Listing 10-18 shows an example, ENGLIO, that overloads the insertion and extraction operators for the
English class so they work with cout and cin.

Listing 10-18 ENGLIO

// englio.cpp
// overloaded << and >> operators
#include <iostream.h>

class English // English class
 {
 private:
 int feet;
 float inches;
 public:
 English() // constructor (no args)
 { feet = 0; inches = 0.0; }
 English(int ft, float in) // constructor (two args)
 { feet = ft; inches = in; }
 friend istream& operator >> (istream& s, English& d);
 friend ostream& operator << (ostream& s, const English& d);
 };

istream& operator >> (istream& s, English& d) // get distance

 { // from user
 cout << "\nEnter feet: "; s >> d.feet; // using
 cout << "Enter inches: "; s >> d.inches; // overloaded
 return s; // >> operator
 }

ostream& operator << (ostream& s, const English& d) // display
 { // distance
 s << d.feet << "\'-" << d.inches << '\"';
 // using
 return s; // overloaded
 } // << operator

void main()
 {
 English dist1, dist2; // define English objects
 cout << "\nEnter two English values:";
 cin >> dist1 >> dist2; // get values from user
 English dist3(11, 6.25); // define, initialize dist3

 // display distances
 cout << "\ndist1 = " << dist1 << "\ndist2 = " << dist2;
 cout << "\ndist3 = " << dist3;
 }

This program asks the user for two distance values and then displays these values and another value
(11’-6.25”) that was initialized in the program. Here’s some sample interaction:

Enter feet: 10
Enter inches: 3.5

Enter feet: 12
Enter inches: 6

dist1 = 10'-3.5"
dist2 = 12'-6"
dist3 = 11'-6.25"

Notice in main() how convenient and natural it is to treat English objects like any other data type,
using statements such as

cin >> dist1 >> dist2;

and

cout << "\ndist1=" << dist1 << "\ndist2=" << dist2;

The operator<<() and operator>>() functions must be friends of the English class, because
the istream and ostream objects appear on the left side of the operator. (See the discussion of friend
functions in Chapter 9, Session 6.) They return, by reference, an object of istream (for >>) or
ostream (for <<). These return values permit chaining so that more than one value can be input or
output in a single statement.

The operators take two arguments, both passed by reference. The first is an object of istream (for >>;
often this is cin) or of ostream (for <<; often this is cout). The second argument is the object to be
displayed, an object of class English in this example. The fact that the stream and the English object
are passed by reference allows them to be modified by the function. The >> operator takes input from the
stream specified in the first argument and copies it into the member data of the object specified by the
second argument. The << operator copies the data from the object specified by the second argument and
sends it into the stream specified by the first argument. You can overload the insertion and extraction
operators for other classes using this same approach.

Notice the const before the second argument of the overloaded << operator. It guarantees that
outputting an English value won’t alter it.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Streams and Files

http://www.itknowledge.com/reference/archive/1571690638/ch10/619-621.html [21-03-2000 19:37:13]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch10/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Overloading for Files

The next example shows how you might overload the << and >> operators in the English
class so they work with both file I/O and cout and cin. Listing 10-19 shows ENGLIO2.

Listing 10-19 ENGLIO2

// englio2.cpp
// overloaded << and >> operators work with files
#include <fstream.h>

class English // English English class
 {
 private:
 int feet;
 float inches;
 public:
 English() // constructor (no args)
 { feet = 0; inches = 0.0; }
 English(int ft, float in) // constructor (two args)
 { feet = ft; inches = in; }
 friend istream& operator >> (istream& s, English& d);
 friend ostream& operator << (ostream& s, const English& d);
 };
istream& operator >> (istream& s, English& d) // get distance
 { // from file or
 char dummy; // for ('), (-), and (") // keyboard
 // with
 s >> d.feet >> dummy >> dummy >> d.inches >> dummy;
 return s; // overloaded
 } // >> operator

ostream& operator << (ostream& s, const English& d) // send
 { // to file or
 s << d.feet << "\'-" << d.inches << '\"'; // screen with
 return s; // overloaded
 } // << operator
void main()
 {
 char ch;
 English dist1;
 ofstream ofile; // create and open
 ofile.open("DIST.DAT"); // output stream
 do
 {
 cout << "\nEnter English: ";
 cin >> dist1; // get distance from user
 ofile << dist1; // write it to output str
 cout << "Do another (y/n)? ";
 cin >> ch;
 }
 while(ch != 'n');
 ofile.close(); // close output stream

 ifstream ifile; // create and open
 ifile.open("DIST.DAT"); // input stream
 cout << "\nContents of disk file is:";
 while(1)
 {
 ifile >> dist1; // read dist from stream
 if(ifile.eof()) // quit on EOF
 break;
 cout << "\nDistance = " << dist1; // display distance
 }
 }

I’ve made minimal changes to the overloaded operators themselves. The >> operator no longer
prompts for input because it doesn’t make sense to prompt a file. When getting input from the
keyboard, I assume the user knows exactly how to enter a feet and inches value, including the
various punctuation marks. (Type an integer value for feet, a quote, a hyphen, a float value for
inches, and a double quote: 19’-2.5”.) The << operator is unchanged. The program asks for
input from the user, writing each English value to the file as it’s obtained. When the user is
finished with input, the program reads and displays all the values from the file. Here’s some
sample interaction:

Enter Distance: 3'-4.5"
Do another (y/n)? y

Enter Distance: 7'-11.25"
Do another (y/n)? y

Enter Distance: 11'-6"
Do another (y/n)? n

Contents of disk file is:
Distance = 3'-4.5"
Distance = 7'-11.25"
Distance = 11'-6"

The distances are stored character by character to the file. In this example, the contents of the file
would be

3'-4.5"7'-11.25"11'-6"

If the user fails to enter the distances with the correct punctuation, the distances won’t be written
to the file correctly and the file won’t be readable for the << operator. In a real program, error
checking on input would be essential.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Streams and Files

http://www.itknowledge.com/reference/archive/1571690638/ch10/621-623.html [21-03-2000 19:37:36]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch10/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Overloading for Binary I/O

So far, you’ve seen examples of overloading operator<<() and operator>>() for
formatted I/O. Can they be overloaded to perform binary I/O? Certainly, and, as I noted earlier,
this may be a more efficient way to store information, especially if your object contains much
numerical data.

As an example, I’ll show how to store data for person objects to disk files in binary format
(see the virtpers example in Chapter 9, Session 2). Binary format means that the data on
the disk will be in the same format as the object’s data in memory. This data consists of a
40-character name field and a 1-integer age field. Member functions of person are used to
acquire this data from the keyboard and display it. The operators << and >> are overloaded to
write the data to a disk file and read it back, using the read() and write() iostream
functions. Listing 10-20 shows PERSIO.

Listing 10-20 PERSIO

// persio.cpp
// overloading << and >> for person objects
// storing binary data in file
#include <fstream.h> // for file streams

class person // class of persons
 {
 protected:
 enum {SIZE=40}; // size of name buffer
 char name[SIZE]; // person's name
 int age; // person's age
 public:
 void getData() // get data from keyboard
 {
 cout << "\n Enter name: "; cin.getline(name, SIZE);
 cout << " Enter age: "; cin >> age;
 cin.ignore(10, '\n');
 }
 void putData() // display data on screen
 {
 cout << "\n Name = " << name;
 cout << "\n Age = " << age;
 }
 friend istream& operator >> (istream& s, person& d);
 friend ostream& operator << (ostream& s, person& d);

 void persin(istream& s) // read file into ourself
 {
 s.read((char*)this, sizeof(*this));
 }
 void persout(ostream& s) // write our data to file
 {
 s.write((char*)this, sizeof(*this));
 }
 };
 // get data from disk
istream& operator >> (istream& s, person& d)
 {
 d.persin(s);
 return s;
 }
 // write data to disk
ostream& operator << (ostream& s, person& d)
 {
 d.persout(s);
 return s;
 }

void main(void)
 { // create 4 persons
 person pers1, pers2, pers3, pers4;
 cout << "\nPerson 1";
 pers1.getData(); // get data for pers1
 cout << "\nPerson 2";
 pers2.getData(); // get data for pers2
 // create output stream
 ofstream outfile("PERSON.DAT", ios::binary);
 outfile << pers1 << pers2; // write to file
 outfile.close(); // create input stream
 ifstream infile("PERSON.DAT", ios::binary);
 infile >> pers3 >> pers4; // read from file into
 cout << "\nPerson 3"; // pers3 and pers4
 pers3.putData(); // display new objects
 cout << "\nPerson 4";
 pers4.putData();
 }

I had to overcome a slight glitch in the overloaded << and >> operators. As you’ve seen, these
operators must be friend functions because a stream object instead of a person is used as the
left-hand argument. However, because I’m using binary format, it is most convenient to access
the person object’s data directly from its location in memory, which is handled with the
this pointer. Unfortunately, the this pointer is not accessible in friend functions. So, from
within the overloaded << and >> operators, I call other functions that are person member
functions: persin() and persout(), which do the actual writing and reading.

In main(), the program obtains data for two person objects from the user, writes to disk, reads
it back into two different person objects, and displays their contents. Here’s some sample
interaction:

Person 1
 Enter name: George Harrison
 Enter age: 33
Person 2
 Enter name: Emily Dickinson
 Enter age: 25
Person 3
 Name = George Harrison
 Age = 33
Person 4
 Name = Emily Dickenson
 Age = 25

As you’ve seen, chaining is possible with the overloaded operators so that a single statement in
main() writes two person objects to the disk file:

outfile << pers1 << pers2;

and a single statement reads data from the file into two other person objects:

infile >> pers3 >> pers4;

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Streams and Files

http://www.itknowledge.com/reference/archive/1571690638/ch10/623-625.html [21-03-2000 19:38:07]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch10/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Quiz 6

1. Which of these statements are true?

a. Overloading the << and >> operators means authorizing the compiler to create
new versions of these operators to work with a user-written class.

b. You cannot overload the << and >> operators to perform input and output with
disk files.

c. You could use functions to do most things overloaded operators do.

d. If the user-written object was passed by value in the overloaded >> operator, no
data could be placed in it.

e. If the stream was passed by value in the overloaded << operator, no data could be
written to it.

2. To overload the << and >> operators to work with cout and cin, you will probably

a. redefine cout and cin.

b. write statements within operator<<() and operator>>() to input and
output basic variable types.

c. make these operators member functions of a stream.

d. make these operators member functions of the class whose objects you want to
input and output.

e. use friend functions.

3. Although the overloaded >> and << operators are defined to work with ostream and
istream objects, they can also work with ofstream and ifstream objects, as in the
ENGLIO program, because

a. ofstream and ifstream are different names for istream and ostream.

b. ofstream and ifstream are derived from for istream and ostream.

c. the overloaded >> and << operators work with any stream class.

d. the overloaded >> and << operators are virtual functions.

e. the overloaded >> and << operators are friend functions.

4. To permit multiple uses of the << or >> operators in a single statement (chaining),

a. these operators must return appropriate stream objects.

b. only objects instantiated from streams can be input or output.

c. only basic types can be input and output.

d. these operators must return an object of their own class.

e. these operators must return by reference.

5. When overloading the << and >> operators to work with binary files,

a. there will be runtime errors.

b. the compiler will report an error.

c. the read() and write() functions of istream and ostream can be used.

d. you must copy the object’s data into a buffer before writing it to disk.

e. the data on the disk is stored in the same format as the data in the object in
memory.

Exercise 1

Write overloaded << and >> operators, for use with cout and cin, for the airtime class.
Write a main() similar to that in ENGLIO to exercise these operators.

Exercise 2

Extend the airtime operators of Exercise 1 so they work in binary mode for files. Write a
main() similar to that in PERSIO to exercise these operators.

Session 7: Memory as a Stream Object

You can treat a section of memory as a stream object, inserting data into it just as you would into a
file. This is called in-memory formatting; it’s useful in many situations, for example, with
functions in GUI environments (such as Windows) that write to a dialog box or a window that
requires the data to be a string, even if numbers are being displayed. It’s convenient to compose
this string in a section of memory, using iostreams with formatted I/O, and then to call the GUI
function with the string as an argument. (C programmers remember using the sprintf()
function in similar situations.) There are, of course, many other situations where in-memory
formatting is convenient.

Fixed Buffer Size

A family of stream classes implements such in-memory formatting. For output to memory, there is
ostrstream, which is derived from (among other classes) ostream. For input from memory,
there is istrstream, derived from istream; and for read/write memory objects, there is
strstream, derived from iostream. To use memory stream objects, you need the
STRSTREA.H header file. The next example shows how to use both the ostrstream and the
istrstream objects. Listing 10-21 shows STRSTR.

Listing 10-21 STRSTR

// strstr.cpp
// strstream memory objects
#include <strstrea.h> // for ostrstream class
const int SIZE = 80; // size of memory buffer

void main()
 {
 char membuff[SIZE]; // buffer in memory
 ostrstream omem(membuff, SIZE); // make output memory object

 int oj = 77; // data variables
 double od = 890.12; // for output to memory
 char ostr1[] = "Kafka";
 char ostr2[] = "Freud";

 omem << "oj= " << oj << endl // output data to
 << "od= " << od << endl // memory object
 << "ostr1= " << ostr1 << endl
 << "ostr2= " << ostr2 << endl
 << ends; // end the buffer with '\0'

 cout << membuff; // display the memory buffer

 char dummy[20]; // new variables for input
 int ij;
 double id;
 char istr1[20];
 char istr2[20];

 istrstream imem(membuff, SIZE); // make input memory object
 // extract data
 imem >> dummy >> ij >> dummy >> id // into new variables
 >> dummy >> istr1>> dummy >> istr2;
 // display variables
 cout << "\nij=" << ij << "\nid=" << id
 << "\nistr1=" << istr1 << "\nistr2=" << istr2;
 }

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Streams and Files

http://www.itknowledge.com/reference/archive/1571690638/ch10/625-627.html [21-03-2000 19:38:24]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch10/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

The ostrstream Object

One way to use an ostrstream object is to start with a data buffer of
type char*. You then create an ostrstream object, using the memory
buffer and its size as arguments to the object’s constructor. Now you can
send formatted text to the ostrstream object, using the << operator, just
as if you were sending the text to cout or a disk file. That’s what I do in
the first part of STRSTR

When you run the program, membuff will be filled with the formatted
text:

j= 77\nd= 890.12\nstr1= Kafka\nstr2= Freud\n\0

You can format the text using manipulators, just as you do for cout. The
manipulator ends inserts a ‘\0’ character at the end of the string. (Don’t
forget this manipulator; the string must be zero terminated, and this doesn’t
happen automatically.) The program now displays the contents of the buffer
as a string of type char:

cout << membuff;

Here’s the resulting output:

oj= 77
od= 890.12
ostr1= Kafka
ostr2= Freud

In this example, the program displays the contents of the buffer only to
show what the buffer looks like. Ordinarily, you would have a more
sophisticated use for this formatted text, such as passing the address of the
buffer to a GUI function for display in a dialog box.

Input Memory Streams

The most common use for in-memory formatting is to store text in memory,
as I’ve shown, using an ostrstream object. However, you can also read
formatted data out of memory and store it in variables. This allows you to
convert many values at once from alphanumeric form into numerical
variables, instead of using individual C language conversion functions such
as atof() and atoi().

The second part of STRSTR creates an istrstr object, imem, and
associates it with the same memory buffer, membuff, that was used for the
earlier ostrstream object. Then the program reads data out of imem into
appropriate variables. This automatically converts the formatted char*
data in membuff into variables of type int, double, and char*.
Finally, STRSTR displays the value of these variables to show that the
conversion process has produced correct results. Here’s the second part of
the program’s output:

ij=77
id=890.12
istr1=Kafka
istr2=Freud

Note that, for this conversion process to work, individual variables in
membuff must be delimited by whitespace. That’s why I leave a space
after the equal sign when writing the data into omem in the first part of the
program.

Also note that when I read data out of imem into individual variables, I am
not interested in the text (such as oj=) that introduces the variables. I read
these short strings into a buffer called dummy and then forget about them.

Universality

To focus attention on the techniques of using in-memory formatting, I have
shown standalone main() programs in the examples in this session. If
you’re writing an object-oriented program, you will probably want to place
the routines that handle in-memory I/O in member functions so that objects
can read and write themselves to memory (see the REWOBJ example in
Session 5 in this chapter).

If you handle things correctly when you do this, you can use the same
member functions to read and write objects to memory that you use to read
and write them to disk files. Overload the << and >> operators to work with
disk files. Then let the name of the file object (whether istream or
istrstream, or ostream or ostrstream) be passed as an argument
to the function, rather than hard-wired into the function, as I show in
REWOBJ.

File Pointers

Incidentally, you may be interested to know that you can use file pointers,
such as those handled with seekg() and tellp(), with in-memory
objects such as istrstream and ostrstream, just as you can with file
objects.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Streams and Files

http://www.itknowledge.com/reference/archive/1571690638/ch10/627-629.html [21-03-2000 19:38:45]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch10/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Dynamic Buffer Size

There’s a second kind of ostrstream object. Instead of associating the object with a
user-defined buffer, as I showed in STRSTR, you can create an ostrstream object that
allocates its own storage and adjusts its size dynamically to hold whatever you put in it. To do
this, simply define the object with no arguments. Once it’s defined, fill it with data and it will
expand to hold what you put in. As you continue to add data, the object will continue to
expand. Listing 10-22 shows AUTOSTR.

Listing 10-22 AUTOSTR

// autostr.cpp
// writes formatted data into memory; uses dynamic ostrstream
#include <strstrea.h> // for ostrstream class

void main()
 {
 ostrstream omem; // create dynamic stream object

 omem << "j=" << 111 << endl // insert numbers
 << "k=" << 2.3456 << endl; // into ostrstream object
 omem << ends; // terminate with '\0'

 char* p = omem.str(); // get address of buffer
 cout << p; // display it
 }

I create a dynamic ostrstream object (note the lack of arguments) and put data in it: the
integer 111 and the floating-point value 2.3456. To display its contents, I use the str()
member function to return a pointer (type char*) to the section of memory containing the
data:

char* p = omem.str();

This pointer can then be sent on to another function to display the data or access it for other
purposes. In the program, I insert the pointer in cout:

cout << p;

The output looks like this:

j=111
k=2.3456

Typically, the pointer value is sent to a GUI function to display the data.

This use of the dynamic ostrstream object works nicely, relieving you of the work of
setting up a buffer of your own and worrying about how big to make it. If you use the
approach shown—putting data into the object using a single statement, then getting the value
of a pointer to the data, and never changing the contents or accessing the data again—then
everything works as expected.

However, going much beyond this approach can lead you quickly into a realm akin to black
magic. Why is this? Remember that dynamic ostrstream objects, rather than relying on a
user-supplied buffer, must dynamically allocate memory to store their data. When you put
data in them, they find memory for just that amount of data. If you then add more data, they
may need to move the data to a different place in memory to accommodate the increased
buffer size. But if you’ve already found out where the data is using str(), the object can no
longer move the data. It therefore freezes itself. Once it’s frozen, you can’t add more data.
Also, you are responsible for releasing its memory yourself, using delete. All things
considered, it’s probably not worth the hassle to go beyond the simple approach shown here.

Quiz 7

1. In-memory formatting means

a. rearranging your computer’s physical memory.

b. rearranging the data in memory to eliminate unused spaces.

c. storing (or retrieving) numerical and other data as a string in memory.

d. creating an object of type ostream.

e. creating an object of type strstream.

2. A regular (nondynamic) ostrstream object

a. is used to store data in a disk file.

b. is told by the code that creates it how much data it can hold.

c. can store int and float values in the same format as memory variables.

d. must be associated with a data buffer located elsewhere in the program.

e. creates its own data buffer.

3. An istrstream object

a. allocates its own data buffer.

b. writes data to either a disk file or the screen display.

c. reads data from either a disk file or the keyboard.

d. takes formatted data from memory and stores it in variables.

e. takes data from variables and stores it as formatted data in memory.

4. A dynamic ostrstream object

a. is called dynamic because it destroys its data automatically when it goes out
of scope.

b. uses the member function str() to store data.

c. allocates its own memory buffer for the data stored in it.

d. cannot be deleted.

e. must be given a limit on buffer size.

5. Unless you really know what you’re doing, you shouldn’t use multiple data inputs
and outputs with dynamic ostrstream objects because

a. actually, this is OK.

b. finding out where the data is stored freezes it.

c. an object might move its data after you find out where it is.

d. all pointers are relative.

e. dynamic data is changing too fast to read.

Exercise 1

Adapt the REWOBJ example from Session 5 of this chapter so the person class works with
in-memory formatting as well as with disk files. As noted earlier, this is conveniently done by
overloading the << and >> operators and specifying the type of object to be read or written to
as an argument passed to the member functions.

Exercise 2

Start with Exercise 1 of Session 5 in this chapter, which added diskIn() and diskOut()
member functions to the airtime class. Rewrite this example so it works with in-memory
formatting as well as with disk files, using a technique similar to that in Exercise 1.

Session 8: Printer Output and Other Refinements

In this last session I’ll look at three short topics that are related to iostreams: command-line
arguments, printer output, and redirection. These topics are all more or less specific to DOS
(and UNIX) programs, so if you plan never to program in DOS or UNIX, you can probably
skip this session.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Streams and Files

http://www.itknowledge.com/reference/archive/1571690638/ch10/629-631.html [21-03-2000 19:39:12]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch10/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Command-Line Arguments

If you use DOS programs, you are probably familiar with command-line arguments, used
when invoking a program from the DOS C prompt. (Actually, you can also use
command-line arguments when you invoke a program using the Windows Run command.
However, they are not commonly used in Windows.) Command-line arguments are typically
used to pass the name of a data file to an application at the same time you start the
application. For example, you can invoke a word processor application and the document it
will work on at the same time:

C>wordproc afile.doc

Here, afile.doc is a command-line argument. How can you get a C++ program to read
command-line arguments? Listing 10-23 shows an example, COMLINE, that reads and
displays as many command-line arguments as you care to type. Multiple arguments are
separated by spaces.

Listing 10-23 COMLINE

// comline.cpp
// demonstrates command-line arguments
#include <iostream.h>

void main(int argc, char* argv[])
 {
 cout << "\nargc = " << argc;

 for(int j=0; j<argc; j++)
 cout << "\nArgument " << j << " = " << argv[j];
 }

Here’s some sample interaction with the program where the user types three command-line
arguments:

C>comline uno dos tres
argc = 4
Argument 0 = C:\CPP\CHAP14\COMLINE.EXE
Argument 1 = uno
Argument 2 = dos
Argument 3 = tres

To read command-line arguments, the main() function (don’t forget it’s a function!) must
itself be given two arguments. The first, argc (for argument count), represents the
total number of command-line arguments. The first command-line argument is always the
path name of the current program. The remaining command-line arguments are those typed
by the user; they are delimited by the space character. In the example above, they are uno,
dos, and tres.

The system stores the command-line arguments as strings in memory and creates an array of
pointers to these strings. In the example, the array is called argv (for argument
values). Individual strings are accessed through the appropriate pointer, so the first string
(the path name) is argv[0], the second (uno in this example) is argv[1], and so on.
comline accesses the arguments in turn and prints them out in a for loop that uses argc,
the number of command-line arguments, as its upper limit.

You don’t actually need to use the particular names argc and argv as arguments to
main(), but they are so common that any other names would cause consternation to
everyone but the compiler.

Listing 10-24 shows a program that uses a command-line argument for something useful. It
displays the contents of a text file whose name is supplied by the user on the command line.
Thus it imitates the DOS command Type.

Listing 10-24 OTYPE

// otype.cpp
// imitates TYPE command
#include <fstream.h> // for file functions
#include <process.h> // for exit()

void main(int argc, char* argv[])
 {
 if(argc != 2)
 {
 cerr << "\nFormat: otype filename";
 exit(-1);
 }
 char ch; // character to read
 ifstream infile; // create file for input
 infile.open(argv[1]); // open file
 if(!infile) // check for errors
 {
 cerr << "\nCan't open " << argv[1];
 exit(-1);
 }
 while(infile.get(ch) != 0) // read a character
 cout << ch; // display the character
 }

This program first checks to see if the user has entered the correct number of command-line
arguments. Remember that the path name of OTYPE.EXE itself is always the first
command-line argument. The second argument is the name of the file to be displayed, which
the user should have entered when invoking the program:

C>otype ichar.cpp

Thus, the total number of command-line arguments should equal two. If it doesn’t, the user
probably doesn’t understand how to use the program, and the program sends an error
message via cerr to clarify matters.

If the number of arguments is correct, the program tries to open the file whose name is the
second command-line argument (argv[1]). If the file can’t be opened, the program signals
an error. Finally, in a while loop, the program reads the file character by character and
writes it to the screen.

A value of 0 for the character signals an EOF. This is another way to check for EOF. You
can also use the value of the file object itself, as I’ve done before:

while(infile)
 {
 infile.get(ch);
 cout << ch;
 }

You could also replace this entire while loop with the statement

cout << infile.rdbuf();

as you saw in the ICHAR2 program in Session 3 in this chapter.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Streams and Files

http://www.itknowledge.com/reference/archive/1571690638/ch10/631-633.html [21-03-2000 19:39:29]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch10/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Printer Output

In DOS, it’s fairly easy to send data to the printer. DOS predefines a number of special file
names for hardware devices. These make it possible to treat the devices as if they were files.
Table 10-12 shows these names.

Table 10-12 Predefined hardware file names
Name Device

con Console (keyboard and screen)
aux or com1 First serial port
com2 Second serial port
prn or lpt1 First parallel printer
lpt2 Second parallel printer
lpt3 Third parallel printer
nul Dummy (nonexistent) device

In most systems, the printer is connected to the first parallel port, so the file name for the printer
is PRN or LPT1. (You can substitute the appropriate name if your system is configured
differently.)

The following program, EZPRINT (Listing 10-25), sends a string and a number to the printer,
using formatted output with the insertion operator.

Listing 10-25 EZPRINT

// ezprint.cpp
// demonstrates simple output to printer

#include <fstream.h> // for file streams

void main(void)
 {
 char* s1 = "\nToday's winning number is ";
 int n1 = 17982;

 ofstream outfile; // make a file
 outfile.open("PRN"); // open it for the printer
 outfile << s1 << n1 << endl; // send data to printer
 outfile << '\x0D'; // formfeed for page eject
 }

You can send any amount of formatted output to the printer this way. The \x0D character causes
the page to eject from most printers.

This technique works only for DOS programs, so you must use a DOS target when you create
EZPRINT (not an EasyWin or similar Windows-related target). Sending output to the printer from
a Windows program is beyond the scope of this book.

The next example, OPRINT (Listing 10-26), prints the contents of a disk file, specified on the
command line, to the printer. It uses the character-by-character approach to this data transfer.

Listing 10-26 OPRINT

// oprint.cpp
// imitates print command
#include <fstream.h> // for file functions
#include <process.h> // for exit()

void main(int argc, char* argv[])
 {
 if(argc != 2)
 {
 cerr << "\nFormat: oprint filename";
 exit(-1);
 }
 char ch; // character to read
 ifstream infile; // create file for input
 infile.open(argv[1]); // open file
 if(!infile) // check for errors
 {
 cerr << "\nCan't open " << argv[1];
 exit(-1);
 }
 ofstream outfile; // make file
 outfile.open("PRN");
 // open it for printer
 while(infile.get(ch) != 0) // read a character
 outfile.put(ch); // write character to printer
 }

You can use this program to print any text file, such as any of your .CPP source files. It acts much
the same as the DOS Print command. Like the OTYPE example, this program checks for the
correct number of command-line arguments and for a successful opening of the specified file.

Redirection

Note: The programs in this section should be executed from a DOS box in Windows or from
DOS itself. You need to see a DOS prompt when invoking the program so you can enter
additional information besides the program name.

In DOS, it’s possible to read and write to files using only the objects cout and cin. These
predefined objects normally represent the display and the keyboard, but they can be redirected by
the user to represent disk files. Redirection is a technique, originally imported from UNIX into
DOS, that allows the user additional flexibility in the way programs are used. Redirection is
supplied by DOS, not by C++, but C++ supports it, so it’s interesting to see how to use it. As an
example, consider the program redir (Listing 10-27).

Listing 10-27 REDIR

// redir.cpp
// demonstrates redirection
// syntax: redir <source >destination
#include <iostream.h>
#include <iomanip.h> // for resetiosflags()
void main()
 {
 char ch;
 while(!cin.eof()) // quit on EOF
 {
 cin >> resetiosflags(ios::skipws) // keep whitespace
 >> ch; // read from std input
 cout << ch; // send to std output
 }
 }

Before exploring how this program can be used for redirection, I should note that you must reset
the skipws flag when getting input from cin. This is necessary because cin normally skips
over whitespace, which includes spaces, new lines, and EOFs. We want to read all these
characters.

Using the redir Program

When invoked in the usual way at the command line, redir simply echoes whatever the user

types each time is pressed. Here’s some sample interaction (from a poem by the
16th-century poet Ben Jonson):

C>redir
Truth is the trial of itself,
<--entered by the user
Truth is the trial of itself,
<--echoed by the program
And needs no other touch;
And needs no other touch;
And purer than the purest gold,
And purer than the purest gold,
Refine it ne'er so much.
Refine it ne'er so much.
^Z

The user enters the key combination (or the function key) to terminate the
program. This character is interpreted by the program as an EOF.

Using redirection gives the program additional capabilities. It can take input from the keyboard
and write it to a disk file, display text from a disk file on the screen, or copy one file to another.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Streams and Files

http://www.itknowledge.com/reference/archive/1571690638/ch10/633-636.html [21-03-2000 19:39:55]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch10/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Redirecting Output

To redirect a program’s output from the screen to a file, use the > operator. This is a DOS
operator; it has nothing to do with C++ comparison or overloading. Here’s how to invoke redir
to take keyboard input and redirect it to a file called sample.txt:

C>redir >sample.txt
If you would avoid suspicion, <--entered by user
don't lace your shoes in a melon field. <--entered by user
^Z <--entered by user

The text you type will be written to sample.txt. You can check this file with the DOS
command Type to be sure it contains this text.

Redirecting Input

To redirect a program’s input so it comes from a file and not the keyboard, use the < operator.
Here’s how to invoke redir to take data from the file sample.txt and use it as input to the
program, which then displays it:

C>redir <sample.txt
If you would avoid suspicion, <--displayed by program
don't lace your shoes in a melon field. <--displayed by program

Redirecting Input and Output

Both input and output can be redirected at the same time. As an example, here’s how to use
redir to copy one file to another:

C>redir <src.txt >dest.txt

Nothing is displayed, but you will find that src.txt has been copied to dest.txt. Note that
this works only for text files, not for binary files.

If you want to display a particular message on the screen even when the output of your program
has been redirected to a file, you can use the cerr object. Insert this line into the while loop in
redir:

cerr << ch;

Now try copying one file to another. Each character ch will be sent to the screen by cerr, even
though the output to cout is going to a file.

Redirection and the _withassign Classes

The need to support redirection explains the _withassign classes discussed earlier. Redirection
is carried out by setting the cout or cin stream object equal to another stream object: namely,
one associated with the file name provided on the command line. But to set cin and cout equal
to other objects, cin and cout must be derived from a class that supports the assignment
operation. Most stream classes don’t, but the three _withassign classes, from which cout,
cin, and cerr are derived, do.

Quiz 8

1. Command-line arguments

a. are separated by whitespace characters.

b. are separated by the space character.

c. cannot be accessed from an application.

d. take place between generals and admirals.

e. are stored as strings in memory.

2. For command-line arguments, argc is _______ and argv is ___________.

a. the number of arguments typed by the user; a pointer to an array of pointers

b. 1 plus the number of arguments typed by the user; a pointer to an array

c. what the user types; what the operating system supplies

d. always 2; always a file name

e. the name of the application; a list of arguments

3. In C++, in the DOS environment, a printer

a. can be treated like a write-only file with a specific name.

b. needs to be opened like any other file.

c. can easily receive and print graphics images.

d. is usually connected to COM or LPT1.

e. cannot be told to eject a page.

4. Using DOS redirection

a. you can redirect program output that would normally go to the printer to a disk
file.

b. you can redirect program output that would normally go to the screen to a disk
file.

c. you can redirect program output that would normally go to a program to a
formatted memory buffer.

d. you can redirect a file that would normally go to a program to the screen.

e. seldom occurs in Windows.

5. For the program prog to read data from file1.doc and write it to file2.doc, you
would write

a. prog <file1.doc >file2.doc

b. file1.doc >prog >file2.doc
c. file1.doc <prog <file2.doc
d. file2.doc >prog >file1.doc
e. file2.doc <prog <file1.doc

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Streams and Files

http://www.itknowledge.com/reference/archive/1571690638/ch10/636-638.html [21-03-2000 19:40:10]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch10/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Exercise 1

Write a member function that performs printer output for the airtime
class.

Exercise 2

Revise the persio program in Session 6 so that the name of the file that
person objects are written to or read from is supplied by the user on the
command line when the program is first invoked, rather than always being
person.dat.

Summary: Chapter 10

In this chapter I’ve covered a variety of topics connected with input/output
in C++. I started with an overview of the stream class hierarchy and then
looked at how errors are handled in streams. You saw how disk file I/O is
performed using the stream classes, how file pointers determine where data
is accessed within a file, and how file errors are handled.

Next I showed how member functions can incorporate file-handling
capabilities into user-written classes. I showed how to overload the << and
>> operators to simplify I/O for class objects and how a section of memory
can be treated as a disk file to simplify formatting. Finally, I covered three
DOS-related capabilities: Redirection allows program output to be
redirected from the screen to a file or input to be redirected from the
keyboard to a file; printer output can be handled easily in DOS by treating
the printer as a file with a special name; and, command-line arguments
allow the user to specify information, such as a file to be opened, when a
program is invoked.

End-of-Chapter Discussion

Estelle: This whole chapter doesn’t seem relevant to OOP. It’s just
about files in old-fashioned procedural situations.

George: Well, thank heavens! I don’t mind a break from OOP.

Don:
But it’s pretty obvious how to apply all this file-related stuff to
OOP.

Estelle: You mean just put file-handling routines in member functions?
Don: Exactly. If an object needs to write itself to a file or read its

data from a file, you just create a member function to do it.
Then you can call that function from main() or wherever.

George:
Anyway, iostreams are C++ classes. That’s already pretty
OOP.

Estelle: Well, that’s true, but I’m just using the iostream classes. I’m
not writing them.

George: That’s all right with me.
Estelle: It does show how little you need to know about OOP to be a

class user, as opposed to a class creator. That’s one of the
strengths of OOP: Once a class is written, it’s easy to use.

George: WOUMT.
Estelle: I beg your pardon?
George: It’s an acronym. Write Once, Use Many Times. Isn’t that how

classes are supposed to work?
Don: That’s good, George. I like it.

George:
What bothers me is that I still don’t know how to do I/O in
Windows.

Don: They don’t teach that in this book.
Estelle: It’s complicated.
Don: The point here is just to learn the fundamentals of OOP, that’s

why we use such simple I/O. Good luck if you want to learn
Windows and C++ at the same time.

George: You mean I don’t know everything there is to know already?
I’m going to drop this programming stuff and go to barber
school.

Estelle: Come on, George. Nothing worth doing is ever easy.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Streams and Files

http://www.itknowledge.com/reference/archive/1571690638/ch10/638-640.html [21-03-2000 19:40:23]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch10/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

CHAPTER 11
TEMPLATES, EXCEPTIONS, AND MORE

This is a portmanteau chapter. The major topics are templates and exceptions, but in addition I cover
the string class from the C++ standard library, multifile programs, the new explicit cast format, the
typedef specifier, and overloading the function operator.

Templates are probably the most important of these topics. Templates are the underlying mechanism
for modern container classes, such as the Standard Template Library (STL), which I discuss in Chapter
12. To a lesser extent, the exception mechanism for handling errors is also becoming a common feature
of C++ programs. The multifile approach is used for all but the simplest C++ programs, so this too is
an essential subject. Many of the other topics are necessary for an understanding of the STL and other
sophisticated C++ programs.

Session 1: Function Templates

Suppose you want to write a function that returns the absolute value of two numbers. (As you no doubt
remember from high school algebra, the absolute value of a number is its value without regard to its
sign: The absolute value of 3 is 3; the absolute value of -3 is also 3.) Ordinarily, this function would be
written for a particular data type:

int abs(int n) // absolute value of ints
 {
 return (n<0) ? -n : n; // if n is negative, return -n
 }

Here the function is defined to take an argument of type int and to return a value of this same type.
But now suppose you want to find the absolute value of a type long. You need to write a completely
new function:

long abs(long n) // absolute value of longs
 {
 return (n<0) ? -n : n;
 }

And again, for type float:

float abs(float n) // absolute value of floats
 {
 return (n<0) ? -n : n;
 }

The body of the function is the same in each case, but they must be separate functions because they
handle variables of different types. It’s true that in C++ these functions can all be overloaded to have
the same name, but you must nevertheless write a separate definition for each one. (In the C language,
which does not support overloading, functions for different types can’t even have the same name. In
the C function library, this leads to families of similarly named functions, such as abs(), fabs(),
fabsl(), labs(), cabs(), and so on.)

Rewriting the same function body over and over for different types wastes time as well as space in the
listing. Also, if you find you’ve made an error in one such function, you’ll need to remember to correct
it in each function body. Failing to do this correctly is a good way to introduce inconsistencies into
your program.

It would be nice if there were a way to write such a function just once and have it work for many
different data types. This is exactly what function templates do for you. The idea is shown
schematically in Figure 11-1.

Figure 11-1 A function template

A Simple Function Template

The first example shows how to write an absolute value function as a template so it will work with any
basic numerical type. This program defines a template version of abs() and then, in main(),
invokes this function a half-dozen times with different data types to prove that it works. Listing 11-1
shows TEMPABS.

Listing 11-1 TEMPABS

// tempabs.cpp
// template used for absolute value function

#include <iostream.h>

template <class T> // function template
T abs(T n)
 {
 return (n < 0) ? -n : n;
 }

void main()
 {
 int int1 = 5;
 int int2 = -6;
 long lon1 = 70000L;
 long lon2 = -80000L;
 double dub1 = 9.95;
 double dub2 = -10.15;
 // calls instantiate functions
 cout << "\nabs(" << int1 << ")=" << abs(int1); // abs(int)
 cout << "\nabs(" << int2 << ")=" << abs(int2); // abs(int)
 cout << "\nabs(" << lon1 << ")=" << abs(lon1); // abs(long)
 cout << "\nabs(" << lon2 << ")=" << abs(lon2); // abs(long)
 cout << "\nabs(" << dub1 << ")=" << abs(dub1); // abs(double)
 cout << "\nabs(" << dub2 << ")=" << abs(dub2); // abs(double)
 }

Here’s the output of the program:

abs(5)=5
abs(-6)=6
abs(70000)=70000
abs(-80000)=80000
abs(9.95)=9.95
abs(-10.15)=10.15

As you can see, the abs() function now works with all three of the data types (int, long, and
double) that I use as arguments. It will work on other basic types as well, and it will even work on
user-defined data types, provided the less-than operator (<) and the unary minus (-) are appropriately
overloaded.

Here’s how to specify the abs() function so it works with multiple data types:

template <class T> // function template
T abs(T n)
 {
 return (n<0) ? -n : n;
 }

This entire syntax, with a first line starting with the keyword template and the function definition
following, is called a function template. How does this new way of writing abs() give it such
amazing flexibility?

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Templates, Exceptions, and More

http://www.itknowledge.com/reference/archive/1571690638/ch11/641-644.html [21-03-2000 19:40:36]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
javascript:displayWindow('images/11-01.jpg',473,347)
javascript:displayWindow('images/11-01.jpg',473,347)
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch11/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Function Template Syntax

The key innovation in function templates is to represent the data type used
by the function not as a specific type such as int, but by a name that can
stand for any type. In the function template above, this name is T. (There’s
nothing magic about this name; it can be anything you want, like Type, or
anyType, or FooBar.) The template keyword signals the compiler
that I’m about to define a function template. The keyword class, within
the angle brackets, might just as well be called type. As you’ve seen, you
can define your own data types using classes, so there’s really no
distinction between types and classes. The variable following the keyword
class (T in this example) is called the template argument.

Throughout the definition of the function, whenever a specific data type
such as int would ordinarily be written, I substitute the template
argument, T. In the abs() function, this name appears only twice, both in
the first line (the function declarator), as the argument type and return type.
In more complex functions, it may appear numerous times throughout the
function body as well.

What the Compiler Does

What does the compiler do when it sees the template keyword and the
function definition that follows it? Well, nothing right away. The function
template itself doesn’t cause the compiler to generate any code. It can’t
generate code because it doesn’t know yet what data type the function will
be working with. It simply remembers the template for possible future use.

Code generation doesn’t take place until the function is actually called
(invoked) by a statement within the program. In TEMPABS, this happens in
expressions such as abs(int1) in the statement

cout << "\nabs(" << int << ")=" << abs(int1);

When the compiler sees such a function call, it knows that the type to use is
int, because that’s the type of the argument int1. So it generates a
specific version of the abs() function for type int, substituting int
wherever it sees the name T in the function template. This is called
instantiating the function template, and each instantiated version of the
function is called a template function. (That is, a template function is a
specific instance of a function template. Isn’t terminology fun?)

The compiler also generates a call to the newly instantiated function and
inserts it into the code where abs(int1) is. Similarly, the expression
abs(lon1) causes the compiler to generate a version of abs() that
operates on type long, as well as a call to this function, whereas the
abs(dub1) call generates a function that works on type double. Of
course, the compiler is smart enough to generate only one version of
abs() for each data type. Thus, even though there are two calls to the int
version of the function, the code for this version appears only once in the
executable code.

Notice that the amount of RAM used by the program is the same whether I
use the template approach or write three separate functions. What I’ve
saved is having to type three separate functions into the source file. This
makes the listing shorter and easier to understand. Also, if I want to change
the way the function works, I need make the change in only one place in the
listing instead of three.

The compiler decides how to compile the function based entirely on the
data type used in the function call’s argument (or arguments). The
function’s return type doesn’t enter into this decision. This is similar to the
way the compiler decides which of several overloaded functions to call.

A function template isn’t really a function, because it does not actually
cause program code to be placed in memory. Instead it is a pattern, or
blueprint, for making many functions. This fits right into the philosophy of
OOP. It’s similar to the way a class isn’t anything concrete (such as
program code in memory), but a blueprint for making many similar objects.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Templates, Exceptions, and More

http://www.itknowledge.com/reference/archive/1571690638/ch11/644-645.html [21-03-2000 19:40:51]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch11/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Function Templates with Multiple Arguments

Let’s look at another example of a function template. This one takes three arguments: two template
arguments and one basic type. The purpose of this function is to search an array for a specific value.
The function returns the array index for that value if it finds it, or -1 if it can’t find it. The arguments
are a pointer to the array, the value to search for, and the size of the array. In main(), the program
defines four arrays of different types and four values to search for (treating type char as a
number). Then it calls the template function once for each array. Listing 11-2 shows TEMPFIND.

Listing 11-2 TEMPFIND

// tempfind.cpp
// template used for function that finds number in array

#include <iostream.h>

// function returns index number of item, or -1 if not found
template <class atype>
int find(atype* array, atype value, int size)
 {
 for(int j=0; j<size; j++)
 if(array[j]==value)
 return j;
 return -1;
 }

char chrArr[] = {1, 3, 5, 9, 11, 13}; // array
char ch = 5; // value to find
int intArr[] = {1, 3, 5, 9, 11, 13};
int in = 6;
long lonArr[] = {1L, 3L, 5L, 9L, 11L, 13L};
long lo = 11L;
double dubArr[] = {1.0, 3.0, 5.0, 9.0, 11.0, 13.0};
double db = 4.0;

void main()
 {
 cout << "\n 5 in chrArray: index=" << find(chrArr, ch, 6);
 cout << "\n 6 in intArray: index=" << find(intArr, in, 6);
 cout << "\n11 in lonArray: index=" << find(lonArr, lo, 6);
 cout << "\n 4 in dubArray: index=" << find(dubArr, db, 6);
 }

Here I name the template argument atype. It appears in two of the function’s arguments: as the
type of a pointer to the array and as the type of the item to be matched. The third function argument,
the array size, is always type int; it’s not a template argument. Here’s the output of the program:

 5 in chrArray: index=2
 6 in intArray: index=-1
11 in lonArray: index=4
 4 in dubArray: index=-1

The compiler generates four versions of the function, one for each type used to call it. It finds a 5 at
index 2 in the character array it does not find a 6 in the integer array, and so on.

I should note that some programmers put the template keyword and the function declarator on
the same line:

template<class atype> int find(atype* array, atype value, int size)
 {
 // function body
 }

Of course, the compiler is happy enough with this format, but I find it more forbidding and less
clear than the multiline approach.

Template Arguments Must Match

When a template function is invoked, all instances of the same template argument must be of the
same type. For example, in find(), if the array name is of type int, the value to search for must
also be of type int. You can’t say

int intarray[] = {1, 3, 5, 7}; // int array
float f1 = 5.0; // float value
int value = find(intarray, f1, 4); // uh, oh

because the compiler expects all instances of atype to be the same type. It can generate a function

find(int*, int, int);

but it can’t generate

find(int*, float, int);

because the first and second arguments must be the same type.

More Than One Template Argument

You can use more than one template argument in a function template. For example, suppose you
like the idea of the find() function template, but you aren’t sure how large an array it might be
applied to. If the array is too large, then type long would be necessary for the array size instead of
type int. On the other hand, you don’t want to use type long if you don’t need to. You want to
select the type of the array size, as well as the type of data stored, when you call the function. To
make this possible, you could make the array size into a template argument as well. I’ll call it
btype:

template <class atype, class btype>
btype find(atype* array, atype value, btype size)
 {
 for(btype j=0; j<size; j++) // note use of btype
 if(array[j]==value)
 return j;
 return (btype)-1;
 }

Now you can use type int or type long (or even a user-defined type) for the size, whichever is
appropriate. The compiler will generate different functions based not only on the type of the array
and the value to be searched for, but also on the type of the array size.

Note that multiple template arguments can lead to many functions being instantiated from a single
template. Two such arguments, if there were six basic types that could reasonably be used for each
one, would allow the creation of up to 36 functions. This can take up a lot of memory if the
functions are large. On the other hand, you don’t instantiate a version of the function unless you
actually call it.

Why Not Macros?

Old-time C programmers may wonder why I don’t use macros to create different versions of a
function for different data types. For example, the abs() function could be defined as

#define abs(n) ((n<0) ? (-n) : (n))

This has a similar effect to the class template in TEMPABS because it performs a simple text
substitution and can thus work with any type. However, as I’ve noted before, macros aren’t used
much in C++. There are several problems with them. They don’t perform any type checking. There
may be several arguments to the macro that should be of the same type, but the compiler won’t
check whether or not they are. Also, the type of the value returned isn’t specified, so the compiler
can’t tell if you’re assigning it to an incompatible variable. In any case, macros are confined to
functions that can be expressed in a single statement. There are also other, more subtle, problems
with macros. On the whole, it’s best to avoid them.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Templates, Exceptions, and More

http://www.itknowledge.com/reference/archive/1571690638/ch11/645-648.html [21-03-2000 19:41:05]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch11/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

What Works?

How do you know whether you can instantiate a template function for a particular data
type? For example, could you use the find() function from TEMPFIND to find a string
(type char*) in an array of strings? To see if this is possible, check the operators used in
the function. If they all work on the data type, then you can probably use it. The find()
function, however, compares two variables using the equal-equal (==) operator. You
can’t use this operator with strings; you must use the strcmp() library function. Thus,
find() won’t work on char* strings. (However, it would work on a user-defined
string class in which you overloaded the == operator.)

Start with a Normal Function

When you write a template function you’re probably better off starting with a normal
function that works on a fixed type: int or whatever. You can design and debug it
without having to worry about template syntax and multiple types. Then, when
everything works properly, you can turn the function definition into a template and check
that it works for additional types.

Quiz 1

1. Template functions allow

a. one function stored in memory to handle multiple data types.

b. one function in the source file to handle multiple data types.

c. user-defined types to be treated as ordinary types.

d. user-defined types to be used as arguments to functions.

e. one name to represent many data types within a function’s definition in
the source code.

2. Concerning this code:

template <class X>
X max(X n1, X n2)
 {
 return (n1 > n2) ? n1 : n2;
 }

which (if any) of the following statements are correct?

a. n1 and n2 are data types.

b. The keyword class means that you’re defining a new class.

c. X represents a data type.

d. The keyword template means that you can use any numerical value
for X.

e. The longest data type name will be returned.

3. If in your program you make the following four calls to the template function
abs() (as it was declared in the TEMPABS example), how many instantiations of
this function will be placed in memory?

abs(intvar1);
abs(intvar2);
abs(floatvar1);
abs(floatvar2);

a. 1
b. 2
c. 3
d. 4
e. none

4. A function template ___________, whereas a template function ___________ .

a. does not use a specific type, does use a specific type

b. does use a specific type, does not use a specific type

c. does not exist in memory, exists in memory

d. exists in memory, does not exist in memory

e. cannot be called, can be called

5. To instantiate a template function tempfunc<>() using a particular
user-defined data type (class) TYPE as a template argument, TYPE must

a. overload the assignment operator (=).

b. overload the less-than operator (<).

c. contain the same data variables as those used in tempfunc<>().

d. supply the same member functions as tempfunc<>().

e. supply a member function to handle any operation used in
tempfunc<>().

Exercise 1

Write a template function that returns the largest of three numbers (of the same type)
passed to it as arguments.

Exercise 2

Write a template function that searches through an array of any type, counting how many
elements have a specific value.

Session 2: Class Templates

The template concept can be applied to classes as well as to functions. Class templates
are generally used for data storage (container) classes. Stacks and linked lists, which you
encountered in previous chapters, are examples of data storage classes. However, the
examples of these classes I presented could store data of only a single basic type. The
Stack class in the STACKCON program from Chapter 5, Session 1, for example, could
store data only of type int. Here’s a condensed version of that class:

class Stack
 {
 private:
 int st[MAX]; // array of ints
 int top; // index number of top of stack
 public:
 Stack(); // constructor
 void push(int var); // takes int as argument
 int pop(); // returns int value
 };

If I wanted to store data of type long in a stack, I would need to define a completely
new class:

class LongStack
 {
 private:
 long st[MAX]; // array of longs
 int top; // index number of top of stack
 public:
 LongStack(); // constructor
 void push(long var); // takes long as argument
 long pop(); // returns long value
 };

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Templates, Exceptions, and More

http://www.itknowledge.com/reference/archive/1571690638/ch11/648-650.html [21-03-2000 19:41:13]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/reference/archive/1571690638/ch11/650-653.html
http://www.itknowledge.com/reference/archive/1571690638/ch11/650-653.html
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch11/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Class Name Depends on Context

In the TEMSTAK example, the member functions of the class template were all defined within the
class. If the member functions are defined externally (outside of the class specification), you need to
use a new syntax. The next program shows how this works. Listing 11-4 shows TEMSTAK2.

Listing 11-4 TEMSTAK2

// temstak2.cpp
// implements stack class as a template
// member functions are defined outside the class

#include <iostream.h>
const int MAX = 100;

template <class Type>
class Stack
 {
 private:
 Type st[MAX]; // stack: array of any type
 int top; // number of top of stack
 public:
 Stack(); // constructor
 void push(Type var); // put number on stack
 Type pop(); // take number off stack
 };

template<class Type>
Stack<Type>::Stack() // constructor
 {
 top = -1;
 }
template<class Type>
void Stack<Type>::push(Type var) // put number on stack
 {
 st[++top] = var;
 }

template<class Type>
Type Stack<Type>::pop() // take number off stack
 {
 return st[top???—];
 }

void main()
 {
 Stack<float> s1; // s1 is object of class Stack<float>

 s1.push(1111.1); // push 3 floats, pop 3 floats
 s1.push(2222.2);
 s1.push(3333.3);
 cout << “1: “ << s1.pop() << endl;
 cout << “2: “ << s1.pop() << endl;
 cout << “3: “ << s1.pop() << endl;

 Stack<long> s2; // s2 is object of class Stack<long>

 s2.push(123123123L); // push 3 longs, pop 3 longs
 s2.push(234234234L);
 s2.push(345345345L);
 cout << “1: “ << s2.pop() << endl;
 cout << “2: “ << s2.pop() << endl;
 cout << “3: “ << s2.pop() << endl;
 }

The expression template<class Type> must precede not only the class definition, but each
externally defined member function as well. Here’s how the push() function looks:

template<class Type>
void Stack<Type>::push(Type var)
 {
 st[++top] = var;
 }

The name Stack<Type> has been used to identify the class of which push() is a member. In a
normal nontemplate member function, the name Stack alone would suffice:

void Stack::push(int var) // Stack() as a non-template function
 {
 st[++top] = var;
 }

However, for a function template, you need the template argument as well: Stack<Type>.

Thus you see that the name of the template class is expressed differently in different contexts. Within
the class specification, it’s simply the name itself: Stack. For externally defined member functions,
it’s the class name plus the template argument name: Stack<Type>. When you define actual
objects for storing a specific data type, it’s the class name plus this specific type: Stack<float>
(or whatever).

class Stack // Stack class specifier
 { };

void Stack<Type>::push(Type var) // push() definition
 { }

Stack<float> s1; // object of type Stack<float>

You must exercise considerable care to use the correct name in the correct context. It’s easy to forget
to add the <Type> or <float> to the Stack. The compiler hates it when you get this wrong.

Although it’s not demonstrated in this example, the syntax when a member function returns a value
of its own class can create some problems for you. Suppose you define a class Int that provides
some augmentation for the int class, such as checking for overflow. Suppose further that you make
this a template class so it can be instantiated using either type int or type long. If you use an
external definition for a member function xfunc() of this class that returns type Int, you will need
to use Int<Type> for the return type as well as preceding the scope resolution operator:

Int<Type> Int<Type>::xfunc(Int arg)
 { }

The class name used as a type of a function argument, on the other hand, doesn’t need to include the
<Type> designation.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Templates, Exceptions, and More

http://www.itknowledge.com/reference/archive/1571690638/ch11/653-655.html [21-03-2000 19:41:22]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/reference/archive/1571690638/ch11/650-653.html
http://www.itknowledge.com/reference/archive/1571690638/ch11/650-653.html
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch11/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

A Linked List Class Using Templates

Let’s look at another example where templates are used for a data storage class. This is a
modification of the LINKLIST program from Chapter 8, Session 7 (which I encourage you to
reexamine). It requires not only that the linklist class itself be made into a template, but that the
link structure, which actually stores each data item, be made into a template as well. Listing 11-5
shows TEMPLIST.

Listing 11-5 TEMPLIST

// templist.cpp
// implements linked list as a template

#include <iostream.h>

template<class TYPE> // struct link<TYPE>
struct link // one element of list
// within this struct definition 'link' means link<TYPE>
 {
 TYPE data; // data item
 link* next; // pointer to next link
 };

template<class TYPE> // class linklist<TYPE>
class linklist // a list of links
// within this class definition 'linklist' means linklist<TYPE>
 {
 private:
 link<TYPE>* first; // pointer to first link
 public:
 linklist() // no-argument constructor
 { first = NULL; } // no first link
 void additem(TYPE d); // add data item (one link)
 void display(); // display all links
 ~linklist(); // destructor
 };

template<class TYPE>
void linklist<TYPE>::additem(TYPE d) // add data item
 {
 link<TYPE>* newlink = new link<TYPE>; // make a new link
 newlink->data = d; // give it data
 newlink->next = first; // it points to next link
 first = newlink; // now first points to this
 }

template<class TYPE>
void linklist<TYPE>::display() // display all links
 {
 link<TYPE>* current = first; // set ptr to first link
 while(current != NULL) // quit on last link
 {
 cout << endl << current->data; // print data
 current = current->next; // move to next link
 }
 }

template<class TYPE> // destructor
linklist<TYPE>::~linklist() // deletes all links
 {
 while(first != NULL) // quit on last link
 {
 link<TYPE>* temp = first; // 'temp' to current link
 first = temp->next; // 'first' to next link
 delete temp; // delete current link
 }
 }

void main()
 {
 linklist<double> ld; // ld is object of class linklist<double>
 ld.additem(151.5); // add three doubles to list ld
 ld.additem(262.6);
 ld.additem(373.7);
 ld.display(); // display entire list ld

 linklist<char> lch; // lch is object of class linklist<char>

 lch.additem('a'); // add three chars to list lch
 lch.additem('b');
 lch.additem('c');
 lch.display(); // display entire list lch
 }

In main(), the program defines two linked lists: one to hold numbers of type double and one to
hold characters of type char. It then exercises the lists by placing three items on each one with the
additem() member function, and displaying all the items with the display() member function.
Here’s the output of TEMPLIST:

373.7
262.6
151.5
c
b
a

Both the linklist class and the link structure make use of the template argument TYPE to stand
for any type. (Well, not really any type; I’ll discuss later what types can actually be stored.) Thus, not
only linklist but also link must be templates, preceded by the line

template<class TYPE>

Notice that it’s not just a class that’s turned into a template. Any other programming constructs that
use a variable data type must also be turned into templates, as the link structure is here.

As before, you must pay attention to how the class (and, in this program, a structure as well) is named
in different parts of the program. Within its own specification, you can use the name of the class or
structure alone: linklist and link. In external member functions, you must use the class or
structure name and the template argument: linklist<TYPE>. When you actually define objects of
type linklist, you must use the specific data type that the list is to store:

linklist<double> ld; // defines object ld of class linklist<double>

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Templates, Exceptions, and More

http://www.itknowledge.com/reference/archive/1571690638/ch11/655-657.html [21-03-2000 19:41:32]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch11/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Storing User-Defined Data Types

In the programs so far, I’ve used template classes to store basic data types. For example, the
TEMPLIST program stored numbers of type double and type char in a linked list. Is it possible to
store objects of user-defined types (classes) in these same template classes? The answer is yes, but
with a caveat.

Employees in a Linked List

Examine the employee class in the EMPINH program in Chapter 7, Session 2. (Don’t worry about
the derived classes.) Could you store objects of type employee on the linked list of the TEMPLIST
example? As with template functions, you can find out if a template class can operate on objects of a
particular class by checking the operations the template class performs on those objects. The
linklist class uses the overloaded insertion (<<) operator to display the objects it stores:

void linklist<TYPE>::display()
 {
 ...
 cout << endl << current->data; // uses insertion operator (<<)
 ...
 };

This is not a problem with basic types, for which the insertion operator is already defined.
Unfortunately, the employee class in the EMPINH program does not overload this operator, so I’ll
need to add this member function. Also, to simplify getting employee data from the user, I overload
the extraction (>>) operator as well. Data from this operator is placed in a temporary object
emptemp before being added to the linked list. Listing 11-6 shows TEMLIST2.

Listing 11-6 TEMLIST2

// temlist2.cpp
// implements linked list as a template
// demonstrates list used with employee class

#include <iostream.h>

//
// the employee class
//
const int LEN = 80; // maximum length of names

class employee // employee class
 {
 private:
 char name[LEN]; // employee name
 unsigned long number; // employee number
 public:
 friend istream& operator >> (istream& s, employee& e);
 friend ostream& operator << (ostream& s, employee& e);
 };

istream& operator >> (istream& s, employee& e)
 {
 cout << \n Enter last name: ; cin >> e.name;
 cout << Enter number: ; cin >> e.number;
 return s;
 }
ostream& operator << (ostream& s, employee& e)
 {
 cout << \n Name: << e.name;
 cout << \n Number: << e.number;
 return s;
 }

//
// the linked list template
//
template<class TYPE> // struct link<TYPE>"
struct link // one element of list
 {
 TYPE data; // data item
 link* next; // pointer to next link
 };

template<class TYPE> // class linklist<TYPE>"
class linklist // a list of links
 {
 private:
 link<TYPE>* first; // pointer to first link
 public:
 linklist() // no-argument constructor
 { first = NULL; } // no first link
 void additem(TYPE d); // add data item (one link)
 void display(); // display all links
 ~linklist(); // destructor
};

template<class TYPE>
void linklist<TYPE>::additem(TYPE d) // add data item
 {
 link<TYPE>* newlink = new link<TYPE>; // make a new link
 newlink->data = d; // give it data
 newlink->next = first; // it points to next link
 first = newlink; // now first points to this
 }

template<class TYPE>
void linklist<TYPE>::display() // display all links
 {
 link<TYPE>* current = first; // set ptr to first link
 while(current != NULL) // quit on last link
 {
 cout << endl << current->data; // display data
 current = current->next; // move to next link
 }
 }

template<class TYPE> // destructor
linklist<TYPE>::~linklist() // deletes all links
 {
 while(first != NULL) // quit on last link
 {
 link<TYPE>* temp = first; // 'temp' to current link
 first = temp->next; // 'first' to next link
 delete temp; // delete current link
 }
 }
//
// main() creates a linked list of employees
//
void main()
 {// lemp is object of
 linklist<employee> lemp; // class linklist<employee>"
 employee emptemp; // temporary employee storage
 char ans; // user's response (`y' or `n')
 do

 {
 cin >> emptemp; // get employee data from user
 lemp.additem(emptemp); // add it to linked list `lemp'
 cout << \nAdd another (y/n)? ;
 cin >> ans;
 } while(ans != `n'); // when user is done,
 lemp.display(); // display entire linked list
 }

In main(), the program instantiates a linked list called lemp. Then, in a loop, it asks the user to
input data for an employee, and adds that employee object to the list. When the user terminates the
loop, the program displays all the employee data. Here’s some sample interaction:

 Enter last name: Mendez
 Enter number: 1233
Add another(y/n)? y

 Enter last name: Smith
 Enter number: 2344
Add another(y/n)? y

 Enter last name: Chang
 Enter number: 3455
Add another(y/n)? n

 Name: Chang
 Number: 3455

 Name: Smith
 Number: 2344

 Name: Mendez
 Number: 1233

Notice that the linklist class does not need to be modified in any way to store objects of type
employee. This is the beauty of template classes: They will work not only with basic types, but
with user-defined types as well.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Templates, Exceptions, and More

http://www.itknowledge.com/reference/archive/1571690638/ch11/657-660.html [21-03-2000 19:41:39]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch11/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

What Can You Store?

You can tell whether you can store variables of a particular type in a
data-storage template class by checking the operators in the member
functions of that class. For example, is it possible to store a C string (type
char*) in the linklist class in the TEMLIST2 program? Member
functions in this class use the insertion (<<) and extraction (>>) operators
on the stored objects. These operators work perfectly well with strings, so
there’s no reason you can’t use this class to store strings, as you can verify
for yourself. But if the member functions in a container class use any
operators on stored objects that aren’t defined for those objects, then you
can’t use the container class to store that type.

Quiz 2

1. A template class clatem allows

a. a member function of clatem to have a variable number
of arguments.

b. clatem to use data types that aren’t known until compile
time.

c. clatem to use data types that aren’t known until runtime.

d. data types within clatem to be determined when objects
of that class are specified.

e. objects of clatem to act as if they were of several different
data types.

2. Typically, an object instantiated from a templatized container
class temclass<T>

a. stores objects of a single type.

b. stores objects of different types.

c. stores objects (not pointers) that can be of different types,
provided these types are all derived from a single type.

d. shares in-memory member functions with all other objects
of temclass<T>.

e. shares in-memory member functions with all other objects
of (say) temclass<float>.

3. Assuming a specification for a template class temclass<T>,
memory space is allocated

a. for member data and functions when any object of class
temclass<T> is defined.

b. for member data when any object of class
temclass<float> is defined.

c. for member data when the first object of class
temclass<float> is defined.

d. for member functions when any object of class
temclass<float> is defined.

e. for member functions when the first object of class
temclass<float> is defined.

4. If the specification for a templatized container class has the form

template <class Type>
class ConClass
 {...};

then the type name of objects of this container class might be

a. ConClass in the declarator of an externally defined
member function of this class.

b. ConClass<Type> in the declarator of an externally
defined member function.

c. ConClass<float> in an application that uses the
container.

d. ConClass<float> in the declarator of an inline
member function.

e. ConClass<Type> in the declarator of an inline member
function.

5. When you use a templatized container class CON to store objects
of a user-defined class UDC,

a. there must be member functions in UDC to carry out any
operation demanded by CON of the objects stored in it.

b. class CON must overload the assignment (=) operator.

c. class UDC must overload the assignment (=) operator.

d. class CON must overload the << operator.

e. class UDC must overload the << operator.

Exercise 1

Modify the TEMPSTAK program from this session so the Stack class
stores objects of type employee.

Exercise 2

Write a program that stores airtime values in a container of type
linklist<TYPE>, as seen in the TEMLIST2 example in this session.

Session 3: Exceptions

Exceptions provide a systematic, object-oriented approach to handling
runtime errors generated by C++ classes. To qualify as an exception, such
errors must occur as a result of some action taken within a program and
they must be ones the program itself can discover. For example, a
constructor in a user-written string class might generate an exception if the
application tries to initialize an object with a string that’s too long.
Similarly, a program can check if a file was opened or written too
successfully and generate an exception if it was not.

Not all runtime errors can be handled by the exception mechanism. For
instance, some error situations are not detected by the program but by the
operating system, which may then terminate the application. Examples are

stack overflow, the user pressing the key combination, or a
hardware divide-by-zero error.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Templates, Exceptions, and More

http://www.itknowledge.com/reference/archive/1571690638/ch11/661-662.html [21-03-2000 19:41:50]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch11/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Why Do We Need Exceptions?

Why do we need a new mechanism to handle errors? Let’s look at how the process was handled in the
past. In C language programs, an error is often signaled by returning a particular value from the function
in which it occurred. For example, many math functions, such as sin() and cos(), return a special
value to indicate an error, and disk file functions often return NULL or 0 to signal an error. Each time
you call one of these functions, you check the return value:

if(somefunc() == ERROR_RETURN_VALUE)
 // handle the error or call error-handler function
else
 // proceed normally
if(anotherfunc() == NULL)
 // handle the error or call error-handler function
else
 // proceed normally
if(thirdfunc() == 0)
 // handle the error or call error-handler function
else
 // proceed normally

The problem with this approach is that every single call to such a function must be examined by the
program. Surrounding each function call with an if...else statement and inserting statements to
handle the error (or to call an error-handler routine) makes the listing convoluted and hard to read. Also,
it’s not practical for some functions to return an error value. For example, imagine a min() function
that returns the minimum of two values. All possible return values from this function represent valid
outcomes. There’s no value left to use as an error return.

The problem becomes more complex when classes are used because errors may take place without a
function being explicitly called. For example, suppose an application defines objects of a class:

SomeClass obj1, obj2, obj3;

How will the application find out if an error occurred in the class constructor? The constructor is called
implicitly, so there’s no return value to be checked.

Things are complicated even further when an application uses class libraries. A class library and the
application that makes use of it are often created by separate people: the class library by a vendor and
the application by a programmer who buys the class library. This makes it even harder to arrange for
error values to be communicated from a class member function to the program that’s calling the
function.

The exception mechanism was designed to minimize these difficulties and to provide a consistent,
easy-to-implement approach to error handling, one that supports the concepts of OOP. All errors can be
handled in one place and the normal code is not interlaced with error-handling statements.

Exception Syntax

Imagine an application that creates and interacts with objects of a certain class. Ordinarily, the
application’s calls to the class member functions cause no problems. Sometimes, however, the
application makes a mistake, causing an error to be detected in a member function. This member
function then informs the application that an error has occurred. When exceptions are used, this is called
throwing an exception. In the application, a separate section of code is installed to handle the error. This
code is called an exception handler or catch block: it catches the exceptions thrown by the member
function. Any code in the application that uses objects of the class is enclosed in a try block. Errors
generated in the try block will be caught in the catch block. Code that doesn’t interact with the class
need not be in a try block.. Figure 11-3 shows the arrangement.

Figure 11-3 The exception mechanism

The exception mechanism uses three new C++ keywords: throw, catch, and try. Also, the class
creator will probably want to create a new kind of entity called an exception class. The next program,
XSYNTAX (Listing 11-7), demonstrates these features of the exception mechanism. It is not a working
program, only a skeleton to show the syntax.

Listing 11-7 XSYNTAX

// xsyntax.cpp
// not a working program
class AClass // a class
 {
 public:
 class AnError // exception class
 {
 };
 void Func() // a member function
 {
 if(/* error condition */)
 throw AnError(); // throw exception
 }
 };

void main() // application
 {
 try // try block
 {
 AClass obj1; // interact with AClass objects
 obj1.Func(); // may cause error
 }
 catch(AClass::AnError) // exception handler
 { // (catch block)
 // tell user about error, etc.
 }
 }

This code starts with a class called AClass, which represents any class in which errors might occur. An
exception class, AnError, is specified in the public part of AClass. The member functions of
AClass check for errors. If they find one, they throw an exception, using the keyword throw followed
by the constructor for the error class:

throw AnError(); // 'throw' followed by constructor for AnError class

In the main() part of the program, I enclose any statements that interact with AClass in a try block. If
any of these statements causes an error to be detected in an AClass member function, an exception will
be thrown and control will go to the catch block that immediately follows the try block.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Templates, Exceptions, and More

http://www.itknowledge.com/reference/archive/1571690638/ch11/662-665.html [21-03-2000 19:42:00]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
javascript:displayWindow('images/11-03.jpg',384,347)
javascript:displayWindow('images/11-03.jpg',384,347)
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch11/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

A Simple Exception Example

Let’s look at a working program example that uses exceptions. This example is derived from the
STACKCON program of Chapter 5, Session 1, which created a stack data structure in which
integer data values could be stored. Unfortunately, this earlier example could not detect two
common errors: the application program might attempt to push too many objects onto the stack,
thus exceeding the capacity of the array, or it might try to pop too many objects off the stack,
thus obtaining invalid data. In the XSTAK program (Listing 11-8), I use an exception to handle
these two errors. I’ve made the stack small so it’s easier to trigger an exception by pushing too
many items.

Listing 11-8 XSTAK

// xstak.cpp
// demonstrates exceptions

#include <iostream.h>
const int MAX = 3; // stack holds 3 ints

class Stack
 {
 private:
 int st[MAX]; // array of integers
 int top; // index of top of stack
 public:
 class Range // exception class for Stack
 { // note: empty class body
 };
 Stack() // constructor
 { top = -1; }

 void push(int var)
 {
 if(top >= MAX-1) // if stack full,
 throw Range(); // throw exception
 st[++top] = var; // put number on stack
 }
 int pop()
 {
 if(top < 0) // if stack empty,
 throw Range(); // throw exception
 return st[top—]; // take number off stack
 }
 };

void main()
 {
 Stack s1;

 try
 {
 s1.push(11);
 s1.push(22);
 s1.push(33);
// s1.push(44); // oops: stack full
 cout << "1: " << s1.pop() << endl;
 cout << "2: " << s1.pop() << endl;
 cout << "3: " << s1.pop() << endl;
 cout << "4: " << s1.pop() << endl; // oops: stack empty
 }
 catch(Stack::Range) // exception handler
 {
 cout << "Stack Full or Empty" << endl;
 }

 cout << "Arrive here after catch (or normal exit)" << endl;
 }

Let’s examine four features of this program that deal with exceptions. In the class specification,
there is an exception class. There are also statements that throw exceptions. In the application
(the main() part of the program), there is a block of code that may cause exceptions (the try
block) and a block of code to handle the exception (the catch block).

Specifying the Exception Class

The program first specifies an exception class within the Stack class:

class Range
 { // note: empty class body
 };

Here the body of the class is empty, so objects of this class have no data and no member
functions. All I really need in this simple example is the class name, Range. This name is used
to connect a throw statement with a catch block. (The class body need not always be empty, as
you’ll see later.)

Throwing an Exception

An exception occurs in the Stack class if the application tries to pop a value when the stack is
empty or tries to push a value when the stack is full. To let the application know that it has made
such a mistake when manipulating a Stack object, the member functions of the Stack class
check for these conditions using if statements and throw an exception if they occur. In XSTAK,
the exception is thrown in two places, both using the statement

throw Range();

The Range() part of this statement invokes the (implicit) constructor for the Range class,
which creates an object of this class. The throw part of the statement transfers program control
to the exception handler (which I’ll examine in a moment).

The try Block

All the statements in main() that might cause this exception—that is, statements that
manipulate Stack objects—are enclosed in braces and preceded by the try keyword:

try
 {
 // code that operates on objects that might cause an exception
 }

This is simply part of the application’s normal code; it’s what you would need to write even if
you weren’t using exceptions. Not all the code in the program needs to be in a try block; just the
code that interacts with the Stack class. Also, there can be many try blocks in your program, so
you can access Stack objects from different places.

The Exception Handler (catch Block)

The code that handles the exception is enclosed in braces and preceded by the catch keyword,
with the exception class name in parentheses. The exception class name must include the class in
which it is located: Stack::Range:

catch(Stack::Range)
 {
 // code that handles the exception
 }

This construction is called the exception handler. It must immediately follow the try block. In
XSTAK, the exception handler simply prints an error message to let the user know why the
program failed.

Control “falls through” the bottom of the exception handler so you can continue processing at
that point. Or the exception handler may transfer control elsewhere or terminate the program if
there’s no way to recover.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Templates, Exceptions, and More

http://www.itknowledge.com/reference/archive/1571690638/ch11/665-668.html [21-03-2000 19:42:10]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch11/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

The Sequence of Events

Let’s summarize the sequence of events when an exception occurs:

1. Code is executing normally outside a try block.

2. Control enters the try block.

3. A statement in the try block causes an error in a member function.

4. The member function throws an exception.

5. Control transfers to the exception handler (catch block) following the try block.

That’s all there is to it. Notice how clean the resulting code is. Any of the statements in the try
block could cause an exception, but I don’t need to worry about checking a return value for each
one because the try-throw-catch arrangement handles them all automatically. In the XSTAK
example, I’ve deliberately created two statements that cause exceptions. The first,

s1.push(44); // pushes too many items

causes an exception if you remove the comment symbol preceding it and the second,

cout << "4: " << s1.pop() << endl; // pops item from empty stack

causes an exception if the first statement is commented out. Try it each way. In both cases, the
same error message will be displayed:

Stack Full or Empty

This is the bare bones of the exception process. In the next session, I’ll look at some
enhancements.

Quiz 3

1. Which of the following are C++ keywords?

a. Range

b. throw

c. exception

d. attempt

e. catch

2. Exceptions

a. provide a systematic way to handle errors detected in class member functions.

b. were created to handle exceptionally large values.

c. were created so a single class can handle different types of data.

d. handle situations detected by the operating system.

e. are not errors, only a different way to handle certain data values.

3. Which is the correct ordering of the following events?

1. Control goes to catch block.

2. Exception is thrown.

3. Error occurs in try block.

4. Error is detected by a member function.

a. 2, 1, 3, 4

b. 3, 4, 2, 1

c. 2, 3, 4, 1

d. 2, 3, 1, 4

e. 3, 1, 4, 2

4. An object of an exception class

a. is created when an error occurs.

b. is created when an error is detected.

c. is really an object of the class in which the error occurred.

d. is said to be “thrown” when an exception occurs.

e. is typically created within a member function.

5. Which of the following statements are true?

a. Catch and try blocks have the same syntax as classes.

b. The try block must immediately follow the catch block.

c. An exception class is typically declared within the class whose objects will cause
the exception.

d. Try blocks are identified by the name of an exception class.

e. Catch blocks are identified by the name of an exception class.

Exercise 1

Start with the ARROVER1 program from Chapter 6, Session 7. Modify the safearay class so
that an exception is thrown if the user attempts to use an out-of-bounds index number. Revise
main() so it uses try and catch blocks.

Exercise 2

Modify the airtime class from the ADDAIR program in Chapter 6, Session 1, so its get()
member function throws an exception if the user enters a minutes value greater than 59. Revise
main() to use try and catch blocks.

Session 4: Exceptions Continued

In this session I’ll pursue the exploration of exceptions. You’ll learn about multiple exceptions,
exceptions with arguments, and the built-in xalloc class, which handles memory errors.

Multiple Exceptions

You can design a class to throw as many exceptions as you want. To show how this works, I’ll
modify the XSTAK program from the last session to throw separate exceptions for attempting to
push data on a full stack and attempting to pop data from an empty stack. Listing 11-9 shows
XSTAK2.

Listing 11-9 XSTAK2

// xstak2.cpp
// demonstrates two exception handlers

#include <iostream.h>
const int MAX = 3; // stack holds 3 ints

class Stack
 {
 private:
 int st[MAX]; // stack: array of integers
 int top; // index of top of stack
 public:
 class Full { }; // exception class
 class Empty { }; // exception class

 Stack() // constructor
 { top = -1; }

 void push(int var) // put number on stack
 {
 if(top >= MAX-1) // if stack full,
 throw Full(); // throw Full exception
 st[++top] = var;
 }
 int pop() // take number off stack
 {
 if(top < 0) // if stack empty,
 throw Empty(); // throw Empty exception
 return st[top--];
 }
 };

void main()
 {
 Stack s1;
 try
 {
 s1.push(11);
 s1.push(22);
 s1.push(33);
// s1.push(44); // oops: stack full
 cout << "1: " << s1.pop() << endl;
 cout << "2: " << s1.pop() << endl;
 cout << "3: " << s1.pop() << endl;
 cout << "4: " << s1.pop() << endl; // oops: stack empty
 }
 catch(Stack::Full)
 {
 cout << "Stack Full" << endl;
 }
 catch(Stack::Empty)
 {
 cout << "Stack Empty" << endl;
 }
 }

In XSTAK2, I specify two exception classes:

class Full { };
class Empty { };

The statement

throw Full();

is executed if the application calls push() when the stack is already full, and

throw Empty();

is executed if pop() is called when the stack is empty. A separate catch block is used for each
exception:

try
 {
 // code that operates on Stack objects
 }
catch(Stack::Full)
 {
 // code to handle Full exception
 }
catch(Stack::Empty)
 {
 // code to handle Empty exception
 }

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Templates, Exceptions, and More

http://www.itknowledge.com/reference/archive/1571690638/ch11/668-671.html [21-03-2000 19:42:22]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch11/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

All the catch blocks used with a particular try block must immediately follow the try block.
In this case, each catch block simply prints a message: Stack Full or Stack Empty.
Only one catch block is activated for a given exception. This group of catch blocks, or
“catch ladder,” operates a little like a switch statement, with only the appropriate section
of code being executed. When an exception has been handled, control passes to the
statement following all the catch blocks. (Unlike a switch statement, an exception doesn’t
require you to end each catch block with a break.)

Exceptions with the Distance Class

Let’s look at another example of exceptions, this one applied to the infamous Distance
class from previous chapters. A Distance object has an integer value of feet and a
floating-point value for inches. The inches value should always be less than 12.0. A problem
with this class in previous examples has been that it couldn’t protect itself if the class user
initialized an object with an inches value of 12.0 or greater. This could lead to trouble when
the class tried to perform arithmetic because the arithmetic routines (such as operator +)
assumed inches would be less than 12.0. Such erroneous values could also be displayed,
thus confounding the user with impossible dimensions such as 7'-15".

Let’s rewrite the Distance class to use an exception to handle this error, as shown in
XDIST (Listing 11-10).

Listing 11-10 XDIST

// xdist.cpp
// exceptions with Distance class
#include <iostream.h>
#include <string.h> // for strcpy()

class Distance // English Distance class
 {
 private:
 int feet;
 float inches;
 public:
 class InchesEx { }; // exception class

 Distance() // constructor (no args)
 { feet = 0; inches = 0.0; }
 Distance(int ft, float in) // constructor (two args)
 {
 if(in >= 12.0) // if inches too big,
 throw InchesEx(); // throw exception
 feet = ft;
 inches = in;
 }

 void getdist() // get length from user
 {
 cout << "\nEnter feet: "; cin >> feet;
 cout << "Enter inches: "; cin >> inches;
 if(inches >= 12.0) // if inches too big,
 throw InchesEx(); // throw exception
 }

 void showdist() // display distance
 { cout << feet << "\'-" << inches << '\"'; }
 };
void main()
 {
 try
 {
 Distance dist1(17, 3.5); // 2-arg constructor
 Distance dist2; // no-arg constructor
 dist2.getdist(); // get distance from user
 // display distances
 cout << "\ndist1 = "; dist1.showdist();
 cout << "\ndist2 = "; dist2.showdist();
 }
 catch(Distance::InchesEx) // catch exceptions
 {
 cout << "\nInitialization error: "
 "inches value is too large.";
 }
 }

I install an exception class called InchesEx in the Distance class. Then, whenever the
user attempts to initialize the inches data to a value greater than or equal to 12.0, I throw the
exception. This happens in two places: in the two-argument constructor, where the
programmer may make an error supplying initial values, and in the getdist() function,
where the user may enter an incorrect value at the Enter inches prompt.

In main(), all interaction with Distance objects is enclosed in a try block, and the catch
block displays an error message.

In a more sophisticated program, of course, you might want to handle a user error (as
opposed to a programmer error) differently. It would be more user friendly to go back to the
beginning of the try block and give the user a chance to enter another distance value.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Templates, Exceptions, and More

http://www.itknowledge.com/reference/archive/1571690638/ch11/671-673.html [21-03-2000 19:42:30]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch11/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Exceptions with Arguments

What happens if the application needs more information about what caused an exception? For
instance, in the XDIST example, it might help the programmer to know what the bad inches value
actually was. Also, if the same exception is thrown by different member functions, as it is in
XDIST, it would be nice to know which of the functions was the culprit. Is there a way to pass such
information from the member function, where the exception is thrown, to the application that
catches it?

This question can be answered by remembering that throwing an exception involves not only
transferring control to the handler, but also creating an object of the exception class by calling its
constructor. In XDIST, for example, I create an object of type InchesEx when I throw the
exception with the statement

throw InchesEx();

If I add data members to the exception class, I can initialize them when I create the object. The
exception handler can then retrieve the data from the object when it catches the exception. It’s like
writing a message on a baseball and throwing it over the fence to your neighbor. I’ll modify the
XDIST program to do this. Listing 11-11 shows XDIST2.

Listing 11-11 XDIST2

// xdist2.cpp
// exceptions with arguments
#include <iostream.h>
#include <string.h> // for strcpy()

class Distance // English Distance class
 {
 private:
 int feet;
 float inches;
 public:
 class InchesEx // exception class
 {
 public:
 char origin[80]; // for name of routine
 float iValue; // for faulty inches value

 InchesEx(char* or, float in) // 2-arg constructor
 {
 strcpy(origin, or); // store string
 iValue = in; // store inches
 }
 }; // end of exception class

 Distance() // no-arg constructor
 { feet = 0; inches = 0.0; }

 Distance(int ft, float in) // 2-arg constructor
 {
 if(in >= 12.0)
 throw InchesEx("2-arg constructor", in);
 feet = ft;
 inches = in;
 }

 void getdist() // get length from user
 {
 cout << "\nEnter feet: "; cin >> feet;
 cout << "Enter inches: "; cin >> inches;
 if(inches >= 12.0)
 throw InchesEx("getdist() function", inches);
 }

 void showdist() // display distance
 { cout << feet << "\'-" << inches << '\"'; }
 };

void main()
 {
 try
 {
 Distance dist1(17, 3.5); // 2-arg constructor
 Distance dist2; // no-arg constructor
 dist2.getdist(); // get value
 // display distances
 cout << "\ndist1 = "; dist1.showdist();
 cout << "\ndist2 = "; dist2.showdist();
 }
 catch(Distance::InchesEx ix) // exception handler
 {
 cout << "\nInitialization error in " << ix.origin
 << ".\n Inches value of " << ix.iValue
 << " is too large.";
 }
 }

There are three parts to the operation of passing data when throwing an exception: specifying the
data members and a constructor for the exception class, initializing this constructor when I throw
an exception, and accessing the object’s data when I catch the exception. Let’s look at these in
turn.

Specifying Data in an Exception Class

It’s convenient to make the data in an exception class public so it can be accessed directly by the
exception handler. Here’s the specification for the new InchesEx exception class in XDIST2:

class InchesEx // exception class
 {
 public:
 char origin[80]; // for name of routine
 float iValue; // for faulty inches value

 InchesEx(char* or, float in) // 2-arg constructor
 {
 strcpy(origin, or); // put string in object
 iValue = in; // put inches value in object
 }
 };

There are public variables for a string, which will hold the name of the member function being
called, and a type float for the faulty inches value.

Initializing an Exception Object

How do I initialize the data when I throw an exception? In the two-argument constructor for the
Stack class, I say

throw InchesEx("2-arg constructor", in);

and in the getdist() member function for Stack, it’s

throw InchesEx("getdist() function", in);

When the exception is thrown, the handler will display the string and inches values. The string
will tell you which member function is throwing the exception, and the value of in will report the
faulty inches value detected by the member function. This additional data will make it easier for
the programmer or user to figure out what caused the error.

Extracting Data from the Exception Object

How do I extract this data when I catch the exception? The simplest way is to make the data a
public part of the exception class, as I’ve done here. Then in the catch block I can declare ix as
the name of the exception object I’m catching. Using this name, I can refer to data in the usual
way, using the dot operator:

catch(Distance::InchesEx ix)
 {
 // access 'ix.origin' and 'ix.iValue' directly
 }

I can then display the value of ix.origin and ix.iValue. Here’s some interaction with
XDIST2 if the user enters too large a value for inches:

Enter feet: 7
Enter inches: 13.5

Initialization error in getdist() function.
 Inches value of 13.5 is too large.

Similarly, if the programmer changes the definition of dist1 in main() to

Distance dist1(17, 22.25);

the resulting exception will cause this error message:

Initialization error in 2-arg constructor.
 Inches value of 22.25 is too large.

Of course, I can make whatever use of the exception arguments I want, but they generally carry
information that helps me diagnose the error that triggered the exception.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Templates, Exceptions, and More

http://www.itknowledge.com/reference/archive/1571690638/ch11/673-676.html [21-03-2000 19:42:36]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch11/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

The xalloc Class

Some compilers contain built-in exception classes. The most commonly seen is probably
xalloc, which is thrown if an error occurs when attempting to allocate memory with new.
If you set up the appropriate try and catch blocks, you can make use of this class with very
little effort. Listing 11-12, XALLOC, shows the approach used in Borland C++.

Listing 11-12 XALLOC

// xalloc.cpp
// demonstrates xalloc class (for Borland compilers)

#include <iostream.h>
#include <except.h> // for xalloc class

void main()
 {
 const unsigned int MAX = 60000; // memory size (chars)
 char* ptr; // pointer to memory
 unsigned int j; // loop variable
 try
 {
 ptr = new char[MAX]; // allocate memory
 // other statements that use 'new'
 }
 catch(xalloc) // exception handler
 {
 cout << "\nxalloc exception: can't allocation memory.";
 exit(1);
 }
 for(j=0; j<MAX; j++) // fill memory with data
 *(ptr+j) = j%128;
 for(j=0; j<MAX; j++) // check data
 if(*(ptr+j) != j%128)
 {
 cout << "\nData error";
 exit(1);
 }
 delete[] ptr; // release memory
 cout << "\nMemory use is successful.";
 }

I’ll need to include the EXCEPT.H file, which contains the specification for the xalloc class
(among others). Then I put all statements that use new in a try block. The catch block that
follows handles the exception, usually by displaying an error message and terminating the
program.

I can get this program to throw the xalloc exception by tinkering with the value of MAX. I
can’t allocate an entire data segment of 65,536 bytes, so as I increase MAX beyond 60,000
bytes, I’ll eventually cause the xalloc exception to be thrown, which will print the error
message and cause the program to terminate:

xalloc exception: can't allocate memory

The program includes for loops to fill the memory with data and verify that it’s correct. Note
that these statements don’t need to be in the try block because they don’t use new.

Exception Notes

I’ve shown only the simplest and most common approach to using exceptions. I won’t go into
further detail, but I will conclude with a few thoughts about exception usage.

Destructors Called Automatically

The exception mechanism is surprisingly sophisticated. When an exception is thrown, a
destructor is called automatically for any object that was created by the code up to that point
in the try block. This is necessary because the application won’t know which statement caused
the exception and, if it wants to recover from the error, it will (at the very least) need to start
over at the top of the try block. The exception mechanism guarantees that the code in the try
block will have been “reset,” at least as far as the existence of objects is concerned.

Termination Oriented

After you catch an exception, you’ll probably want to terminate your application. The
exception mechanism gives you a chance to indicate the source of the error to the user and to
perform any necessary clean-up chores before terminating. It also makes clean up easier by
executing the destructors for objects created in the try block. This allows you to release
system resources, such as memory, that such objects may be using. (DOS programs are
supposed to release system resources automatically when they terminate, but Windows
programs may not.)

However, in some cases you may not want to terminate your program. It is also possible to try
to recover from the error. Perhaps your program can figure out what caused the error and
correct it, or the user can be asked to input different data. When this is the case, the try and
catch blocks are typically embedded in a loop, so control can be returned to the beginning of
the try block (which the exception mechanism has attempted to restore to its initial state).

If there is no exception handler that matches the exception thrown, the program is
unceremoniously terminated.

Function Nesting

The statement that causes an exception need not be located directly in the try block; it can also
be in a function that is called by a statement in the try block (or in a function called by a
function that is called by a statement in the try block, and so on). So you need to install a try
block only on the program’s upper level. Lower-level functions need not be so encumbered,
provided they are called directly or indirectly by functions in the try block.

Can’t Return to Throw Point

There’s no way for an exception handler to return control to the location in the application
that caused the exception. Exceptions act more like a goto than a function call (actually,
more like the C-language longjmp, but I won’t get into that). Control goes to the exception
handler (catch block) and then (unless you do something else) falls through to the code
following the catch block.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Templates, Exceptions, and More

http://www.itknowledge.com/reference/archive/1571690638/ch11/676-678.html [21-03-2000 19:42:46]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch11/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Quiz 4

1. When you use multiple exceptions in a class,

a. you must create several exception classes.

b. there must be one try block for each exception.

c. the exception class must take multiple arguments.

d. the catch blocks must be contiguous.

e. there can be no more than two exceptions.

2. Arguments in exceptions

a. require member data in the exception class.

b. are implemented using arguments to exception-object
constructors.

c. require the catch block to instantiate an object of the
exception class.

d. can provide additional information about an exception for
the program’s user.

e. require a member function to catch exception objects with
arguments.

3. In the Distance class in the XDIST2 program,

a. multiple exceptions are used.

b. an exception will be thrown if the value of feet is greater
than 12.

c. exceptions with multiple arguments are used.

d. a member function prints an error message when an
exception is detected.

e. the class creator wrote code to detect the error.

4. Which of the following statements are correct?

a. If there is no catch block corresponding to an exception that
is thrown, then nothing happens.

b. An exception will be handled normally even if it occurs in a
function called from within the try block.

c. If a class uses exceptions with arguments, then in the catch
block the argument values can be obtained using the dot
operator.

d. Following an exception, you can arrange to return
automatically to the statement in the try block following the
one that caused the exception.

e. If a class uses exceptions with arguments, then the values of
these arguments must be specified in the try block.

5. The xalloc class

a. lets you know exactly how much memory you obtained.

b. handles exceptions caused by new.

c. in a class that uses new, requires the class creator to write
code that throws an exception.

d. in a class that uses new, requires a class user to write code
that throws an exception.

e. requires statements that use new to appear only in class
member functions.

Exercise 1

Modify the exception mechanism in the airtime class, as described in
Exercise 2 of Session 3, so that its get() member function throws an
exception not only if the user enters a minutes value greater than 59, but
also if the user enters negative values for either hours or minutes. Use three
separate exceptions. Revise main() to handle the additional exceptions.

Exercise 2

Modify the exception mechanism in the airtime class from Exercise 1 so
that all exceptions supply the offending value of minutes or hours. Revise
main() to display this data for the user.

Midchapter Discussion

Estelle: The whole idea of template classes makes me uneasy.
George: Because you don’t understand it?
Estelle: It’s not that so much. They’ve taken this sort of very general

idea of making a data type into a variable that you can plug
specific types into, and all they use it for is container classes.

George: So?
Estelle: I don’t know, I like to see more general purpose solutions to

problems. It’s like they put in a special keyword to add the
number 27. Template classes just do one thing.

Don: I know what you mean. But after all, container classes are
pretty important. They probably developed templates for
container classes, but decided to make them as general as
possible just in case something else turned up.

George: So there’s something else you can do with template classes?
Don: Well, not that I know of, but people are coming up with new

stuff all the time. I’ll bet there are plenty of neat things you can
do with templates.

George: What I want to know is, do people really use exceptions? It
seems like a lot of baggage with all these try blocks and
exception classes and everything. You’d think there’d be an
easier way.

Estelle: It’s not that bad.
Don: It makes more sense in larger programs, where a big chunk of

code can throw all kinds of exceptions. It really simplifies
things just to drop all that code into a try block instead of
messing it up with lines and lines of error-handling code.

Session 5: Explicit Casts, typedef, and the
Operator

This session covers three unrelated topics: explicit casts, the typedef
specifier, and overloading the function operator. None of these is vital to
your understanding of C++. However, they all are used by the standard
string class that is described in Session 6 in this chapter and in the
Standard Template Library, the subject of Chapter 12. Thus it’s probably a
good idea to be familiar with them.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Templates, Exceptions, and More

http://www.itknowledge.com/reference/archive/1571690638/ch11/678-680.html [21-03-2000 19:42:54]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch11/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Explicit Casts

The ANSI/ISO C++ draft has introduced a new way to perform casts (explicitly changing a quantity
from one type to another). One motivation for a new approach to casts is that old-style casts were
hard to locate in a large listing during the debugging process. If you have statements that use the old
C style cast, such as

intvar = (int)longvar;

or the newer C++ functional style cast, such as

intvar = int(longvar);

it’s hard to find them in your listing because there’s no specific keyword to search for. Casts are a
frequent source of bugs because they “break” the C++ typing system, but if you can’t find them,
they’re hard to fix.

Four new C++ keywords solve this problem: static_cast, dynamic_cast, const_cast,
and reinterpret_cast allow explicit casts tailored for different situations. The format of these
casts makes use of template notation to specify the target data type.

Casts are often a mistake and should be used with great restraint. However, sometimes they’re the
only efficient way to solve a problem.

Static Casts

The static cast is used in many situations where old-style casts were previously used. It allows you to
change any basic type to any other basic type, even if information is potentially lost, as it might be
going from a long to an int, for example. Here’s how such a cast looks with the old C++ notation:

intvar = long(longvar); // convert long to int

With an explicit cast, you would write it like this:

intvar = static_cast<int>(longvar); // convert long to int

The destination type (the type to be converted to) is supplied as a template argument to
static_cast. Of course, such casts are dangerous and should be used only when absolutely
necessary and when you’re sure no harmful effects will result from losing information.

The static cast also allows you to convert pointers-to-base-classes to pointers-to-derived-classes, and
vice versa. The STA_CASTexample (Listing 11-13) shows a variety of conversion situations.

Listing 11-13 STA_CAST

// sta_cast.cpp
// demonstrates static casts
#include <iostream.h>

class Base // base class
 { };

class Derv : public Base // derived class
 { };
void main()
 {
 int intvar = 27;
 long longvar = 12341234L;

 longvar = intvar; // ok
 intvar = static_cast<int>(longvar); // ok, and more explicit

intvar = longvar; // compiler warning
 intvar = int(longvar); // ok (but dangerous)
 intvar = static_cast<int>(longvar); // ok (but dangerous)

 Base base; // base-class object
 Base* bptr; // base-class pointer

 Derv derv; // derived-class object
 Derv* dptr; // derived-class pointer

 bptr = &derv; // ok, upcast
 bptr = static_cast<Base*>(&derv); // ok, and more explicit

// dptr = &base; // compiler error, downcast
 dptr = (Derv*)&base; // ok (but dangerous)
 dptr = static_cast<Derv*>(&base); // ok (but dangerous)
 }

It’s normal to convert the addresses of derived class objects to base class pointers. The static cast
makes this a more overt and easily identified activity. Going the other way is dangerous, but possible
if you really want to. (There’s no output from this example.)

Dynamic Casts

The dynamic cast is actually an alternative way of performing Runtime Type Identification (RTTI),
described in Chapter 9, Session 5. It’s useful if, for example, you’re stepping through a base class
array looking for objects of a specific derived class type (e.g., all the pointers to scientist objects
in an array of type pointer to employee). This cast returns 0 if the object is not the desired type or a
pointer to the object if it is the desired type.

Dynamic casts use the same format as static casts, but with the dynamic_cast keyword. They are
normally used in the context of pointers to derived class types. Listing 11-14 shows DYN_CAST.

Listing 11-14 DYN_CAST

// dyn_cast.cpp
// demonstrates dynamic casts
#include <iostream.h>

class Base
 {
 public: // must be an abstract class
 void virtual dummy()
 { }
 };

class Derv1 : public Base
 { };

class Derv2 : public Base
 { };

void main()
 {
 Base* bptrs[10]; // array of pointers to base objects

 Derv1 derv1; // objects of derived classes
 Derv2 derv2;

 bptrs[0] = &derv1; // put addresses of objects in array
 bptrs[1] = &derv2;

 Derv1* d1ptr; // pointers to derived class objects
 Derv2* d2ptr;
 // these casts return valid addresses
 d1ptr = dynamic_cast<Derv1*>(bptrs[0]); // there is a derv1

 cout << "\nd1ptr = " << d1ptr; // in bptrs[0]
 d2ptr = dynamic_cast<Derv2*>(bptrs[1]); // there is a derv2
 cout << "\nd2ptr = " << d2ptr; // in bptrs[1]

 // these casts return 0
 d1ptr = dynamic_cast<Derv1*>(bptrs[1]); // no derv1
 cout << "\nd1ptr = " << d1ptr; // in bptrs[1]
 d2ptr = dynamic_cast<Derv2*>(bptrs[0]); // no derv2
 cout << "\nd2ptr = " << d2ptr; // in bptrs[0]
 }

Notice that, for dynamic casts to work, the base class must be polymorphic; that is, it must contain at
least one virtual function.

Element 0 of the bptrs array (an array of pointers to base class objects) contains a pointer to a
Derv1 object, and element 1 contains a pointer to a Derv2 object. The first dynamic cast looks for a
pointer to a Derv1 object in element 0 and a pointer to a Derv2 object in element 1. It finds both of
them and returns their addresses. The second two dynamic casts look in the reversed locations and,
not finding the requested types, return 0. Here’s the output from DYN_CAST:

d1ptr = 0x3bcf2434
d2ptr = 0x3bcf2432
d1ptr = 0x00000000
d2ptr = 0x00000000

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Templates, Exceptions, and More

http://www.itknowledge.com/reference/archive/1571690638/ch11/680-683.html [21-03-2000 19:43:01]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch11/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Normally, when you step through an array like this, you let the virtual function mechanism handle the
selection of the correct function for the correct object. Sometimes, however, as when you can’t modify
the class (because someone else wrote it and you don’t have the source code), you may need
dynamic_cast (or the typeid approach to RTTI) to respond differently to different types of
objects.

Dynamic casts, besides leading to potential program bugs, also impose additional overhead, another
reason for avoiding them unless they’re really necessary.

Const Casts

You’ve seen various examples of const variables, which, once initialized, cannot be modified. On
rare occasions, it’s useful to modify variables even though they are const. The const cast allows you
to “cast away constness” (another C++ phrase with vaguely religious overtones).

You can’t use const_cast directly on variables, only on pointers or references to variables.
Probably it’s most useful when a pointer or reference to a const variable is passed as an argument to
function that needs to modify the variable. Listing 11-15, CON_CAST, shows how this cast is used.

Listing 11-15 CON_CAST

// con_cast.cpp
// demonstrates const casts
#include <iostream.h>

void main()
 {
 int var = 27;
 const int constvar = 33;

 var = constvar; // ok
// constvar = var; // error, modifies const

 int* ptr = &var; // ok
// int* ptr = &constvar; // error, pointer not const
 const int* ptr_c = &constvar; // ok, pointer to const

// ptr = ptr_c; // error, pointer not const
 ptr = const_cast<int*>(ptr_c); // ok, casts away const
 }

Of course, you can always assign the value of a const variable to a non-const variable. However,
you can’t normally assign a value to a const variable.

constvar = var; // no good

To overcome this limitation, first create a pointer to the object. This must be a pointer to const, as
shown in the line

const int* ptr_c = &constvar; // ok, pointer to const

Remember that a constant pointer to a nonconstant variable isn’t the same as a pointer to a constant:

int* const c_ptr = &constvar; // bad, const pointer to non-const

Normally, you can’t take a pointer to a const variable and assign it to a pointer to a nonconstant
variable because that would allow the constant variable to be modified:

ptr = ptr_c; // no good

However, using a const_cast, this becomes legitimate:

ptr = const_cast<int*>(ptr_c);

Such a cast should be used only in unusual situations as it violates the whole purpose of using const
variables and thus removes a significant safety net from your program.

Reinterpret Casts

The reinterpret cast is the most powerful, and therefore the most dangerous, of the explicit casts. It can
change pretty much anything into anything else: pointers into integers, floating-point numbers into bit
patterns, and so on. It’s useful in emergencies when nothing else works, but in general you probably
shouldn’t use this cast.

The typedef Specifier

Here’s another C++ feature that deals with data types. The typedef specifier is used to give a
different name to a type. For example, the declaration

typedef int error_number;

makes error_number equivalent to int. Now instead of declaring variables using int:

int en1, en2;

you can also say

error_number en1, en2;

The variables en1 and en2 will behave exactly the same as if they had been declared to be type int.
What does this buy you? In this example, it may make your listing slightly clearer if you declare all
variables that will hold error numbers to be of this type. It’s a notational convenience.

Of course, even after using this typedef, you can continue to declare variables to be type int in the
usual way. This typedef makes error_number equivalent to int, it doesn’t make int
equivalent to error_number.

Here’s another example. If you’re writing code that interfaces with hardware devices, you may need to
think about bytes. You might then declare a new type byte:

typedef unsigned char byte;

Now you can declare variables of type byte:

byte high, low;

Notice that there’s no problem using typedef even if the type to be renamed consists of multiple
words, such as unsigned int.

Pointers and typedef

Don’t confuse typedef with #define. The #define directive causes a simple substitution of one
group of characters by another, such as a word processor’s global search and replace. A typedef, on
the other hand, creates a new name for a type. This becomes clearer in the case of pointers. The
statement

typedef int* ptr_error_number;

makes ptr_error_number equivalent to pointer to int. The new type name has the pointer to (the
asterisk) built in, so when you define variables you can say

ptr_error_number pen1, pen2, pen3;

without prefacing each variable with an asterisk. The #define directive could not handle this
situation so gracefully.

Note that, unlike a class specification, typedef doesn’t actually create a new type. It simply
substitutes a new type name for an existing one.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Templates, Exceptions, and More

http://www.itknowledge.com/reference/archive/1571690638/ch11/683-685.html [21-03-2000 19:43:08]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch11/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Classes and typedef

You can apply the typedef specifier to classes just as easily as to basic types such as int. For example,
suppose a class supplier is paranoid about name clashes (the supplier’s class names being the same as some
class user’s existing class names). To avoid conflict, class suppliers may use very long class names that
incorporate the company name:

class Universal_Amalgamated_Corporation_Employee_Class
 {
 . . .
 };

However, your listing will look excessively verbose with object declarations such as

Universal_Amalgamated_Corporation_Employee_Class emptemp;

You can simplify this code with a typedef:

typedef Universal_Amalgamated_Corporation_Employee_Class Uemployee;

Now you can declare the emptemp object using the considerably more comprehensible

Uemployee emptemp;

More Portable Code

Another reason to use typedef, besides simplifying long type names, is to make your code more easily
adaptable to different environments.

For example, in 16-bit operating systems such as DOS and Windows 3.1, an int is 16 bits, whereas in
32-bit systems such as Windows 95, an int is 32 bits and a short is 16 bits. Suppose your program uses a
quantity that must always be stored in a 16-bit variable. You can define such variables throughout your
program using a made-up name:

int16 var1, var2;

Then, at the beginning of your program you can typedef this name to the appropriate type. In 16-bit
systems, you would say

typedef int int16;

whereas in 32-bit systems you would say

typedef short int16;

Changing this single statement automatically changes the meaning of every declaration throughout your
program.

Templates and typedef

When a template takes several arguments, its type name can grow large and unwieldy. For example, suppose
you have a class declaration

template<class type1, class type2, class type3>
class myClass
 {
 ...
 };

Declaring an object of this class is a somewhat lengthy process:

 myClass<float, double, char> george;

It can be even worse if the template arguments are classes:

template<payment_type, job_category, compensation_package, security_type>
class employee
 {
 ...
 };

Every time you define an object, you need to specify all the (potentially long) parameter names:

employee<part_time, skilled, health_only, intermediate> tempemp;

However, with a typedef such as

typedef employee<part_time, skilled, health_only, intermediate>
 part_time_machinist;

you can reduce object declarations to something more comprehensible:

part_time_machinist tempmach1;

Of course, the downside of typedef is that when you see a declaration such as this, you may need to go
back to the top of the listing (or to a header file) to find out what part_time_machinist really means.
Like many things in programming (and elsewhere), using typedef is a tradeoff.

Overloading the Function Operator

What is the function operator and why would you want to overload it? The function operator is simply the
paired parentheses symbol: (). It’s the symbol used to tell the compiler that a function is being declared or
called. Like other operators, it can be overloaded. Overloading is useful in the special situation where you
want a class object to behave like a function. The PARENS example (Listing 11-16) shows how this looks.

Listing 11-16 PARENS

// parens.cpp
// overloads the () operator
#include <iostream.h>
#include <iomanip.h>

class alpha // class with overloaded function operator
 {
 public:
 long operator() (int j, int k)
 {
 return static_cast<long>(j) * static_cast<long>(k);
 }
 };

void main()
 {
alpha multiply; // object of that class

 // use object like a function
double answer = multiply(20002, 30003);
cout << setprecision(10) << answer << endl;
}

Class alpha has nothing in it but a function consisting of the overloaded function operator. This operator
takes two arguments, both type int, and multiplies them together, returning a type double. The output
from the program is

600120006

Of course, you don’t need a function for so simple an operation, but the example does demonstrate how
arguments and return values are used with the overloaded function operator.

Once I’ve defined an object of class alpha, I can use this object as if it were a function. The compiler
interprets a reference to multiply() as a call to the overloaded function operator in the multiply
object.

The multiply object is called a function object. Function objects have several uses. One is that you can
create a function that has a separate version for every process that calls it. (Every process using
multiply() creates its own alpha object.) This is important in a multitasking environment if the
function contains data that it should remember between calls (like a count of how many times it’s been called
or the last random number it generated). Problems can arise if several processes call the function and
interfere with this data. However, if each process creates its own function object, it will have its own version
of the data.

A function object is also useful when you need to specify a function as an argument to another function that
specifies an object for the argument. You’ll see examples of this in Chapter 12.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Templates, Exceptions, and More

http://www.itknowledge.com/reference/archive/1571690638/ch11/686-688.html [21-03-2000 19:43:16]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch11/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Quiz 5

1. A static cast

a. can be used to convert a double to a float.

b. is necessary to convert a float to a double.

c. can be used to convert a pointer to a derived class object to
a pointer to a base class object.

d. permits casts that can’t be accomplished with the
implicit-style casts (that use parentheses).

e. makes it easier to find instances of casts in your source file.

2. Dynamic casts

a. are usually applied to pointers of base class types.

b. work only with polymorphic classes.

c. perform tasks that can’t be accomplished with old
implicit-style casts.

d. are another way to throw exceptions.

e. are another way to provide runtime type identification.

3. A const cast

a. may be used to cast away constness.

b. can change a variable of type const int to type int.

c. works only with pointers.

d. works only with classes.

e. works only with polymorphic classes.

4. The typedef specifier

a. changes the meaning of basic type names such as float
and int.

b. can be used to shorten type names.

c. could be used to give a name such as George to the type
array of pointers to int.

d. changes a variable of one type to a variable of another type.

e. is a notational convenience.

5. Overloading the function operator

a. requires a class with an overloaded constructor.

b. requires a class with an overloaded [] operator.

c. requires a class with an overloaded {} operator (braces).

d. usually makes use of a constructor that takes arguments.

e. allows you to create objects that act syntactically like
functions.

Exercise 1

Revise the VIRTSHAP program from Chapter 9, Session 2, to use dynamic
casts when storing the addresses of derived class objects in the base class
array.

Exercise 2

Use a const cast to make it possible for the user to change the object
const noon in the CONSTA2 program in Chapter 5, Session 7.

Session 6: The Standard string Class

Part of the latest draft of the ANSI/ISO committee is a standard string class.
This class allows arrays of characters to be treated as a new data type. The
idea is similar to the String class in the STRIMEM program in Chapter 8,
Session 6, but far more sophisticated.

The standard string class, called basic_string, is templatized and can
be instantiated not only with type char, but also with the so-called “wide
character” type used in foreign alphabets or even with user-defined types.
I’ll ignore these possibilities here and assume I’m working with strings of
type char. When this is the case, the resulting class is typedefed to the
name of string.

The example programs in this section show some of the operations possible
with the string class. I don’t cover all the string class member functions,
and many of these functions have additional formats, that is, different
numbers and types of arguments, which I also don’t cover. Consult the
documentation for your particular library to see what’s available.

Header Files

Vendors have implemented the standard string class in somewhat different
ways. The examples I’ll show in this section work with the Borland
implementation of the string class and should work with other
implementations as well. An exception to this is the name of the header file
that contains the definitions of the various classes. This file might be called
STRING (with no .H), BSTRING.H, CSTRING.H, or some other name,
depending on the compiler vendor. In my listings, I’ll use the Borland
version, CSTRING.H, but you should substitute the appropriate variation if
necessary. You may also need to specify a namespace (see Appendixes B
and C).

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Templates, Exceptions, and More

http://www.itknowledge.com/reference/archive/1571690638/ch11/688-690.html [21-03-2000 19:43:24]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch11/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Constructors and Operators

A variety of constructors allows you to create string objects in different ways. They can be
initialized to zero length (the default constructor), to other string objects, to char* (ordinary C)
strings, to sequences of characters anywhere in a string object or char* string, to individual
characters, and to sequences of characters.

The first example program shows some of these possibilities. It also demonstrates the length()
member function and the overloaded <<, =, and + operators. Listing 11-17 shows STRING1.

Listing 11-17 STRING1

// string1.cpp
#include <cstring.h>
#include <iostream.h>

void main()
 {
 string s1("IN HOC SIGNO VINCES"); // C string
 string s2('-', 19); // repeated character
 string s3(s1, 7); // start at position 7
 string s4(s1, 13, 6); // 6 chars, from position 13

 cout << "s1 = " << s1 << endl; // display strings
 cout << "s2 = " << s2 << endl;
 cout << "s3 = " << s3 << endl;
 cout << "s4 = " << s4 << endl << endl;

 string s5; // default constructor
 cout << "Before assignment, length of s5 = "
 << s5.length() << endl;
 s5 = s1; // assignment
 cout << "After assignment, length of s5 = "
 << s5.length() << endl << endl;

 string s6('-', 47); // fixed size string
 cout << "Length of s6 = "
 << s6.length() << endl;
 s6[0] = 'X'; // array notation
 s6[46] = 'X';

 cout << "s6 = ";
 for(int j=0; j<47; j++)
 cout << s6[j]; // array notation
 cout << endl;
 // concatenation
 string s7 = s1 + " (Motto of the Roman Empire)";
 cout << "s7 = " << s7 << endl << endl;

 cout << "s1[3]=" << s1[3] << endl;
 }

The << and >> operators are overloaded for input and output. The length() member function
returns the number of characters in the current string object. (“Current” means the object for
which the member function was called.) The overloaded [] operator allows you to access an
individual character within a string if you know its position. The = operator works as you would
expect, setting one string object equal to another, and the + operator concatenates two strings.
Here’s the output from STRING1:

s1 = IN HOC SIGNO VINCES
s2 = -------------------
s3 = SIGNO VINCES
s4 = VINCES

Before assignment, length of s5 = 0
After assignment, length of s5 = 19

Length of s6 = 47
s6 = X---X
s7 = IN HOC SIGNO VINCES (Motto of the Roman Empire)

s1[3]=H

In the last statement of the program, which generates the last line of output, I show that the []
operator is overloaded to allow access to individual characters in the string using the same syntax as
with char* strings. Although I don’t show it here, the [] operator can also be used on the left side
of an equal sign to assign values to individual characters.

Member Functions

A variety of member functions allows sophisticated manipulation of string objects. In the next
example, STRING2 (Listing 11-18), I’ll demonstrate a half-dozen of these functions.

Listing 11-18 STRING2

// string2.cpp
// demonstrates insert(), remove(), find(), etc
#include <cstring.h>
#include <iostream.h>

void main()
 {

 string s1("Don told Estelle he would get the ring.");
 cout << "s1 = " << s1 << endl;

 s1.insert(26, "not "); // insert "not " before "get"
 cout << "s1 = " << s1 << endl;

 s1.remove(26, 4); // remove "not "
 s1.replace(9, 7, "Pam", 3); // replace "Estelle" w/ "Pam"
 cout << "s1 = " << s1 << endl;

 int loc1 = s1.find("Pam"); // find "Pam"
 cout << "Pam is at = " << loc1 << endl;

 // find first whitespace char
 // following loc1
 int loc2 = s1.find_first_of(" \t\n", loc1);
 // make substring "Pam"
 string s2 = s1.substr(loc1, loc2-loc1);
 cout << "Hi, " << s2 << endl;
 }

Here’s the output from STRING2:

s1 = Don told Estelle he would get the ring.
s1 = Don told Estelle he would not get the ring.
s1 = Don told Pam he would get the ring.
Pam is at 9
Hi, Pam

The insert(), remove(), and replace() Member Functions

The insert(pos, ptr) member function inserts the char* string ptr into its object, starting
at position pos. The remove(pos, n) function removes n characters from its object, starting at
position pos. The replace(pos, n, ptr) function removes n characters from its object,
starting at pos, and replaces them with the char* string ptr.

The find() Member Function

The find(ptr, pos) member function looks for a pattern, formed from the char* string ptr,
in its object, starting at location pos, and returns the location of the first such instance. (You can find
multiple instances by changing pos and searching again.)

The find_first_of() Member Function

The find_first_of(ptr, pos) function is useful when you want to look for a character in a
string object but you’re not sure which character you want to find; that is, you’re looking for any one
of a number of characters. The ptr argument is a char* string consisting of all the possible
characters, and pos is the location to start looking in the string object for the first one of these
characters. In the example, I use this function to find the first whitespace character, whether a space,
tab, or new line, following the beginning of a name (“Pam”, which I found with the find() member
function). This allows me to locate the end of the name, even if it falls at the end of a line or column.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Templates, Exceptions, and More

http://www.itknowledge.com/reference/archive/1571690638/ch11/690-693.html [21-03-2000 19:43:31]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch11/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

The substr() Member Function

If you know the location of the beginning and the end of a sequence of characters in the middle of a string
object, you can turn this sequence into another string object with the substr(pos, n) function,
where pos is the beginning of the substring and n is its length. Here I use this function to make the substring
“Pam”, which is assigned to s2.

Passing string Objects as Arguments

One of the nice things about a string class is that you don’t need to pass pointers as arguments to
functions, as you do with ordinary char* strings. You simply pass the string object. The next example,
STRING3 (Listing 11-19), shows how this looks and demonstrates some other important functions.

Listing 11-19 STRING3

// string3.cpp
// demonstrates passing and returning string arguments, etc.
#include <cstring.h>
#include <iostream.h>

void main()
 {
 string func(string); // function prototype
 string s1("IN HOC SIGNO VINCES"); // string

 string s2 = func(s1); // call the function
 // display return value
 cout << "main is displaying: " << s2 << endl;

 char char_arr[80]; // array of type char*
 int len = s1.length(); // length of string

 int n = s1.copy(char_arr, len, 0); // copy s1 to char_arr
 char_arr[len] = '\0'; // end the char* string
 cout << "characters copied = " << n << endl;
 cout << "char_arr = " << char_arr << endl;

 const char* ptr = s1.c_str(); // pointer to char*
 cout << "ptr = " << ptr << endl; // points to hidden array
 }

string func(string s) // function
 {
 cout << "func is displaying argument: " << s << endl;
 return string("return value from func\n");
 }

The func() function is passed a string, which it displays. It then returns another string, which main()
displays just to show that everything works as expected.

The copy() Member Function

The copy() function allows you to copy a string object (or part of it) to a char* string. More
specifically, copy(ptr, n, pos) copies n characters from its object, starting at pos, to the char*
string ptr.

The c_str() Member Function

The c_str() function converts a string object to a char* string. That is, it returns a pointer to a char
array that contains the characters from the string object, plus a terminating ‘\0’ character. The pointer
returned from c_str() is const, so you can’t modify anything in the char array; it’s read-only.
(Actually you can modify it if you cast away the constness of ptr, as I did in Session 5, but this is not
usually a good idea.) Here’s the output for STRING3:

func is displaying argument: IN HOC SIGNO VINCES
main is displaying: return value from func

characters copied = 19
char_arr = IN HOC SIGNO VINCES
ptr = IN HOC SIGNO VINCES

Arrays of string Objects

It’s fun and easy to store string objects in arrays. With ordinary char* strings, you must set up either an
array of arrays of type char, so that all the strings are the same length, or an array of pointers to strings. By
contrast, string objects can be stored as easily as basic variables such as int, because they are all the
same size; they take care of their own memory requirements behind the scenes.

In the example (Listing 11-20), I’ll set up an array of string objects arranged in alphabetical order and
then use the compare() member function to insert a new string, entered by the user, at the appropriate
place in the array.

Listing 11-20 STRING4

// string4.cpp
// demonstrates arrays of strings, compare(), etc.
#include <cstring.h>
#include <iostream.h>

void main()
 {
 const int SZ = 10; // original number of names

 string new_name;
 // array of string objects
 string arr[SZ+1] = { "Adam", "Bob", "Clair", "Doug", "Emily",
 "Frank", "Gail", "Harry", "Ian", "Joe" };

 cout << "Enter a name: "; // user supplies new string
 cin >> new_name;

 int j = 0;
 while(j < SZ+1) // check each name in array
 {
 int len = arr[j].length();
 int lex_comp = new_name.compare(arr[j], 0, len);
 if(lex_comp > 0) // if new one greater,
 j++; // go on to next name
 else// otherwise,
 {
 for(int k=SZ-1; k>=j; k--) // move all names that are
 arr[k+1] = arr[k]; // above this one
 arr[j] = new_name; // insert the new name
 break; // break out of while
 } // end else
 } // end while
 if(j == SZ+1) // if new name follows
 arr[10] = new_name; // all the others

 for(j=0; j<SZ+1; j++) // display all the names
 cout << arr[j] << endl;
 } // end main

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Templates, Exceptions, and More

http://www.itknowledge.com/reference/archive/1571690638/ch11/693-695.html [21-03-2000 19:43:38]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch11/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

The compare() Member Function

Most of the code in the program is concerned with figuring out where in the
array to insert the new name. The function compare(str, pos, n)
compares a sequence of n characters in its own object, starting at pos, with
the str string object in its argument. The return value reveals how these
two string objects are ordered alphabetically (or lexicographically, to use
the 10 dollar word).

• Return value < 0: The current string follows the str argument
alphabetically.

• Return value = 0: The current string is equal to str.

• Return value > 0: The current string precedes str alphabetically.

The program compares the new name with each of the array elements. If the
new name is greater than the array element, the next element is examined.
If not, the new name should be inserted at that point in the array and all the
string objects from that point on up are moved to make this possible.

Here’s some interaction with STRING4 when the user enters Dilbert (the
capital “D” is necessary):

Enter a name: Dilbert
Adam
Bob
Clair
Dilbert
Doug
Emily
Frank
Gail
Harry
Ian
Joe

The new name has been inserted into the array at the appropriate place.

Get Ready for the STL

Actually it’s a lot easier than I show here to keep a group of string objects
in order. In the next chapter you’ll see that the Standard Template Library
(STL) provides container classes to handle such tedious details for you.

Quiz 6

1. When working with the string class from the standard C++
library,

a. you treat pointers to char as a data type.

b. you treat sequences of type char as a data type.

c. you must define arrays to allocate memory for objects.

d. the = and < operators are overloaded.

e. you use C library functions such as strlen() and
strcmp().

2. Which of these statements are true?

a. A constructor allows you to create a string object
initialized to part of a char* string.

b. You cannot create a string object with no characters.

c. A member function of string allows you to replace part
of a string object with a char* string.

d. The << and >> operators can be used the same way as they
are with char* strings.

e. The find_first_of() member function finds the first
value in a specified range of values.

3. If you pass a string object as an argument to a function, the
function’s prototype might be

a. void func(char);
b. void func(char*);
c. void func(char[]);
d. void func(string);
e. void func(string*);

4. To convert

a. a string object to a char* string, you can use the
copy() member function.

b. a string object to a char* string, you can use the
c_str() member function.

c. a char* string to a string object, you can use the
copy() member function.

d. a char* string to a string object, you can use the
c_str() member function.

e. a char* string to a string object, you can use a
constructor.

5. Which of these statements are true?

a. You can initialize a string array with a list of char*
strings, just as you can a char* array.

b. The compare() member function compares the lengths
of string objects.

c. To assign one string object to another, you typically use
the strcpy() function.

d. The overloaded < operator compares the lengths of
string objects.

e. The expression “George” is a string object.

Exercise 1

Using appropriate string member functions, write a program that allows
the user to enter a word and then displays all possible anagrams
(arrangements of letters) of that word. For example, if the user enters cat,
the program should display

cat

cta

atc

act

tca

tac

Exercise 2

Modify the LINKLIST program from Chapter 8, Session 7, so it stores
string objects rather than ints.

Session 7: Multifile Programs

In previous chapters I’ve shown how the various parts of a C++
program—such as class declarations, member functions, and a main()
function—are combined. However, the programs in these chapters all
consisted of a single file. Now let’s look at program organization from a
more global perspective, involving multiple files. In this session I’ll discuss
issues concerned with multifile programs. In the next session I’ll show an
example of a multifile program.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Templates, Exceptions, and More

http://www.itknowledge.com/reference/archive/1571690638/ch11/695-697.html [21-03-2000 19:43:46]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch11/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Reasons for Multifile Programs

There are several reasons for using multifile programs. These include the
use of class libraries, the organization of programmers working on a
project, and the conceptual design of a program. Let’s reflect briefly on
these issues.

Class Libraries

In traditional procedure-oriented languages, it has long been customary for
software vendors to furnish libraries of functions. Other programmers then
combine these libraries with their own custom-written routines to create an
application for the end user.

Libraries provide ready-made functions for a wide variety of fields. For
instance, a vendor might supply a library of functions for handling statistics
calculations or for advanced memory management. Libraries that provide
the functions necessary to create graphics user interface (GUI) programs are
popular.

Because C++ is organized around classes rather than functions, it’s not
surprising that libraries for C++ programs consist of classes. What may be
surprising is how superior a class library is to an old-fashioned function
library. Because classes encapsulate both data and functions, and because
they more closely model objects in real life, the interface between a class
library and the application that makes use of it can be much cleaner than
that provided by a function library.

For these reasons, class libraries assume a more important role in C++
programming than function libraries do in traditional programming. A class
library can take over a greater portion of the programming burden. An
applications programmer, if the right class library is available, may find that
only a minimal amount of programming is necessary to create a final
product. Also, as more and more class libraries are created, the chances of
finding one that solves your particular programming problem continues to
increase.

A class library often includes two components: public and private.

Public Components

To use a class library, the applications programmer needs to access various
declarations, including class declarations. These declarations can be thought
of as the public part of the library and are usually furnished in source code
form as a header file with the .H extension. This file is typically combined
with the client’s source code using an include statement.

The declarations in such a header file need to be public for several reasons.
First, it’s a convenience to the client to see the actual definitions rather than
to read a description of them. More important, the client’s program will
need to declare objects based on these classes and call on member functions
from these objects. Only by declaring the classes in the source file is this
possible.

Private Components

On the other hand, the inner workings of the member functions of the
various classes don’t need to be known by the client. The developers of the
class library, like any other software developer, don’t want to release source
code if they can help it because the code might be illegally modified or
pirated. Member functions—except for short inline functions—are therefore
usually distributed in object form as .OBJ files or as library (.LIB) files.
Figure 11-4 shows how the various files are related in a multifile system.

Figure 11-4 Files in a multifile application

In the next session I’ll show a program organized according to these
principles. The program introduces a class of very large numbers. (By “very
large,” I mean integers with an almost unlimited number of digits.)

Organization and Conceptualization

Programs may be broken down into multiple files for reasons other than the
accommodation of class libraries. As in other programming languages, such
as C, a common situation involves a project with several programmers (or
teams of programmers). Confining each programmer’s responsibility to a
separate file helps organize the project and define more cleanly the
interface among different parts of the program.

A program is often divided into separate files according to functionality:
One file can handle the code involved in a graphics display, for example,
whereas another file handles mathematical analysis and a third handles disk
I/O. In large programs, a single file may simply become too large to handle
conveniently.

The techniques used for working with multifile programs are similar
whatever the reasons for dividing the program. I’ll discuss the steps you
need to take to create a multifile program using a representative compiler:
Borland C++. (Turbo C++ works the same way, and other compilers differ
only in the details.)

How to Create a Multifile Program

Suppose you have purchased a commercial class file called THEIRS.OBJ. (A
library file with the .LIB extension is dealt with in much the same way.) It
probably comes with a header file, say THEIRS.H. You have also written
your own program to use the classes in the library; your source file is called
MINE.CPP. Now you want to combine these component files—THEIRS.OBJ,
THEIRS.H, and MINE.CPP—into a single executable program.

Header Files

The header file THEIRS.H is easily incorporated into your own source file,
MINE.CPP, with an include statement:

#include "THEIRS.H"

Quotes rather than angle brackets around the file name tell the compiler to
look for the file first in the current directory rather than in the default
include directory.

Directory

Make sure all the component files, THEIRS.OBJ, THEIRS.H, and MINE.CPP,
are in the same directory. In fact, you will probably want to create a
separate directory for the project to avoid confusion. This isn’t necessary,
but it’s the simplest approach.

Multiple Files

For handling the details of development using multiple source files, see
Appendix C for the Borland C++ compiler and Appendix D for Microsoft
Visual C++.

Generally, you proceed in the same way as when developing a program
with a single source file (MINE.CPP) and then add any additional files to the
project (THEIRS.OBJ). Once you’ve done this, the compiler takes care of
compiling any source files and linking the resulting .OBJ files together. You
can run the resulting .EXE file (MINE.EXE) in the usual way.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Templates, Exceptions, and More

http://www.itknowledge.com/reference/archive/1571690638/ch11/697-700.html [21-03-2000 19:43:56]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
javascript:displayWindow('images/11-04.jpg',410,470)
javascript:displayWindow('images/11-04.jpg',410,470)
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch11/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Namespaces

The larger a program is, the greater the danger of name clashes, that is, a single name being
used—inadvertently—to refer to several different things. This is a particular problem in
multifile programs, where files may have been created by different programmers or different
companies.

For example, suppose a class alpha is defined in a file A:

// file A
class alpha
 { };

In another file, which will eventually be linked with file A, there is also a specification for a
class that—unbeknownst to the creators of file A—has been given the same name:

// file B
class alpha
 { };

The resulting name clash will cause linker errors. Programmers might then try to fix the
problem by renaming one of the alpha classes. However, there’s an easier way.

A recent revision to the draft ANSI C++ standard introduces a new solution to this problem:
namespaces. A namespace is a section of a program specified by the keyword namespace
and enclosed in brackets. A name used within a namespace does not have global visibility;
instead, its scope is limited to the namespace.

Declaring Namespaces

In the A and B files shown on the previous page, the creators of the two files, George and
Harry, could limit the visibility of the class alpha specifications by placing each one in its
own namespace:

// file A
namespace NS_George
 {
 class alpha
 { };
 }

and

// file B
namespace NS_Harry
 {
 class alpha
 { };
 }

I show the namespaces in different files because they will frequently be used that way, but of
course they could be in the same file as well. There’s no necessary connection between files
and namespaces.

Accessing Elements from Another Namespace

Within its own namespace, you would refer to alpha in the usual way. Outside its
namespace, however, you must indicate which alpha class you’re referring to. There are two
approaches to this: You can use the scope resolution operator to specify a different namespace
in a single statement or you can use the using directive to provide access throughout a
different namespace to some or all the elements in that namespace.

To access an element in a different namespace in a way that affects only a single statement,
precede the name of the element with the name of the namespace and the scope resolution
operator (::). Here’s how you might define two different kinds of alpha objects, for
example:

// file C
namespace NS_Sally
 {
 ...
 NS_George::alpha anAlpha1; // create a George alpha object
 NS_Harry::alpha anAlpha2; // create a Harry alpha object
 ...
 }

To provide access to a specific element in one namespace throughout a second namespace,
you can use the using declaration. In this code fragment, I make George’s alpha class
accessible throughout Sally’s namespace:

// file C
namespace NS_Sally
 {
 using NS_George::alpha;
 ...
 alpha anAlpha1; // create a George alpha object
 alpha anAlpha2; // create a George alpha object
 ...
 }

To provide access to all the elements of one namespace throughout a second namespace, you
can use the using keyword as a directive:

// file D
namespace NS_Estelle
 {
 using namespace NS_George;
 ...
 alpha anAlpha1; // create a George alpha object
 alpha anAlpha2; // create a George alpha object
 // also access any other elements in George's namespace
 ...
 }

With this scheme, Estelle can access any element in George’s namespace (although in this
example I’ve shown only one element: the alpha class).

Namespaces are sometimes used in class libraries so that to access classes from the library,
you must specify the namespace using one of the access methods shown here.

Quiz 7

1. Which of the following are reasons for using multiple files?

a. Member functions can be separated from member data.

b. Each group of programmers may work on a separate file.

c. Classes can be placed in different files than the code that uses the classes.

d. Class specifications can be placed in a different file than member function
code.

e. The code in each file can have a different functionality.

2. In the highest level of program organization, private components of a class library

a. take the form of .CPP or .H files.

b. take the form of .LIB or .OBJ files.

c. do not need to be accessed by the class user.

d. do not need to be accessed by the application user.

e. are differentiated from public components by the keywords private and
public.

3. To combine a header file with your project, use

a. an #include statement.

b. the editor.

c. the compiler.

d. the linker.

e. the .EXE file.

4. To combine several .OBJ files in your project, use

a. an #include statement.

b. the editor.

c. the compiler.

d. the linker.

e. the .EXE file.

5. A namespace

a. is created with the keyword namespace.

b. ensures functions are visible throughout a program.

c. limits the scope of global names.

d. limits the scope of automatic variables.

e. can be accessed with the keyword using.

Exercise 1

Make the ARROVER1 program of Chapter 6, Session 7, into a multifile program. Put the class
declarations into a file called SAFEARAY.H and the code for the member functions into a file
called SAFEARAY.CPP. Put the main() function in a file called SAFE_APP.CPP. Compile the
SAFEARAY.CPP file into an .OBJ file. Create a project in which the SAFE_APP.EXE file is
dependent on the SAFEARAY.OBJ and SAFE_APP.CPP files. Install the appropriate #include
statements. Make sure the project compiles and runs correctly.

Exercise 2

Apply the same approach as in the previous exercise to make the LINKLIST program of
Chapter 8, Session 7, into a multifile program consisting of files LINKLIST.H, LINKLIST.CPP
(which becomes LINKLIST.OBJ), and LINK_APP.CPP. Make sure the project compiles and runs
correctly.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Templates, Exceptions, and More

http://www.itknowledge.com/reference/archive/1571690638/ch11/700-703.html [21-03-2000 19:44:03]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch11/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Session 8: A Very-Long-Numbers Example

Here’s an example that demonstrates how a program may be divided between files supplied by the
class creator and files written by the class user. The class provides a new data type: very long
integer numbers. The class user can write programs employing this type.

What can you do with very long numbers? Sometimes even the basic data type unsigned long
does not provide enough precision for certain integer arithmetic operations. unsigned long is
the largest integer type in 16-bit systems such as DOS and Windows 3.1, holding integers up to
4,294,967,295, or about 10 digits. This is about the same number of digits a pocket calculator can
handle. On 32-bit systems, type long may hold twice as many digits. If you need to work with
numbers containing more significant digits than this, however, you have a problem.

The example shows a way to solve this problem. It provides a class that holds numbers up to 200
digits long. If you want to make even longer numbers, you can change a single constant in the
program. Need 1,000-digit numbers? No problem.

Note that the example program in this section, VERYLONG, in the VERYLONG.H file uses
Borland’s current version of the header file for the string class. This file is called CSTRING.H. If
you’re using a different compiler, you may need to make changes to the name of this header file
(see Appendixes C and D).

Numbers as Strings

The verylong class stores numbers as objects of the standard string class described in
Session 6 in this chapter. The string object contains the digits of the number stored as ASCII
characters. By representing numbers as strings, I can make them as long as I want, although
arithmetic operations will be slower.

There are two data members in the verylong class: a string object to hold the string of digits
and an int to tell how long the string is. This length data isn’t strictly necessary, but it saves
using the length() member function to find the length of string objects over and over. The
digits in the string are stored in reverse order, with the least significant digit stored first. This
simplifies various operations on the string. Figure 11-5 shows a number stored as a string.

Figure 11-5 A verylong number

The Class Specifier

Here’s the header file for the verylong class.

// verylong.h
// class specifier for very long integer type
#include <iostream.h>
#include <stdlib.h> // for ltoa()
#include <cstring.h> // for string class

const int SZ = 200; // maximum digits in verylongs

class verylong
 {
 private:
 string vlstr; // verylong number as a string
 int vlen; // length of verylong string
 verylong multdigit(const int) const; // prototypes for
 verylong mult10(const verylong) const; // private functions
 public:

 verylong() : vlen(0) // no-arg constructor
 { }
 verylong(string& const s) : // one-arg constructor
 vlstr(s), vlen(s.length()) // for string
 { }
 verylong(const unsigned long n) // one-arg constructor
 { // for long int
 char temp[SZ]; // utility char* string
 ltoa(n, temp, 10); // convert n to char*
 strrev(temp); // reverse char* string
 vlstr = temp; // convert to string obj
 vlen = vlstr.length(); // find length
 }
 void putvl() const; // display verylong
 void getvl(); // get verylong from user
 // add verylongs
 verylong operator + (const verylong) const;
 // multiply verylongs
 verylong operator * (const verylong) const;
 };

The + and * operators are overloaded to provide addition and multiplication of verylong
numbers. In addition to these public functions and the two data members, there are two private
member functions. One multiplies a verylong number by a single decimal digit and one
multiplies a verylong number by 10. These routines are used internally by the multiplication
routine.

There are three constructors. One sets a verylong variable to 0 by setting its length, vlen, to 0.
The second initializes a verylong to a string (which must already be in reverse order), and
the third initializes it to a long int value.

The putvl() member function displays a verylong and the getvl gets a verylong value
from the user. You can type as many digits as you like, up to 200. Note that there is no error
checking in this routine; if you type a nondigit, the results are unpredictable.

You can perform addition and multiplication on verylongs using expressions such as

alpha = beta * gamma + delta;

just as you would with variables of basic types.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Templates, Exceptions, and More

http://www.itknowledge.com/reference/archive/1571690638/ch11/703-705.html [21-03-2000 19:44:15]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
javascript:displayWindow('images/11-05.jpg',441,205)
javascript:displayWindow('images/11-05.jpg',441,205)
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch11/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

The Member Functions

Listing 11-21 shows verylong.cpp, the file that holds the member function definitions.

Listing 11-21 VERYLONG

// verylong.cpp
// implements very long integer type
#include "verylong.h" // header file for verylong

void verylong::putvl() const // display verylong
 {
 const char* cptr = vlstr.c_str(); // convert to char* string
 char* ptr = const_cast<char*>(cptr); // cast away constness
 cout << strrev(ptr); // reverse char* string
 } // and display it

void verylong::getvl() // get verylong from user
 {
 char temp[SZ]; // utility char* string
 cin >> temp; // user enters digits
 strrev(temp); // reverse char* string
 vlstr = temp; // convert to string
 vlen = vlstr.length(); // find its length
 }
 // add verylongs

verylong verylong::operator + (const verylong v) const
 {
 int j;
 char temp[SZ]; // utility char* string
 // find longest number
 int maxlen = (vlen > v.vlen) ? vlen : v.vlen;
 int carry = 0; // set to 1 if sum >= 10
 for(j = 0; j<maxlen; j++) // for each position

 {
 int d1 = (j > vlen-1) ? 0 : vlstr[j]-'0'; // get digit
 int d2 = (j > v.vlen-1) ? 0 : v.vlstr[j]-'0'; // get digit
 int digitsum = d1 + d2 + carry; // add digits
 if(digitsum >= 10) // if there's a carry,
 { digitsum -= 10; carry=1; } // decrease sum by 10,
 else // set carry to 1
 carry = 0; // otherwise carry is 0
 temp[j] = digitsum + '0'; // insert char in string
 }
 if(carry==1) // if carry at end,
 temp[j++] = '1'; // last digit is 1
 temp[j] = '\0'; // terminate string
 return verylong(temp); // return temp verylong
 }
 // multiply verylongs
verylong verylong::operator * (const verylong v) const
 {
 verylong pprod; // product of one digit
 verylong tempsum; // running total
 for(int j=0; j<v.vlen; j++) // for each digit in arg
 {
 int digit = v.vlstr[j] - '0'; // get the digit
 pprod = multdigit(digit); // multiply this by digit
 for(int k=0; k<j; k++) // multiply result by
 pprod = mult10(pprod); // power of 10
 tempsum = tempsum + pprod; // add product to total
 }
 return tempsum; // return total of prods
 }
 // multiply argument by 10
verylong verylong::mult10(const verylong v) const
 {
 char temp[SZ];
 for(int j=v.vlen-1; j>=0; j--) // move digits one
 temp[j+1] = v.vlstr[j]; // position higher
 temp[0] = '0'; // put zero on low end
 temp[v.vlen+1] = '\0'; // terminate string
 return verylong(temp); // return result
 }
 // multiply this verylong
verylong verylong::multdigit(const int d2) const // by digit
 { // in argument

 int j;
 char temp[SZ];
 int carry = 0;

 for(j = 0; j<vlen; j++) // for each position

 { // in this verylong
 int d1 = vlstr[j]-'0'; // get digit from this
 int digitprod = d1 * d2; // multiply by that digit
 digitprod += carry; // add old carry
 if(digitprod >= 10) // if there's a new carry,
 {
 carry = digitprod/10; // carry is high digit
 digitprod -= carry*10; // result is low digit
 }
 else
 carry = 0; // otherwise carry is 0
 temp[j] = digitprod+'0'; // insert char in string
 }
 if(carry != 0)// if carry at end,
 temp[j++] = carry+'0'; // it's last digit
 temp[j] = '\0'; // terminate string
 return verylong(temp); // return verylong
 }

The putvl() member function converts the vlstr object to a normal C++ char* string and
dislays it. The getvl() member function reads a normal char* string from the keyboard,
reverses it, and converts it to the string object vlstr. Both functions use the strrev()
library function, which reverses a char* string, so the digits of the verylong are stored in
reverse order but displayed normally.

The operator+() function adds two verylongs and leaves the result in a third verylong. It
does this by considering digits one at a time. It adds digit 0 from both numbers, storing a carry if
necessary. Then it adds the digits in position 1, adding the carry if necessary. It continues until it has
added all the digits in the larger of the two numbers. If the numbers are different lengths, the
nonexistent digits in the shorter number are set to 0 before being added. Figure 11-6 shows the
process.

Figure 11-6 Adding verylong numbers

Multiplication uses the operator*() function. This function performs multiplication by
multiplying the multiplicand (the top number when you write it by hand) by each separate digit in
the multiplier (the bottom number). It calls the multdigit() routine to do this. The results are
then multiplied by 10 an appropriate number of times to shift the result to match the position of the
digit, using the mult10() function. The results of these separate calculations are then added
together using the operator+() function.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Templates, Exceptions, and More

http://www.itknowledge.com/reference/archive/1571690638/ch11/706-708.html [21-03-2000 19:44:27]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
javascript:displayWindow('images/11-06.jpg',425,411)
javascript:displayWindow('images/11-06.jpg',425,411)
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch11/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

The Application Program

To test the verylong class, I wrote a program that calculates the factorial of an integer
entered by the user. As you no doubt recall, the factorial of an integer is the result of
multiplying the integer by all the integers smaller than itself (but greater than 0). That is, if the
number is 5, its factorial is 5*4*3*2*1, which is 120. The factorials of large numbers are very
large indeed. Listing 11-22 shows VL_APP.CPP.

Listing 11-22 VL_APP

// vl_app.cpp
// calculates factorials of larger numbers using verylong class
#include "verylong.h" // verylong header file
void main()
 {
 unsigned long numb, j;
 verylong fact = 1; // initialize verylong

 cout << "\n\nEnter number: ";
 cin >> numb; // input a long int
 for(j=numb; j>0; j--) // factorial is numb *
 fact = fact * j; // numb-1 * numb-2 *
 cout << "Factoral is "; // numb-3 and so on
 fact.putvl(); // display factorial
 }

In this program, fact is a verylong variable. The other variables, numb and j, don’t need
to be verylongs because they don’t get so big. To calculate the factorial of 200, for example,
numb and j require only three digits, whereas fact requires 158.

Notice how, in the expression

fact = fact * j;

the long variable j is automatically converted to verylong, using the one-argument
constructor, before the multiplication is carried out.

Here’s the output when I ask the program to find the factorial of 100:

Enter number: 100
Factoral is 9332621544394415268169923885626670049071596826438162
1468592963895217599993229915608941463976156518286253697920827223
758251185210916864000000000000000000000000

Try that using type long variables! Surprisingly, the routines are fairly fast; this program
executes in a fraction of a second.

Subtraction and Division

I’ll leave it as an exercise for you to create member functions to perform subtraction and
division for the verylong class. These should overload the - and / operators. Warning:
There’s some work involved here. When you include subtraction, you will probably want to
assume that any verylong number can be negative as well as positive. This complicates the
addition and multiplication routines, which must do different things depending on the signs of
the numbers.

After wading through almost this entire book, you deserve a break; there are no quiz questions
for this session. You will automatically receive credit for a perfect score. Don’t say I never did
anything for you.

Exercise 1

Figure out something you would like to make into a class library (A new data type to represent
dollars-and-cents values? A new container class based on a queue? Airplanes in an air-traffic
control simulator?). Implement this class library as separate .Hand .OBJ files. Write a separate
.CPP file that makes use of the class library. Use a template approach if appropriate. Install
exceptions to catch any errors.

Summary: Chapter 11

I’ve covered many disparate topics in this chapter. Template functions can operate on different
kinds of data, with the data type supplied when the function is instantiated rather than when it’s
written. Template classes are usually used for container classes and allow containers (data
structures) to store different types of data, with the type determined when an object of the class
is instantiated.

Exceptions are a systematic approach to handling errors that occur in class member functions.
An exception class is specified within the class in question, and exceptions are “thrown” using
the throw keyword when errors are detected. In the application using the class, code that may
generate errors is installed in a try block and code that handles an exception is installed in a
catch block.

Explicit casts provide an alternative form of runtime type identification, allow const variables
to be modified, and are more easily located with a source code editor than implicit casts. The
typedef specifier gives a data type a new name. It can be used to give a potentially long and
complicated type a shorter name, and for other purposes.

The string class that’s now being made a part of the standard C++ library makes it far more
convenient to work with text strings. Objects of the string class handle their own memory
allocation, so users no longer need to set aside array space to hold strings. The string class
also supplies many member functions to make string manipulation easier.

In the real world, C++ programs are divided into different files. This helps separate the work of
different programmers, puts different kinds of functionality in different files, and allows the
distribution of proprietary software without giving users access to the source code. I showed an
example of a class library for a very long numbers data type in multifile form.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Templates, Exceptions, and More

http://www.itknowledge.com/reference/archive/1571690638/ch11/709-710.html [21-03-2000 19:44:34]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch11/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

End-of-Chapter Discussion

George: What a hodgepodge! We covered everything but the kitchen
sink in this chapter.

Estelle: You should be glad we didn’t spend whole chapters on
typedef and static casts and everything. That would have
been really fun.

George: Are we really going to use this stuff? It seems pretty far out.
Don: Even if you don’t use it, you should recognize it when you see

it. Practically every listing I see uses typedef. Not so much
the explicit casts; I think they’re too new.

Estelle: The standard string class is pretty neat.
George: Well it’s about time they did something with strings in C++.

Imagine having to deal with arrays of characters instead of a
real string type.

Don: Yes, no more worrying about always having enough memory
for some string. Let the class handle it.

Estelle: The string class header files in my compiler aren’t anything
like what they talked about in Session 6, though.

Don: They said that would change. The string class is pretty new,
and when they wrote this book, it wasn’t clear what compiler
vendors were really going to call them.

Estelle: I guess that’s the trouble with being on the cutting edge.

George:
Do you think anyone would really use that verylong number
class?

Don: Maybe a mathematician.

George:
There aren’t even member functions to let you subtract and
divide!

Don: But you’ll have them written by next week, right?
George: Oh, no problem. I’ll whip’em off in no time ‘cause I’m some

kind of a genius programmer.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Templates, Exceptions, and More

http://www.itknowledge.com/reference/archive/1571690638/ch11/711-711.html [21-03-2000 19:44:44]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch11/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

CHAPTER 12
THE STANDARD TEMPLATE
LIBRARY

Most computer programs exist to process data.The data may represent a
wide variety of real-world information: personnel records, inventories, text
documents, the results of scientific experiments. Whatever it represents,
data is stored in memory and manipulated in similar ways. University
computer science programs typically include a course called Data
Structures and Algorithms. Data structures refer to the ways data is stored
in memory and algorithms refer to how data is processed.

C++ classes provide an excellent mechanism for creating a library of data
structures. Since the development of C++, most compiler vendors and many
third-party developers have offered libraries of container classes to handle
the storage and processing of data. Recently, a new approach to a container
class library has been added to the draft ANSI/ISO C++ standard. It’s called
the Standard Template Library (STL) and it was developed by Alexander
Stepanov and Meng Lee of Hewlett Packard. STL is expected to become
the standard approach to storing and processing data. Major compiler
vendors are beginning to incorporate the STL into their products.

This chapter describes the STL and how to use it. The STL is large and
complex, so I won’t by any means describe everything about it; that would
require a large book. (In fact, several are slated to be published by the time
you read this.) I will introduce the STL and give examples of the more
common algorithms and containers.

Be aware that the STL has not yet been officially adopted into the C++
standard. Before it is, it will probably undergo some changes, especially in
such details as the names of header files. For details of its implementation,
consult your vendor’s documentation.

Session 1: Introduction to the STL

The STL contains several kinds of entities. The three most important are
containers, algorithms, and iterators.

A container is a way that stored data is organized in memory. In earlier
chapters, I explored two kinds of containers: stacks and linked lists.
Another container, the array, is so common that it’s built into C++ (and
most other computer languages). However, there are many other kinds of
containers, and the STL includes the most useful. The STL containers are
implemented by template classes so they can be easily customized to hold
different kinds of data.

Algorithms are procedures that are applied to containers to process their
data in various ways. For example, there are algorithms to sort, copy,
search, and merge data. In the STL, algorithms are represented by template
functions. These functions are not member functions of the container
classes. Rather, they are standalone functions. Indeed, one of the striking
characteristics of the STL is that its algorithms are so general. You can use
them not only on STL containers, but also on ordinary C++ arrays and on
containers you create yourself. (Containers also include member functions
for more specific tasks.)

Iterators are a generalization of the concept of pointers: They point to
elements in a container. You can increment an iterator, as you can a pointer,
so it points in turn to each element in a container. Iterators are a key part of
the STL because they connect algorithms with containers. Think of them as
a software version of cables, like the cables that connect your computer to
its peripherals. Iterators also connect different components together.

Figure 12-1 shows these three main components of the STL. In this session
I’ll discuss containers, algorithms, and iterators in slightly more detail. In
subsequent sessions, I’ll explore these concepts further with program
examples.

Figure 12-1 Containers, algorithms, and iterators

Containers

A container is a way to store data, whether the data consists of built-in
types such as int and float or of class objects. The STL makes available
seven basic kinds of containers; three more are derived from the basic
kinds. In addition, you can create your own containers based on the basic
kinds. You may wonder why you need so many kinds of containers. Why
not use C++ arrays in all data storage situations? The answer is efficiency.
An array is awkward or slow in many situations.

Containers in the STL fall into two categories: sequence and associative.
The sequence containers are vector, list, and deque. The associative
containers are set, multiset, map, and multimap. In addition, several
containers are called abstract data types, which are specialized versions of
other containers. These are stack, queue, and priority_queue. I’ll look at
these categories in turn.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:The Standard Template Library

http://www.itknowledge.com/reference/archive/1571690638/ch12/713-715.html [21-03-2000 19:44:55]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
javascript:displayWindow('images/12-01.jpg',498,377)
javascript:displayWindow('images/12-01.jpg',498,377)
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch12/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Sequence Containers

A sequence container stores a set of elements that you can visualize as a line, like houses on a
street. Each element is related to the other elements by its position along the line. Each element
(except at the ends) is preceded by one specific element and followed by another. An ordinary
C++ array is an example of a sequence container.

One problem with a C++ array is that you must specify its size at compile time, that is, in the
source code. Unfortunately, you usually don’t know when you write the program how much data
will be stored in the array. So you must specify an array large enough to hold what you guess is
the maximum amount of data. When the program runs, you will either waste space in memory by
not filling the array or elicit an error message (or even blow up the program) by running out of
space. The STL provides the vector container to avoid these difficulties.

Here’s another problem with arrays. Say you’re storing employee records and you’ve arranged
them in alphabetical order by the employee’s last name. If you now want to insert a new
employee whose name starts with, say, L, then you must move all the employees from M to Z to
make room. This can be very time-consuming. The STL provides the list container, which is
based on the idea of a linked list, to solve this problem. Recall from the LINKLIST example in
Chapter 8, Session 7, that a new item can easily be inserted in a linked list by rearranging several
pointers.

The third sequence container is the deque, which can be thought of as a combination of a stack
and a queue. A stack, as you may recall from previous examples, works on a last-in-first-out
(LIFO) principle. Both input and output take place on the top of the stack. A queue, on the other
hand, uses a first-in-first-out (FIFO) arrangement: Data goes in at the front and comes out at the
back, like a line of customers in a bank. A deque combines these approaches so you can insert or
delete data from either end. The word “deque” is derived from Double-Ended QUEue. It’s a
versatile mechanism that’s not only useful in its own right, but can be used as the basis for stacks
and queues, as you’ll see later.

Table 12-1 summarizes the characteristics of the STL sequence containers. It includes the
ordinary C++ array for comparison.

Table 12-1 Basic sequence containers
Container Characteristic Advantages and Disadvantages

Ordinary C++ array Fixed size Quick random access (by index number).
Slow to insert or erase in the middle. Size
cannot be changed at runtime.

Vector Relocating, expandable
array

Quick random access (by index number).
Slow to insert or erase in the middle.
Quick to insert or erase at end.

List Doubly linked list Quick to insert or delete at any location.
Quick access to both ends. Slow random
access.

Deque Like vector, but can be
accessed at either end

Quick random access (using index
number). Slow to insert or erase in the
middle. Quick to insert or erase (push and
pop) at either the beginning or the end.

Instantiating an STL container object is easy. First, you must include an appropriate header file.
Then you use the template format with the kind of objects to be stored as the parameter.
Examples might be

vector<int> avect; // create a vector of ints

or

list<airtime> departure_list; // create a list of airtimes

Notice that there’s no need to specify the size of STL containers. The containers themselves take
care of all memory allocation.

Associative Containers

An associative container is not sequential; instead it uses keys to access data. The keys, typically
numbers or stings, are used automatically by the container to arrange the stored elements in a
specific order. It’s like an ordinary English dictionary in which you access data by looking up
words arranged in alphabetical order. You start with a key value (e.g., the word “aardvark,” to
use the dictionary example), and the container converts this key to the element’s location in
memory. If you know the key, it’s quick to access the associated value.

There are two kinds of associative containers in the STL: maps and sets. A map associates a key
(e.g., the word you’re looking up) with a value (the definition of the word). The value can be any
kind of object. A set is similar to a map, but it stores only the keys; there are no associated
values. It’s like a list of words without the definitions.

The map and set containers allow only one key of a given value to be stored. This makes sense
in, say, a phone book where you can assume that multiple people don’t have the same number.
On the other hand, the multimap and multiset containers allow multiple keys. In an English
dictionary, there might be several entries for the word “set,” for example.

Table 12-2 summarizes the associative containers available in the STL.

Table 12-2 Basic associative containers
Container Characteristics Advantages and Disadvantages

Map Associates key with element Only
one key of each value allowed

Quick random access (by key).
Inefficient if keys not evenly
distributed.

Multimap Associates key with element
Multiple key values allowed

Quick random access (by key).
Inefficient if keys not evenly
distributed.

Set Stores only the keys themselves
Only one key of each value
allowed

Quick random access (by key).
Inefficient if keys not evenly
distributed.

Multiset Stores only the keys themselves
Multiple key values allowed

Quick random access (by key).
Inefficient if keys not evenly
distributed.

Creating associative containers is just like creating sequential ones:

map<int> IntMap; // create a map of ints

or

multiset<employee> machinists; // create a multiset of employees

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:The Standard Template Library

http://www.itknowledge.com/reference/archive/1571690638/ch12/715-718.html [21-03-2000 19:45:06]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch12/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Member Functions

Algorithms are the heavy hitters of the STL, carrying out complex
operations such as sorting and searching. However, containers also need
member functions to perform simpler tasks that are specific to a particular
type of container.

Table 12-3 shows some frequently used member functions whose name and
purpose (not the actual implementation) are common to all the container
classes.

Table 12-3 Some member functions common to all containers
Name Purpose

size() Returns the number of items in the container.
empty() Returns true if container is empty.
max_size() Returns size of the largest possible container.
begin() Returns an iterator to the start of the container for

iterating forward through the container.
end() Returns an iterator to the past-the-end location in

the container, used to end forward iteration.
rbegin() Returns a reverse iterator to the end of the container

for iterating backward through the container.
rend() Returns a reverse iterator to the beginning of the

container, used to end backward iteration.

Many other member functions appear only in certain containers or certain
categories of containers. You’ll learn more about these as I go along.
Appendix B includes a table showing all the STL member functions and
which ones exist for which containers.

Abstract Data Types

It’s possible to use basic containers to create another kind of container
called an abstract data type, or ADT. An ADT is a sort of simplified or
conceptual container that emphasizes certain aspects of a more basic
container; it provides a different interface to the programmer. The ADTs
implemented in the STL are stacks, queues, and priority queues. As I noted,
a stack restricts access to pushing and popping a data item on and off the
top of the stack. In a queue, you push items at one end and pop them off the
other end. In a priority queue, you push data in the front in random order,
but when you pop the data off the other end, you always pop the largest
item stored: The priority queue automatically sorts the data for you.

The mechanism the STL uses to create ADTs from the basic types is the
adaptor. Adaptors are template classes that translate functions used in the
ADT (such as push and pop) to functions used by the underlying container.

Stacks, queues, and priority queues can be created from different sequence
containers, although the deque is often the most obvious choice. Table 12-4
shows the abstract data types and the sequence containers that can be used
in their implementation.

Table 12-4 Abstract data types
Container Implementation Characteristics

Stack Can be implemented as
vector, list, or deque.

Insert (push) and remove
(pop) at one end only.

Queue Can be implemented as list or
deque.

Insert (push) at one end,
remove (pop) at other.

Priority queue Can be implemented as
vector or deque.

Insert (push) in random order
at one end, remove (pop) in
sorted order from other end.

You use a template within a template to instantiate an ADT. For example,
here’s a stack object that holds type int, instantiated from the deque
class:

stack< deque<int> > astak;

A detail to note about this format is that you must insert a space between
the two closing angle brackets. You can’t write

stack<deque<int>> astak; // syntax error

because the compiler will interpret the >> as an operator.

Algorithms

An algorithm is a function that does something to the items in a container
(or containers). As I noted, algorithms in the STL are not member functions
or even friends of container classes, as they are in most other container
libraries, but standalone template functions. You can use them with built-in
C++ arrays or with container classes you create yourself (provided the class
includes certain basic functions).

Table 12-5 shows a few representative algorithms. I’ll examine others as I
go along. Appendix B contains a table listing all the currently available
STL algorithms.

Table 12-5 Some typical STL algorithms
Algorithm Purpose

find
Returns first element equivalent to a specified
value.

count
Counts the number of elements that have a specified
value.

equal Compares the contents of two containers and
returns true if all corresponding elements are equal.

search Looks for a sequence of values in one container that
correspond with the same sequence in another
container.

copy Copies a sequence of values from one container to
another (or to a different location in the same
container).

swap
Exchanges a value in one location with a value in
another.

iter_swap Exchanges a sequence of values in one location
with a sequence of values in another location.

fill Copies a value into a sequence of locations.
sort Sorts the values in a container according to a

specified ordering.
merge Combines two sorted ranges of elements to make a

larger sorted range.
accumulate Returns the sum of the elements in a given range.
for_each Executes a specified function for each element in a

container.

Suppose you create an array of type int, with data in it:

int arr[8] = {42, 31, 7, 80, 2, 26, 19, 75};

You can then use the STL sort() algorithm to sort this array by saying

sort(arr, arr+8);

where arr is the address of the beginning of the array and arr+8 is the
past-the-end address (one item past the end of the array).

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:The Standard Template Library

http://www.itknowledge.com/reference/archive/1571690638/ch12/718-720.html [21-03-2000 19:45:16]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch12/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Iterators

Iterators are pointer-like entities used to access individual data items
(which are usually called elements) in a container. Often they are used to
move sequentially from element to element, a process called iterating
through the container. You can increment an iterator with the ++ operator
so it points to the next element, and you can dereference it with the *
operator to obtain the value of the element it points to.

Like a pointer to an array element, some types of iterators can store (or
“remember”) the location of a specific container element. In the STL, an
iterator is represented by an object of an iterator class.

Different classes of iterators must be used with different types of container.
There are three major classes of iterators: forward, bidirectional, and
random access. A forward iterator can move only forward through the
container one item at a time. Its ++ operator accomplishes this. It can’t
move backward and it can’t be set to an arbitrary location in the middle of
the container. A bidirectional iterator can move backward as well as
forward, so both its ++ and -- operators are defined. A random-access
iterator, in addition to moving backward and forward, can jump to an
arbitrary location. You can tell it to access location 27, for example.

There are also two specialized kinds of iterators. An input iterator can
“point to” an input device (cin or a file) to read sequential data items into
a container, and an output iterator can “point to” an output device (cout or
a file) and write elements from a container to the device.

Although the values of forward, bidirectional, and random-access iterators
can be stored (so they can be used later), the values of input and output
iterators cannot be. This makes sense: The first three iterators point to
memory locations, whereas input and output iterators point to I/O devices
for which stored “pointer” values have no meaning. Table 12-6 shows the
characteristics of these different kinds of iterators.

Table 12-6 Iterator characteristics
Iterator Read/Write Iterator

Can Be
Saved

Direction Access

Random access Read and write Yes Forward and
back

Random

Bidirectional Read and write Yes Forward and
back

Linear

Forward Read and write Yes Forward only Linear
Output Write only No Forward only Linear
Input Read only No Forward only Linear

Potential Problems with the STL

The STL is still being refined and vendors are still bringing out new
products to work with specific compilers, so the problems I mention here
may have been solved by the time you read this. However, at present there
are a few aspects of the STL that require some care. These problems result
from the strain the STL’s sophisticated template classes place on many
compilers.

First, it’s sometimes hard to find errors because the compiler reports them
as being deep in a header file when they are really in the class user’s code.
You may need to resort to brute force methods such as commenting out one
line of your code at a time to find the culprit.

Precompilation of header files, which speeds up compilation dramatically
on compilers that offer it, may cause problems with the STL. If things don’t
seem to be working, try turning off precompiled headers.

The STL generates lots of compiler warnings from deep within the STL
header files. Conversion may lose significant digits is a
favorite. These appear to be harmless and can be ignored or turned off.

These minor complaints aside, the STL is a surprisingly robust and versatile
system. Errors tend to be caught at compile time rather than at runtime. The
different algorithms and containers present a very consistent interface; what
works with one container or algorithm will usually work with another
(assuming it’s used appropriately).

This quick overview probably leaves you with more questions than
answers. The following sessions should provide enough specific details of
STL operation to make things clearer.

Quiz 1

1. An STL container can be used to

a. hold int values.

b. hold objects of class employee.

c. store elements in a way that makes them quickly accessible.

d. compile C++ programs.

e. organize the way objects are stored in memory.

2. Which of the following are STL sequence containers?

a. multiset

b. stack

c. deque

d. map

e. list

3. Which of the following are STL associative containers?

a. multiset

b. stack

c. deque

d. map

e. list

4. An algorithm is

a. a standalone function that operates on containers.

b. a link between member functions and containers.

c. a friend function of a container class.

d. a member function of a container class.

e. a kind of pointer to objects in a container.

5. An iterator

a. acts something like a function.

b. cannot step backward through a container.

c. always executes the same algorithm over and over.

d. points to a specific object in a container.

e. is the STL version of a for loop.

Because of its generality, this session contains no exercises.

Session 2: Algorithms

The STL algorithms perform operations on collections of data. These
algorithms were designed to work with STL containers, but one of the nice
things about them is that you can apply them to ordinary C++ arrays. This
may save you considerable work when programming arrays. It also offers
an easy way to learn about algorithms, unencumbered with containers. In
this session, I’ll examine how some representative algorithms are actually
used. (Remember that all the algorithms are listed in Appendix B.)

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:The Standard Template Library

http://www.itknowledge.com/reference/archive/1571690638/ch12/720-723.html [21-03-2000 19:45:28]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch12/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

The find() Algorithm

The find() algorithm looks for the first element in a container that has a specified value.
The FIND example program (Listing 12-1) shows how this looks when I’m trying to find a
value in an array of ints.

Listing 12-1 FIND

// find.cpp
// finds the first element with a specified value
#include <iostream.h>
#include <algo.h>

int arr[] = { 11, 22, 33, 44, 55, 66, 77, 88 };

void main()
 {
 int* ptr;
 ptr = find(arr, arr+8, 33); // find first 33
 cout << "First object with value 33 found at offset "
 << (ptr-arr) << endl;
 }

The output from this program is

First object with value 33 found at offset 2.

As usual, the first element in the array is number 0, so the 33 is found at offset 2.

Header Files

In this program, I’ve included the header file ALGO.H. In the version of the STL I’m using,
this file contains the declarations of all the algorithms. Other header files are used for
containers. If you’re using a version of the STL from a different supplier, you may need to
include a different header file. Some implementations use only one header file for all STL
operations, whereas others use many different files but call them by slightly different
names, such as ALGORTHM.H. or ALGORITHM (without the .H). You may also need to
insert a using namespace directive in your code. See Appendixes C and D for more
on this issue.

Ranges

The first two parameters to find() specify the range of elements to be examined. These
values are specified by iterators. In this example, I use normal C++ pointer values, which
are a special case of iterators.

The first parameter is the iterator of (or in this case, the pointer to) the first value to be
examined. The second parameter is the iterator of the location one past the last element to
be examined. Because there are 8 elements, this value is the first value plus 8. This is
called a past-the-end value; it points to the element just past the end of the range to be
examined.

This syntax is reminiscent of the normal C++ idiom in a for loop:

for(int j=0; j<8; j++) // from 0 to 7
 {
 if(arr[j] == 33)
 {
 cout << "First object with value 33 found at offset "
 << j << endl;
 break;
 }
 }

In the FIND example, the find() algorithm saves you the trouble of writing this for
loop. In more complicated situations, algorithms may save you from writing far more
complicated code.

The count() Algorithm

Let’s look at another algorithm, count(), which counts how many elements in a
container have a specified value. This algorithm, instead of returning an iterator (pointer)
value, as find() did, adds the count to an int variable supplied (by reference) as an
argument to count(). The COUNT example (Listing 12-2) shows how this looks.

Listing 12-2 COUNT

// count.cpp
// counts the number of elements with a specified value
#include <iostream.h>
#include <algo.h>

int arr[] = { 33, 22, 33, 44, 33, 55, 66, 77 };

void main()
 {
 int n = 0; // must initialize
 count(arr, arr+8, 33, n); // count number of 33's
 // add result to n
 cout << "There are " << n << " 33's in arr." << endl;
 }

The output is

There are 3 33's in arr.

You might expect count() to return the count, but adding the count to an existing
number may be useful if you’ve already counted something and want to add the new count
to the old one.

The sort() Algorithm

You can guess what the sort() algorithm does. Listing 12-3 shows an example, called
SORT, of this algorithm applied to an array.

Listing 12-3 SORT

// sort.cpp
// sorts an array of integers
#include <iostream.h>
#include <algo.h>

 // array of numbers
int arr[] = {45, 2, 22, -17, 0, -30, 25, 55};

void main()
 {
 sort(arr, arr+8); // sort the numbers

 for(int j=0; j<8; j++) // display sorted array
 cout << arr[j] << ' ';
 }

The output from the program is

-30, -17, 0, 2, 25, 45, 55

I’ll look at some variations of this algorithm later.

The search() Algorithm

Some algorithms operate on two containers at once. For instance, whereas the find()
algorithm looks for a specified value in a single container, the search() algorithm looks
for a sequence of values specified by one container within another container. The SEARCH
example (Listing 12-4) shows how this looks.

Listing 12-4 SEARCH

// search.cpp
// searches one container for a sequence in another container
#include <iostream.h>
#include <algo.h>

int source[] = { 11, 44, 33, 11, 22, 33, 11, 22, 44 };
int pattern[] = { 11, 22, 33 };

void main()
 {
 int* ptr;
 ptr = search(source, source+9, pattern, pattern+3);
 if(ptr == source+9) // if past-the-end
 cout << "No match found";
 else
 cout << "Match at " << (ptr - source);
 }

The algorithm looks for the sequence 11, 22, 33, specified by the array pattern, within
the array source. As you can see by inspection, this sequence is found in source
starting at the fourth element (element 3). The output is

Match at 3

If the iterator value ptr ends up one past the end of the source, then no match has been
found.

The arguments to algorithms such as search() don’t need to be the same type of
container. The source could be in an STL vector and the pattern could be in an array, for
example. This kind of generality is a very powerful feature of the STL.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:The Standard Template Library

http://www.itknowledge.com/reference/archive/1571690638/ch12/723-726.html [21-03-2000 19:45:36]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch12/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

The merge() Algorithm

Listing 12-5 shows an algorithm that works with three containers, merging the elements from two source
containers into a destination container.

Listing 12-5 MERGE

// merge.cpp
// merges two containers into a third
#include <iostream.h>
#include <algo.h>

int src1[] = { 2, 3, 4, 6, 8 };
int src2[] = { 1, 3, 5 };
int dest[8];

void main()
 {
 merge(src1, src1+5, src2, src2+3, dest);
 for(int j=0; j<8; j++)
 cout << dest[j] << ' ';
 }

The output, which displays the contents of the destination container, looks like this:

1 2 3 3 4 5 6 8

As you can see, merging preserves the ordering, interweaving the two sequences of source elements into
the destination container.

Function Objects

Some algorithms can take something called a function object as an argument. A function object looks, to
the user, much like a template function. However, it’s actually an object of a template class that has a
single member function: the overloaded () operator. This sounds mysterious, but it’s easy to use.

Suppose you want to sort an array of numbers into descending instead of ascending order. The SORTEMP
program (Listing 12-6) shows how to do this.

Listing 12-6 SORTEMP

// sortemp.cpp
// sorts array of floats in backwards order,
// uses greater<>() function object
#include <iostream.h>
#include <algo.h>
 // array of floats
float fdata[] = { 19.2, 87.4, 33.6, 55.0, 11.5, 42.2 };

void main()
 { // sort the floats
 sort(fdata, fdata+6, greater<float>());

 for(int j=0; j<6; j++) // display sorted floats
 cout << fdata[j] << endl;
 }

The array of float values is sorted using the greater<>() function object. Here’s the output:

87.4
55
42.2
33.6
19.1
11.5

Besides comparisons, there are function objects for arithmetical and logical operations. I’ll look at
function objects more closely in Session 8.

User-Written Functions in Place of Function Objects

Function objects operate only on basic C++ types and on classes for which the appropriate operators (+,
<, &&, and so on) are defined. If you’re working with values for which this is not the case, you can
substitute a user-written function for a function object. For example, the operator < is not defined for
ordinary char* strings, but you can write a function to perform the comparison and use this function’s
address (its name) in place of the function object. The SORTCOM example (Listing 12-7) shows how to
sort an array of char* strings.

Listing 12-7 SORTCOM

// sortcom.cpp
// sorts array of strings with user-written comparison function
#include <iostream.h>
#include <string.h> // for strcmp()
#include <algo.h>
 // array of strings
char* names[] = { "George", "Penny", "Estelle",
 "Don", "Mike", "Bob" };

bool alpha_comp(char*, char*); // prototype
void main()
 &
#123;
 sort(names, names+6, alpha_comp); // sort the strings

 for(int j=0; j<6; j++) // display sorted strings
 cout << names[j] << endl;
 }

bool alpha_comp(char* s1, char* s2) // returns true if s1<s2
 {
 return (strcmp(s1, s2)<0) ? true : false;
}

The third argument to the sort() algorithm is the address of the alpha_comp() function, which
compares two char* strings and returns true or false, depending on whether the first is lexicographically
(i.e., alphabetically) less than the second. The output from this program is what you would expect:

Bob
Don
Estelle
George
Mike
Penny

Actually, you don’t need to write your own function objects to handle text. If you use the string class
from the standard library, you can use built-in function objects such as less<>() and greater<>()
instead.

Boolean Type

The return value of the user-written function (alpha_comp() in this example) should be type bool.
This type is specified in the BOOL.H header file (which is included in ALGO.H). On my system, type bool
is #defined to be type int, true is 1, and false is 0; other systems vary but work the same way.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:The Standard Template Library

http://www.itknowledge.com/reference/archive/1571690638/ch12/726-728.html [21-03-2000 19:45:48]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch12/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Adding _if to Algorithms

Some algorithms have versions that end in _if. These algorithms take an extra parameter called a predicate,
which is a function object or a function. For example, the find() algorithm finds all elements equal to a
specified value. However, it can do this only if the = operator is defined for the data type of the objects being
searched. If = isn’t defined, you can create an equality function that works with the find_if() algorithm to
find elements with any arbitrary characteristic.

Listing 12-8 uses char* strings. The find_if() algorithm is supplied with a user-written isDon()
function to find the first string in an array of strings that has the value “Don”.

Listing 12-8 FIND_IF

// find_if.cpp
// searches array of strings for first name that matches "Don"
#include <iostream.h>
#include <string.h> // for strcmp()
#include <algo.h>
 // array of strings
char* names[] = { "George", "Estelle", "Don", "Mike", "Bob" };
bool isDon(char*); // prototype
void main()
 {
 char** ptr;
 // find the first string "Don"
 ptr = find_if(names, names+5, isDon);

 if(ptr==names+5) // display results
 cout << "Don is not on the list";
 else
 cout << "Don is element "
 << (ptr-names)
 << " on the list.";
 }

bool isDon(char* name) // returns true if name=="Don"
 {
 return (strcmp(name, "Don")) ? false : true;
 }

Because “Don” is indeed one of the names in the array, the output from the program is

Don is element 2 on the list.

The address of the function isDon() is the third argument to find_if(), whereas the first and second
arguments are, as usual, the first and the past-the-end addresses of the array.

The find_if() algorithm applies the isDon() function to every element in the range. If isDon()
returns true for any element, then find_if() returns the value of that element’s pointer (iterator).
Otherwise, it returns a pointer to the past-the-end address of the array.

Various other algorithms, such as count(), replace(), and remove(), have _if versions.

The for_each() Algorithm

The for_each() algorithm allows you to do something to every item in a container. You write your own
function to determine what that “something” is. Your function can’t change the elements in the container, but
it can use or display their values.

Here’s an example in which for_each() is used to convert all the values of an array from inches to
centimeters and display them. I write a function called in_to_cm() that multiplies a value by 2.54 and use
this function’s address as the third argument to for_each(). Listing 12-9 shows FOR_EACH.

Listing 12-9 FOR_EACH

// for_each.cpp
// uses for_each() to output inches array elements as centimeters
#include <iostream.h>
#include <algo.h>

void main()
 { // array of inches values
 float inches[] = { 3.5, 6.2, 1.0, 12.75, 4.33 };
 void in_to_cm(float); // prototype
 // output as centimeters
 for_each(inches, inches+5, in_to_cm);
 }

void in_to_cm(float in) // convert and display as centimeters
 {
 cout << (in * 2.54) << ' ';
 }

The output looks like this:

8.89 15.748 2.54 32.385 10.9982

The transform() Algorithm

The transform() algorithm does something to every item in a container and places the resulting values in
a different container (or the same one). Again, a user-written function determines what will be done to each
item. The return type of this function must be the same as that of the destination container. The example is
similar to FOR_EACH except that instead of displaying the converted values, the in_to_cm() function puts
the centimeter values into a different array, centi[].The main program then displays the contents of
centi[]. Listing 12-10 shows TRANSFO.

Listing 12-10 TRANSFO

// transfo.cpp
// uses transform() to change array of inches values to cm
#include <iostream.h>
#include <algo.h>

void main()
 { // array of inches values
 float inches[] = { 3.5, 6.2, 1.0, 12.75, 4.33 };
 float centi[5];
 float in_to_cm(float); // prototype
 // transform into array centi[]
 transform(inches, inches+5, centi, in_to_cm);

 for(int j=0; j<5; j++) // display array centi[]
 cout << centi[j] << ' ';
 }

float in_to_cm(float in) // convert inches to centimeters
 {
 return (in * 2.54);
 // return result
 }

The output is the same as that from the FOR_EACH program.

I’ve showed just a few of the algorithms in the STL.There are many others, but what I’ve shown here should
give you an idea of the kinds of algorithms that are available and how to use them.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:The Standard Template Library

http://www.itknowledge.com/reference/archive/1571690638/ch12/728-730.html [21-03-2000 19:45:56]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch12/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Quiz 2

1. Algorithms can

a. be used only on STL containers.

b. obtain information about elements in a container.

c. change the order of elements in a container.

d. create and destroy containers.

e. create and destroy the objects stored in containers.

2. The find() algorithm

a. finds matching sequences of elements in two containers.

b. finds a container that matches a specified container.

c. takes two iterators as its first two arguments.

d. takes two container elements as its first two arguments.

e. finds an element in a container that matches a specified value.

3. A range is

a. all the elements between two specified elements.

b. all the elements in a container.

c. a large, flat container dotted with buffalo.

d. often supplied to an algorithm by two iterator values.

e. all the values an element in a container can have.

4. Which of the following are true?

a. Type bool is used as the return value of all algorithms to indicate success or
failure.

b. Type bool is appropriate for variables whose values are restricted to true and
false.

c. A user-written function can substitute for a function object, which is supplied to
some algorithms.

d. A function object can customize the behavior of an algorithm.

e. The sort() algorithm can sort the elements in a container into an order based
on the < operator overloaded for the class of the elements.

5. A user-written function whose address is supplied as the third argument to the
for_each() algorithm

a. must always return a bool value.

b. copies the elements of one container into a different container.

c. must be a member of the container class.

d. will be applied to each element in a range.

e. must take container elements as its first two arguments.

Exercise 1

Write a program that applies the sort() algorithm to an array of names entered by the user and
displays the result.

Exercise 2

Write a program that applies the sort() algorithm to an array of names entered by the user and
displays the result. Employ a user-written function to compare the names alphabetically.

Session 3: Sequential Containers

As I noted earlier, there are two major categories of containers in the STL: sequence containers
and associative containers. In this session, I’ll introduce the three sequence containers: vectors,
lists, and deques, focusing on how these containers work and on their member functions. You
haven’t learned about iterators yet, so there will be some operations that you can’t perform on
these containers. I’ll examine iterators in the next session.

Each program example in the following sections introduces several member functions for the
container being described. Remember, however, that different kinds of containers use member
functions with the same names and characteristics, so what you learn about, say, push_back()
for vectors will also be relevant to lists and queues.

Vectors

You can think of vectors as smart arrays. They manage storage allocation for you, expanding and
contracting the size of the vector as you insert or erase data. You can use vectors much like
arrays, accessing elements with the [] operator. Such random access is very fast with vectors.
It’s also fast to add (or push) a new data item onto the end (the back) of the vector. When this
happens, the vector’s size is automatically increased to hold the new item.

Member Functions push_back(), size(), and Operator []

Listing 12-11, VECTOR, shows the most common vector operations.

Listing 12-11 VECTOR

// vector.cpp
// demonstrates push_back(), operator[], size()
#include <iostream.h>
#include <vector.h>

void main()
 {
 vector<int> v; // create a vector of ints

 v.push_back(10); // put values at end of array
 v.push_back(11);
 v.push_back(12);
 v.push_back(13);

 v[0] = 20; // replace with new values
 v[3] = 23;

 for(int j=0; j<v.size(); j++) // display vector contents
 cout << v[j] << ' ';
 }

I use the vector’s default (no-argument) constructor to create a vector v. As with all STL
containers, the template format is used to specify the type of variable the container will hold; in
this case, type int. I don’t specify the container’s size, so it starts off at 0.

The push_back() member function inserts the value of its argument at the back of the vector.
(The back is where the element with the highest index number is.) The front of a vector (where
the element with index 0 is), unlike that of a list or queue, is not accessible. Here I push the
values 10, 11, 12, and 13, so that v[0] contains 10, v[1] contains 11, v[2] contains 12, and
v[3] contains 13.

Once a vector has some data in it, this data can be accessed—both read and written to—using the
overloaded [] operator, just as if it were in an array. I use this operator to change the first
element from 10 to 20 and the last element from 13 to 23. Here’s the output from VECTOR:

20 11 12 23

Note that although I can access data that’s already there, I can’t user the [] operator in a way
that would involve changing the size of the vector, as I can with push_back(). For example,
trying to read or write to v[27] won’t work because the vector has only four members.

The size() member function returns the number of elements currently in the container, which
in VECTOR is 4. I use this value in the for loop to print out the values of the elements in the
container.

Another member function, max_size() (which I don’t demonstrate here), returns the
maximum size to which a container can be expanded. This number depends on the type of data
being stored in the container (the bigger the elements, the fewer of them you can store), the type
of container, and the operating system. For example, on my system, max_size() returns
32,767 for a vector type int.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:The Standard Template Library

http://www.itknowledge.com/reference/archive/1571690638/ch12/731-733.html [21-03-2000 19:46:04]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch12/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Member Functions swap(), empty() back(), and pop_back()

Listing 12-12, VECTCON, shows some additional vector constructors and member functions.

Listing 12-12 VECTCON

// vectcon.cpp
// demonstrates constructors, swap(), empty(), back(), pop_back()
#include <iostream.h>
#include <vector.h>

void main()
 { // an array of floats
 float arr[] = { 1.1, 2.2, 3.3, 4.4 };
 vector<float> v1(arr, arr+4); // initialize vector to array
 vector<float> v2(4); // empty vector of size 4

 v1.swap(v2); // swap contents of v1 and v2

 while(!v2.empty()) // until vector is empty,
 {
 cout << v2.back() << ' '; // display the last element
 v2.pop_back(); // remove the last element
 } // output: 4.4 3.3 2.2 1.1
 }

I’ve used two new vector constructors in this program. The first initializes the vector v1 with the values of a
normal C++ array passed to it as an argument. The arguments to this constructor are pointers to the start of the
array and to the element one past the end. The second constructor sets v2 to an initial size of 4, but does not
supply any initial values. Both vectors hold type float.

The swap() member function exchanges all the data in one vector with all the data in another, keeping the
elements in the same order. In this program, only garbage data is in v2, so it’s swapped with the data in v1. I
display v2 to show it now contains the data that was in v1. The output is

4.4, 3.3, 2.2, 1.1

The back() member function returns the value of the last element in the vector. I display this value with
cout. The pop_back() member function removes the last element in the vector. Thus, each time through
the loop there is a different last element. (It’s a little surprising that pop_back() does not simultaneously
return the value of the last element and remove it from the vector, as you’ve seen in previous examples with
stacks, but it doesn’t, so back() must be used as well.)

Some member functions, such as swap(), also exist as algorithms. When this is the case, the member
function version is usually provided because it’s more efficient for that particular container than the algorithm
version. Sometimes you can use the algorithm as well, for example, to swap elements in two different kinds of
containers.

Member Functions insert() and erase()

The insert() and erase() member functions insert or remove an element from an arbitrary location in a
container. These functions aren’t very efficient with vectors because all the elements above the insertion or
erasure must be moved to make space for the new element or to close up the space where the erased item was.
However, insertion and erasure may nevertheless be useful if they aren’t used too often. Listing 12-13,
VECTINS, shows how these member functions are used.

Listing 12-13 VECTINS

// vectins.cpp
// demonstrates insert(), erase()
#include <iostream.h>
#include <vector.h>

void main()
 {
 int arr[] = { 100, 110, 120, 130 }; // an array of ints
 vector<int> v(arr, arr+4); // initialize vector to array
 int j;
 cout << "\nBefore insertion: ";
 for(j=0; j<v.size(); j++) // display all elements
 cout << v[j] << ' ';

 v.insert(v.begin()+2, 115); // insert 115 at element 2
 cout << "\nAfter insertion: ";
 for(j=0; j<v.size(); j++) // display all elements
 cout << v[j] << ' ';

 v.erase(v.begin()+2); // erase element 2

 cout << "\nAfter erasure: ";
 for(j=0; j<v.size(); j++) // display all elements
 cout << v[j] << ' ';
 }

The insert() member function (at least this version of it) takes two arguments: the place where an element
will be inserted in a container and the value of the element. I add 2 to the begin() member function to
specify element 2 (the third element) in the vector. The elements from the insertion point to the end of the
container are moved upward to make room and the size of the container is increased by 1.

The erase() member function removes the element at the specified location. The elements above the
deletion point are moved downward and the size of the container is decreased by 1. Here’s the output from
VECTINS:

Before insertion: 100 110 120 130
After insertion: 100 110 115 120 130
After erasure: 100 110 120 130

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:The Standard Template Library

http://www.itknowledge.com/reference/archive/1571690638/ch12/733-735.html [21-03-2000 19:46:14]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch12/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Lists

An STL list container is a doubly linked list in which each element contains a pointer not only to the
next element but also to the preceding one. The container stores the address of both the front (first) and
the back (last) elements, which makes for fast access to both ends of the list.

Member Functions push_front(), front(), and pop_front

Listing 12-14, LIST, shows how data can be pushed, read, and popped from both the front and the back.

Listing 12-14 LIST

// list.cpp
// demonstrates push_front(), front(), pop_front()
#include <iostream.h>
#include <list.h>

void main()
 {
 list<int> ilist;
 ilist.push_back(30); // push items on back
 ilist.push_back(40);
 ilist.push_front(20); // push items on front
 ilist.push_front(10);

 int size = ilist.size(); // number of items

 for(int j=0; j<size; j++)
 {
 cout << ilist.front() << ' '; // read item from front
 ilist.pop_front(); // pop item off front
 }
 }

The push_front(), pop_front(), and front() member functions are similar to
push_back(), pop_back(), and back(), which you’ve already seen at work with vectors.

Note that you can’t use random access for list elements because such access is too slow; that is, the []
operator is not defined for lists. If it were, this operator would need to traverse along the list, counting
elements as it went, until it reached the correct one, a time-consuming operation. If you need random
access, you should use a vector or a deque.

Lists are appropriate when you make frequent insertions and deletions in the middle of the list. Lists
are not efficient for vectors and deques because all the elements above the insertion or deletion point
must be moved. However, it’s quick for lists because only a few pointers need to be changed to insert
or delete a new item.

The insert() and erase() member functions are used for list insertion and deletion, but they
require the use of iterators, so I’ll postpone a discussion of these functions.

Member Functions reverse(), merge(), and unique()

Some member functions exist only for lists; no such member functions are defined for other containers.
Listing 12-15, LISTPLUS, shows some of these functions. It begins by initializing two list-of-int
objects using arrays.

Listing 12-15 LISTPLUS

// listplus.cpp
// demonstrates reverse(), merge(), and unique()
#include <iostream.h>
#include <list.h>

void main()
 {
 int arr1[] = { 40, 30, 20, 10 };
 int arr2[] = { 15, 20, 25, 30, 35 };

 list<int> list1(arr1, arr1+4);
 list<int> list2(arr2, arr2+5);

 list1.reverse(); // reverse list1: 10 20 30 40
 list1.merge(list2); // merge list2 into list1
 list1.unique(); // remove duplicate 20 and 30
 int size = list1.size();
 for(int j=0; j<size; j++) // for every item
 {
 cout << list1.front() << ' '; // read item from front
 list1.pop_front(); // pop item off front
 }
 }

The first list is in backward order, so I return it to normal sorted order using the reverse() member
function. (It’s quick to reverse a list container because both ends are accessible.) This is necessary
because the second member function, merge(), operates on two lists and requires both of them to be
in sorted order. Following the reversal, the two lists are

10, 20, 30, 40
15, 20, 25, 30, 35

Now the merge() function merges list2 into list1, keeping everything sorted and expanding
list1 to hold the new items. The resulting content of list1 is

10, 15, 20, 20, 25, 30, 30, 35, 40

Finally, I apply the unique() member function to list1. This function finds adjacent pairs of
elements with the same value and removes all but the first. The contents of list1 are then displayed.
The output of LISTPLUS is

10, 15, 20, 25, 30, 35, 40

To display the contents of the list, I use the front() and pop_front() member functions in a
for loop. Each element, from front to back, is displayed and then popped off the list. The process of
displaying the list destroys it. This may not always be what you want, but at the moment it’s the only
way you have learned to access successive list elements. Iterators, described in the next session, will
solve this problem.

Deques

A deque is a variation of a vector. Like a vector, it supports random access using the [] operator.
However, unlike a vector (but like a list), a deque can be accessed at the front as well as the back. It’s a
sort of double-ended vector, supporting push_front(), pop_front(), and front().

Memory is allocated differently for vectors and queues. A vector always occupies a contiguous region
of memory. If a vector grows too large, it may need to be moved to a new location where it will fit. A
deque, on the other hand, can be stored in several noncontiguous areas; it is segmented. A member
function, capacity(), returns the largest number of elements a vector can store without being
moved, but capacity() isn’t defined for deques because deques don’t need to be moved. Listing
12-16 shows DEQUE.

Listing 12-16 DEQUE

// deque.cpp
// demonstrates push_back(), push_front(), front()
#include <iostream.h>
#include <deque.h>
void main()
 {
 deque<int> deq;

 deq.push_back(30); // push items on back
 deq.push_back(40);
 deq.push_back(50);
 deq.push_front(20); // push items on front
 deq.push_front(10);

 deq[2] = 33; // change middle item

 for(int j=0; j<deq.size(); j++)
 cout << deq[j] << ' '; // display items
 }

You’ve already seen examples of push_back(), push_front(), and operator []. They work the
same for deques as for other containers. The output of this program is

10 20

Figure 12-2 shows some important member functions for the three sequential containers.

Figure 12-2 Sequential containers

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:The Standard Template Library

http://www.itknowledge.com/reference/archive/1571690638/ch12/735-738.html [21-03-2000 19:46:28]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
javascript:displayWindow('images/12-02.jpg',441,587)
javascript:displayWindow('images/12-02.jpg',441,587)
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch12/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Quiz 3

1. A vector is an appropriate container if you

a. want to insert lots of new elements at arbitrary locations in
the vector.

b. don’t know at runtime how many elements the vector will
hold.

c. want to insert new elements, but always at the front of the
container.

d. are given an index number and you want to access the
corresponding element quickly.

e. are given an element value and you want to access the
corresponding element quickly.

2. Which of the following statements are true?

a. The pop_back() member function returns the value of
the element at the back of the container.

b. The back() member function returns the value of the
element at the back of the container.

c. The pop_back() member function removes the element
at the back of the container.

d. The back() member function removes the element at the
back of the container.

e. The swap() member function interchanges two adjacent
elements in a container.

3. If you define a vector v with the default constructor, define
another vector w with a one-argument constructor to a size of 11, and
insert 3 elements into each of these vectors with push_back(),
then

a. size() will return 0 for v and 3 for w.

b. size() will return 3 for v and 3 for w.

c. size() will return 3 for v and 14 for w.

d. max_size() will return two values that differ by 11.

e. max_size() will return the same value for both vectors.

4. Which of the following are true?

a. The reverse() member function reverses pairs of
adjacent elements.

b. The merge() member function merges pairs of adjacent
elements from one container into another container.

c. The unique() member function returns the first of a
sequence of elements that have the same value.

d. The push_front() member function is not defined for
lists.

e. The push_front() member function is not defined for
deques.

5. In a deque,

a. data can be quickly inserted or deleted at any arbitrary
location.

b. data can be inserted or deleted at any arbitrary location, but
the process is relatively slow.

c. data can be quickly inserted or deleted at either end.

d. data can be inserted or deleted at either end, but the process
is relatively slow.

e. elements always occupy contiguous locations in memory.

Exercise 1

Write a program that applies reverse(), merge(), and unique() to
vectors.

Exercise 2

Write a program that uses insert(), erase(), and swap() on a
deque.

Session 4: Iterators

Iterators may seem a bit mysterious, yet they are central to the operation of
the STL. In this session, I’ll first discuss the twin roles played by iterators:
as smart pointers and as a connection between algorithms and containers.
Then I’ll show some examples of their use.

Iterators as Smart Pointers

It’s often necessary to perform an operation on all the elements in the
container (or perhaps a range of elements within the container). Displaying
the value of each element in the container or adding its value to a total are
examples. In an ordinary C++ array, such operations are carried out using a
pointer (or the [] operator, which is the same underlying mechanism). For
example, the following code iterates through a float array, displaying the
value of each element:

float* ptr = start_address;
for(int j=0; j<SIZE; j++)
 cout << *ptr++;

I dereference the pointer ptr with the * operator to obtain the value of the
item it points to, and increment it with the ++ operator so it points to the
next item.

Ordinary Pointers Underpowered

However, with more sophisticated containers, plain C++ pointers have
disadvantages. For one thing, if the items stored in the container are not
placed contiguously in memory, handling the pointer becomes much more
complicated; I can’t simply increment it to point to the next value. For
example, in moving to the next item in a linked list, I can’t assume the item
is adjacent to the previous one; I must follow the chain of pointers.

I may also want to store the address of some container element in a pointer
variable so I can access the element at some future time. What happens to
this stored pointer value if I insert or erase something from the middle of
the container? It may not continue to be valid if the container’s contents are
rearranged. It would be nice if I didn’t need to worry about revising all my
stored pointer values when insertions and deletions take place.

One solution to these kinds of problems is to create a class of “smart
pointers.” An object of such a class basically wraps its member functions
around an ordinary pointer. The ++ and * operators are overloaded so they
know how to point to the elements in their container even if the elements
are not contiguous in memory or change their locations. Here’s how that
might look in skeleton form:

class SmartPointer
 {
 private:
 float* p; // an ordinary pointer
 public:
 float operator*()
 { }
 float operator++()
 { }
 };

void main()
 {
 ...
 SmartPointer sptr = start_address;
 for(int j=0; j<SIZE; j++)
 cout << *sptr++;
 }

Whose Responsibility?

Assuming I need a class of smart pointers, whose responsibility is it to
create this class? As a class user, I certainly don’t want the added
complexity of writing the code myself.

On the other hand, there’s a problem with making smart pointers members
of the container class. I may need many pointers in a container, and it
would be complicated for a container object itself to store these values.
How many should be included? Should every container include, say, three
pointers to its own elements? Or should it maintain a table of such pointers?
The application should be able to create such a pointer whenever it needs
one without such restrictions or complexity.

The approach chosen by the STL is to make smart pointers, called iterators,
into a completely separate class (actually a family of templatized classes).
The class user creates iterators by defining them to be objects of such
classes.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:The Standard Template Library

http://www.itknowledge.com/reference/archive/1571690638/ch12/738-742.html [21-03-2000 19:46:35]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch12/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Iterators as an Interface

Besides acting as smart pointers to items in containers, iterators serve
another important purpose in the STL. They determine which algorithms
can be used with which containers. Why is this necessary?

In some theoretical sense, you should be able to apply every algorithm to
every container. In fact, many algorithms will work with all the STL
containers. However, some algorithms are inefficient (i.e., slow) when used
with some containers. The sort() algorithm, for example, needs random
access to the container it’s trying to sort; otherwise, it would need to iterate
through the container to find each element before moving it, a
time-consuming approach. Similarly, to be efficient, the reverse()
algorithm needs to iterate backward as well as forward through a container.

Iterators provide a surprisingly elegant way to match appropriate algorithms
with containers. As I noted, you can think of an iterator as a cable, like the
cable used to connect your computer and printer. One end of the cable plugs
into a container and the other plugs into an algorithm. However, not all
cables plug into all containers, and not all cables plug into all algorithms. If
you try to use an algorithm that’s too powerful for a given container type,
then you won’t be able to find a cable (an iterator) to connect them. If you
try it, you will receive a compiler error alerting you to the problem.

How many kinds of iterators (cables) do you need to make this scheme
work? As it turns out, only five types are necessary. Figure 12-3 shows
these five categories, arranged from bottom to top in order of increasing
sophistication, except that input and output are equally unsophisticated.
(This is not an inheritance diagram.)

Figure 12-3 Iterator categories

If an algorithm needs only to step through a container in a forward
direction, reading (but not writing to) one item after another, it can use an
input iterator to connect itself to the container. If it steps through the
container in a forward direction but writes to the container instead of
reading from it, it can use an output iterator. If it steps along in the forward
direction and both reads and writes, it must use a forward iterator. If it must
be able to step both forward and back, it must use a bidirectional iterator.
And if it must access any item in the container instantly, without stepping
along to it, it must use a random-access iterator. Table 12-7 shows which
operations each iterator supports.

Table 12-7 Capabilities of different iterator categories
Iterator Step

Forward
Read Write Step

Back
Random
Access

++ value=*i *i=value -- [n]

Random-access
iterator

x x x x x

Bidirectional iterator x x x x
Forward iterator x x x
Output iterator x x
Input iterator x x

As you can see, all the iterators support the ++ operator for stepping
forward through the container. The input iterator can also use the * operator
on the right side of the equal sign (but not on the left):

value = *iter;

The output iterator can use the * operator only on the right:

*iter = value;

The forward iterator handles both input and output and the bidirectional
iterator can be decremented as well as incremented. The random-access
iterator can use the [] operator (as well as simple arithmetic operators such
as + and -) to access any element quickly.

An algorithm can always use an iterator with more capability than it needs.
If it needs a forward iterator, for example, it’s all right to plug it into a
bidirectional iterator or a random-access iterator.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:The Standard Template Library

http://www.itknowledge.com/reference/archive/1571690638/ch12/742-743.html [21-03-2000 19:46:47]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
javascript:displayWindow('images/12-03.jpg',357,504)
javascript:displayWindow('images/12-03.jpg',357,504)
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch12/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Matching Algorithms with Containers

I’ve used a cable as an analogy to an iterator because an iterator connects an
algorithm and a container. Let’s focus on the two ends of this imaginary
cable: the container end and the algorithm end.

Plugging the Cable into a Container

If you confine yourself to the basic STL containers, you will be using only
two kinds of iterators. As shown in Table 12-8, the vector and deque require
a random-access iterator, whereas the list, set, multiset, map, and multimap
require only bidirectional iterators.

Table 12-8 Iterator types accepted by containers
Iterator Vector List Deque Set Multiset Map Multimap

Random Access x x
Bidirectional x x x x x x x
Forward x x x x x x x
Input x x x x x x x
Output x x x x x x x

How does the STL enforce the use of the correct iterator for a given
container? When you define an iterator, you must specify what kind of
container it will be used for. For example, if you’ve defined a list holding
elements of type int,

list<int> iList; // list of ints

then to define an iterator to this list you say

list<int>::iterator it; // iterator to list-of-ints

When you do this, the STL automatically makes this iterator a bidirectional
iterator because that’s what a list requires. An iterator to a vector or a deque,
on the other hand, is automatically created as a random-access iterator.

This automatic selection process is implemented, deep in ITERATOR.H and
other header files, by having an iterator class for a specific container be
derived (inherited) from a more general iterator class that’s appropriate to a
specific container. Thus, the iterators to vectors and deques are derived from
the random_access_iterator class, whereas iterators to lists are
derived from the bidirectional_iterator class.

You now see how containers are matched to their end of the fanciful iterator
cables. A cable doesn’t actually plug into a container; it is (figuratively
speaking) hard-wired to it, like the cord on a toaster. Vectors and deques are
always wired to random-access cables, whereas lists (and all the associative
containers, which you’ll encounter in Session 6) are always wired to
bidirectional cables.

Plugging the Cables into the Algorithm

Now that you’ve seen how one end of an iterator cable is “wired” to the
container, you’re ready to look at the other end of the cable. How do iterators
plug into algorithms? Every algorithm, depending on what it will do to the
elements in a container, requires a certain kind of iterator. If the algorithm
must access elements at arbitrary locations in the container, it requires a
random-access iterator. If it will merely step forward through the iterator, it
can use the less powerful forward iterator. Table 12-9 shows a sampling of
algorithms and the iterators they require. (A complete version of this table is
shown in Appendix B.)

Table 12-9 Type of iterator required by representative algorithms
Algorithm Input Output Forward Bidirectional Random

Access

for_each x
find x
count x
copy x x
replace x
unique x
reverse x
sort x
nth_element x
merge x x
accumulate x

Again, although each algorithm requires an iterator with a certain level of
capability, a more powerful iterator will also work. The replace()
algorithm requires a forward iterator, but it will work with a bidirectional or a
random-access iterator as well.

Now imagine that algorithms have connectors with pins sticking out, as
shown in Figure 12-4. Those requiring random-access iterators have five
pins, those requiring bidirectional iterators have four pins, those requiring
forward iterators have three pins, and so on.

Figure 12-4 Iterators connecting containers and algorithms

The algorithm end of an iterator (a cable) has a connector with a certain
number of holes.You can plug a five-hole iterator into a five-pin algorithm,
and you can also plug it into an algorithm with four or fewer pins. However,
you can’t plug a four-hole (bidirectional) iterator into a five-pin
(random-access) algorithm. So vectors and deques, with random-access
iterators, can be plugged into any algorithm, whereas lists and associative
containers, with only four-hole bidirectional iterators, can be plugged into
less powerful algorithms.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:The Standard Template Library

http://www.itknowledge.com/reference/archive/1571690638/ch12/743-745.html [21-03-2000 19:47:01]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
javascript:displayWindow('images/12-04.jpg',477,349)
javascript:displayWindow('images/12-04.jpg',477,349)
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch12/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

The Tables Tell the Story

From Table 12-8 and 12-9, you can figure out whether an algorithm will work with a given container.
Table 12-9 shows that the sort() algorithm, for example, requires a random-access iterator. Table
12-8 indicates that the only containers that can handle random-access iterators are vectors and
deques. There’s no use trying to apply the sort() algorithm to lists, sets, maps, and so on.

Any algorithm that does not require a random-access iterator will work with any kind of STL
container because all these containers use bidirectional iterators, which is only one grade below
random access. (If there were a singly linked list in the STL, it would use only a forward iterator, so it
could not be used with the reverse() algorithm).

As you can see, comparatively few algorithms require random-access iterators. Therefore, most
algorithms work with most containers.

Overlapping Member Functions and Algorithms

Sometimes you must decide between using a member function or an algorithm with the same name.
The find() algorithm, for example, requires only an input iterator, so it can be used with any
container. However, sets and maps have their own find() member function (unlike sequential
containers). Which version of find() should you use? Generally, if a member-function version
exists, it’s because, for that container, the algorithm version is not as efficient as it could be; in these
cases, you should probably use the member-function version.

Iterators at Work

Using iterators is considerably simpler than talking about them. You’ve already seen several
examples of one of the more common uses where iterator values are returned by a container’s
begin() and end() member functions. I’ve disguised the fact that these functions return iterator
values by treating them as if they were pointers. Now let’s see how actual iterators are used with
these and other functions.

Data Access

In containers that provide random-access iterators (vector and queue), it’s easy to iterate through the
container using the [] operator. Containers such as lists, which don’t support random access, require
a different approach. In previous examples, I’ve used a “destructive readout” to display the contents
of a list by popping off the items one by one, as in the LIST and LISTPLUS examples in Session 3. A
more practical approach is to define an iterator for the container. The LISTOUT program (Listing
12-17) shows how that might look.

Listing 12-17 LISTOUT

// listout.cpp
// iterator and for loop for output
#include <iostream.h>
#include <list.h>

void main()
 {
 int arr[] = { 2, 4, 6, 8 }; // array of ints
 list<int> iList(arr, arr+4); // list initialized to array
 list<int>::iterator it; // iterator to list-of-ints
 for(it = iList.begin(); it != iList.end(); it++)
 cout << *it << ' ';
 }

The program simply displays the contents of the iList container. The output is

2 4 6 8

I define an iterator of type list<int> to match the container type. As with a pointer variable, I
must give an iterator a value before using it. In the for loop, I initialize it to iList.begin(), the
start of the container. I can increment it with the ++ operator so it steps through the elements in a
container, and I can dereference it with the * operator to obtain the value of each element it points to.
I can also compare it for equality using the != operator so I can exit the loop when it reaches the end
of the container at iList.end().

An equivalent approach, using a while loop instead of a for loop, might be

it = iList.begin();
while(it != iList.end())
 cout << *it++ << ' ';

The *it++ syntax is the same as it would be for a pointer.

Data Insertion

I can use similar code to place data into existing elements in a container, as shown in LISTFILL
(Listing 12-18).

Listing 12-18 LISTFILL

// listfill.cpp
// uses iterator to fill list with data
#include <iostream.h>
#include <list.h>

void main()
 {
 list<int> iList(5); // empty list holds 5 ints
 list<int>::iterator it; // iterator
 int data = 0;
 // fill list with data
 for(it = iList.begin(); it != iList.end(); it++)
 *it = data += 2;
 // display list
2 for(it = iList.begin(); it != iList.end(); it++)
 cout << *it << ' ';
 }

The first loop fills the container with the int values 2, 4, 6, 8, 10, showing that the overloaded *
operator works on the left side of the equal sign as well as on the right. The second loop displays
these values.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:The Standard Template Library

http://www.itknowledge.com/reference/archive/1571690638/ch12/745-748.html [21-03-2000 19:47:09]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch12/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Algorithms and Iterators

Algorithms, as I’ve discussed, use iterators as arguments (and sometimes as return values).
The ITERFIND example (Listing 12-19) shows the find() algorithm applied to a list. (I
know I can use the find() algorithm with lists because it requires only an input iterator.)

Listing 12-19 ITERFIND

// iterfind.cpp
// find() returns a list iterator
#include <iostream.h>
#include <algo.h>
#include <list.h>

void main()
 {
 list<int> iList(5); // empty list holds 10 ints
 list<int>::iterator it; // iterator
 int data = 0;
 // fill list with data
 for(it = iList.begin(); it != iList.end(); it++)
 *it = data += 2;
 // look for number 8
 it = find(iList.begin(), iList.end(), 8);
 if(it != iList.end())
 cout << "\nFound 8";
 else
 cout << "\nDid not find 8.";
 }

As an algorithm, find() takes three arguments. The first two are iterator values specifying
the range to be searched and the third is the value to be found. Here I fill the container with
the same 2, 4, 6, 8, 10 values as in the last example. Then I use the find() algorithm to look
for the number 8. If find() returns iList.end(), I know it’s reached the end of the
container without finding a match. Otherwise, it must have located an item with the value 8.
Here the output is

Found 8

Can I use the value of the iterator to tell where in the container the 8 is located? You might
think the offset of the matching item from the beginning of the container could be calculated
from (it - iList.begin()). However, this is not a legal operation on the iterators
used for lists. A list iterator is only a bidirectional iterator, so I can’t perform arithmetic on it.
I can do arithmetic on random-access iterators, such as those used with vectors and queues.
Thus, if I were searching a vector v rather than a list iList, I could rewrite the last part of
ITERFIND like this:

it = find(v.begin(), v.end(), 8);
if(it != v.end())
 cout << "\nFound 8 at location " << (it-v.begin());
else
 cout << "\nDid not find 8.";

The output would be

Found 8 at location 3

Listing 12-20 shows another example in which an algorithm uses iterators as arguments. This
one uses the copy() algorithm with a vector. The user specifies a range of locations to be
copied from one vector to another, and the program copies them. Iterators specify this range.

Listing 12-20 ITERCOPY

// itercopy.cpp
// uses iterators for copy() algorithm
#include <iostream.h>
#include <vector.h>
#include <algo.h>

void main()
 {
 int beginRange, endRange;
 int arr[] = { 11, 13, 15, 17, 19, 21, 23, 25, 27, 29 };
 vector<int> v1(arr, arr+10); // initialized vector
 vector<int> v2(10); // uninitialized vector

 cout << "Enter range to be copied (example: 2 5): ";
 cin >> beginRange >> endRange;

 vector<int>::iterator it1 = v1.begin() + beginRange;
 vector<int>::iterator it2 = v1.begin() + endRange;
 vector<int>::iterator it3;
 // copy range from v1 to v2
 it3 = copy(it1, it2, v2.begin());
 // (it3 -> last item copied)
 it1 = v2.begin();
 // iterate through range
 while(it1 != it3) // in v2, displaying values
 cout << *it1++ << ' ';
 }

Some interaction with this program is

Enter range to be copied (example: 2 5): 3 6
17 19 21

I don’t want to display the entire contents of v2, only the range of items copied. Fortunately,
copy() returns an iterator that points to the last item (actually one past the last item) that
was copied to the destination container, v2 in this case. The program uses this value in the
while loop to display only the items copied.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:The Standard Template Library

http://www.itknowledge.com/reference/archive/1571690638/ch12/748-750.html [21-03-2000 19:47:17]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch12/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Quiz 4

1. Which of the following are true?

a. An iterator is an object of an appropriate container class.

b. An iterator indicating a specific container element is a
class, not an object.

c. An iterator class is derived from an appropriate container
class.

d. An iterator class for a specific container category (such as a
list) is derived from a more general iterator class that is
appropriate for that container (such as
bidirectional_iterator).

e. An iterator class is templatized.

2. An iterator

a. knows how big the objects in its container are.

b. can figure out where the objects in its container are located
in memory.

c. will usually point to an object in its container.

d. can always move forward or backward through its
container.

e. requires the objects in its container to be located
contiguously in memory.

3. Which of these statements are true?

a. Iterators prevent the use of algorithms with containers that
don’t support that algorithm’s task.

b. An algorithm requiring random-access iterators will work
with a list.

c. An algorithm requiring bidirectional iterators will work
with a vector.

d. You can always use an iterator that’s less powerful than a
container requires.

e. You can always use an iterator that’s more powerful than an
algorithm requires.

4. If iter is an iterator variable that is used in a while loop, then

a. before entering the loop, iter should probably have been
initialized to point to some element in a container.

b. iter can point to ordinary C++ array elements.

c. iter cannot be decremented.

d. the expression *iter++ will obtain the value of the
element pointed to by iter.

e. the expression *iter++ will cause iter to point to the
next element.

5. The copy() algorithm returns

a. the number of elements copied.

b. an iterator to an element in the range copied from.

c. an iterator to an element in the range copied to.

d. an iterator to the last item copied.

e. void.

Exercise 1

Write a program that allows you to copy any range in a container to any
other location in the same container where it will fit. Have the user specify
the range and the location where it will be copied. Can you copy to a point
inside the range? Try using copy_backward() instead of copy().

Exercise 2

Write a program that will find not only the first element in a container that
has a specified value, but all elements in the container that have that value.

Midchapter Discussion

George: Just when I thought I was getting a grip on C++, along comes
all this new stuff. It’s like learning another language!

Estelle: Right, with all these containers and dozens and dozens of
algorithms and member functions. It doesn’t seem fair.

Don: But it’s very powerful. If you ever need to store data in
anything but an array, the STL will save you a huge amount of
trouble.

Estelle: But have you looked in the STL header files? Some of that
stuff is seriously complicated.

Don: Well, you don’t really need to understand what’s going on in
those header files. I mean, it builds character to wade through
them, but the beauty of OOP is that you can use classes without
understanding them. All you need to understand is the user
interface.

George: You mean the functions and stuff that go with a container.
Don: Exactly.
Estelle: The thing I don’t understand is why we need iterators.
George: To be smart pointers and to keep you from using the wrong

algorithm with the wrong container.
Estelle: I know, but isn’t there a simpler way?
Don: Well, maybe you could just use pointers. But then you’d need

to handle all the memory management stuff for a container by
yourself, so you’d know where it was.

George: OK, I can see that. But where did they get the idea to use
iterators to connect algorithms to containers?

Don: That way you can make the same algorithm work with many
kinds of containers. I think the STL is the first set of container
classes that uses iterators that way. Earlier container classes
used member functions to do all the work, so there was a lot of
duplication. If you had 10 containers and they each had 20
member functions, that was 200 member functions you had to
worry about. In the STL, there’s only one version of each
algorithm.

Estelle: Pretty clever.
Don: I’ll say.

Session 5: Specialized Iterators

In this session, I’ll examine two specialized forms of iterators: iterator
adapters, which can change the behavior of iterators in interesting ways,
and stream iterators, which allow input and output streams to behave like
iterators.

Iterator Adapters

The STL provides three variations on the normal iterator. These are the
reverse iterator, the insert iterator, and the raw storage iterator. The
reverse iterator allows you to iterate backward through a container. The
insert iterator changes the behavior of various algorithms, such as copy()
and merge(), so they insert data into a container rather than overwriting
existing data. The raw storage iterator allows output iterators to store data
in uninitialized memory, but it’s used in specialized situations and I’ll
ignore it here.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:The Standard Template Library

http://www.itknowledge.com/reference/archive/1571690638/ch12/750-752.html [21-03-2000 19:47:30]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch12/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Reverse Iterators

Suppose you want to iterate backward through a container from the end to the beginning. You
might think you could say something like

list<int>::iterator it; // normal iterator
it = iList.end(); // start at end
while(it != iList.begin()) // go to beginning
 cout << *it-- << ' '; // decrement iterator

but unfortunately this doesn’t work. For one thing, the range will be wrong (from n to 1, instead
of from n-1 to 0).

To iterate backward, you must use a reverse iterator. The ITEREV program (Listing 12-21)
shows an example where a reverse iterator is used to display the contents of a list in reverse
order.

Listing 12-21 ITEREV

// iterev.cpp
// demonstrates reverse iterator
#include <iostream.h>
#include <list.h>

void main()
 {
 int arr[] = { 2, 4, 6, 8, 10 }; // array of ints
 list<int> iList(arr, arr+5); // list initialized to array

 list<int>::reverse_iterator revit; // reverse iterator

 revit = iList.rbegin(); // iterate backwards
 while(revit != iList.rend()) // through list,
 cout << *revit++ << ' '; // displaying output
 }

The output of this program is

10 8 6 4 2

You must use the member functions rbegin() and rend() when you use a reverse iterator.
(But don’t try to use them with a normal forward iterator.) Confusingly, you’re starting at the
end of the container, but the member function is called rbegin(). Also, you must increment
the iterator. Don’t try to decrement a reverse iterator; revit-- doesn’t do what you want.
With a reverse_iterator, always go from rbegin() to rend() using the increment
operator.

Insert Iterators

Some algorithms, such as copy(), overwrite the existing contents (if any) of the destination
container. The COPYDEQ program (Listing 12-22), which copies from one deque to another,
provides an example.

Listing 12-22 COPYDEQ

// copydeq.cpp
// demonstrates normal copy with queues
#include <iostream.h>
#include <deque.h>
#include <algo.h>

void main()
 {
 int arr1[] = { 1, 3, 5, 7, 9 }; // initialize d1
 deque<int> d1(arr1, arr1+5);

 int arr2[] = { 2, 4, 6, 8, 10 }; // initialize d2
 deque<int> d2(arr2, arr2+5);
 // copy d1 to d2
 copy(d1.begin(), d1.end(), d2.begin());

 for(int j=0; j<d2.size(); j++) // display d2
 cout << d2[j] << ' ';
 }

The output of this program is

1 3 5 7 9

The contents of d1 have been written over the contents of d2, so when I display d2, there’s
no trace of its former (even-numbered) contents. Usually this behavior is what you want.
Sometimes, however, you’d rather have copy() insert new elements into a container along
with the old ones than overwrite the old ones. You can cause this behavior by using an insert
iterator. There are three flavors of this iterator:

• back_inserter inserts new items at the end

• front_inserter inserts new items at the beginning

• inserter inserts new items at a specified location

The DINSITER program (Listing 12-23) shows how to use a back inserter.

Listing 12-23 DINSITER

// dinsiter.cpp
// demonstrates insert iterators with queues
#include <iostream.h>
#include <deque.h>
#include <algo.h>

void main()
 {
 int arr1[] = { 1, 3, 5, 7, 9 }; // initialize d1

 deque<int> d1(arr1, arr1+5);
 int arr2[] = {2, 4, 6}; // initialize d2
 deque<int> d2(arr2, arr2+3);

 copy(d1.begin(), d1.end(), back_inserter(d2));

 cout << "\nd2: "; // display d2
 for(int j=0; j<d2.size(); j++)
 cout << d2[j] << ' ';
 }

The back inserter uses the container’s push_back() member function to insert the new items
at the end of the target container d2, following the existing items. The source container d1 is
unchanged. The output of the program, which displays the new contents of d2, is

2 4 6 1 3 5 7 9

If I specified a front inserter instead,

copy(d1.begin(), d1.end(), front_inserter(d2))

then the new items would be inserted into the front of the container. The underlying mechanism
is the container’s push_front() member function, which pushes the items one at a time,
effectively reversing their order. The output would be

9 7 5 3 1 2 4 6

I can also insert the new items starting at any arbitrary element by using the inserter
version of the insert iterator. For example, to insert the new items at the beginning of d2, I
would say

copy(d1.begin(), d1.end(), inserter(d2, d2.begin());

The first argument to inserter is the container to be copied into and the second is an iterator
pointing to the location where copying should begin. Because inserter uses the container’s
insert() member function, the order of the elements is not reversed. The output resulting
from this statement would be

1 3 5 7 9 2 4 6

By changing the second argument to inserter, I could cause the new data to be inserted
anywhere in d2.

Note that a front_inserter can’t be used with a vector, because vectors don’t have a
push_front() member function; they can be accessed only at the end.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:The Standard Template Library

http://www.itknowledge.com/reference/archive/1571690638/ch12/752-755.html [21-03-2000 19:47:38]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch12/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Stream Iterators

Stream iterators allow you to treat files and I/O devices (such as cin and cout) as if they were
iterators. This makes it easy to use files and I/O devices as arguments to algorithms. (This is another
demonstration of the versatility of using iterators to link algorithms and containers.)

The major purpose of the input and output iterator categories is to support these stream iterator classes.
Input and output iterators make it possible for appropriate algorithms to be used directly on input and
output streams.

Stream iterators are actually objects of classes that are templatized for different types of input or
output. There are two stream iterators: ostream_iterator and istream_iterator. Let’s look
at them in turn.

The ostream_iterator Class

An ostream_iterator object can be used as an argument to any algorithm that specifies an output
iterator. In the OUTITER example (Listing 12-24), I use it as an argument to copy().

Listing 12-24 OUTITER

// outiter.cpp
// demonstrates ostream_iterator
#include <iostream.h>
#include <algo.h>
#include <list.h>

void main()
 {
 int arr[] = { 10, 20, 30, 40, 50 };
 list<int> iList(arr, arr+5); // initialized list
 ostream_iterator<int> ositer(cout, "--"); // ostream iterator
 cout << "\nContents of list: ";
 copy(iList.begin(), iList.end(), ositer); // display the list
 }

I define an ostream iterator for reading type int values. The two arguments to this constructor are
the stream to which the int values will be written and a string value that will be displayed following
each value. The stream value is typically a file name or cout; here it’s cout. When writing to cout,
you can make the string consist of any characters you want; here I use two dashes.

The copy() algorithm copies the contents of the list to cout. The ostream iterator is used as the
third argument to copy; it’s the destination.

The output of OUTITER is

Contents of list: 10--20--30--40--50--

Listing 12-25, FOUTITER, shows how to use an ostream iterator to write to a file.

Listing 12-25 FOUTITER

// foutiter.cpp
// demonstrates ostream_iterator with files
#include <fstream.h>
#include <algo.h>
#include <list.h>

void main()
 {
 int arr[] = { 11, 21, 31, 41, 51 };
 list<int> iList(arr, arr+5); // initialized 2list
 ofstream outfile("ITER.DAT"); // create file object

 ostream_iterator<int> ositer(outfile, " "); // iterator
 // write list to file
 copy(iList.begin(), iList.end(), ositer);
 }

I must define an ofstream file object and associate it with a file, here called ITER.DAT. This object is
the first argument to the ostream_itertor. When writing to a file, use a whitespace character in
the string argument, not characters such as --. This makes it easier to read the data back from the file.
Here I use a space (“ ”) character.

There’s no displayable output from FOUTITER, but you can examine the file ITER.DAT with an editor to
see that it contains the data, which should be

11 21 31 41 51

The istream_iterator Class

An istream_iterator object can be used as an argument to any algorithm that specifies an input
iterator. Listing 12-26, INITER, shows such objects used as the first two arguments to copy(). This
program reads floating-point numbers entered into cin (the keyboard) by the user and stores them in a
list.

Listing 12-26 INITER

// initer.cpp
// demonstrates istream_iterator
#include <iostream.h>
#include <list.h>
#include <algo.h>

void main()
 {
 list<float> fList(5); // uninitialized list
 cout << "\nEnter 5 floating-point numbers";
 cout << "\n(Type [Ctrl] [z] to terminate): ";
 // istream iterators
 istream_iterator<float, ptrdiff_t> cin_iter(cin); // cin
 istream_iterator<float, ptrdiff_t> end_of_stream; // eos

 // copy from cin to fList
 copy(cin_iter, end_of_stream, fList.begin());
 cout << endl; // display fList
 ostream_iterator<float> ositer(cout, "--");
 copy(fList.begin(), fList.end(), ositer);
 }

Some interaction with INITER is

Enter 5 floating-point numbers: 1.1 2.2 3.3 4.4 5.5
1.1--2.2--3.3--4.4--5.5--

Notice that for copy(), because the data coming from cin is the source and not the destination, I
must specify both the beginning and the end of the range of data to be copied. The beginning is an
istream_iterator connected to cin, which I define as cin_iter using the one-argument
constructor. But what about the end of the range? The no-argument (default) constructor to
istream_iterator plays a special role here. It always creates an istream_iterator object
that represents the end of the stream.

How does the user generate this end-of-stream value when inputting data? By typing the key

combination, which transmits the end-of-file character normally used for streams. (Pressing
won’t end the file, although it will delimit the numbers.)

I use an ostream_iterator to display the contents of the list, although of course there are many
other ways to do this.

At least on my compiler, I must perform any display output, such as the Enter 5
floating-point numbers prompt, not only before using the istream iterator, but even before
defining it. As soon as this iterator is defined, it locks up the display waiting for input.

Listing 12-27, FINITER, uses a file instead of cin as input to the copy() algorithm.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:The Standard Template Library

http://www.itknowledge.com/reference/archive/1571690638/ch12/755-757.html [21-03-2000 19:47:51]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch12/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Listing 12-27 FINITER

// finiter.cpp
// demonstrates istream_iterator with files
#include <fstream.h>
#include <list.h>
#include <algo.h>

void main()
 {
 list<int> iList; // empty list
 ifstream infile("ITER.DAT"); // create input file object
 // (ITER.DAT must already exist)
 // istream iterators
 istream_iterator<int, ptrdiff_t> file_iter(infile); // file
 istream_iterator<int, ptrdiff_t> end_of_stream; // eos
 // copy from infile to iList
 copy(file_iter, end_of_stream, back_inserter(iList));
 cout << endl; // display iList
 ostream_iterator<int> ositer(cout, "--");
 copy(iList.begin(), iList.end(), ositer);
 }

The output from FINITER is

11--21--31--31--41--51--

I define an ifstream object to represent the ITER.DAT file, which must already exist and
contain data. (The FOUTITER program, if you ran it, will have generated this file.)

Instead of using cout, as in the istream iterator in the INITER example, I use the ifstream
object named infile. The end-of-stream object is the same.

I’ve made another change in this program: It uses a back_inserter to insert data into
iList. This makes it possible to define iList as an empty container instead of one with a
specified size. This often makes sense when reading input because you may not know how many
items will be entered.

Quiz 5

1. To use a reverse_iterator, you should

a. begin by initializing it to end().

b. begin by initializing it to rend().

c. begin by initializing it to rbegin().

d. increment it to move backward through the container.

e. decrement it to move backward through the container.

2. Which of the following statements are true?

a. The back_inserter iterator always causes the new elements to be inserted
following the existing ones.

b. The inserter iterator always causes the newly inserted elements to be placed
before the existing ones.

c. Insert iterators are normally used as arguments to the member functions
insert(), push_front(), and push_back().

d. If you want to overwrite existing data, you should use the front_inserter
iterator.

e. Before using an insert iterator, you must write a statement to define it.

3. Stream iterators

a. provide a handy way to perform I/O on container elements.

b. are random-access iterators.

c. allow you to treat the display and keyboard devices as if they were iterators.

d. allow you to treat files as if they were iterators.

e. cannot be used for algorithm arguments that require random-access iterators.

4. Which of the following statements are largely correct?

a. The first argument to an ostream_iterator must be an ostream object.

b. The first argument to an ostream_iterator represents an output device or
file.

c. An ostream_iterator is a forward_iterator.

d. The second argument to an ostream_iterator specifies the EOL
(end-of-line) character.

e. The second argument to an ostream_iterator specifies the EOS
(end-of-stream) character.

5. Which of the following are accurate statements?

a. When using an istream_iterator with copy(), the end of the range to be
copied from is indicated by the end() member function.

b. When using an istream_iterator with copy(), the end of the range to be
copied from is indicated by an istream_iterator object defined with the
default constructor.

c. An istream_iterator is an input_iterator.

d. The second argument to an istream_iterator specifies the EOL
(end-of-line) character.

e. The second argument to an istream_iterator specifies the EOS
(end-of-stream) character.

Exercise 1

Write a program that copies one file to another using the copy() algorithm and stream iterators.
The user should supply both source and destination file names to the program.

Exercise 2

Write a program in which the merge() algorithm combines the contents of two containers and
sends the results to cout using a stream iterator.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:The Standard Template Library

http://www.itknowledge.com/reference/archive/1571690638/ch12/757-759.html [21-03-2000 19:48:01]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch12/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Session 6: Associative Containers

The two main categories of associative containers in the STL are maps and sets. A map
(sometimes called a dictionary or symbol table) stores key and value pairs. The keys are arranged
in sorted order. You find an element using the key, and this gives you access to the value. A
good analogy to a map is an ordinary dictionary. The alphabetized words correspond to the keys,
and the definitions of the words are the values. Because the words in a dictionary are arranged in
alphabetical order, you can quickly look up a particular word-definition combination. Similarly,
your program, given a specified key, can quickly locate the key-value combination.

A set is similar to a dictionary, but it stores only keys; there are no values. You can think of a set
as a list of words without definitions.

In both a set and a map, only one example of each key can be stored. It’s like a dictionary that
forbids more than one entry for each word. However, the STL has alternative versions of sets and
maps. There are actually four kinds of associative containers: set, multiset, map, and multimap.
A multiset and a multimap are similar to a set and a map, but can include multiple instances of
the same key.

The advantages of associative containers are that, given a specific key, you can quickly access
the information associated with this key; it is much faster than by searching item by item through
a sequence container. On normal associative containers, you can also quickly iterate through the
container in sorted order. (See also the note on the hash table versions of these containers at the
end of this section).

Associative containers share many member functions with other containers. However, some
algorithms, such as lower_bound() and upper_bound(), exist only for associative
containers. Also, some member functions that do exist for other containers, such as the push and
pop family (push_back() and so on), have no versions for associative containers. (It wouldn’t
make sense to use push and pop with associative containers because elements must always be
inserted in their ordered locations, not at the beginning or the end of the container.)

I’ll start the discussion of associative containers with sets, which are slightly simpler.

Sets and Multisets

Sets are often used to hold objects of user-defined classes such as employees in a database.
(You’ll see examples of this in Session 7.) However, sets can also hold simpler elements such as
strings. Figure 12-5 shows how this looks. The objects are arranged in ordered form and are
accessed using the key.

Figure 12-5 A set of string objects

Listing 12-28, SET, shows a set that stores objects of class string. Again, I use the current
Borland header file, CSTRING.H, to invoke the string class. Depending on your compiler, you
may need to change this header file name to STRING, BSTRING.H, or some other name (see
Appendixes C and D).

Listing 12-28 SET

// set.cpp
// set stores string objects
#include <iostream.h>
#include <set.h>
#include <cstring.h>

void main()
 { // array of string objects
 string names[] = {"Juanita", "Robert",
 "Mary", "Amanda", "Marie"};
 // initialize set to array
 set<string, less<string> > nameSet(names, names+5);
 // iterator to set
 set<string, less<string> >::iterator iter;
 nameSet.insert("Yvette"); // insert some more names
 nameSet.insert("Larry");
 nameSet.insert("Robert"); // no effect; already in set
 nameSet.insert("Barry");
 nameSet.erase("Mary"); // erase a name
 // display size of set
 cout << "\nSize=" << nameSet.size() << endl;
 iter = nameSet.begin(); // display members of set
 while(iter != nameSet.end())
 cout << *iter++ << '\n';

 string searchName; // get name from user
 cout << "\nEnter name to search for: ";
 cin >> searchName;
 // find matching name in set

 iter = nameSet.find(searchName);
 if(iter == nameSet.end())
 cout << "The name " << searchName << " is NOT in the set.";
 else
 cout << "The name " << *iter << " IS in the set.";
 }

To define a set, I specify the type of objects to be stored (in this case, class string) and the
function object that will be used to order the members of the set. Here I use less<>() applied
to string objects.

As you can see, a set has an interface similar to other STL containers. I can initialize a set to an
array and insert new members into a set with the insert() member function. To display the
set, I can iterate through it.

To find a particular entry in the set, I use the find() member function. (Sequential containers
use find() in its algorithm version.) Here’s some sample interaction with SET, where the user
enters “George” as the name to be searched for:

Size = 7
Amanda
Barry
Juanita
Larry
Marie
Robert
Yvette

Enter name to search for: George
The name George is NOT in the set.

Of course, the speed advantage of searching an associative container isn’t apparent until you
have many more entries than in this example.

Let’s look at an important pair of member functions available only with associative containers.
Listing 12-29, SETRANGE, shows the use of lower_bound() and upper_bound().

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:The Standard Template Library

http://www.itknowledge.com/reference/archive/1571690638/ch12/759-762.html [21-03-2000 19:48:13]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
javascript:displayWindow('images/12-05.jpg',424,372)
javascript:displayWindow('images/12-05.jpg',424,372)
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch12/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Listing 12-29 SETRANGE

// setrange.cpp
// tests ranges within a set
#include <iostream.h>
#include <set.h>
#include <cstring.h>

void main()
 { // set of string objects
 set<string, less<string> > organic;
 // iterator to set
 set<string, less<string> >::iterator iter;

 organic.insert("Curine"); // insert organic compounds
 organic.insert("Xanthine");
 organic.insert("Curarine");
 organic.insert("Melamine");
 organic.insert("Cyanimide");
 organic.insert("Phenol");
 organic.insert("Aphrodine");
 organic.insert("Imidazole");
 organic.insert("Cinchonine");
 organic.insert("Palmitamide");
 organic.insert("Cyanimide");

 iter = organic.begin(); // display set
 while(iter != organic.end())
 cout << *iter++ << '\n';

 string lower, upper; // display entries in range
 cout << "\nEnter range (example C Czz): ";
 cin >> lower >> upper;
 iter = organic.lower_bound(lower);
 while(iter != organic.upper_bound(upper))
 cout << *iter++ << '\n';
 }

The program first displays an entire set of organic compounds. The user is then prompted to type
in a pair of key values, and the program will display those keys that lie within this range. Here’s
some sample interaction:

Aphrodine
Cinchonine
Curarine
Curine
Cyanimide
Imidazole
Melamine
Palmitamide
Phenol
Xanthine

Enter range (example C Czz): Aaa Curb
Aphrodine
Cinchonine
Curarine

The lower_bound() member function takes an argument that is a value of the same type as
the key. It returns an iterator to the first entry that is not less than this argument (where the
meaning of “less” is determined by the function object used in the set’s definition). The
upper_bound() function returns an iterator to the first entry that is greater than its argument.
Together, these functions allow you to access a specified range of values.

Maps and Multimaps

A map stores associations of keys and values. The keys can be strings or numbers. The values
are often complicated objects, such as employee or car_part or student_record
objects, although they can also be numbers or strings. For example, the key could be a word, and
the value could be a number representing how many times that word appears in a document.
Such a map could be used to construct a frequency table. Or the key could be an employee
number, and the associated value could be the employee’s personnel file. Figure 12-6 shows a
map in which the keys are words and the values are phrases. This is similar to an ordinary
dictionary.

Figure 12-6 A map of word-phrase pairs

Iterating Through Maps

Listing 12-30, MAP, demonstrates the same arrangement: a dictionary formed from word-phrase
pairs stored in a map.

Listing 12-30 MAP

// map.cpp
// a map used as an English-language dictionary
#include <iostream.h>
#include <iomanip.h>
#include <map.h>
#include <cstring.h>

void main()
 {
 enum {SIZE = 80};
 char def[SIZE]; // definition (C string)
 string word = ""; // key (string object)
 // shorten type name
 typedef map< string, string, less<string> > map_type;

 map_type diction; // define a dictionary
 // insert sample entries
 diction.insert(map_type::value_type("cat",
 "A small furry animal that chases mice."));
 diction.insert(map_type::value_type("dog",
 "A large hairy animal that chases sticks."));

 while(true) // get entries from user
 {
 cout << "\nEnter word (or \"done\"): ";
 cin >> word;
 if(word == "done")
 break;
 cout << "Enter definition: ";
 cin.get(def, SIZE); // (reads embedded blanks)
 diction.insert(map_type::value_type(word, def));
 }
 map_type::iterator iter; // make an iterator
 iter = diction.begin(); // set to beginning of dictionary
 cout << endl << endl;
 while(iter != diction.end())
 { // display "word -- definition"
 cout << (*iter).first << " -- " << (*iter).second << endl;
 ++iter;
 }
 }

The key values “cat” and “dog” and their definitions are already installed in the map by the
program, but the user is encouraged to enter other word-definition pairs. Here’s some sample
interaction with the program when the user defines a snail:

Enter word (or "done"): snail
Enter definition: A small shelled animal that eats gardens.

Enter word (or "done"): done

cat -- A small furry animal that chases mice.
dog -- A large hairy animal that chases sticks.
snail -- A small shelled animal that eats gardens.

In the MAP program, the user can’t insert definitions for cat or dog because these keys are
already in the container and a map allows only one key with a given value. A multimap would
allow the same key value to appear more than once.

The expression for the data type of the map container

map< string, string, less<string> >

is rather unwieldy to write. Because this expression appears several times in the listing, I use a
typedef to condense it into the more manageable expression map_type:

typedef map< string, string, less<string> > map_type;

typedefs are typically used in this way when dealing with the templatized STL containers,
especially maps and sets.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:The Standard Template Library

http://www.itknowledge.com/reference/archive/1571690638/ch12/762-766.html [21-03-2000 19:48:24]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
javascript:displayWindow('images/12-06.jpg',494,461)
javascript:displayWindow('images/12-06.jpg',494,461)
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch12/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Pairs

The argument to the insert() function, map_type::value_type(word, def), may look a little
ponderous. It arises because maps and multimaps actually hold objects of type pair. The class pair is
itself templatized so its objects can contain two objects of two other classes. You can make your own pair
objects:

pair<string, string> dictopair = make_pair("cat", "A cat is a");

In the MAP.H header file, value_type is defined as a pair of values:

typedef pair<const Key, T> value_type;

This makes it convenient to supply values to insert(), as is done in this example and similar functions.
Notice that the char* strings such as “cat” are converted automatically to string objects to match the
type expected by value_type.

The names of the two members of pair are (appropriately) first and second. These members are used
in the while loop to display the contents of the map:

cout << (*iter).first << " -- " << (*iter).second << endl;

Roughly speaking, when you combine values to put them into a map, you combine them with
value_type, but to separate them when you take them out again, you use first and second.

The [] Operator

You can use the find() or lower_bound()/upper_bound() functions to search for a particular entry
in a map, just as you can in sets. However, you can also use the [] operator. I’ll demonstrate this with a map
that holds pairs consisting of numbers and nautical expressions. In the 18th century, ships carried signal
books listing hundreds of flag messages. To send a message, one ship would hoist flags indicating a certain
number; another ship, perhaps several miles away, would read the flags with telescopes and then use the
number to look up the message in its own flag book. The example program stores pairs consisting of flag
numbers and their corresponding messages. If 18th-century ships had been equipped with computers, the
program would have made looking up the message a much faster process. Listing 12-31 shows MAPBRACK.

Listing 12-31 MAPBRACK

// mapbrack.cpp
// demonstrates operator [] used for maps
#include <iostream.h>
#include <map.h>

void main()
 {
 typedef map< long, char*, less<int> > map_type;
 map_type flaglist; // map holding flag messages
 long code_number;
 flaglist.insert(map_type::value_type(14072,
 "I are listing sharply and will soon founder."));
 flaglist.insert(map_type::value_type(12023,
 "The enemy is within sight and approaching rapidly."));
 flaglist.insert(map_type::value_type(16067,
 "I have dispatches. Prepare to receive our longboat."));
 flaglist.insert(map_type::value_type(13045,
 "Fall in line astern of me."));
 flaglist.insert(map_type::value_type(19092,
 "Stand off. This coast is rocky and uncharted."));
 while(true) // get code number from user
 {
 cout << "\n\nEnter flag code number (0 to terminate): ";
 cin >> code_number;
 if(!code_number)
 break;
 cout << "Message is:" << endl;
 cout << flaglist[code_number]; // access value with key
 }
 }

Some sample interaction with the program might be

Enter flag code number (0 to terminate): 16067
Message is:
I have dispatches. Prepare to receive our longboat.

Enter flag code number (0 to terminate): 0

The expression

flaglist[code_number];

uses the key (the code number) in place of the index and returns the associated map value, in this case a
char* string, which is then displayed. The overloaded [] operator provides an intuitively clear way to
access entries in a map.

Hash Table Versions

There are alternative versions to all the sequence containers that can speed up access to individual items.
These versions use a hash table as an underlying mechanism. Their disadvantage is that they do not allow
rapid iteration through the container in sorted order. These containers are called hash_set, hash_multiset,
hash_map, and hash_multimap. They are used in the same way as the normal versions, but are appropriate
when searching speed is more critical than the ability to iterate through the container.

Quiz 6

1. In an associative container,

a. values are stored in sorted order.

b. keys are stored in sorted order.

c. sorting is always in alphabetical or numerical order.

d. you must use the sort() algorithm to keep the contents sorted.

e. you can’t use iterators.

2. When defining a set, you must specify

a. the underlying container that implements the set (vector, list, or deque).

b. the data type of the keys.

c. the data type of the values.

d. a certain function object.

e. the comparison that will be used to specify the order of the elements.

3. Which of the following statements are true?

a. In a set, the insert() member function inserts a key in sorted order.

b. In a multimap, the insert() member function does nothing if its argument is the same as
an existing element in the container.

c. If you initialize an associative container using an array, the order of the elements will
necessarily be preserved.

d. A map can have two or more elements with the same key value.

e. The erase() member function won’t remove an element from a set because if it did, the
ordering would not be preserved.

4. A map

a. is like a set, but can store multiple key values.

b. can be thought of as a French dictionary.

c. can use an iterator to access elements.

d. stores pairs, each of which must hold an index number and an object.

e. can use the [] operator to access elements.

5. In a map or multimap, the argument to the insert() member function

a. requires that the data type of the container be specified.

b. requires the typedef value_type.

c. is an iterator to a key value.

d. is a key-value pair.

e. is either a key or a value.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:The Standard Template Library

http://www.itknowledge.com/reference/archive/1571690638/ch12/766-768.html [21-03-2000 19:48:36]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch12/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Exercise 1

Write a program that merges two maps into a single map.

Exercise 2

Write a program that creates a frequency table of the words in a text file. You can use a map where
the words are the keys and the number of times the word appears in the file are the associated
values. The program should obtain the name of the file from the user and display the frequency
table.

Session 7: Storing User-Defined Objects

Of course, the big payoff with the STL is that you can use it to store and manipulate objects of
classes that you write yourself (or that someone else has written). In this session, I’ll show some
examples.

A Set of person Objects

I’ll start with a person class that includes a person’s last name, first name, and telephone number.
I’ll create some members of this class and insert them in a set, thus creating a phone book database.
The user interacts with the program by entering a person’s name. The program then searches the list
and displays the data for that person if it finds a match. I’ll use a multiset so two or more person
objects can have the same name. Listing 12-32 shows SETPERS

Listing 12-32 SETPERS

// setpers.cpp
// uses a multiset to hold person objects
#include <iostream.h>
#include <multiset.h>
#include <cstring.h>

class person
 {
 private:
 string lastName;
 string firstName;
 long phoneNumber;
 public: // default constructor
 person() : lastName("blank"),
 firstName("blank"), phoneNumber(0L)
 { }
 // 3-arg constructor
 person(string lana, string fina, long pho) :
 lastName(lana), firstName(fina), phoneNumber(pho)
 { }
 friend bool operator<(const person&, const person&);
 friend bool operator==(const person&, const person&);
 void display() const // display person's data
 {
 cout << endl << lastName << ",\t" << firstName
 << "\t\tPhone: " << phoneNumber;
 }
 };
 // operator < for person class
bool operator<(const person& p1, const person& p2)
 {
 if(p1.lastName == p2.lastName)
 return (p1.firstName < p2.firstName) ? true : false;
 return (p1.lastName < p2.lastName) ? true : false;
 } // operator == for person class
bool operator==(const person& p1, const person& p2)
 {
 return (p1.lastName == p2.lastName &&
 p1.firstName == p2.firstName) ? true : false;
 }
//
void main()
 { // create person objects
 person pers1("Deauville", "William", 8435150);
 person pers2("McDonald", "Stacey", 3327563);
 person pers3("Bartoski", "Peter", 6946473);
 person pers4("KuangThu", "Bruce", 4157300);
 person pers5("Wellington", "John", 9207404);
 person pers6("McDonald", "Amanda", 8435150);
 person pers7("Fredericks", "Roger", 7049982);
 person pers8("McDonald", "Stacey", 7764987);
 // multiset of persons
 multiset< person, less<person> > persSet;
 // iterator to a multiset of persons
 multiset<person, less<person> >::iterator iter;
 persSet.insert(pers1); // put persons in multiset
 persSet.insert(pers2);
 persSet.insert(pers3);
 persSet.insert(pers4);
 persSet.insert(pers5);
 persSet.insert(pers6);
 persSet.insert(pers7);
 persSet.insert(pers8);

 cout << "\nNumber of entries = " << persSet.size();

 iter = persSet.begin(); // display contents of multiset
 while(iter != persSet.end())
 (*iter++).display();
 // get last and first name
 string searchLastName, searchFirstName;
 cout << "\n\nEnter last name of person to search for: ";
 cin >> searchLastName;
 cout << "Enter first name: ";
 cin >> searchFirstName;
 // create person with this name
 person searchPerson(searchLastName, searchFirstName, 0);
 // get count of such persons
 int cntPersons = persSet.count(searchPerson);
 cout << "Number of persons with this name = " << cntPersons;
 // display all matches
 iter = persSet.lower_bound(searchPerson);
 while(iter != persSet.upper_bound(searchPerson))
 (*iter++).display();
 } // end main()

Necessary Member Functions

The person class is created pretty much in the usual way, but to work with STL containers, it
must be provided with a few common member functions. These are a default (no-argument)
constructor (which actually is not necessary in this example, but is usually essential), the overloaded
< operator, and the overloaded == operator. These member functions are used by member functions
of the list class and by various algorithms. You may need other member functions in other
specific situations. (As in most classes, you should probably also provide overloaded assignment,
copy constructors, and a destructor, but I’ll ignore these here.)

The overloaded < and == operators should use const arguments. Generally, it’s best to make them
friends, but you can use member functions as well.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:The Standard Template Library

http://www.itknowledge.com/reference/archive/1571690638/ch12/768-771.html [21-03-2000 19:48:46]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch12/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Ordering

The overloaded < operator specifies the way the elements in the set will be ordered. In SETPERS, I define this
operator to order the last name of the person and, if the last names are the same, to order the first names. (I
could have used the phone numbers to provide ordering or I could have ordered on any other data item
included in the class.)

Here’s some interaction with SETPERS. The program first displays the entire list (this would not be practical
on a real database with a large number of elements). Because they are stored in a multiset, the elements are
ordered automatically. Then, at the prompt, the user enters the name “McDonald, Stacey” (last name first).
There are two persons on the list with this particular name, so they are both displayed.

Number of entries = 8
Bartoski, Peter phone: 6946473
Deauville, William phone: 8435150
Fredericks, Roger phone: 7049982
KuangThu, Bruce phone: 4157300
McDonald, Amanda phone: 8435150
McDonald, Stacey phone: 3327563
McDonald, Stacey phone: 7764987
Wellington, John phone: 9207404

Enter last name of person to search for: McDonald
Enter first name: Stacey
Number of persons with this name = 2
McDonald, Stacey phone: 3327563
McDonald, Stacey phone: 7764987

Just Like Basic Types

As you can see, once a class has been defined, objects of that class are handled by the container in the same
way as variables of basic types.

I first use the size() member function to display the total number of entries. Then I iterate through the list,
displaying all the entries.

Because I’m using a multiset, the lower_bound() and upper_bound() member functions are
available to display all elements that fall within a range. Here both the lower and the upper bound are the
same, so all persons with the same name are displayed. Notice that I must create a “fictitious” person with
the same name as the person (or persons) I want to find. The lower_bound() and upper_bound()
functions then match this person against those on the list.

A List of person Objects

You can quickly search a set or multiset for a person with a given name, as in the SETPERS example. If,
however, I’m more concerned with being able to insert or delete a person object quickly, I might decide to
use a list instead. The LISTPERS example (Listing 12-33) shows how this looks.

Listing 12-33 LISTPERS

// listpers.cpp
// uses a list to hold person objects
#include <iostream.h>
#include <list.h>
#include <algo.h>
#include <cstring.h>

class person
 {
 private:
 string lastName;
 string firstName;
 long phoneNumber;
 public:
 person() : // default constructor
 lastName("blank"), firstName("blank"), phoneNumber(0L)
 { }
 // 3-arg constructor
 person(string lana, string fina, long pho) :
 lastName(lana), firstName(fina), phoneNumber(pho)
 { }
 friend bool operator<(const person&, const person&);
 friend bool operator==(const person&, const person&);

 void display() const // display all data
 {
 cout << endl << lastName << ",\t" << firstName
 << "\t\tPhone: " << phoneNumber;
 }
 long get_phone() const // return phone number
 { return phoneNumber; }
 };
 // overloaded < for person class
bool operator<(const person& p1, const person& p2)
 {
 if(p1.lastName == p2.lastName)
 return (p1.firstName < p2.firstName) ? true : false;
 return (p1.lastName < p2.lastName) ? true : false;
 }
 // overloaded == for person class
bool operator==(const person& p1, const person& p2)
 {
 return (p1.lastName == p2.lastName &&
 p1.firstName == p2.firstName) ? true : false;
 }
//
void main()
 {
 list<person> persList; // list of persons
 // iterators to a list of persons
 list<person>::iterator iter1;
 list<person>::iterator iter2;
 // put persons in list
 persList.push_back(person("Deauville", "William", 8435150));
 persList.push_back(person("McDonald", "Stacey", 3327563));
 persList.push_back(person("Bartoski", "Peter", 6946473));
 persList.push_back(person("KuangThu", "Bruce", 4157300));
 persList.push_back(person("Wellington", "John", 9207404));
 persList.push_back(person("McDonald", "Amanda", 8435150));
 persList.push_back(person("Fredericks", "Roger", 7049982));
 persList.push_back(person("McDonald", "Stacey", 7764987));

 cout << "\nNumber of entries = " << persList.size();

 iter1 = persList.begin(); // display contents of list
 while(iter1 != persList.end())
 (*iter1++).display();

// find person or persons with specified name (last and first)
 string searchLastName, searchFirstName;
 cout << "\n\nEnter last name of person to search for: ";
 cin >> searchLastName;
 cout << "Enter first name: ";
 cin >> searchFirstName;
 // make a person with that name
 person searchPerson(searchLastName, searchFirstName, 0L);
 // search for first match of names
 iter1 = find(persList.begin(), persList.end(), searchPerson);
 if(iter1 != persList.end())
 {
 cout << "Person(s) with that name is(are)";
 do
 {
 (*iter1).display(); // display matches
 iter2 = ++iter1; // search for other matches
 iter1 = find(iter2, persList.end(), searchPerson);
 } while(iter1 != persList.end());
 }
 else
 cout << "There is no person with that name.";

// find person or persons with specified phone number
 cout << "\n\nEnter phone number (format 1234567): ";
 long sNumber; // get search number
 cin >> sNumber;
 // iterate through list
 bool found_one = false;
 for(iter1=persList.begin(); iter1 != persList.end(); ++iter1)
 {
 if(sNumber == (*iter1).get_phone()) // compare numbers
 {
 if(!found_one)
 {
 cout << "Person(s) with that phone number is(are)";
 found_one = true;
 }
 (*iter1).display(); // display the match
 }
 } // end for
 if(!found_one)
 cout << "There is no person with that phone number";
 } // end main()

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:The Standard Template Library

http://www.itknowledge.com/reference/archive/1571690638/ch12/771-774.html [21-03-2000 19:48:55]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch12/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Finding All persons with a Specified Name

I can’t use the lower_bound()/upper_bound() member functions because I’m
dealing with a list, not a set or map. Instead, I use the find() member function to find
all the persons with a given name. If this function reports a hit, I must apply it again,
starting one person past where the hit was, to see if there are other persons with the
same name. This complicates the programming; I must use a loop and two iterators.

Finding All persons with a Specified Phone Number

Remember that in the person class, the overloaded < operator defines the ordering of
the elements based on their names, both last and first. That makes it harder to search for
a person with a specified phone number because the class member functions such as
find() are intended to be used to find the primary search characteristic. In this
example, I use the brute force approach to finding the phone number, iterating through
the list, and making a “manual” comparison of the number I’m looking for and each
member of the list:

if(sNumber == (*iter1).getphone())
 ...

This won’t be as fast as using find() or lower_bound()/upper_bound() to
conduct the search. (In the next session, I’ll show another approach, using function
objects.)

The program first displays all the entries, then asks the user for a name and finds the
matching person or persons. It then asks for a phone number and again finds any
matching persons. Here’s some interaction with LISTPERS.

Number of entries = 8
Deauville, William phone: 8435150
McDonald, Stacey phone: 3327563
Bartoski, Peter phone: 6946473
KuangThu, Bruce phone: 4157300
Wellington, John phone: 9207404
McDonald, Amanda phone: 8435150
Fredericks, Roger phone: 7049982
McDonald, Stacey phone: 7764987

Enter last name of person to search for: Wellington
Enter first name: John
Person(s) with that name is(are)
Wellington, John phone: 9207404

Enter phone number (format 1234567): 8435150
Person(s) with that number is(are)
Deauville, William phone: 8435150
McDonald, Amanda phone: 8435150

The program has found two people with the same phone number.

A List of airtime Objects

As the last example in this session, I’ll show a list of airtime objects. (Remember
that airtime object data comprises only hours and minutes, not seconds.) Listing
12-34, LISTAIR, shows how a number of airtime objects, stored on a list, can be
added together. Airlines might use this to add the amount of time a pilot has spent in the
air during a given week, for example. The addition is carried out by an overloaded +
operator in the airtime class.

Listing 12-34 LISTAIR

// listair.cpp
// adding airtime objects stored on a list
#include <iostream.h>
#include <list.h>

class airtime
 {
 private:
 int hours; // 0 to 23
 int minutes; // 0 to 59
 public:
 // default constructor
 airtime() : hours(0), minutes(0)
 { }
 // 2-arg constructor
 airtime(int h, int m) : hours(h), minutes(m)
 { }

 void display() const // output to screen
 {
 cout << hours << ':' << minutes;
 }

 void get() // input from user
 {
 char dummy;
 cout << "\nEnter airtime (format 12:59): ";
 cin >> hours >> dummy >> minutes;
 }
 // overloaded + operator
 airtime operator + (airtime right) const
 { // add members
 int temph = hours + right.hours;
 int tempm = minutes + right.minutes;
 if(tempm >= 60) // check for carry
 {
 temph++;
 tempm -= 60;
 } // return sum
 return airtime(temph, tempm);
 } // overloaded < operator
 bool operator < (const airtime& at2) const
 {
 if(hours < at2.hours)
 return true;
 if(hours == at2.hours && minutes < at2.minutes)
 return true;
 return false;
 }
 // overloaded == operator
 bool operator == (const airtime& at2) const
 {
 if(hours == at2.hours && minutes == at2.minutes)
 return true;
 return false;
 }
 }; // end class airtime

void main()
 {
 char answer;
 airtime temp, sum;

 list<airtime> airlist; // list and iterator
 list<airtime>::iterator iter;
 do
 {
 temp.get(); // get airtime from user
 airlist.push_back(temp);
 cout << "Enter another (y/n)? ";
 cin >> answer;
 } while (answer != 'n');

 iter = airlist.begin(); // iterate through list
 while(iter != airlist.end())
 sum = sum + *iter++; // add this airtime to sum
 cout << "\nsum = ";
 sum.display(); // display sum
 }

The airtime values are entered by the user. Once all these values have been obtained
and stored on the list, the program iterates through the list, adding each value to an
airtime object called sum. Finally, sum is displayed. (You’ll see a more
sophisticated way to do this in the next session.) Here’s some interaction with LISTAIR:

Enter airtime (format 12:59): 1:22
Enter another (y/n)? y

Enter airtime (format 12:59): 0:19
Enter another (y/n)? y

Enter airtime (format 12:59): 2:13
Enter another (y/n)? y

Enter airtime (format 12:59): 1:45
Enter another (y/n)? n

sum = 5:39

In this session, I’ve concentrated on searching a container for specified elements using
algorithms such as find(). However, you can apply any of the STL algorithms to
objects of user-defined classes placed in STL arrays: You can sort them, merge them,
copy them, and so on. As you can see, it’s quite simple to store objects of almost any
class in an STL container and manipulate these objects with STL algorithms.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:The Standard Template Library

http://www.itknowledge.com/reference/archive/1571690638/ch12/774-777.html [21-03-2000 19:49:05]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch12/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Quiz 7

1. Which of the following are differences between storing variables
of basic types (such as int) in a container and storing objects of
user-created classes?

a. Certain container member functions don’t work when
containers hold objects of user-created classes.

b. You must give values to basic variables before placing
them in a container, but this isn’t necessary for objects of
user-created classes.

c. Certain member functions must be supplied for the
user-created classes.

d. Random-access iterators don’t work for user-created class
objects.

e. Objects of user-created classes must be defined after the
class is created.

2. If you are going to store objects of a class T in an STL container,
then T

a. will probably require a default constructor.

b. will definitely need a one-argument constructor.

c. will not require an overloaded == operator unless it uses the
equal function object.

d. will definitely need an overloaded < operator.

e. must include a pointer of type T* as a member to store its
own location.

3. If you overload the < operator for a class T whose objects you are
going to store in an STL container, then this operator

a. will probably base the comparison on one or more member
data items in T.

b. will call on a function object to carry out the actual
comparison.

c. if the container is a list, will be used by find().

d. if the container is a map, will be used to order the keys (not
the values).

e. if the container is a map, will be used to order the values
(not the keys).

4. In which of the following containers might it make sense, under
the appropriate circumstances, to store objects of the person class
(as seen in the examples in this section)?

a. A deque.

b. A vector.

c. A multiset.

d. A map in which social security numbers are used as the key
and person objects as the values.

e. A map in which person objects are used both as the key
and the value.

5. Which of these statements are reasonable?

a. When you create a fictitious object to use as an argument to
the find(), count(), or lower_bound() functions, this
object must have valid data for all its members.

b. Container member functions have direct access to the
private data of objects stored in the container.

c. If you overload an arithmetic operator (such as + or -) for a
class whose objects you are going to store in an STL container,
then you can use a dereferenced container iterator as the
argument on the right of the operator, but not on the left.

d. If iter is a container iterator and display() is a
member function of the objects stored in the container, you can
use iter->display() as a shorthand version of
(*iter).display().

e. The count() member function can return the number of
elements in a container that have a specified value.

Exercise 1

Create a map of person objects (based on the person class in the
LISTPERS example) using social security numbers (SSN) as keys. The user
should be able to add or delete persons or search for a person with a
given SSN. Provide the ability to search for persons with a particular
name or telephone number as well.

Exercise 2

Create a flight_information class that holds the information
necessary for displaying flight information on an airport “Departures”
monitor. The information should include the airline and the destination city
(string objects), the scheduled and current departure times (airtime
values), and the gate number (an integer). Make a set to hold
flight_information objects, sorted by destination and, for each
destination, by scheduled departure time. The user should be able to add
new information and display the sorted information.

Session 8: Function Objects

Function objects are used extensively in the STL as arguments to certain
algorithms. They allow you to customize the operation of these algorithms.
I mentioned function objects in Session 2, where I showed an example of
the predefined function object greater used to sort data in reverse order.
In this session, I’ll examine other predefined function objects and show you
how to write your own so you have even greater control over what the STL
algorithms do.

Recall that a function object is a function that has been wrapped in a class
so it looks like an object. The class, however, has no data and only one
member function, which is the overloaded () operator. The class is
templatized so it can work with different types.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:The Standard Template Library

http://www.itknowledge.com/reference/archive/1571690638/ch12/777-779.html [21-03-2000 19:49:13]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch12/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Predefined Function Objects

The predefined STL function objects, located in the FUNCTION.H file, are shown in Table
12-10. The letter T indicates any class, either user-written or a basic type. The variables x
and y represent objects of class T passed to the function object as arguments.

Table 12-10 Predefined function objects
Predefined Functions Types Return Value

plus T = plus(T, T) x+y
minus T = minus(T, T) x-y
times T = times(T, T) x*y
divide T = divide(T, T) x/y
modulus T = modulus(T, T) x%y
negate T = negate(T) -x
equal_to bool = equal_to(T, T) x == y
not_equal_to bool = not_equal_to(T, T) x != y
greater bool = greater(T, T) x > y
less bool = less(T, T) x < y
greater_equal bool = greater_equal (T, T) x >= y
less_equal bool = less_equal (T, T) x <= y
logical_and bool = logical_and(T, T) x && y
logical_or bool = logical_or(T, T) x || y
logical_not bool = logical_not(T) !x

There are function objects for arithmetic operations, comparisons, and logical operations.
The SORTEMP example in Session 2 showed how to use a comparison function object,
greater<>(). Let’s look at an example where an arithmetic function object might come
in handy. The example (a variation of the LISTAIR example in Session 7) shows how the
plus<>() function object can be used to add all the airtime values in a container.
Listing 12-35 shows PLUSAIR.

Listing 12-35 PLUSAIR

// plusair.cpp
// uses accumulate() algorithm and plus() function object
#include <iostream.h>
#include <list.h>
#include <algo.h>

class airtime
 {
 private:
 int hours; // 0 to 23
 int minutes; // 0 to 59
 public:
 // default constructor
 airtime() : hours(0), minutes(0)
 { }
 // 2-arg constructor
 airtime(int h, int m) : hours(h), minutes(m)
 { }

 void display() const // output to screen
 {
 cout << hours << ':' << minutes;
 }
 void get() // input from user
 {
 char dummy;
 cout << "\nEnter airtime (format 12:59): ";
 cin >> hours >> dummy >> minutes;
 }
 // overloaded + operator
 airtime operator + (const airtime right) const
 { // add members
 int temph = hours + right.hours;
 int tempm = minutes + right.minutes;
 if(tempm >= 60) // check for carry
 { temph++; tempm -= 60; }
 return airtime(temph, tempm); // return sum
 }
 // overloaded < operator
 bool operator < (const airtime& at2) const
 {
 if(hours < at2.hours)
 return true;
 if(hours == at2.hours && minutes < at2.minutes)
 return true;
 return false;
 }
 // overloaded == operator
 bool operator == (const airtime& at2) const
 {
 if(hours == at2.hours && minutes == at2.minutes)
 return true;
 return false;
 }
 }; // end class airtime

void main()
 {
 char answer;
 airtime temp, sum;
 list<airtime> airlist; // list and iterator
 list<airtime>::iterator iter;
 do
 { // get airtimes from user
 temp.get();
 airlist.push_back(temp);
 cout << "Enter another (y/n)? ";
 cin >> answer;
 } while (answer != 'n');
 // sum all the airtimes
 sum = accumulate(airlist.begin(), airlist.end(),
 airtime(0, 0), plus<airtime>());
 cout << "\nsum = ";
 sum.display(); // display sum
 }

This program features the accumulate() algorithm, which returns the sum of all the
elements in a range. The four arguments to accumulate() are the iterators of the first
and last elements in the range, the initial value of the sum (usually 0 or its equivalent), and
the operation to be applied to the elements. In this example I add them, but I could subtract
them, multiply them, or perform other operations using different function objects. Here’s
some interaction with PLUSAIR:

Enter airtime (format 12:59) : 3:45
Enter another (y/n)? y

Enter airtime (format 12:59) : 5:10
Enter another (y/n)? y

Enter airtime (format 12:59) : 2:25
Enter another (y/n)? y

Enter airtime (format 12:59) : 0:55
Enter another (y/n)? n

sum = 12:15

The accumulate() algorithm is not only easier and clearer than iterating through the
container myself to add the elements, it’s also (unless I put a lot of work into my code)
more efficient. (Another version of accumulate() can perform any operation I define,
rather than summing the data.)

The plus<>() function object requires that the + operator be overloaded for the
airtime class. (This operator should be a const function because that’s what the
plus<>() function object expects.)

The other arithmetic function objects work in a similar way. The logical function objects
such as logical_and<>() can be used on objects of classes for which these operations
make sense (e.g., type bool variables).

Writing Your Own Function Objects

If one of the standard function objects doesn’t do what you want, you can write your own.
The next example shows one reason why this might be necessary.

It’s easy to sort a group of elements based on the relationship specified in the < operator.
Simply inserting the elements into a set or multiset will achieve this kind of ordering, or, if
the elements are in a sequential container, you can sort them using the normal version of
sort() with two parameters.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:The Standard Template Library

http://www.itknowledge.com/reference/archive/1571690638/ch12/779-782.html [21-03-2000 19:49:20]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch12/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Different Criteria for Sorting

Suppose, however, you want to sort the elements in a different order than that specified by the <
operator. One solution is to specify the ordering criteria using a function object. The following
example shows how a list of person objects can be sorted according to phone number using a
function object, called lessPhone(), that I write myself. Listing 12-36 shows SORTPERS.

Listing 12-36 SORTPERS

// sortpers.cpp
// sorts person objects by name and phone number
#include <iostream.h>
#include <vector.h>
#include <multiset.h>
#include <algo.h>
#include <cstring.h>

class person
 {
 private:
 string lastName;
 string firstName;
 long phoneNumber;
 public:
 person() : // default constructor
 lastName("blank"), firstName("blank"), phoneNumber(0L)
 { }
 // 3-arg constructor
 person(string lana, string fina, long pho) :
 lastName(lana), firstName(fina), phoneNumber(pho)
 { }

 friend bool operator<(const person&, const person&);
 friend bool operator==(const person&, const person&);

 void display() const // display person's data
 {
 cout << endl << lastName << ",\t" << firstName
 << "\t\tPhone: " << phoneNumber;
 }
 long get_phone() const // return phone number
 { return phoneNumber; }
 };
 // overloaded < for person class
bool operator<(const person& p1, const person& p2)
 {
 if(p1.lastName == p2.lastName)
 return (p1.firstName < p2.firstName) ? true : false;
 return (p1.lastName < p2.lastName) ? true : false;
 }
 // overloaded == for person class
bool operator==(const person& p1, const person& p2)
 {
 return (p1.lastName == p2.lastName &&
 p1.firstName == p2.firstName) ? true : false;
 }

// function object to compare person's phone number
class phoneLess : binary_function<person, person, bool>
 {
 public:
 bool operator() (const person& p1, const person& p2) const
 {
 return p1.get_phone() < p2.get_phone();
 }
 };

//
void main()
 { // a multiset of persons
 multiset< person, less<person> > persSet;
 // put persons in set
 persSet.insert(person("Deauville", "William", 8435150));
 persSet.insert(person("McDonald", "Stacey", 3327563));
 persSet.insert(person("Bartoski", "Peter", 6946473));
 persSet.insert(person("KuangThu", "Bruce", 4157300));
 persSet.insert(person("Wellington", "John", 9207404));
 persSet.insert(person("McDonald", "Amanda", 8435150));
 persSet.insert(person("Fredericks", "Roger", 7049982));
 persSet.insert(person("McDonald", "Stacey", 7764987));

 // iterator to multiset
 multiset< person, less<person> >::iterator iterset;
 cout << "\nPersons sorted by name:";
 iterset = persSet.begin(); // display contents of set
 while(iterset != persSet.end())
 (*iterset++).display();
 // an empty vector of persons
 vector<person> persVect(persSet.size());
 // copy from set to vector
 copy(persSet.begin(), persSet.end(), persVect.begin());
 // sort vector by phone number
 sort(persVect.begin(), persVect.end(), phoneLess());

 // iterator to a vector of persons
 vector<person>::iterator itervect;
 cout << "\n\nPersons sorted by phone number:";
 itervect = persVect.begin(); // display contents of vector
 while(itervect != persVect.end())
 (*itervect++).display();
 } // end main()

The program starts out by putting the usual person objects in a set and displaying its contents
to show ordering by name. Then the set is copied into a vector and the vector is sorted using the
lessPhone() function object in the line

sort(persVect.begin(), persVect.end(), phoneLess());

Here’s the output of SORTPERS:

Persons sorted by name:
Bartoski, Peter phone: 6946473
Deauville, William phone: 8435150
Fredericks, Roger phone: 7049982
KuangThu, Bruce phone: 4157300
McDonald, Amanda phone: 8435150
McDonald, Stacey phone: 3327563
McDonald, Stacey phone: 7764987
Wellington, John phone: 9207404

Persons sorted by phone number:
McDonald, Stacey phone: 3327563
KuangThu, Bruce phone: 4157300
Bartoski, Peter phone: 6946473
Fredericks, Roger phone: 7049982
McDonald, Stacey phone: 7764987
Deauville, William phone: 8435150
McDonald, Amanda phone: 8435150
Wellington, John phone: 9207404

The phoneLess class is defined this way:

class phoneLess : binary_function<person, person, bool>
 {
 public:
 bool operator() (const person& p1, const person& p2) const
 {
 return p1.get_phone() < p2.get_phone();
 }

You could alternatively express this class as a struct, which makes it unnecessary to use the
public designation (because everything in a struct is public by default). However, I prefer
to use class to emphasize that I’m dealing with a class and not an old-fashioned C style
struct.

Instead of comparing names, as the built-in less<>() function object would have, the
overloaded () operator in the phoneLess class compares the phone numbers of the two
person objects passed as arguments. It returns true if the first phone number is less than the
second. The sort() algorithm uses this relationship to sort the vector.

The phoneLess class is derived from the binary_function class (actually a struct),
which is defined in FUNCTION.H. The binary_function class specifies that two arguments
must be supplied to the function object. This simplifies the syntax used to write the overloaded
operator() function. (There’s also a unary_function class, from which you can derive
function objects taking one argument.)

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:The Standard Template Library

http://www.itknowledge.com/reference/archive/1571690638/ch12/782-785.html [21-03-2000 19:49:46]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch12/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Binding: Providing Values to Function Objects

The find() function uses the overloaded == operator to search in a container for objects of a
user-defined class. Can you search for elements using different search criteria? One approach is
to use the find_if() algorithm and an appropriate function object. However to do this, you
need to learn about a new concept: binding, in which a value is bound to one function object to
make another function object.

The FUNCPERS example (Listing 12-37) shows how a function object called phoneEqual()
can find all entries with a given phone number.

Listing 12-37 FUNCPERS

// funcpers.cpp
// demonstrates function objects with person class
#include <iostream.h>
#include <list.h>
#include <algo.h>
#include <cstring.h>

class person
 {
 private:
 string lastName;
 string firstName;
 long phoneNumber;
 public:
person() : // default constructor
 lastName("blank"), firstName("blank"), phoneNumber(0L)
 { }
 // 3-arg constructor
 person(string lana, string fina, long pho) :
 lastName(lana), firstName(fina), phoneNumber(pho)
 { }
 friend bool operator<(const person&, const person&);
 friend bool operator==(const person&, const person&);

 void display() const
 {
 cout << endl << lastName << ",\t" << firstName
 << "\t\tPhone: " << phoneNumber;
 }

 long get_phone() const // return person's phone number
 { return phoneNumber; }
 };
 // overloaded < for person class
bool operator<(const person& p1, const person& p2)
 {
 if(p1.lastName == p2.lastName)
 return (p1.firstName < p2.firstName) ? true : false;
 return (p1.lastName < p2.lastName) ? true : false;
 }
 // overloaded == for person class
bool operator==(const person& p1, const person& p2)
 {
 return (p1.lastName == p2.lastName &&
 p1.firstName == p2.firstName) ? true : false;
 }

// function object to compare person's phone number
class phoneEqual : binary_function<person, long, bool>
 {
 public:
 bool operator() (const person& p, const long& n) const
 {
 return (p.get_phone()==n) ? true : false;
 }
 };
//
void main()
 {

 list<person> persList; // list of persons

 list<person>::iterator iter1; // iterators to a
 list<person>::iterator iter2; // list of persons
 // put persons in list
 persList.push_back(person("Deauville", "William", 8435150));
 persList.push_back(person("McDonald", "Stacey", 3327563));
 persList.push_back(person("Bartoski", "Peter", 6946473));
 persList.push_back(person("KuangThu", "Bruce", 4157300));
 persList.push_back(person("Wellington", "John", 9207404));
 persList.push_back(person("McDonald", "Amanda", 8435150));
 persList.push_back(person("Fredericks", "Roger", 7049982));
 persList.push_back(person("McDonald", "Stacey", 7764987));

 // find person or persons with specified phone number
 cout << "\n\nEnter phone number (format 1234567): ";
 long sNumber; // get search number
 cin >> sNumber;
 // search for first match
 iter1 = find_if(persList.begin(),
 persList.end(),
 bind2nd(phoneEqual(), sNumber)); // func obj
 if(iter1 != persList.end())
 {
 cout << "\nPerson(s) with that phone number is(are)";
 do
 {
 (*iter1).display(); // display match
 iter2 = ++iter1; // search for another match
 iter1 = find_if(iter2,
 persList.end(),
 bind2nd(phoneEqual(), sNumber));
 } while(iter1 != persList.end());
 }
 else
 cout << "There is no person with that phone number.";
 } // end main()

The phoneEqual() function object is similar to the phoneLess() function object in the
SORTPERS example. However, it is invoked somewhat differently by the find_if()
algorithm.

The third argument to find_if() requires a function object. This function object,
phoneEqual(), expects find_if() to supply two arguments to it: a person object and a
long value representing the phone number. As find_if() iterates through the persList
container checking each person object in turn, it repeatedly calls phoneEqual(). It knows
which person object to pass to phoneEqual() because it knows where it is in the iteration
process. But where does find_if() get the phone number to supply to phoneEqual()? I
can’t supply this number directly to the function object as an argument, like this

iter1 = find_if(persList.begin(),
 persList.end(),
 phoneEqual(sNumber)); // can't do this

because find_if() must supply all the values to phoneEqual itself. Instead, I must bind
the phone number and the function object together to make another function object. The
bind2nd binder is used for this purpose:

iter1 = find_if(persList.begin(),
 persList.end(),
 bind2nd(phoneEqual(), sNumber));

You can use either of two binders, bind1st or bind2nd, depending on whether the value you
supply is the first or second argument to the function object. In phoneEqual(), it’s the
second; the person object is the first.

Here’s some interaction with FUNCPERS:

Enter phone number (format 1234567): 9207474

Person(s) with that phone number is(are)
Wellington, John Phone: 9207404

If there are multiple instances of the same phone number, the program will find and display all of
them.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:The Standard Template Library

http://www.itknowledge.com/reference/archive/1571690638/ch12/785-788.html [21-03-2000 19:49:57]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch12/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Quiz 8

1. Function objects can be used to

a. customize the find() algorithm so it uses a different
notion of equality than the normal overloaded == operator.

b. sort the elements of a container using a different criteria
than the normal overloaded < operator.

c. customize the copy() algorithm so it sorts the objects it is
copying.

d. multiply all the elements of a container together, using the
accumulate() algorithm.

e. customize the find_if() algorithm to find all person
objects with a specified first name.

2. You can use a predefined function object to

a. provide a lexicographical comparison of two objects.

b. negate two objects.

c. find if one object is greater than or equal to another.

d. subtract one object from another.

e. set one object equal to another.

3. To use the minus<>() function object on objects of class T, you
must

a. overload the accumulate() algorithm to work with class
T.

b. provide objects of class T as arguments to this function
object.

c. write your own code for this function object.

d. overload the (<) operator for class T.

e. overload the (-) operator for class T.

4. To make a custom function object that is useful for objects of
class T in a container of class C, you must

a. create a class.

b. overload operator() for class T.

c. overload operator() for class C.

d. derive a class from T.

e. “wrap” a function in a class.

5. If you need to provide a value v to a custom function object that is
used as an argument to an algorithm that will operate on objects of
class T stored in a container of class C, then you must

a. use v as the first argument to the function object.

b. use v as the second argument to the function object.

c. bind v to the function object.

d. bind v to an object of class T.

e. derive the function object from the binary_function
class.

Exercise 1

Write a program that counts how many objects of type person, stored in
an STL container, have the same first name. Use count_if() and a
custom function object.

Exercise 2

The remove() algorithm removes all elements in a container that have a
certain value or satisfy a condition specified by a function object. Write a
program that allows the user to remove all the person objects from a
container if they have a last name specified by the user. Use a function
object to compare last names.

Summary: Chapter 12

This chapter has presented a quick and dirty introduction to the STL. I’ve
touched on the major topics, and you should have acquired enough
information to begin using the STL in a useful way. For a fuller
understanding of the STL, I strongly recommend that you avail yourself of
a complete text on the topic.

You’ve learned that the STL consists of three main components: containers,
algorithms, and iterators. Containers are divided into two groups: sequential
and associative. Sequential containers are the vector, list, and deque.
Associative containers are the set and map and the closely related multiset
and multimap. Algorithms carry out operations on containers such as
sorting, copying, and searching. Iterators act like pointers to container
elements and provide connections between algorithms and containers.

Not all algorithms are appropriate for all containers. Iterators are used to
ensure that algorithms and containers are appropriately matched. Iterators
are defined for specific kinds of containers and used as arguments to
algorithms. If the container’s iterators don’t match the algorithm, a
compiler error results.

Input and output iterators connect directly to I/O streams, thus allowing
data to be piped directly between I/O devices and containers. Specialized
iterators allow backward iteration and can also change the behavior of some
algorithms so they insert data rather than overwriting existing data.

Algorithms are standalone functions that can work on many different
containers. In addition, each container has its own specific member
functions. In some cases, the same function is available as both an
algorithm and a member function.

STL containers and algorithms will work with objects of any class,
provided certain member functions, such as the < operator, are overloaded
for that class.

The behavior of certain algorithms such as find_if() can be customized
using function objects. A function object is instantiated from a class
containing only an () operator.

End-of-Chapter Discussion

George:
OK, that’s it. There’s no way I’ll ever understand function
objects.

Estelle: How to use them? Or how they really work?
George: How they work. What’s in all the header files.
Don: You don’t need to understand how a class works to use it.

That’s the beauty of C++.
George: But I’d really like to feel…
Estelle: I know what you mean, George, but I agree with Don. As a

user, I could really get to like the STL.
George: Well, you’ll be surprised to know I’m with you on this one. It

isn’t that hard to use. But I’ve got to admit I was skeptical at
first.

Estelle: You, George? That’s hard to believe.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:The Standard Template Library

http://www.itknowledge.com/reference/archive/1571690638/ch12/788-790.html [21-03-2000 19:50:09]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ch12/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Table of Contents

APPENDIX A
QUIZ ANSWERS

Chapter 1

Session 1
1. e
2. a, c, d

3. d
4. b
5. a

Session 2
1. c
2. b
3. e
4. a, c, e

5. a, b, c, e

Session 3
1. c
2. b, c, e

3. b
4. d
5. e

Session 4
1. a
2. b
3. a
4. b
5. b, c, e

Session 5
1. d
2. c, d

3. a, c, d

4. a, b, d

5. b

Session 6
1. d
2. a, e

3. b, c, d

4. b
5. b, d

Session 7
1. c, d, e

2. b, e

3. b
4. b, d

5. c

Session 8
1. a, b, e

2. b, c, d

3. a
4. d
5. c, d

Chapter 2

Session 1
1. a, d

2. c
3. c, d, e

4. b, c, d

5. a, d

Session 2
1. a, e

2. b
3. a, c

4. d, e

5. d

Session 3
1. b, c, e

2. a
3. b
4. c
5. c, d

Session 4
1. b, d

2. b, d

3. e
4. b, d

5. d

Session 5
1. e
2. b, c, d

3. c
4. a, b, d

5. c

Session 6
1. d, e

2. b, e

3. a, b, c

4. e
5. a, b

Session 7
1. a, b

2. c, d, e

3. b
4. b, e

5. a, d, e

Session 8
1. a, c

2. b, c, e

3. c, e

4. b
5. b

Chapter 3

Session 1
1. b
2. e
3. e
4. a, e

5. b

Session 2
1. c
2. c
3. a, d, e

4. c, e

5. c, d

Session 3
1. d
2. b
3. a
4. a, c, e

5. b

Session 4
1. a
2. b, e

3. b, c, d

4. c, e

5. a

Session 5
1. b, c, e

2. d
3. a, b

4. a, b, c

5. b, e

Session 6
1. e
2. b, d

3. b, c, e

4. b, c

5. a, c

Session 7
1. a, d

2. c, d

3. b, c, e

4. b, d

5. b, e

Session 8
1. b, c, e

2. c, d

3. d, e

4. a, b, c

5. a, d, e

Chapter 4

Session 1
1. c
2. a, d, e

3. d
4. d, e

5. b

Session 2
1. b, c

2. a, c

3. e
4. b
5. a, b

Session 3
1. b, d, e

2. b, c

3. a, d, e

4. c, d, e

5. c, d

Session 4
1. c
2. b
3. a, c, e

4. a, c

5. b, e

Session 5
1. d, e

2. b
3. c
4. b
5. c, e

Session 6
1. b, d

2. c, e

3. b, c, d

4. b, d, e

5. a, b, c

Session 7
1. a, d

2. b, c, d

3. e
4. c, d

5. a, e

Session 8
1. b
2. a
3. e
4. d
5. c

Chapter 5

Session 1
1. a, c

2. b, d

3. a, e

4. b, d

5. b

Session 2
1. c
2. a, b, e

3. b
4. d
5. a, c

Session 3
1. d
2. b
3. c, e

4. a
5. c, e

Session 4
1. c, d

2. a, b

3. b
4. d
5. b, d

Session 5
1. b, e

2. d
3. a, b

4. a, e

5. a, d

Session 6
1. e
2. d
3. c, d

4. c
5. a, b

Session 7
1. d
2. b
3. e
4. e
5. c

Session 8
1. b
2. d
3. a, e

4. c, e

5. c, d

Chapter 6

Session 1
1. a, b, c

2. d
3. b
4. a, d

5. b, e

Session 2
1. a, e

2. b, d

3. b, c, d, e

4. a
5. b

Session 3
1. b, d

2. e
3. a
4. a, c, e

5. b, e

Session 4
1. a
2. d
3. b
4. e
5. b, d

Session 5
1. c, d

2. b, e

3. c, d

4. c, e

5. a, c

Session 6
1. c
2. a, b, d, e

3. c, d

4. a
5. b, d

Session 7
1. c, d, e

2. c, e

3. a
4. a, c

5. b, c, d

Session 8
1. a, c

2. b, e

3. d
4. a, d, e

5. a, b

Chapter 7

Session 1
1. b, c

2. d
3. b
4. c
5. e

Session 2
1. a
2. b
3. a
4. c
5. b

Session 3
1. a, c, e

2. b, c

3. b
4. c
5.

Session 4
1. b, c

2. d
3. c
4. a, b

5. a, b, d, e

Session 5
1. a, b

2. c, e

3. c, e

4. a, b, e

5. b, c, d

Session 6
1. d, e

2. c
3. d
4. a, c

5. d, e

Session 7
1. b, e

2. a, c

3. a, e

4. c
5. b, d

Session 8
1. c, d

2. c, d, e

3. b
4. d
5. c

Chapter 8

Session 1
1. b
2. b, d, e

3. b
4. e
5. a, b

Session 2
1. e
2. c
3. b
4. b
5. a

Session 3
1. b, c

2. a
3. c, d, e

4. b, c

5. a, c

Session 4
1. b, d, e

2. b, c, d

3. a, b

4. d
5. e

Session 5
1. c, e

2. a, c

3. a, b, e

4. b
5. d, e

Session 6
1. a, e

2. c, d, e

3. d
4. d
5. b

Session 7
1. b, c

2. c
3. a, b, e

4. a, c, e

5. b, c

Session 8
1. b, d, e

2. c
3. a, b, d

4. c, e

5. b

Chapter 9

Session 1
1. d
2. b, d

3. a, b, e

4. c
5. b

Session 2
1. c
2. a, b

3. d, e

4. b
5. a

Session 3
1. a, b, c, e

2. b, c

3. b, c, d

4. d
5. e

Session 4
1. a, c, e

2. a, b, d

3. b, e

4. d
5. a, c, e

Session 5
1. c, d

2. a, b

3. e
4. a, b, d

5. c

Session 6
1. d
2. c
3. d
4. c, e

5. a, c, d, e

Session 7
1. d
2. b, c, e

3. a, c

4. c
5. d, e

Session 8
1. d
2. d, e

3. b
4. c, e

5. b, d

Chapter 10

Session 1
1. b, c, d, e

2. d, e

3. b, c, e

4. a, c

5. c, d

Session 2
1. b, d

2. b, e

3. c, d

4. a, c, e

5. d

Session 3
1. b, d

2. a, b, d

3. d, e

4. d, e

5. b, c, d

Session 4
1. c, e

2. a, e

3. c, e

4. c, d

5. d, e

Session 5
1. b, e

2. e
3. d
4. b
5. d

Session 6
1. c, d, e

2. b, e

3. b
4. a, e

5. c, e

Session 7
1. c, e

2. b, c, d

3. d
4. c
5. b

Session 8
1. b, e

2. b
3. a
4. b, e

5. a

Chapter 11

Session 1
1. b, e

2. c
3. b
4. a, c, e

5. e

Session 2
1. b, d

2. a, e

3. b, e

4. b, c

5. a

Session 3
1. b, e

2. a
3. b
4. b, d, e

5. c, e

Session 4
1. a, d

2. a, b, d

3. c, e

4. b, c

5. b

Session 5
1. a, c, e

2. b, c, e

3. a, c

4. b, c, e

5. e

Session 6
1. b, d

2. a, c, d

3. d
4. a, b, e

5. a

Session 7
1. b, c, d, e

2. b, c, d

3. a
4. d
5. a, c, e

Session 8

(There is no quiz for Session 8. Everyone receives a perfect score.)

Chapter 12

Session 1
1. a, b, c, e

2. c, e

3. a, c

4. a, b, e

5. d

Session 2
1. b, c

2. c, e

3. a, d

4. b, c, d, e

5. d

Session 3
1. b, d

2. b, c

3. c, e

4. e
5. b, c

Session 4
1. d, e

2. a, b, c

3. a, c, e

4. a, b, d, e

5. e

Session 5
1. c, d

2. a
3. a, c

4. a, b

5. b, c

Session 6
1. b
2. b, d, e

3. a
4. b, c

5. a, b, d

Session 7
1. c
2. a, d

3. a, d

4. a, b, c, d, e

5. e

Session 8
1. b, d, e

2. c, d

3. d, e

4. a, e

5. c, e

For Online Graders:

Here's how to grade the answers. Count the number of potentially correct
answers (those the student should select) and call it D (for denominator).
For example, if a, b, and c are the correct answers, D is 3.

There are four combinations of correct/incorrect choices and student
responses, which should be scored as follows:

Should be selected Student selects it. +1/D
Should be selected Student does not select it. 0
Should not be selected Student selects it. -1/D
Should not be selected Student does not select it. 0

Add the fractions for all the choices, but don't let the answer be less than 0.
The result should be a number between 0 and 1. For example, if a, b, and c
are correct (leaving d and e incorrect) and the student choses a, b, and d,
that’s two correct and one incorrect (1/3 + 1/3 - 1/3 = 1/3). If the student
gets it exactly right, the score is 1.

Table of Contents

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Appendix A Quiz Answers

http://www.itknowledge.com/reference/archive/1571690638/appendix-a.html [21-03-2000 19:50:24]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Table of Contents

APPENDIX B
STL ALGORITHMS AND MEMBER
FUNCTIONS
This appendix contains charts showing the algorithms and container member functions
available in the Standard Template Library (STL). This information is based on The Standard
Template Library by Alexander Stepanov and Ming Lee (1995), but we have extensively
condensed and revised it, taking many liberties with their original formulation in the interest
of quick understanding.

Algorithms

Table B-1 shows the algorithms available in the STL. The descriptions in this table offer a
quick and condensed explanation of what the algorithms do; they are not intended to be
serious mathematical definitions. For definitive explanations, with more information including
the exact data types to use for arguments and return values, consult the Stepanov and Lee
document.

The first column gives the function name, the second explains the purpose of the algorithm,
and the third specifies the arguments. Return values are not systematically specified. Some are
mentioned in the Purpose column and many are either obvious or not vital to using the
algorithm.

In the Arguments column, the names first, last, first1, last1, first2,
last2, first3, and middle represent iterators to specific places in a container. Names
with numbers (like first1) are used to distinguish multiple containers. The name first1,
last1 delimits range 1, and first2, last2 delimits range 2. The arguments
function, predicate, op, and comp are function objects. The arguments value, old,
new, a, b, and init are values of the objects stored in a container. These values are
ordered or compared based on the < or == operator or the comp function object. The
argument n is an integer.

In the Purpose column, movable iterators are indicated by iter, iter1, and iter2.
When iter1 and iter2 are used together, they are assumed to move together step by step
through their respective containers (or possibly two different ranges in the same container).

Table B-1 Algorithms available in the STL
Name Purpose Arguments

Nonmutating Sequence Operations

for_each Applies function to each object. first, last,
function

find Returns iterator to first object equal to
value.

first, last,
value

find_if Returns iterator to first object for which
predicate is true.

first, last,
predicate

adjacent_find Returns iterator to first adjacent pair of
objects that are equal.

first, last

adjacent_find Returns iterator to first adjacent pair of
objects that satisfy predicate.

first, last,
predicate

count Adds to n the number of objects equal to
value.

first, last,
value, n

count_if Adds to n the number of objects satisfying
predicate.

first, last,
predicate, n

mismatch Returns first nonequal pair of
corresponding objects in two ranges.

first1,
last1, first2

mismatch Returns first pair of corresponding objects
in two ranges that don’t satisfy
predicate.

first1,
last1,
first2,
predicate

equal Returns true if corresponding objects in
two ranges are all equal.

first1,
last1, first2

equal Returns true if corresponding objects in
two ranges all satisfy predicate.

first1,
last1,
first2,
predicate

search Checks if second range is contained within
the first. Returns start of match, or last1
if no match.

first1,
last1,
first2, last2

search
Checks if second range is contained within
the first, where equality is determined by
predicate. Returns start of match, or
last1 if no match.

first1,
last1,
first2,
last2,
predicate

Mutating Sequence Operations

copy Copies objects from range 1 to range 2. first1,
last1, first2

copy_backward Copies objects from range 1 to range 2,
inserting them backwards, from last2 to
first2.

first1,
last1, first2

swap Interchanges two objects. a, b

iter_swap Interchanges objects pointed to by two
iterators. iter1, iter2

swap_ranges Interchanges corresponding elements in
two ranges.

first1,
last1, first2

transform Transforms objects in range 1 into new
objects in range 2 by applying operator.

first1,
last1,
first2,
operator

transform
Combines objects in range 1 and range 2
into new objects in range 3 by applying
operator.

first1,
last1,
first2,
first3,
operator

replace Replaces all objects equal to old with
objects equal to new.

first, last,
old, new

replace_if
Replaces all objects that satisfy
predicate with objects equal to new.

first, last,
predicate,
new

replace_copy
Copies from range 1 to range 2, replacing
all objects equal to old with objects equal
to new.

first1,
last1,
first2, old,
new.

replace_copy_if
Copies from range 1 to range 2, replacing
all objects that satisfy predicate with
objects equal to new.

first1,
last1,
first2,
predicate,
new

fill Assigns value to all objects in range. first, last,
value

fill_n Assigns value to all objects from first
to first+n.

first, n,
value

generate Fills range with values generated by
successive calls to function gen.

first, last,
gen

generate_n Fills from first to first+n with values
generated by successive calls to function
gen.

first, n, gen

remove Removes from range any objects equal to
value.

first, last,
value

remove_if Removes from range any objects that
satisfy predicate.

first, last,
predicate

remove_copy
Copies objects, except those equal to
value, from range 1 to range 2.

first1,
last1,
first2, value

remove_copy_if
Copies objects, except those satisfying
pred, from range 1 to range 2.

first1,
last1,
first2, pred

unique Eliminates all but the first object from any
consecutive sequence of equal objects.

first, last

unique Eliminates all but the first object from any
consecutive sequence of objects satisfying
predicate.

first, last,
predicate

unique_copy Copies objects from range 1 to range 2,
except only the first object from any
consecutive sequence of equal objects is
copied.

first1,
last1, first2

unique_copy Copies objects from range 1 to range 2,
except only the first object from any
consecutive sequence of objects satisfying
predicate is copied.

first1,
last1,
first2,
predicate

reverse Reverses the sequence of objects in range. first, last

reverse_copy Copies range 1 to range 2, reversing the
sequence of objects.

first1,
last1, first2

rotate Rotates sequence of objects around iterator
middle.

first, last,
middle

rotate_copy Copies objects from range 1 to range 2,
rotating the sequence around iterator
middle.

first1,
middle1,
last1, first2

random_shuffle Randomly shuffles objects in range. first, last

random_shuffle Randomly shuffles objects in range, using
random-number function rand.

first, last,
rand

partition Moves all objects that satisfy predicate
so they precede those that do not satisfy it.

first, last,
predicate

stable_partition Moves all objects that satisfy predicate
so they precede those that do not, and also
preserves relative ordering in the two
groups.

first, last,
predicate

Sorting and Related Operations

sort Sorts objects in range. first, last

sort Sorts elements in range, using comp as
comparison function.

first, last,
comp

stable_sort Sorts objects in range and maintains order
of equal elements.

first, last

stable_sort Sorts elements in range using comp as
comparison function and maintains order of
equal elements.

first, last,
comp

partial_sort Sorts all objects in range and places as
many sorted values as will fit between first
and middle. Order of objects between
middle and last is undefined.

first,
middle, last

partial_sort Sorts all objects in range and places as
many sorted values as will fit between first
and middle. Order of objects between
middle and last is undefined. Uses
predicate to define ordering.

first,
middle, last,
predicate

partial_sort_copy
Same as partial_sort (first, middle, last),
but places resulting sequence in range 2.

first1,
last1,
first2, last2

partial_sort_copy
Same as partial_sort (first, middle, last,
predicate), but places resulting sequence in
range 2.

first1,
last1,
first2,
last2, comp

nth_element Places the nth object in the position it
would occupy if the whole range were
sorted.

first, nth,
last

nth_element Places the nth object in the position it
would occupy if the whole range were
sorted using comp for comparisons.

first, nth,
last, comp

lower_bound Returns iterator to first position into which
value could be inserted without violating
the ordering.

first, last,
value

lower_bound Returns iterator to first position into which
value could be inserted without violating
an ordering based on comp.

first, last,
value, comp

upper_bound Returns iterator to last position into which
value could be inserted without violating
the ordering.

first, last,
value

upper_bound Returns iterator to last position into which
value could be inserted without violating
an ordering based on comp.

first, last,
value, comp

equal_range Returns a pair containing the lower bound
and upper bound between which value
could be inserted without violating the
ordering.

first, last,
value

equal_range Returns a pair containing the lower bound
and upper bound between which value
could be inserted without violating an
ordering based on comp.

first, last,
value, comp

binary_search Returns true if value is in the range. first, last,
value, comp

binary_search Returns true if value is in the range,
where the ordering is determined by comp.

first, last,
value, comp

merge Merges sorted ranges 1 and 2 into sorted
range 3.

first1,
last1,
first2,
last2, first3

merge
Merges sorted ranges 1 and 2 into sorted
range 3, where the ordering is determined
by comp.

first1,
last1,
first2,
last2,
first3, comp

inplace_merge Merges two consecutive sorted ranges—
first, middle and middle,
last—into first, last.

first,
middle, last

inplace_merge Merges two consecutive sorted
ranges—first, middle and middle,
last—into first, last, where the
ordering is based on comp.

first,
middle, last,
comp

includes Returns true if every object in the range
first2, last2 is also in the range
first1, last. (Sets and multisets
only.)

first1,
last1,
first2, last2

includes Returns true if every object in the range
first2-last2 is also in the range
first1-last1, where ordering is based
on comp. (Sets and multisets only.)

first1,
last1,
first2,
last2, comp

set_union Constructs sorted union of elements of
ranges 1 and 2. (Sets and multisets only.)

first1,
last1,
first2,
last2, first3

set_union
Constructs sorted union of elements of
ranges 1 and 2, where the ordering is based
on comp. (Sets and multisets only.)

first1,
last1,
first2,
last2,
first3, comp

set_intersection Constructs sorted intersection of elements
of ranges 1 and 2. (Sets and multisets only.)

first1,
last1,
first2,
last2, first3

set_intersection
Constructs sorted intersection of elements
of ranges 1 and 2, where the ordering is
based on comp. (Sets and multisets only.)

first1,
last1,
first2,
last2,
first3, comp

set_difference Constructs sorted difference of elements of
ranges 1 and 2. (Sets and multisets only.)

first1,
last1,
first2,
last2, first3

set_difference
Constructs sorted difference of elements of
ranges 1 and 2, where the ordering is based
on comp. (Sets and multisets only.)

first1,
last1,
first2,
last2,
first3, comp

set_symmetric_
difference

Constructs sorted symmetric difference of
elements of ranges 1 and 2. (Sets and
multisets only.)

first1,
last1,
first2,
last2, first3

set_symmetric_
difference Constructs sorted difference of elements of

ranges 1 and 2, where the ordering is based
on comp. (Sets and multisets only.)

first1,
last1,
first2,
last2,
first3, comp

push_heap Places value from last1 into resulting
heap in range first, last.

first, last

push_heap Places value from last1 into resulting
heap in range first, last, based on
ordering determined by comp.

first, last,
comp

pop_heap Swaps the values in first and last1;
makes range first, last1 into a heap.

first, last

pop_heap Swaps the values in first and last1;
makes range first, last1 into a heap,
based on ordering determined by comp.

first, last,
comp

make_heap Constructs a heap out of the range first,
last.

first, last

make_heap Constructs a heap out of the range first,
last, based on the ordering determined by
comp.

first, last,
comp

sort_heap Sorts the elements in the heap first,
last.

first, last

sort_heap Sorts the elements in the heap first,
last, based on the ordering determined by
comp.

first, last,
comp

min Returns the smaller of two objects. a, b

min Returns the smaller of two objects, where
the ordering is determined by comp.

a, b, comp

max Returns the larger of two objects. a, b

max Returns the larger of two objects, where the
ordering is determined by comp.

a, b, comp

max_element Returns an iterator to the largest object in
the range.

first, last

max_element Returns an iterator to the largest object in
the range, with an ordering determined by
comp.

first, last,
comp

min_element Returns an iterator to the smallest object in
the range.

first, last

min_element Returns an iterator to the smallest object in
the range, with an ordering determined by
comp.

first, last,
comp

lexico-graphical_
compare

Returns true if the sequence in range 1
comes before the sequence in range 2
alphabetically.

first1,
last1,
first2, last2

lexico-graphical_
compare

Returns true if the sequence in range 1
comes before the sequence in range 2
alphabetically, based on ordering
determined by comp.

first1,
last1,
first2,
last2, comp

next_permutation Performs one permutation on the sequence
in the range.

first, last

next_permutation Performs one permutation on the sequence
in the range, where the ordering is
determined by comp.

first, last,
comp

prev_permutation Performs one reverse permutation on the
sequence in the range.

first, last

prev_permutation Performs one reverse permutation on the
sequence in the range, where the ordering
is determined by comp.

first, last,
comp

Generalized Numeric Operations

accumulate Sequentially applies init = init +
*iter to each object in the range.

first, last,
init

accumulate Sequentially applies init = op(init,
*iter) to each object in the range.

first, last,
init, op

inner_product Sequentially applies init = init +
(*iter1) * (*iter2) to
corresponding values from ranges 1 and 2.

first1,
last1,
first2, init

inner_product
Sequentially applies init = op1(
init, op2(*iter1, *iter2)) to
corresponding values from ranges 1 and 2.

first1,
last1,
first2, init,
op1, op2

partial_sum Adds values from start of range 1 to current
iterator, and places the sums in
corresponding iterator in range 2.

first1,
last1, first2

*iter2 = sum(*first1,
*(first1+1),
*(first1+2),...*iter1)

partial_sum Sequentially applies op to objects between
first1 and current iterator in range 1,
and places results in corresponding iterator
in range 2.

first1,
last1,
first2, op

answer = *first;
for(iter=first+1; iter !=
iter1; iter++) op(answer,
*iter) *iter2 = answer;

adjacent_difference Subtracts adjacent objects in range 1 and
places differences in range 2.

first1,
last1, first2

*iter2 = *(iter1+1) - *iter1;

adjacent_difference
Sequentially applies op to adjacent objects
in range 1 and places results in range 2.

first1,
last1,
first2, op

iter2 = op((iter1+1),
*iter1);

Member Functions

The same names are used for member functions that have similar purposes in the different
containers. However, no container class includes all the available member functions. Table
B-2 is intended to show which member functions are available for each container.
Explanations of the functions are not given, either because they are more or less self-evident,
or because they are explained in the text.

Table B-2 Member functions

vector list deque set multi-set map multi-map stack queue priority_
queue

tree

operator == x x x x x x x x x x

operator < x x x x x x x x x x

operator = x x x x x x x x

operator[] x x x

operator * x x x

operator () x x

operator + x

operator - x

operator ++ x x x

operator -- x x x

operator += x

operator -= x

begin x x x x x x x x

end x x x x x x x x

rbegin x x x x x x x x

rend x x x x x x x x

capacity x

empty x x x x x x x x x x x

size x x x x x x x x x x x

max_size x x x x x x x x

front x x x x

back x x x x

push_front x x

push_back x x x

pop_front x x

pop_back x x x

swap x x x x x x x x

insert x x x x x x x x

erase x x x x x x x x

key_comp x x x x x

value_comp x x x x

find x x x x x

count x x x x x

lower_bound x x x x x

upper_bound x x x x x

equal_range x x x x x

top x x

push x x x

pop x x x

reserve x

splice x

remove x

unique x

merge x

reverse x

sort x

rotate_left x

rotate_right x

Iterators

Table B-3 lists the type of iterator required by each algorithm.

Table B-3 Type of iterator required by algorithm

Input Output Forward Bidirectional Random
access

for_each x

find x

find_if x

adjacent_find x

count x

count_if x

mismatch x

equal x

search x

copy x x

copy_backward x x

iter_swap x

swap_ranges x

transform x x

replace x

replace_if x

replace_copy x x

fill x

fill_n x

generate x

generate_n x

remove x

remove_if x

remove_copy x x

remove_copy_if x x

unique x

unique_copy x x

reverse x

reverse_copy x x

rotate x

rotate_copy x x

random_shuffle x

partition x

stable_partition x

sort x

stable_sort x

partial_sort x

partial_sort_copy x x

nth_element x

lower_bound x

upper_bound x

equal_range x

binary_search x

merge x x

inplace_merge x

includes x

set_union x x

set_intersection x x

set_difference x x

set_symmetric_difference x x

pop_heap x

push_heap x

make_heap x

sort_heap x

max_element x

min_element x

lexicographical_ comparison x

next_permutation x

prev_permutation x

accumulate x

inner_product x

partial_sum x x

adjacent_difference x x

Table of Contents

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Appendix B STL Algorithms and Member Functions

http://www.itknowledge.com/reference/archive/1571690638/appendix-b.html [21-03-2000 19:50:46]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Table of Contents

Appendix C
Borland C++ and Turbo C++ for
Windows
This appendix takes you through the steps of editing, compiling, linking,
and running programs under Borland C++ and Turbo C++. We concentrate
on Borland C++ 5.0, but most aspects of program development are the same
for earlier versions of Borland C++ and for Turbo C++ for Windows. We
assume you’re running Windows 95 or later.

We’ll also assume you’re using the Integrated Development Environment
(IDE), which is the easy way to develop programs. The IDE is the visual
environment that lets you write your source file, compile and link it, run it,
and debug it, all by making menu selections. You can also use
command-line versions of the compiler and linker, but this approach is
mostly applicable to advanced development situations.

Compiler Installation

When the Borland compilers ask you what kind of installation you want,
you can select Typical. This option is the simplest. However, if the only
reason you’re using the compiler is to experiment with the programs in this
book, you will be loading many megabytes of unnecessary options. Most of
these options are for creating various kinds of Windows programs that you
don’t need to worry about. For the character-based programs in this book
you can dramatically reduce the amount of hard disk space required by the
compiler if you select the Custom installation option and follow the
guidelines described here.

The Borland installation program takes you through a series of windows,
each with a number of check boxes or buttons for selecting various options.
Details of these windows change from time to time, so without attempting
to mention the exact sequence of windows and buttons, the options you
want to select are described in general terms.

We’ll assume that you accept all the directory names suggested by the
installation program, such as C:\BC5\INCLUDE, C:\BC5\LIB, and so on.

EasyWin

The strategy is to compile all the example programs as EasyWin programs.
This is a special form of Borland-specific program that you write as if it
were a simple DOS character-based program, but that runs under Windows,
in a window of its own. EasyWin programs can use simple teletype-style
input/output operators and objects, like cout and cin, without worrying
about the complexities of Windows’ graphical user interface. This approach
allows you to remain in Windows not only while you create a program, but
also while you run it. This is more convenient than switching to DOS to run
the program and then back to Windows to correct mistakes.

Target Platforms

The target platform (that is, the kind of executable program you want to
make) for EasyWin programs is 16-bit Windows. You don’t need 16-bit
DOS, and you don’t need 32-bit Windows.

Tools

The Tools window is a large window that leads you to a series of other
windows.

Command-Line Tools

This appendix assumes you’re going to use the IDE. If this is the case, you
don’t need command-line tools, so uncheck this option. You can develop
programs using DOS-based command-line arguments, but usually
programmers use this option only in special situations.

Visual Tools

The only visual tools you need are the Integrated Development
Environment and the Turbo Debugger. You don’t need Winsight, Control
#D Look, Winspector, or Miscellaneous Tools.

The IDE includes the editor, compiler, and linker, and provides instant
access to the debugger. This is the environment where you’ll spend your
development time.

Database Engine

You don’t need the Borland Database Engine, so uncheck this box.

Libraries

You don’t need Object Windows Libraries, Object Components Libraries,
or Visual Database Tools libraries, so uncheck these options.

Under Run-Time libraries, you need Header Files and the Large Static
library. You can uncheck Graphics, Dynamic Libraries, and the other sizes
of Static Libraries.

Under Class Libraries you only need Static Class Libraries. You don’t need
the Obsolete Class Libraries, the Dynamic Class Libraries, or the Class
Library Source.

Examples

These options offer example programs for various topics. You don’t really
need any of the example programs, but, if disk space is not too tight, the
Standard Template libraries are helpful for this topic.

Help

The Help topics you select here will be available from the Help menu in the
IDE. You’ll probably want BCW and Library Reference (which tells how
the IDE works), Borland Error Messages (which explains error messages
from the compiler, linker, and so on), the Class Library Reference (which
covers the stream classes), Documentation, and Borland C++ Tools.

You may want BC DOS and Library Reference, which covers a few
DOS-only library functions.

When you’ve finished selecting options, the installation program will tell
you how much hard disk space will be required. If it’s too much, you can
go back and delete some suggestions. Our typical installation might require
between 35 and 45MB.

Developing Your Program

There are several steps to creating an executable C++ program: creating a
project, writing the source code, compiling and linking, and running the
resulting executable file. We’ll look at these steps in turn.

Creating a Project

Select New from the File menu, and Project from the submenu. You’ll get a
New Target dialog box. Enter the project path and name. You should
specify a separate directory, and your project name, with the extension IDE,
like C:\MYPROGS\TEST1.IDE. Don’t put anything in the compiler’s \BIN\
directory (the default) because there’s so much stuff there already it will be
hard to find anything you add.

For the programs in this book you can copy the subdirectories for each
chapter to a directory on your hard disk. There’s no problem placing several
projects in one directory. For the HOTDOG1 program in Chapter 2, for
example, your project path and name might be
C:\INTERC\CHAP2\HOTDOG1.IDE.

The target type, as discussed above, is EasyWin. When you select this, the
Platform is automatically changed to Windows 3.x (16). The Target Model
(memory model) is set to Large. Uncheck the Class Library box; you won’t
need the Borland class libraries. Click the Advanced button and make sure
that the .CPP Node button is selected in the Initial Nodes box, and that the
.RC and .DEF boxes are not checked. You don’t need either of these files for
an EasyWin program.

Click OK in the New Target dialog box. It will go away and a Project
window will appear. It will show two nodes (related files): hotdog1.exe, the
target, and hotdog1.cpp, a dependent file.

If your source (.cpp) file already exists, you can now open it by selecting
Open from the File menu. You may need to change the File Of Type box to
C++ Source before selecting the correct directory and file name.

If you’re writing a new program, select New from the File menu, and then
Text Edit. A window will appear into which you can type the source file.
Give this file the appropriate name (such as hotdog1.cpp) by selecting Save
As from the File menu and filling in the name.

Directories

You will probably need to tell the IDE where various files will be placed.
Select Project from the Options menu, and click on Directories in the
Topics list. There are five fields for directory names. The Include and
Library fields should be set automatically by the system. The INCLUDE
directory holds header or include files, like IOSTREAM.H. The LIB file holds
the binary code for the library routines. You should set the Source,
Intermediate, and Final fields to the same directory in which you placed
your .IDE (project) file, described earlier.

Compiling and Linking

There’s a quick way and an educational way to compile and link your
program. We’ll look at the educational way first.

Select Compile from the Project menu. A box will appear that shows you
the progress being made by the compiler, including the number of errors
and warnings. If there are errors, the compile has failed and you’ll need to
modify the source file to correct the errors. Otherwise, click on the OK
button. A new file, with an .OBJ extension (like HOTDOG1.OBJ), has been
generated.

Select Build All from the Project menu. This will invoke the linker, which
will transform the .OBJ file into the target .EXE executable file (like
HOTDOG1.EXE).

Running Your Program

To execute your newly created program, select Run from the Debug menu.
A window containing your program’s output will appear on the screen.

When the program stops, the program’s name in the window’s titlebar will
be preceded by the word Inactive.

Closing the Project

When you’re done with a project, you should close it before exiting from
the IDE. Click on the Project window to make sure it’s the active window.
Then select Close from the File menu.

Opening an Existing Project

Once you’ve created a project, you can open it again simply by selecting
Open from the File menu, selecting the desired .IDE file from the list, and
clicking the Open button. This will restore the IDE to the state the project
was in when you closed it, with the source file in the edit window.

DOS Targets

Some of the example programs in this book, notably the horse racing
programs FRIHORSE, NESHORSE, and STAHORSE in Chapter 9, must be
developed as DOS programs. This requires a few changes to the procedure
used for EasyWin programs.

In the NewTarget dialog box, select the Target Type as Application (instead
of EasyWin). Then, in the Platform box, select DOS Standard. The Target
Model box should automatically set itself to Large. The Class Library and
Turbo Vision boxes should not be checked.

Multifile Programs

In a multifile project there is more than one source file. (There can be
multiple .OBJ files without multiple source files, but we won’t explore that
here.) A source file with the same name as the project, and located in the
same directory, is automatically added to the project, you must tell the IDE
explicitly about files with other names. Here’s how to add additional source
files to a project.

Open the project. If necessary, bring up the Project window by selecting it
from the View menu. In the Project window, right-click on the node
representing the .EXE file. For example, if you want to add the VL_APP.CPP
file to the VERYLONG project (see Chapter 11, Session 8) click on the
VERYLONG.EXE node. Select Add Node from the resulting menu. A dialog
box called Add A Project To List appears. The desired source files should
appear on the list in this box. Select the one you want, VL_APP.CPP in this
example. Then click the Open button. The dialog box will disappear, and
you’ll see that a node representing the new file is now installed in the
Project window. In VERYLONG, the VERYLONG.EXE file is now dependent
on both VERYLONG.CPP and VL_APP.CPP.

The Standard Library

Borland C++ 5.0 includes a version of the C++ Standard Library provided
by Rogue Wave Software. We use the string class from this library in
several programs in Chapter 11, and we use the Standard Template Library
(STL) throughout Chapter 12.

As of this writing we are using a beta version of Borland C++ 5.0, and
some of our example programs do not yet work correctly with the Standard
Library in this version. These programs are therefore written to work with
the earlier Borland C++ 4.5, and the third-party version of the STL from
Modena Software in Santa Cruz, California (call 408-354-5616).

Using Third-Party Versions of the STL

Install the STL from a third-party vendor according to their instructions.
When developing a program, you will need to tell the Borland compiler
where to find the include files for the product. Select Project from the
Options menu, and click on the Directories topic. In the Include field, enter
the path to the third-party include directory before the path to the Borland
include directory:

c:\modena\include;c:\bc5\include

You should also select Do Not Generate or Use from the Precompiled
Headers Box, located under the Compiler topic in Options/Project.

Adapting Programs to Borland’s STL

To use the Rogue Wave version of the STL that comes with Borland C++
5.0, you’ll need to change the header files shown in the example programs
in this book. You’ll also need to specify the namespace std. Here are some
rules for doing this.

The .H extension is no longer used for header files. For example, you can
say

#include <vector>

instead of

#include <vector.h>

Change CSTRING.H to STRING.

Change ALGO.H to ALGORITHM.

Change MULTISET.H to SET. The multiset classes are now in the same file
as the set classes.

Change MULTMAP.H to MAP. The multimap classes are now in the same
file as the map classes.

If a program uses certain algorithms like allocate(), use the file
NUMERIC rather than ALGORITHM (or ALGO.H).

Precede your code with the directive

using namespace std;

This is critical to the operation of the STL, and error messages may not
point out the source of the problem if you forget it.

As with third-party versions of the STL, you should select Do Not Generate
or Use from the Precompiled Headers Box, located under the Compiler
topic in Options/Project.

Table of Contents

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Appendix C Borland C++ and Turbo C++ for Windows

http://www.itknowledge.com/reference/archive/1571690638/appendix-c.html [21-03-2000 19:50:58]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Table of Contents

Appendix D
Microsoft Visual C++
This appendix discusses the installation of Microsoft Visual C++, and takes you
through the steps of editing, compiling, linking, and running programs with this
project. This description applies to Visual C++ version 4.0, but earlier and later
versions should work in a similar way. We’ll assume you’re running Windows 95
or later.

We’ll also assume you’re using Microsoft Developer Studio, the visual
development environment that runs in Windows. The MDS lets you write your
source file, compile and link it, run it, and debug it, all by making menu
selections. (A command-line version of the compiler can be run from the DOS
prompt, but we’ll ignore that possibility here.)

Compiler Installation

Run the SETUP.EXE program in the MSDEV directory on the CD-ROM. You can
select a “typical” installation if you have plenty of disk space, but if you want to
install only the components necessary to develop the program in this book and
similar “console applications” (which will be described in a moment), then you
should select Custom installation. This cuts the hard disk space that you need for
Visual C++ roughly in half, from almost 80MB to about 35MB.

We’ll assume that you accept the directory name suggested by the installation
program: C:\MSDEV\. Within this directory, the compiler and linker will be
installed in a BIN subdirectory, header files will go in INCLUDE, library files will
go in LIB, and so on.

Console Applications

The programs in this book will all compile to an application type that Microsoft
calls a “Console Application”. This is an MS-DOS character-based program in
which a user and a program communicate with each other by displaying text, each
line below the last. Of course such applications are not graphics-based, as
full-scale Windows applications are. However, the text-only approach vastly
simplifies the programming, and allows us to focus on the C++ language rather
than the peculiarities of Windows programming. Our discussion of the installation
procedure will assume you’ll be developing only Console Applications.

Components

After you’ve selected Custom Installation, the SETUP program will present a
dialog with a list of items, each with a check box. Here’s how to handle each item
on the list. In some cases the check boxes can’t be altered directly; you need to
click on the item to elicit a further list of check-boxed items.

Developer Studio

This must be checked. As we noted, it’s the development environment you’ll be
using.

Visual C++ Build Tools

You should check this one too. It includes the compiler and linker you’ll use to
transform your source file into an executable file.

OLE Controls

Uncheck this one; we won’t be worrying about Object Linking and Embedding in
this book.

Runtime Libraries

Runtime libraries are files that contain all the functions your program will need to
perform I/O, math, data conversion, string handling, and many other things that
are not built into the C++ language. You’ll need one such library to write C++
programs.

Click on this item and then on a button called Details to bring up a further series
of four items: Static Library, Shared Library, Static Library Not Multithreaded,
and Source Code. Check only one of these: Static Library Not Multithreaded.
Uncheck the others. For the programs in this book you don’t need multithreading,
shared libraries, or source code.

Foundation Class Libraries

Click on this item to get to the next level of items, and then uncheck all of them.
You don’t need any of the foundation classes.

Database Options

Here, too, go to the next level of items, and uncheck all of them. You don’t need
any database options.

Tools

Go to the next level of items here as well, and uncheck all of them. You don’t
need any of these tools, which are for graphical Windows development.

Books Online

This choice lets you copy all the documentation from the CD to your hard disk.
Uncheck it, unless you have lots of disk space. You’ll find the documentation is
readily accessible from the CD (as long as it’s in the drive, of course).

Developing Your Program

There are several steps to creating an executable C++ program: creating a project
workspace, writing the source code, compiling and linking, debugging (if
necessary), and running the resulting executable file. We’ll look at these steps in
turn.

The Developer Studio Screen

Start the Microsoft Developer Studio. You’ll see a complicated screen with many
buttons and windows. You don’t need to worry about all of this yet, but we’ll
point out a few main features. We’ll also show you how to simplify the screen.

Toolbars

There are two toolbars at the top of the screen. You can increase the available
screen space by making these go away. To do this, select Toolbars from the View
menu (or right-click on either toolbar). A list of toolbars with check boxes
appears. You can uncheck any you don’t want.

Windows

The screen is initially divided into three windows. The first two aren’t needed for
development, but the third is.

The Project Workspace window is a tabbed window that initially has only one tab.
This InfoView tab shows a hierarchy of icons containing Help information. You
can explore what’s available by clicking your way through the hierarchy. Once
you’ve opened a project, this window develops two new tabs, one of which,
ClassView, will show the classes in your program. The other, FileView, shows
the files used by your program.

You can make the Project Workspace window go away by right-clicking on it and
selecting Hide from the pop-up menu. It will reappear if you select Project
Workspace from the View menu.

The InfoViewer Topic window displays the text of the Help topic selected in the
Project Workspace window. It can be closed in the same way as normal windows.

You’ll need the Output window at the bottom of the screen; it displays messages
from the compiler and linker during the development process.

Creating a Project Workspace

Each program in Visual C++ has its own Project Workspace, which holds all the
program’s files and various other data. To write a program, you must first create a
Project Workspace.

Select New from the File menu, and select Project Workspace from the list in the
resulting dialog box. Click on OK.

You will now be given a choice of what kind of application you’re going to
create. As we noted, we’ll be developing Console Applications. Select this icon
from the list. Also, make sure the Win32 box in the Platforms list is checked.

You must also name your project. The project name should be the same as the that
of the final executable program. If you want your program to be called HOTDOG1,
for example, type this name into the Name field. In the Location field, you can
use the default directory \MSDEV\PROJECTS\, or you can type in a different
directory name. When you’re done with this dialog, click the Create button.

The Developer Studio will automatically create a subdirectory with the same
name as your project, so you might end up with a subdirectory called
\MSDEV\PROJECTS\HOTDOG1\. This subdirectory will hold all your project’s files.

A file with the extension .MDP holds the information about the workspace. It’s
this file you’ll need if you want to reopen your workspace at some future time.

Writing a Source File

Now you must write the source file for your program. Select New from the File
menu, select Text File from the list, and click on OK. A window will appear on
the right side of the screen. To name your text file, select Save As from the File
menu, and (at least for one-file programs) enter the same file name as the project
name, but with the .CPP extension, as in HOTDOG1.CPP. The complete path name
for this example file would be \MSDEV\PROJECTS\HOTDOG1\HOTDOG1.CPP.

Now you can type your program into the window. When you’re done, select Save
from the File menu.

Inserting the Source File

Next you must associate the source file you’ve just written with the project. Select
Insert Files Into Project from the Insert menu. Your source file should already be
listed in the resulting dialog box; if not, type it in. Then click the Add button.

Building Your Program

There are basically two steps to building your program: compiling and linking.
Compiling transforms your program from a human-readable source file with a
.CPP extension to a machine-readable file with an .OBJ extension. Linking
combines this .OBJ file with library files (extension .LIB) and possibly with other
.OBJ files, and produces a final .EXE file that you can execute like any other
program.

Compiling

Make sure the window that contains the .CPP file is active, then select Compile
from the Build menu. Your program will compile, and the Output window at the
bottom of the screen will show what’s happening and report any errors or
warnings.

Errors will prevent your program from running, and must be corrected before
going on to the next step. Often the source of such errors is simply mistyping, but
sometimes it’s a conceptual error that requires some thought to unravel. Warnings
won’t prevent your program from running, but may signal potentially dangerous
situations that should be corrected. When the program compiles successfully, an
.OBJ file is created.

You can quickly find the line in your program that caused a syntax error by
double-clicking on the error in the Output window.

Linking

To link your program, select Build from the Build menu. The .OBJ file will be
combined with the appropriate .LIB file, and the .EXE file will be created.

Errors may arise from linking as well as from compiling, although they are not as
frequent, especially when you have only one source file. To see a linker error, try
misspelling the name main in your program. The linker expects to find this
name, and if it doesn’t, it lets you know. Linker errors are more common when
you have multiple source files with inconsistent function or variable names. They
also occur if the linker can’t find a library file.

Running Your Program

You can run your program from within the Developer studio, or you can run it as
a standalone program by invoking its .EXE file from either DOS or Windows.

Running from Within Developer Studio

To run your program from within the Developer Studio environment, select
Execute from the Build menu. Your program’s output will appear in a new
MS-DOS window, and you can type in any information requested by the program.
This window is a separate Windows program, with its own button on the
Windows Task Bar, so you can switch back and forth between it and the
Developer Studio as you can with any other program.

The Developer Studio adds the output line

Press any key to continue

after a console application has terminated. This gives you a chance to see any
output before the program’s window is destroyed. This text is not preceded by a
carriage return and linefeed, so it may not look very aesthetic when appended to
the program’s output. You can add the statement

cout << endl;

at the end of your program to ensure that Press any key to continue
goes on a separate line.

Running as a Standalone DOS Application

The executable version of your program is an .EXE file, which is located within a
subdirectory called DEBUG, which is in the folder for your program’s project. To
run your program as a standalone DOS application, start up MS-DOS from the
icon in your program list. Change directories to the DEBUG subdirectory within
the directory for your project’s workspace:

c:>cd \msdev\projects\myprog\debug

Then execute the program’s .EXE file by entering its name:

c:>myprog

It’s also possible to execute the program’s .EXE file directly from Windows,
although you may need to make a slight modification to some of the examples. To
launch the application from Windows, simply double-click on the icon for its
.EXE file.

The Press any key to continue prompt is not added to the end of
programs when they are run as standalone applications from Windows, so many
of the examples in this book will require you to add additional code at the end of
the listing, such as

cout << "Enter any character to terminate: ";
char dummy;
cin >> dummy; // wait for any character to be entered.

This will prevent the program from terminating before you have time to read the
output.

Closing the Workspace

When you’re done with a project, you should close the project workspace before
exiting from the Developer Studio. To do this, select Close Workspace from the
File menu.

Opening an Existing Project

Once you’ve created a project workspace, you can open it again by selecting
Open Workspace from the File menu. A dialog box called Open Project
Workspace appears. Navigate through the directories until you find the one that
holds the project you want to open. Inside you’ll find the .MDP file. Select it and
click Open. This will restore the MDS to the state the project was in when you
closed it, with the source file in the edit window.

Multifile Programs

Creating a program with multiple source (.CPP) files requires repeating the same
steps described above for each file. Place all the source files in the folder created
for the Project Workspace. Use Insert Files Into Project from the Insert menu to
associate each source file with the project. Compile each source file separately.
Then link them all together by selecting Build from the Build menu. Actually, the
appropriate files will be compiled automatically if you simply select Build,
although this makes it less clear what steps are involved in the built process.

To see what source files are used in a project, flip to the FileView tab in the
Project Workspace window. You’ll see not only the .CPP files, but the .H files,
shown as a dependency.

The Standard Template Library

Microsoft Visual C++ includes the files for the Standard Template Library (STL)
on the distribution CD, but (currently, at least) the setup program does not install
them on your hard drive. To remedy this oversight, manually copy the entire
contents of the \STL\ directory from the CD into the \MSDEV\INCLUDE\ directory
on your hard drive. This will make files like ALGO.H and VECTOR.H accessible
during normal program development.

You’ll need to make a minor change to the examples shown in the book that use
the string class: change CSTRING.H to BSTRING.H. This applies to several
programs in Chapters 11 and 12.

DOS Targets

The FRIHORSE, NESHORSE, and STAHORSE programs in Chapter 9 were designed
to work with the Borland C++ compiler. They contain calls to the
Borland-specific library functions clrscr(), delay(), gotoxy(),
randomize(), and random(). To work with other compilers, you’ll need to
find substitutes for these functions.

The file MSOFT.H, available in the APP_C directory on your CD-ROM, supplies
such substitute functions. These functions have the same names as the
Borland-specific functions, but internally they call functions that are supplied
with Microsoft Visual C++ (versions 4.0 and later).

To make it possible to compile the horse programs with the Microsoft compiler,
place MSOFT.H in the same directory as your source file, and insert the directive

#include "msoft.h"

at the beginning of your source file. (Use quotes, not angle brackets.) This will
cause calls to the Borland functions to be translated into calls to appropriate
Microsoft functions.

Debugging

Even when your program compiles and links correctly, it still may not run the
way you expected. The Developer Studio includes built-in debugging features that
make it easy to track down errors. These are available from the Debug menu or
using special keys.

Single-Stepping

The most fundamental debugging activity is single-stepping, or executing one
program line at a time. There are two ways to do this. You can either step into
functions called by program statements, executing all the statements within the
function; or you can step over functions, treating a function call like a single

statement. The key single-steps over functions, while the key
single-steps into them.

Single-stepping is a useful way to see where your program is going. Sometimes
you’ll be surprised to see that it wanders off course; this may solve some
problems all by itself.

You should probably avoid stepping into library functions, which are complicated
and probably don’t contain bugs anyway.

If your program requires input from the user, you’ll need to switch to the program
window from the Taskbar, and enter the necessary input.

The Watch Window

The usefulness of single-stepping is increased many-fold if you can watch what
happens to the values of program variables as you move through the program. To
do this you select Watch from the View menu to bring up a Watch window. Then
you type the variable names that you want to watch into this window. The
window displays the values, and the values change as you step through the
program. Using watch windows on appropriate variables should catch most bugs.

Returning to Build Mode

When you’re through debugging, select Stop Debugging from the Build menu.
This will return you to the normal Build mode.

Table of Contents

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Appendix D Microsoft Visual C++

http://www.itknowledge.com/reference/archive/1571690638/appendix-d.html [21-03-2000 19:51:17]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Table of Contents

Appendix E
ASCII TABLE

Table of Contents

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Appendix E ASCII Table

http://www.itknowledge.com/reference/archive/1571690638/appendix-e.html [21-03-2000 19:51:28]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Table of Contents

Appendix F
Program List

Chapter 1: A First Look at OOP and C++

Session 1 — Why Do We Need OOP?
(No programs)

Session 2 — Features of Object-Oriented Languages
(No programs)

Session 3 — Hot Dog Stands as Objects
(No programs)

Session 4 — Basic C++ Data Types
(No programs)

Session 5 — Introduction to Input/Output
(No programs)

Session 6 — Member Functions
(No programs)

Session 7 — Specifying a Class
(No programs)

Session 8 — Creating and Interacting with Objects
(No programs)

Chapter 2: Writing Complete OOP Programs

Session 1 — The Complete Hot Dog Stand Program
hotdog1

Session 2 — Loops
(No programs)

Session 3 — Simple Decisions
hotdog2

Session 4 — Advanced Decisions
hotdog3

Session 5 — A Class to Represent Time Values
time1

Session 6 — Function Arguments
houradd

time2

Session 7 — Arithmetic for User-Defined Types
timeadd

timecnv1

timemult

Session 8 — Function Return Values
timecnv2

timeret

Chapter 3: Arrays and Strings

Session 1 — Array Fundamentals
(no programs)

Session 2 — Arrays as Instance Data
employ1

stack1

Session 3 — Arrays of Objects
arrayair

arrayemp

Session 4 — Strings
stremp

Session 5 — String Library Functions
strclass

Session 6 — Arrays of Strings
weekdays

Session 7 — Structures
strustak

Session 8 — enum and bool
cardaray

bool

Chapter 4: Functions

Session 1 — Function Review and Function
Declarations

(no programs)

Session 2 — Standalone Member Functions
weekout

Session 3 — Overloaded Functions
overfun

Session 4 — Default Arguments
defargs

Session 5 — Storage Classes
(no programs)

Session 6 — Static Members
static

Session 7 — Reference Arguments
swapobj

Session 8 — Returning by Reference
retref

Chapter 5: Constructors

Session 1 — Introducing Constructors
condest

stackcon

Session 2 — Constructor Arguments
timecon

Session 3 — The One-Argument Constructor
strcon

englcon

Session 4 — Arrays as Instance Data
staticon

Session 5 — Copy Constructors
passcon

copycon

Session 6 — Copy Constructors at Work
copycon2

copycon3

copycon4

Session 7 — const Objects
consta1

consta2

Session 8 — Visualizing Construction and Destruction
destru

Chapter 6: Operator Overloading

Session 1 — Overloading Binary Arithmetic Operators
addair

strplus

Session 2 — Overloading Other Binary Operators
compair

pleqair

Session 3 — Overloading Unary Operators
prefix

postfix

negengl

Session 4 — Conversion from Objects to Basic Types
englconv

strconv

Session 5 — Conversions Between Classes
twotest

fracfeet

Session 6 — Overloading the Assignment Operator (=)
assign

assign2

Session 7 — Overloading the [] Operator
arrover1

arrover2

Session 8 — Fine-Tuning Overloaded Operators
addairco

pleqret

pfixret

Chapter 7: Inheritance

Session 1 — Introduction to Inheritance
inherit

inherit2

Session 2 — Program Design: The employee Class
empinh

Session 3 — Reusability: An Improved Stack Class
stackinh

Session 4 — Constructors and Inheritance
incondes

consinh1

consinh2

airinh

Session 5 — Access Control
staprofu

shapes

kindof

kindof2

Session 6 — Grandparents
empgrand

inhcon

Session 7 — Composition
airsched

safestak

Session 8— Multiple Inheritance
empmult

Chapter 8: Pointers

Session 1 — Addresses and Pointers
varaddr

ptrvar

ptrobj

ptracc

ptrto

ptrvoid

Session 2 — Pointers, Arrays, and Functions
(no programs)

Session 3 — Pointers and Strings
dashgrat

Session 4 — Memory Management with new and delete
newstr

englptr

ptrobjs

Session 5 — this and const
where

dothis

assign3

Session 6 — A Memory-Efficient String Class
strimem

Session 7 — A Linked List Class
linklist

Session 8 — A Sorted Array Class
sortemps

findemp

Chapter 9: Virtual Functions and Friend Functions

Session 1 — Introduction to Virtual Functions
notvirt

virt

arrvirt

Session 2 — Examples of Virtual Functions
virtpers

virtshap

Session 3 — Decoupling with Polymorphism
virtref

virtptr

persfunc

Session 4 — Abstract Classes and Virtual Destructors
virtpure

pureshap

novidest

virtdest

destpers

Session 5 — Runtime Type Identification
typeid

rttipers

Session 6 — Friend Functions
airnofri

airfri

misq

frisq

bridge

Session 7 — Friend Classes
interc1

interc2

interc3

frihorse (DOS)

Session 8 — Nested Classes and Static Member Data
nested (DOS)

neshorse (DOS)

stahorse (DOS)

Chapter 10: Streams and Files

Session 1 — Stream Classes
(no programs)

Session 2 — Stream Errors
englerr

Session 3 — Disk File I/O with Streams
formato

formati

oline

iline

ochar

ichar

ichar2

binio

opers

ipers

diskfun

Session 4 — File Errors and File Pointers
rewerr

ferrors

seekg

Session 5 — File I/O Using Member Functions
rewobj

empl_io

Session 6 — Overloading the << and >> Operators
englio

englio2

persio

Session 7 — Memory as a Stream Object
strstr

autostr

Session 8 — Printer Output and Other Refinements
comline (DOS)

otype (DOS)

ezprint (DOS)

oprint (DOS)

redir (DOS)

Chapter 11: Templates, Exceptions, and More

Session 1 — Function Templates
tempabs

tempfind

Session 2 — Class Templates
tempstak

temstak2

templist

temlist2

Session 3 — Exceptions
xsyntax

xstak

Session 4 — Exceptions Continued
xstak2

xdist

xdist2

xalloc

Session 5 — Explicit Casts, typedef, and the () Operator
sta_cast

dyn_cast

con_cast

parens

Session 6 — The Standard string Class
string1

string2

string3

string4

Session 7 — Multifile Programs
(no programs)

Session 8 — A Very-Long-Numbers Example
verylong

vl_app

Chapter 12: The Standard Template Library

Session 1 — Introduction to the STL
(no programs)

Session 2 — Algorithms
find

count

sort

search

merge

sortemp

sortcom

find_if

for_each

transfo

Session 3 — Sequential Containers
vector

vectcon

vectins

list

listplus

deque

Session 4 — Iterators
listout

listfill

iterfind

itercopy

Session 5 — Specialized Iterators
iterev

copydeq

dinsiter

outiter

foutiter

initer

finiter

Session 6 — Associative Containers
set

setrange

map

mapbrack

Session 7 — Storing User-Defined Objects
setpers

listpers

listair

Session 8 — Function Objects
plusair

sortpers

funcpers

Table of Contents

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Appendix F Program List

http://www.itknowledge.com/reference/archive/1571690638/appendix-f.html [21-03-2000 19:51:37]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

C++ Interactive Course
(Publisher: Macmillan Computer Publishing)
Author(s): ROBERT LAFORE
ISBN: 1571690638
Publication Date: 08/01/96

Search this book:

Table of Contents

Index
! logical NOT operator, 66-67, 310

!= not-equal-to operator, 59, 68

“ ” quotes, double, 33, 54, 148

preprocessor directives, 53-55

#define, 150, 201, 685

#include, 53

% remainder (modulus) operator, 41, 68

%= remainder assignment operator, 166

& address-of operator, 426-428

& reference operator, 230-231, 237, 428

&& logical AND operator, 66-68

() function operator, 22, 687-688, 726, 779, 785

() for precedence, 41

* contents-of operator, 433-435, 441, 443

* dereference operator, 349, 435, 720, 741

* indirection operator, 433-435, 441, 443

* multiplication operator, 41, 68, 301, 346, 352, 708

* pointer-to operator, 429-430, 435

*= multiplication assignment operator, 166, 305

*this expression, 338, 348-352, 474, 609.

See also this pointer

+ addition operator, 41, 68, 296-301, 346, 352, 708

+ unary plus operator, 314-316, 346, 352

++ increment operator, 42, 133-135, 310-313, 346, 350-352,
439-440, 443, 720

+= addition assignment operator, 165-166, 305, 348-350, 352

-subtraction operator, 41, 68, 301, 314, 352, 709

-unary minus operator, 314-316, 346, 352, 644

--decrement operator, 42, 134-135, 310, 346, 352, 720

-=subtraction assignment operator, 166, 301, 352

->membership access operator, 450-451, 458, 460, 479

. dot operator, 47-48, 141, 170, 222, 297, 420, 450-451, 575, 676

/ division operator, 41, 68, 301, 352, 709

/* */ for comments, 30

// for comments, 30

/= division assignment operator, 166, 305

:: scope resolution operator, 198, 225, 297, 364-365, 416, 510, 573,
655, 701

; semicolon, 21-23, 33

< less-than operator, 59, 68, 303-305, 346, 352, 644

< redirection operator, 637

<< insertion operator, 428, 570, 572, 577, 588, 619-626, 657-658,
661, 691

<< put to operator, 33-34

<= less-than-or-equal-to operator, 59, 68

< > brackets, 54

= assignment operator, 25, 68, 90, 127, 156-159

overloading, 333-339, 346, 352, 375-376, 464-465, 469

= for initialization, 255, 263, 269, 277

=0 notation, 525-526, 529

== equal-to operator, 59, 68, 346, 352, 648

> greater-than operator, 59, 68

> redirection operator, 636-637

>= greater-than-or-equal-to operator, 59, 68

>> extraction operator, 570, 572, 576, 588, 619-626, 658, 661, 691

>> get-from operator, 35-36

?: conditional operator, 84-85, 297

[] brackets, 124-129

[] subscript operator, 141, 340-346, 352, 487, 691, 732-733, 737,
743, 766-767

\ in escape sequences, 26, 35, 259

\0 terminating null character, 146, 148, 156

\b (backspace), 26

\n (new line), 26, 35

\r (carriage return), 26

\t (tab), 26, 35

_ underscore, 11

‘ ’ quotes, single, 25

{ } braces, 21-22

|| logical OR operator, 66-68

~ tilde, 245

A
abstract classes, 370, 524-529

abstract data types, 715, 718-719

access

and inheritance, 361-365, 375, 385-397, 403-404, 411

public/private, 23-24, 106, 173-174, 222

public, 23-24, 222, 361-363, 375, 385-397, 403-404, 698

private, 23-24, 106, 221-222, 361-363, 375, 385-397, 403-404,
550-551, 698

read-only, 387, 389

specifiers, 361, 375, 385

adaptors, 718-719

addition assignment operator (+=), 165-166, 305, 348-350, 352

addition operator (+) 41, 68, 296-301, 346, 352, 708

address-of operator (&), 426-428

addresses, and pointers, 349, 426-437

addressing, direct/indirect, 435

algorithms, 713-714, 719-720, 723-732, 744-750

See also Appendix B

alias. See references

ambiguity, 418-420

AND operator (&&), 66-68

arguments

argc (argument count), 632

argv (argument values), 632

default, 208-214

function, 22, 95-100, 188-190, 193, 208-214, 228-235, 632

template, 644-647

arithmetic assignment operators, 165-166

arithmetic operators, 41-42, 165-166

overloading, 296-303, 346, 352, 708-709

precedence, 67-68

arrays

[] brackets, 124-129

basics, 124-130

of characters, 131, 445, 689. See also strings

as containers, 715-716

definition, 124-125

elements, 125-128

index, 125, 129

initializing, 265-266

as instance data, 131-139, 261-267

multidimensional, 128-129, 161-162

notation, 438, 442, 445

of objects, 139-146

and pointers, 438-444

of pointers, 448-450, 458-460

pointers to objects, 503-504

safe, 340-344

sorted array class, 483-493

of strings, 161-168

ASCII code, 26. See also Appendix E

assignment operator (=), 25, 68, 90, 127, 156-159

vs. initialization, 255, 263, 269, 277

overloading, 333-339, 346, 352, 375-376, 464-465, 469

precedence, 68

assignment operators, 305-308, 333-339, 346, 348, 352, 578

arithmetic, 165-166

overloading, 305-308, 333-339, 346, 348, 352

assignment, self, 338

assignment statements, 90

assignment vs. initialization, 255, 263, 269, 277

associativity, 443

auto keyword, 217, 221

automatic variables, 216-217, 221, 238

B
backslash (\), in escape sequences, 26, 35, 259

backspace (\b), 26

base classes, 12-13, 358. See also inheritance

binary operators, 41, 296-309, 346, 352

binary search, 487-491

binding, 500-501, 785-788

blocks, 217

bool (Boolean) data type, 175-183, 728

bool keyword, 175

Borland C++ for Windows. See Appendix C

braces { }, 21-22

brackets

< > angle, 54

[] square, 124-129

{ } curly, 21-22

break statement, 77-78

bridges, 547-548

C
C language, 14-15

C library functions, 118, 188, 194

for strings. See strings, functions

C strings. See strings

C++ for Windows. See Appendix C and D

carriage return (\r), 26

Cartesian coordinates, 88

case sensitivity, 157, 165

case statements, 79

cast operators, 296, 318-325

casts, 318-325

const, 683-684

dynamic, 682-683

explicit, 680-685

reinterpret, 684-685

static, 323-324, 681-682

catch block, 663-668, 675

catch keyword, 663, 667

cerr, 578, 637

char data type, 25-26, 146

character arrays, 131, 445, 689. See also strings

character constants, 25

character input/output, 582-583, 585, 591-592

character set, ASCII, 26. See also Appendix E

child class. See inheritance

cin, 35-36, 146-150, 570, 572, 578, 619, 621, 635-637

cin.get(), 148-149, 152

cin.getline(), 212, 214

cin.ignore(), 150, 152

class hierarchy, 367, 401

class keyword, 21, 550

class library, 358, 697-698

class member access operators

->, 450-451, 458, 460, 479

. dot, 47-48, 141, 170, 222, 297, 420, 450-451, 575, 676

class member functions. See functions, member

class members, static, 223-228, 563-565, 609

class names, 653-655, 686

name clashes, 559, 686, 700

class templates, 650-662

classes, 11

abstract, 370, 524-529

base, 12-13, 358. See also inheritance

child. See inheritance

container. See containers

derived, 12-13, 358. See also inheritance

exception, 663, 666-667, 675-677

classes (continued)

and file input/output, 609-610

friend, 549-558

interclass communication, 549-558

nested, 558-563

parent. See inheritance

self-containing, 481

specification, 21-24, 44-46, 55-56

and structures, 168, 173-174

and typedef, 686

clog, 578

code examples. See Appendix F

command-line arguments, 631-633

comment style, 30

comparison operators, 58-59, 67-68, 303-305, 346, 352

composition, 359-360, 394-395, 406-412, 420

concatenation, strings, 156, 300-301

conditional expression, 59, 61, 63-65

conditional operator (?:), 84-85, 297

const

arguments, 345-346

casts, 683-684

function arguments, 271-272, 274

functions, 285-286, 346

keyword, 149-150, 262, 271, 283, 285, 345-348

objects, 283-287

and pointers, 465-468

variables, 149-150, 262, 264, 465, 683-684

const_cast keyword, 681, 684

constructors, 137, 244-249, 286, 289-293

calling, 251

copy, 269-283, 333

default (no-argument), 248, 252-253, 375, 379-380

and inheritance, 375-384, 401-403

initialization, 381, 401-403

and new operator, 455-456

no-argument, 248, 252-253, 375, 379-380

one-argument, 254-261

two-argument, 250-252

and virtual functions, 513-514

containers, 54, 481, 483, 713-719, 744

abstract data types, 715, 718-719

containers (continued)

arrays, 715-716

associative, 717, 759-769

deque, 715-716, 737-738

elements, 720

functions, 718, 732-737, 762-763, 771-772

hash table versions, 767

lists, 715-716, 735-737, 772-777

map/multimap, 715, 717, 759-760, 763-767

queue/priorty_queue, 715-716, 718-719

sequence, 715-717, 732-740

set/multiset, 715, 717, 759-763, 767, 769-772

stacks, 715, 718-719

and templates, 650-662

vectors, 715-716, 732-735

contents, 427-428

contents-of operator (*), 433-435, 441, 443

continue statement, 78-79

conversions

automatic, 108, 321

basic type to object, 254-261

data type, 159

function, 254

object to basic type, 318-325

objects class-to-class, 318, 326-332

strings, 256-257, 322-323

See also casting

copy constructors, 269-283, 333

cout, 33-36, 146-148, 570, 572, 578, 619, 621, 635-637

current position, 602

D
data, arrays as, 131-139

data hiding, 5, 23-24, 540

data, in OOP, 5-7, 10-11

data storage classes. See containers

data storage structures, 135, 452-453

data, stream. See streams

data structures, 713

data types

abstract, 715, 718-719

bool (Boolean), 175-183, 728

built-in, 25-31

data types (continued)

char, 25-26, 146

conversions. See conversions

double, 25, 28

enum (enumerated), 175-183, 264

float, 25, 28

as function arguments, 99-100, 104

int, 25, 26-27

long, 25, 26-27

long double, 25, 28

pair, 766

short, 25, 26-27

unsigned, 27

user-defined, 4-5, 14, 88-89, 103-111, 175-183, 657-661

dates, 88

decisions

else if construction, 76

if statement, 69-70

if...else statement, 70-72, 76

declaration

function, 192-194, 196, 198, 209

objects, 221

variables, 22, 25-30, 215-216, 219

decoupling, 515-524

decrement operator (--), 42, 134-135, 310, 346, 352, 720

default arguments, 208-214

#define directive, 150, 201, 685

definition

function, 188-189, 196-199

objects, 221-222

variables, 115, 215-216, 219, 222

delete keyword, 454

delete operator, 452-461, 531

denominator, 38, 43, 88, 331

deque, 715-716, 737-738

dereference operator (*), 349, 435, 720, 741

derivation. See inheritance

derived class, 12-13, 358. See also inheritance

destructors, 244-249, 289-293, 456-457

and inheritance, 375-376

virtual, 529-533

dictionary (map/multimap), 715, 717, 759-760, 763-767

directives, preprocessor, 53-54

#define, 150, 201, 685

#include, 53-54

disk file input/output, 587-599

division assignment operator (/=), 166, 305

division operator (/), 41, 68, 301, 352, 709

do loops, 61-62

do while loops, 61-62

dot operator (.), 47-48, 141, 170, 222, 297, 420, 450-451, 575, 676

double data type, 25, 28

dynamic binding, 500-501

dynamic casts, 682-683

dynamic memory allocation, 453-454, 458, 629-630

E
early binding, 500

else if construction, 76

else keyword, 70-71, 76

encapsulation, 5, 540

end-of-file (EOF), 580, 590-591, 633

endl manipulator, 35, 573

ends manipulator, 573, 628

enum (enumerated) data type, 175-183, 264

enum hack, 263-264

enum keyword, 175

EOF (end-of-file), 580, 590-591, 633

equal-to operator (==), 59, 68, 346, 352, 648

error detection, 513

error handling, 580-587, 600-602. See also exceptions

error-status bits, 580-585

escape sequences, 26, 35, 259

\0 terminating null, 146, 148, 156

\b backspace, 26

\n new line, 26, 35

\r carriage return, 26

\t tab, 26, 35

example programs. See Appendix F

exceptions

arguments, 673-676

basics, 662-669

catch block, 663-668, 675

exceptions (continued)

and destructors, 677

except.h file, 677

exception class, 663, 666-667, 675-677

exception handler, 663, 667-668

function nesting, 678

multiple, 670-673

termination, 678

throwing, 663, 667-668, 675

try block, 663-668

xalloc class, 675-677

exponential notation, 28

extensibility, 4-5

extern keyword, 219-221

external variables, 153, 163, 216, 218-221

extraction, 575. See also stream classes

extraction operator (>>), 35-36, 570, 572, 576, 588, 619-626, 658,
661, 691

F
false/true values, 58-59, 66, 175-183, 303, 728

field width, 92

FIFO (first in first out), 377, 716

file input/output

binary, 592-593, 623-626

character, 591-592

disk file, 587-599

EOF (end-of-file), 580, 590-591, 633

error handling, 580-587, 600-602

formatted, 587-592, 619-623

with member functions, 607-618

mode bits, 597-598

object, 593-598

overloaded << operator, 621-625

overloaded >> operator, 621-625

string, 589-591

file pointers, 602-605, 629

files, multifile programs, 697-709

fill character, 92

float data type, 25, 28

floating-point numbers, 25, 28

for loops, 62-65

formatting flags, 572-573

fractions, 38, 43, 88, 331

friend classes, 549-558

friend functions, 352, 540-549

friend keyword, 544, 548, 550

functional notation, 269, 545-547

functions

() operator, 687-688, 726, 779, 785

arguments, 22, 95-100, 188-190, 193

argc (argument count), 632

argv (argument values), 632

default, 208-214

references, 228-235

C library, 118, 188, 194

calling, 39, 47-48, 95, 100, 110, 188, 236

container, 718, 732-737, 762-763, 771-772

declaration, 192-194, 196, 198, 209

definition, 188-189, 196-199

friend, 540-549

function.h file, 779

function library, 358, 697

function objects, 688, 726-729, 779-789

inline, 196-199

member, 5, 10, 39-43, 47-48, 188

calling, 110, 194

containers, 718, 732-737, 762-763, 771-772

file input/output, 607-618

and objects, 91-92

standalone, 196-202

STL, 718, 732-737, 762-763, 771-772. See also

Appendix B

static, 225-226, 563-565, 609

writing, 95-96

notation, 269, 545-547

object-oriented programming, 5-7

overloading, 14, 203-208, 213, 257, 363-365, 496

and pointers, 440-444

procedural programming, 2

return values, 22, 112-119, 188, 190-192

static, 225-226, 563-565

syntax, 22-23

templates, 642-649

virtual. See virtual functions

G
generalization, 360

get-from operator (>>), 35-36.

See also extraction operator

get pointer, 602, 605

global variables, 3-4

grandparents. See inheritance

greater-than operator (>), 59, 68

greater-than-or-equal-to operator (>=), 59, 68

H
has-a relationship, 359-360, 394-395, 406-412, 420

header files, 36, 53-54, 188, 194

I
if keyword, 70, 76

if statement, 69-70

if...else statement, 70-72, 76

ignore(), 150, 152

#include directive, 53-54

include files, 36

increment operator (++), 42, 133-135, 310-313, 346, 350-352,
439-440, 443, 720

indexes, arrays, 125, 129

indirection operator (*), 433-435, 441, 443

inheritance, 11-13

and access, 361-365, 375, 385-397, 403-404

ambiguity, 418-419

basics, 357-366

class hierarchy, 367, 401

and constructors, 375-384, 401-403

diamond pattern, 418-419

and function overloading, 363-365

grandparents, 398-405

kind-of relationship, 359-360, 392-394, 410-411

levels of, 398-405

multigenerational, 398-405

multiple, 413-422

and polymorphism, 496

private, 392-396, 403-404, 411

and program design, 359-360, 367-372

protected, 395-396, 403-404, 411

public, 392-396, 403-404, 411

initialization, 244-248, 491-492, 513

vs. assignment (=), 255, 263, 269, 277

initialization (continued)

constructors, 381, 401-403

list, 247-248, 251, 262, 277, 381, 401-403

member arrays, 265-266

variables, 246-248, 262-263, 269

initializer list, 247-248, 251, 262, 277, 381, 401-403

inline functions, 196-199

in-memory formatting, 626-631

input/output

character I/O, 582-583, 585, 591-592

cin, 35-36, 146-150, 570, 572, 578, 619, 621, 635-637

conio.h file, 133

disk file I/O, 587-599

input iterator, 720-721, 742-743, 755-758

standard I/O, 36-37

stdio.h file, 36

stream I/O. See streams

strings, 146-150, 152

See also file input/output

insertion, 575. See also streams

insertion operator (<<), 33-34, 428, 570, 572, 577, 588, 619-626,
657-658, 661, 691

instance data, 11, 223-224

arrays as, 131-139, 261-267

lifetime, 222

visibility, 221-222

instance variables, 5

instantiation, 11, 645, 648, 651-653, 716-719

instructions, list of, 2

int data type, 25, 26-27

int keyword, 319

integers, 25-27

interclass communication, 549-560

interface, 374, 718, 742-743

iterators, 714, 720-721, 740-759

K
key/value pairs, 717, 759

keywords

auto, 217, 221

bool, 175

break, 77-78

case, 79

catch, 663, 667

cin, 35-36

class, 21, 550

const, 149-150, 262, 271, 283, 285, 345-348

const_cast, 681, 684

continue, 78

cout, 33-36

delete, 454

do, 62

dynamic_cast, 681-683

else, 70, 76

enum, 175

extern, 219-221

for, 63

friend, 544, 548, 550

if, 70, 76

inline, 196-199

int, 319

namespace, 700

new, 453-458

operator, 297, 320

private, 23, 173-174, 222, 361

protected, 361

public, 23, 173-174, 222, 361

register, 217, 221

reinterpret_cast, 681

return, 113-114, 117, 191

signed, 27

static, 220-221, 225

static_cast, 323-324, 681

struct, 168

switch, 79

temp, 300

template, 644-646, 651

throw, 663, 665, 667

try, 663, 667

unsigned, 27

using, 701-702

virtual, 418-419, 498

void, 22, 112-114, 190

while, 59, 62

kind-of relationship, 359-360, 392-394, 410-411

L
L (type long), 27

labels, 79

late binding, 500-501

less-than operator (<), 59, 68, 303-305, 346, 352, 644

less-than-or-equal-to operator (<=), 59, 68

libraries

class, 358, 697-698

function, 358, 697

.lib files, 188, 698

template. See Standard Template Library

library functions, 118, 188, 194

getche(), 133

random(), 180

randomize(), 180

string. See under strings

lifetime, 216-217, 219, 221-222

LIFO (last in first out), 135, 377, 410, 716

line feed (\n, endl), 26, 35, 573

linked list, 477-482, 655-661

listings. See Appendix F

lists, 477-482, 655-661, 715-716, 735-737, 772-777

local static variables, 220-221

logical operators, 66-68

long data type, 25, 26-27

long double data type, 25, 28

loops, 58-66

break statement, 77-78

condition, 59, 61-65

continue statement, 78-79

decrement expression, 63

do loop, 61-62

do while loop, 61-62

for loop, 62-65

increment expression, 63

initialization expression, 63, 65

loop variable, 63, 65

nested, 66

test expression, 59, 61, 63-65

while loop, 59-61

lvalue, 236

M
macros, 201, 648

main() function, 54-55, 188, 193-194, 198, 632

manipulators, 35, 92, 573-574, 628

map/multimap, 715, 717, 759-760, 763-767

math.h file, 118

member access. See access

member functions. See functions, member

membership access operators

->, 450-451, 458, 460, 479

. dot, 47-48, 141, 170, 222, 297, 420, 450-451, 575, 676

memberwise copy, 271

memory

addresses, 349, 426-437

allocation, 531, 533

dynamic, 453-454, 458, 629-630

for data types, 26-29

deallocation, 455-458, 531, 533, 630

free store, 453

heap, 453

in-memory formatting, 626-631

management, new/delete, 452-461

stack. See stacks

stream objects, 626-631

message sending (function call), 39, 47-48, 95, 100, 110, 188, 236

methods. See functions

Microsoft Visual C++. See Appendix D

mode bits, 597-598

module, 2

modulus assignment operator (%=), 166

modulus operator (%), 41, 68

multifile programs, 697-709

multiplication assignment operator (*=), 166, 305

multiplication operator (*), 41, 68, 301, 346, 352, 708

N
name clashes, 559, 686, 700

name mangling, 204-205, 207

name proliferation, 203-204

namespaces, 559, 690, 700-702, 723

nested classes, 558-563

nested if...else statements, 71-72, 76

nested loops, 66

new keyword, 453-458

new line (\n), 26, 35

new operator, 452-461, 531

not-equal-to operator (!=), 59, 68

NOT operator (!), 66-67, 310

null character (\0), 146, 148, 156

numbers

complex, 89

floating-point, 28

input errors, 582

integers, 26-27

long, 703-709

numerator, 38, 43, 88, 331

numerical constants, 34

O
object creation, 244

object-oriented programming (OOP), 2-14

objects, 5-8

abilities, 10-11

arrays of, 139-146

assignment statements, 90

class instance, 11

const, 283-287

copying, 269-270

creating, 46-49, 457-458, 615

declaration, 221

C++ Interactive Course:Index

http://www.itknowledge.com/reference/archive/1571690638/book-index.html (1 of 2) [21-03-2000 19:51:56]

http://www.itknowledge.com/adclick.html/CID=000003496dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=468x60
http://www.itknowledge.com/adclick.html/CID=00000ac56dff73f500000000/site=itknowledge/area=itk.books.softwaredev/aamsz=160x60/position=top
http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

definition, 221-222

function object, 688, 726-729, 779-789

input/output, 593-598, 607-609

interacting with, 46-49

makeup of, 91-92

name, 245, 291

numbering, 275-277

.obj files, 188, 698

pointers to, 431-433, 458-460, 503-504

real-world, 9-10

state, 10-11

and storage classes, 221-222

subobject, 377-378, 403, 418

temporary, 117, 300, 308, 313, 348, 352

user-defined, and STL, 769-779

operator keyword, 297, 320

operator overloading, 14, 105, 238

() function operator, 687-688, 726, 779, 785

<< insertion operator, 570, 572, 577, 588, 619-626, 657-658,
661, 691

>> extraction operator, 570, 572, 576, 588, 619-626, 658, 661,
691

[] subscript operator, 340-346, 352, 691

arithmetic operators, 296-303, 346, 352, 708-709

assignment operator (=), 333-339, 346, 352, 375-376, 464-465,
469

assignment operators, 305-308, 333-339, 346, 348, 352, 578

binary operators, 296-309, 346, 352

comparison operators, 303-305, 346, 352

fine-tuning, 345-354

left-side problem, 541-544, 620, 624

operatorX() function, 297-300

reasons for, 296-297

relational operators, 303-305, 346, 352

unary operators, 310-317, 346, 352, 644

operators

! logical NOT, 66-67, 310

!= not equal to, 59, 68

% remainder, 41, 68

%= remainder assignment, 166

& address of, 426-428

& reference, 230-231, 237, 428

&& logical AND, 66-68

() function, 687-688, 726, 779, 785

* contents of, 433-435, 441, 443

* dereference, 349, 435, 720, 741

* indirection, 433-435, 441, 443

* multiplication, 41, 68, 301, 346, 352, 708

* pointer to, 429-430, 435

*= multiplication assignment, 166, 305

+ addition, 41, 68, 296-301, 346, 352, 708

+ unary plus, 314-316, 346, 352

++ increment, 42, 133-135, 310-313, 346, 350-352, 439-440,
443, 720

+= addition assignment, 165-166, 305, 348-350, 352

- subtraction, 41, 68, 301, 314, 352, 709

- unary minus, 314-316, 346, 352, 644

-- decrement, 42, 134-135, 310, 346, 352, 720

operators (continued)

-= subtraction assignment, 166, 301, 352

-> membership access, 450-451, 458, 460, 479

. dot, 47-48, 141, 170, 222, 297, 420, 450-451, 575, 676

/ division, 41, 68, 301, 352, 709

/= division assignment, 166, 305

:: scope resolution, 198, 225, 297, 364-365, 416, 510, 573,
655, 701

< less than, 59, 68, 303-305, 346, 352, 644

< redirection, 637

<< insertion, 33-34, 428, 570, 572, 577, 588, 619-626,
657-658, 661, 691

<< put to, 33-34

<= less than or equal to, 59, 68

= assignment, 25, 68, 90, 127, 156-159

vs. initialization, 255, 263, 269, 277

overloading, 333-339, 346, 352, 375-376, 464-465, 469

== equal to, 59, 68, 346, 352, 648

> greater than, 59, 68

> redirection, 636-637

>= greater than or equal to, 59, 68

>> extraction, 35-36, 570, 572, 576, 588, 619-626, 658, 661,
691

>> get from, 35-36

?: conditional, 84-85, 297

[] subscript, 141, 340-346, 352, 487, 691, 732-733, 737, 743,
766-767

|| logical OR, 66-68

arithmetic, 41-42, 165-166

overloading, 296-303, 346, 352, 708-709

precedence, 67-68

assignment, 165-166, 305-308, 333-339, 346, 348, 352, 578

= operator, 25, 68, 90, 127, 156-159

vs. initialization, 255, 263, 269, 277

overloading, 333-339, 346, 352, 375-376,
464-465, 469

associativity, 443

binary, 41, 296-309, 346, 352

cast, 296, 318-325

comparison, 58-59, 67-68, 303-305, 346, 352

delete, 452-461, 531

logical, 66-68

new, 452-461, 531

overloading. See operator overloading

postfix, 134-135, 137

precedence, 41-42, 67-68, 141, 443

prefix, 134, 137

redirection, 636-637

relational, 58-59, 67-68, 303-305, 346, 352

sizeof, 594, 609, 610

ternary, 296

unary, 42, 310-317, 346, 352, 644

OR operator (||), 66-68

output

character I/O, 582-583, 585, 591-592

conio.h file, 133

cout, 33-36, 146-148, 570, 572, 578, 619, 621, 635-637

disk file I/O, 587-599

formatting, 34-35, 92

leading zeros, 92

output iterator, 720-721, 742-743, 755-758

printer, 633-635

standard I/O, 36-37

stdio.h file, 36

stream I/O. See streams

strings, 146-150, 152

See also file input/output

overflow, 373, 384

overloading

functions, 14, 203-208, 213, 257, 363-365, 496

operators. See operator overloading

P
pair data type, 766

parameters, 22, 190. See also arguments

parent class. See inheritance

passing by pointer, 440-442, 518-519

passing by reference, 100, 229-231, 234, 271-272, 274, 280, 345,
440, 516-518

passing by value, 100-101, 190, 228-229, 234, 271-272, 278-280,
346

past-the-end value, 724

peek functions, 327-328

peek, stacks, 139, 175, 377

pointers, 349

& address-of operator, 426-428

* indirection operator, 433-435, 441, 443

* pointer-to operator, 429-430, 435

*this expression, 338, 348-352, 475, 609

and addresses, 426-427, 433-435

and arrays, 438-444

arrays of, 448-450, 458-460

and const, 465-468

and copy constructors, 277

examples

linked list, 477-482

sorted array, 483-493

string class, 469-477

file pointers, 602-605, 629

and functions, 440-444

interclass communication, 551-553

and iterators. See iterators

member function access, 496-500

notation, 438-442, 445

to objects, 431-433, 503-504

passing by, 440-442, 518-519

pointer constants, 426, 430

pointer variables, 429-435

and strings, 445-452

*this expression, 338, 348-352, 475, 609

this pointer, 462-465, 475, 501, 609, 624

and typedef, 685

to void, 435-436

polymorphism, 14, 496-499, 503-504

decoupling, 515-524

See also virtual functions

pop, stacks, 135-137

precedence, 41-42, 67-68, 141, 443

predicate, 728

preprocessor directives, 53-55

#define, 150, 201, 685

#include, 53-54

printer output, 633-635

private access, 23-24, 106, 221-222, 361-363, 375, 385-397,
403-404, 550-551, 698

private inheritance, 392-396, 403-404, 411

private keyword, 23, 173-174, 222, 361

procedural programming, 2-5

procedures. See functions

program design, 55-56

and inheritance, 359-360, 367-372

multifile programs, 698

program listings. See Appendix F

programming

object-oriented (OOP), 2-14

procedural, 2-5

programs, multifile, 697-709

protected access, 361-363, 375, 385-397, 403-404

protected inheritance, 395-396, 403-404, 411

protected keyword, 361

prototype (function declaration), 192-194, 196, 198, 209

public access, 23-24, 222, 361-363, 375, 385-397, 403-404, 698

public inheritance, 392-396, 403-404, 411

public keyword, 23, 173-174, 222, 361

push, stacks, 135-137

put pointer, 602

put-to operator (<<), 33-34

See also insertion operator

Q
quotation marks

double (“ ”), 33, 54, 148

single (‘ ’), 25

queues, 377

R
random number generator, 180

ranges, 724

read-only access, 387, 389

redirection, 635-637

redirection operators (< and >), 636-637

reference operator (&), 230-231, 237, 428

reference, passing by, 100, 229-231, 234, 271-272, 274, 280, 345,
440, 516-518

reference, returning by, 117, 236-239, 338, 340, 348

references, 228-239

register keyword, 217, 221

register variables, 217, 221

reinterpret casts, 684-685

relational operators, 58-59, 67-68, 303-305, 346, 352

remainder assignment operator (%=), 166

remainder operator (%), 41, 68

return, carriage (\r), 26

return statement, 113-114, 117, 191

return values, 22, 112-119, 188, 190-192

returning by reference, 117, 236-239, 338, 340, 348

returning by value, 117, 191-192, 280-282, 348

reusability, 13-14, 73-74, 515

and inheritance, 357-358, 373-376

runtime type identification (RTTI), 536-540, 682-683

rvalue, 236

S
scope (visibility), 216-217, 219-222, 225

:: operator, 198, 225, 297, 364-365, 416, 510, 573, 655, 701

search, binary, 487-491

seekg() function, 598, 602-605

seekp() function, 602

self-assignment, 338

semicolon, 21-23, 33

set/multiset, 715, 717, 760-763, 767, 769-772

setfill() manipulator, 92, 574

setw() manipulator, 92, 574

short data type, 25, 26-27

signed keyword, 27

sizeof operator, 594, 609, 610

slashes (// and /* */) for comments, 30

source file organization, 55-56

sqrt (square root) function, 118

stacks, 115, 135-137, 453, 715, 718-719

overflow/underflow, 373, 384

template, 650-655

static binding, 500

static casts, 323-324, 681-682

static data, 223-228, 563-565, 609

static functions, 225-226, 563-565

static keyword, 220-221, 225

static members, 223-228, 563-565, 609

static variables, 220-221

static_cast keyword, 323-324, 681

Standard Template Library (STL), 481

[] operator, 732-733, 737, 743, 766-767

adaptors, 719

algorithms, 713-714, 719-720, 723-732, 744-750. See also
Appendix B

containers, 714-719, 744

abstract data types, 715, 718-719

arrays, 715-716

associative, 717, 759-769

deque, 715-716, 737-738

elements, 720

functions, 718, 732-737, 762-763, 771-772. See also
Appendix B

hash table versions, 767

lists, 715-716, 735-737, 772-777

map/multimap, 715, 717, 759-760, 763-767

queue/priorty_queue, 715-716, 718-719

sequence, 715-717, 732-740

set/multiset, 715, 717, 759-763, 767, 769-772

stacks, 715, 718-719

vectors, 715-716, 732-735

iterators, 714, 720-721, 740-759

member functions, 718, 732-737, 762-763, 771-772. See
also Appendix B

key/value pairs, 717, 759

problems with, 721

user-defined objects, 769-779

storage classes, 215-223

streams (defined), 36

<< insertion operator, 570, 572, 577, 588, 619-626

>> extraction operator, 570, 572, 576, 588, 619-626

cerr, 578

cin, 35-36, 146-150, 570, 572, 578, 619, 621, 635-637

classes, 570-572

filebuf, 587, 592

fstream, 587, 597

ifstream, 587

ios, 570-575, 580, 597-598

iostream, 572, 578

iostream_withassign, 572, 578, 637

istream, 570-572, 575-577

get(), 148-149, 152

getline(), 212, 214

ignore(), 150, 152

istream_withassign, 570, 572, 578, 637

istrstream, 626-627

ofstream, 587

ostream, 570-572, 577

ostream_withassign, 570, 572, 578, 637

ostrstream, 626-630

streambuf, 571, 578, 587, 592

strstream, 626

clog, 578

cout, 33-36, 146-148, 570, 572, 578, 619, 621, 635-637

disk file I/O, 587-599

errors, 580-587

formatting flags, 572-573

header files

fstream.h, 570, 587

iomanip.h, 571, 574

iostream.h, 570, 587

iostream.h file, 36, 53-54, 212

strstrea.h, 571, 626

in-memory formatting, 626-631

input/output, 33-38, 146-147

iterators, 755-758

strings, 146-154

arrays of, 161-168

basic_string class, 689-696

character array, 131, 445, 689

concatenation, 156, 300-301

conversion, 256-257, 322-323

file I/O, 589-591

functions, 155-161, 447, 692-695

strcat(), 156, 159, 301

strcmp(), 157, 323, 648

strcpy(), 156, 159, 257, 301, 447

stricmp(), 157, 165

strlen(), 155-156, 159

strncmp(), 157

strncpy(), 277, 335

strrev(), 707

input errors, 583

overflow, 156, 159

and pointers, 445-452

string class

memory-efficient, 469-477

standard, 689-696

string constants, 33-34, 147-148, 445

string.h file, 155

struct keyword, 168

structure members, 168-170

structure tag, 168

structured programming, 2-5

structures, 168-175

subobject, 377-378, 403, 418

subprograms. See functions

subroutines. See functions

subscript operator [], 141, 340-346, 352, 487, 691, 732-733,
737, 743, 766-767

subtraction assignment operator (-=), 166, 301, 352

subtraction operator (-), 41, 68, 301, 314, 352, 709

swapping, 229-232

switch statement, 79-81

symbol table (map/multimap), 715, 717, 759-760, 763-767

T
tab (\t), 26, 35

tellg() function, 602, 605

tellp() function, 602

temp keyword, 300

template keyword, 644-646, 651

templates, 481

arguments, 644-647

class, 650-662

function, 642-649

and typedef, 686-687

See also Standard Template Library

temporary objects, 117, 300, 308, 313, 348, 352

test expression

if/if...else statements, 71

loops, 59, 61, 63-65

text. See strings

*this expression, 338, 348-352, 474, 609

this pointer, 462-465, 475, 501, 609, 624

throw keyword, 663, 665, 667

tilde (~), 245

true/false values, 58-59, 66, 175-183, 303, 728

try block, 663-668

try keyword, 663, 667

Turbo C++ for Windows. See Appendix C

type casting, 318-325, 680-685. See also casts

typedef specifier, 685-687, 765-766

typeid() function, 536-537, 610, 683

types. See data types

typing, 319, 681. See also casts

U
unary operators, 42, 310-317, 346, 352, 644

+ plus, 314-316, 346, 352

- minus, 314-316, 346, 352, 644

underflow, 373, 384

underscore (_), 11

unsigned data type, 27

unsigned integers, 27

user-defined data types. See under data types

user-defined objects, STL, 769-779

using directive, 701-702, 723

V
value, passing by, 100-101, 190, 228-229, 234, 271-272, 278-280,
346

value, returning by, 117, 191-192, 280-282, 348

variables

automatic, 115, 216-217, 221, 238

const, 149-150, 262, 264, 465, 683-684

copying, 269-271

declaring, 22, 25-30, 215-216, 219

defining, 115, 215-216, 219, 222

external, 153, 163, 216, 218-221

global, 3-4

initializing, 115, 246-248, 262-263, 269

instance, 5

lifetime, 216-217, 219, 221-222

local, 3

local static, 220-221

register, 217, 221

static, 220-221

static constant, 264

storage classes, 215-223

string, 146-148

visibility (scope), 216-217, 219-222

vectors, 715-716, 732-735

virtual base classes, 418-420

virtual destructors, 529-533

virtual functions

=0 notation, 525-526, 529

basics, 496-505

and constructors, 513-514

destructors, 529-533

examples, 506-514, 519-524, 526-529

pure, 509, 524-525, 529

when to use, 533

virtual keyword, 418-419, 498

virtual table, 501, 533

Visual C++. See Appendix D

visibility (scope), 216-217, 219-222, 225

:: operator, 198, 225, 297, 364-365, 416, 510, 573, 655, 701

void function return, 22, 112-114, 190

W
while keyword, 59, 62

while loops, 59-61

whitespace, 29, 76, 582

Windows, and C++. See Appendix C and D

wrapping, 137, 160, 374

Z
zeros, leading, 92

Table of Contents

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

C++ Interactive Course:Index

http://www.itknowledge.com/reference/archive/1571690638/book-index.html (2 of 2) [21-03-2000 19:51:56]

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/archive/1571690638/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

	C++ Interactive Course
	C++ Interactive Course - Table of Contents
	C++ Interactive Course:Introduction
	C++ Interactive Course:About the Author
	C++ Interactive Course:A First Look at OOP and C++
	C++ Interactive Course:A First Look at OOP and C++
	C++ Interactive Course:A First Look at OOP and C++
	C++ Interactive Course:A First Look at OOP and C++
	C++ Interactive Course:A First Look at OOP and C++
	C++ Interactive Course:A First Look at OOP and C++
	C++ Interactive Course:A First Look at OOP and C++
	C++ Interactive Course:A First Look at OOP and C++
	C++ Interactive Course:A First Look at OOP and C++
	C++ Interactive Course:A First Look at OOP and C++
	C++ Interactive Course:A First Look at OOP and C++
	C++ Interactive Course:A First Look at OOP and C++
	C++ Interactive Course:A First Look at OOP and C++
	C++ Interactive Course:A First Look at OOP and C++
	C++ Interactive Course:A First Look at OOP and C++
	C++ Interactive Course:A First Look at OOP and C++
	C++ Interactive Course:A First Look at OOP and C++
	C++ Interactive Course:Writing Complete OOP Programs
	C++ Interactive Course:Writing Complete OOP Programs
	C++ Interactive Course:Writing Complete OOP Programs
	C++ Interactive Course:Writing Complete OOP Programs
	C++ Interactive Course:Writing Complete OOP Programs
	C++ Interactive Course:Writing Complete OOP Programs
	C++ Interactive Course:Writing Complete OOP Programs
	C++ Interactive Course:Writing Complete OOP Programs
	C++ Interactive Course:Writing Complete OOP Programs
	C++ Interactive Course:Writing Complete OOP Programs
	C++ Interactive Course:Writing Complete OOP Programs
	C++ Interactive Course:Writing Complete OOP Programs
	C++ Interactive Course:Writing Complete OOP Programs
	C++ Interactive Course:Writing Complete OOP Programs
	C++ Interactive Course:Writing Complete OOP Programs
	C++ Interactive Course:Writing Complete OOP Programs
	C++ Interactive Course:Writing Complete OOP Programs
	C++ Interactive Course:Writing Complete OOP Programs
	C++ Interactive Course:Writing Complete OOP Programs
	C++ Interactive Course:Writing Complete OOP Programs
	C++ Interactive Course:Writing Complete OOP Programs
	C++ Interactive Course:Writing Complete OOP Programs
	C++ Interactive Course:Writing Complete OOP Programs
	C++ Interactive Course:Writing Complete OOP Programs
	C++ Interactive Course:Writing Complete OOP Programs
	C++ Interactive Course:Arrays and Strings
	C++ Interactive Course:Arrays and Strings
	C++ Interactive Course:Arrays and Strings
	C++ Interactive Course:Arrays and Strings
	C++ Interactive Course:Arrays and Strings
	C++ Interactive Course:Arrays and Strings
	C++ Interactive Course:Arrays and Strings
	C++ Interactive Course:Arrays and Strings
	C++ Interactive Course:Arrays and Strings
	C++ Interactive Course:Arrays and Strings
	C++ Interactive Course:Arrays and Strings
	C++ Interactive Course:Arrays and Strings
	C++ Interactive Course:Arrays and Strings
	C++ Interactive Course:Arrays and Strings
	C++ Interactive Course:Arrays and Strings
	C++ Interactive Course:Arrays and Strings
	C++ Interactive Course:Arrays and Strings
	C++ Interactive Course:Arrays and Strings
	C++ Interactive Course:Arrays and Strings
	C++ Interactive Course:Arrays and Strings
	C++ Interactive Course:Arrays and Strings
	C++ Interactive Course:Arrays and Strings
	C++ Interactive Course:Functions
	C++ Interactive Course:Functions
	C++ Interactive Course:Functions
	C++ Interactive Course:Functions
	C++ Interactive Course:Functions
	C++ Interactive Course:Functions
	C++ Interactive Course:Functions
	C++ Interactive Course:Functions
	C++ Interactive Course:Functions
	C++ Interactive Course:Functions
	C++ Interactive Course:Functions
	C++ Interactive Course:Functions
	C++ Interactive Course:Functions
	C++ Interactive Course:Functions
	C++ Interactive Course:Functions
	C++ Interactive Course:Functions
	C++ Interactive Course:Functions
	C++ Interactive Course:Functions
	C++ Interactive Course:Functions
	C++ Interactive Course:Constructors
	C++ Interactive Course:Constructors
	C++ Interactive Course:Constructors
	C++ Interactive Course:Constructors
	C++ Interactive Course:Constructors
	C++ Interactive Course:Constructors
	C++ Interactive Course:Constructors
	C++ Interactive Course:Constructors
	C++ Interactive Course:Constructors
	C++ Interactive Course:Constructors
	C++ Interactive Course:Constructors
	C++ Interactive Course:Constructors
	C++ Interactive Course:Constructors
	C++ Interactive Course:Constructors
	C++ Interactive Course:Constructors
	C++ Interactive Course:Constructors
	C++ Interactive Course:Constructors
	C++ Interactive Course:Constructors
	C++ Interactive Course:Operator Overloading
	C++ Interactive Course:Operator Overloading
	C++ Interactive Course:Operator Overloading
	C++ Interactive Course:Operator Overloading
	C++ Interactive Course:Operator Overloading
	C++ Interactive Course:Operator Overloading
	C++ Interactive Course:Operator Overloading
	C++ Interactive Course:Operator Overloading
	C++ Interactive Course:Operator Overloading
	C++ Interactive Course:Operator Overloading
	C++ Interactive Course:Operator Overloading
	C++ Interactive Course:Operator Overloading
	C++ Interactive Course:Operator Overloading
	C++ Interactive Course:Operator Overloading
	C++ Interactive Course:Operator Overloading
	C++ Interactive Course:Operator Overloading
	C++ Interactive Course:Operator Overloading
	C++ Interactive Course:Operator Overloading
	C++ Interactive Course:Operator Overloading
	C++ Interactive Course:Operator Overloading
	C++ Interactive Course:Operator Overloading
	C++ Interactive Course:Operator Overloading
	C++ Interactive Course:Operator Overloading
	C++ Interactive Course:Inheritance
	C++ Interactive Course:Inheritance
	C++ Interactive Course:Inheritance
	C++ Interactive Course:Inheritance
	C++ Interactive Course:Inheritance
	C++ Interactive Course:Inheritance
	C++ Interactive Course:Inheritance
	C++ Interactive Course:Inheritance
	C++ Interactive Course:Inheritance
	C++ Interactive Course:Inheritance
	C++ Interactive Course:Inheritance
	C++ Interactive Course:Inheritance
	C++ Interactive Course:Inheritance
	C++ Interactive Course:Inheritance
	C++ Interactive Course:Inheritance
	C++ Interactive Course:Inheritance
	C++ Interactive Course:Inheritance
	C++ Interactive Course:Inheritance
	C++ Interactive Course:Inheritance
	C++ Interactive Course:Inheritance
	C++ Interactive Course:Inheritance
	C++ Interactive Course:Inheritance
	C++ Interactive Course:Inheritance
	C++ Interactive Course:Inheritance
	C++ Interactive Course:Pointers
	C++ Interactive Course:Pointers
	C++ Interactive Course:Pointers
	C++ Interactive Course:Pointers
	C++ Interactive Course:Pointers
	C++ Interactive Course:Pointers
	C++ Interactive Course:Pointers
	C++ Interactive Course:Pointers
	C++ Interactive Course:Pointers
	C++ Interactive Course:Pointers
	C++ Interactive Course:Pointers
	C++ Interactive Course:Pointers
	C++ Interactive Course:Pointers
	C++ Interactive Course:Pointers
	C++ Interactive Course:Pointers
	C++ Interactive Course:Pointers
	C++ Interactive Course:Pointers
	C++ Interactive Course:Pointers
	C++ Interactive Course:Pointers
	C++ Interactive Course:Pointers
	C++ Interactive Course:Pointers
	C++ Interactive Course:Pointers
	C++ Interactive Course:Pointers
	C++ Interactive Course:Pointers
	C++ Interactive Course:Virtual Functions and Friend Functions
	C++ Interactive Course:Virtual Functions and Friend Functions
	C++ Interactive Course:Virtual Functions and Friend Functions
	C++ Interactive Course:Virtual Functions and Friend Functions
	C++ Interactive Course:Virtual Functions and Friend Functions
	C++ Interactive Course:Virtual Functions and Friend Functions
	C++ Interactive Course:Virtual Functions and Friend Functions
	C++ Interactive Course:Virtual Functions and Friend Functions
	C++ Interactive Course:Virtual Functions and Friend Functions
	C++ Interactive Course:Virtual Functions and Friend Functions
	C++ Interactive Course:Virtual Functions and Friend Functions
	C++ Interactive Course:Virtual Functions and Friend Functions
	C++ Interactive Course:Virtual Functions and Friend Functions
	C++ Interactive Course:Virtual Functions and Friend Functions
	C++ Interactive Course:Virtual Functions and Friend Functions
	C++ Interactive Course:Virtual Functions and Friend Functions
	C++ Interactive Course:Virtual Functions and Friend Functions
	C++ Interactive Course:Virtual Functions and Friend Functions
	C++ Interactive Course:Virtual Functions and Friend Functions
	C++ Interactive Course:Virtual Functions and Friend Functions
	C++ Interactive Course:Virtual Functions and Friend Functions
	C++ Interactive Course:Virtual Functions and Friend Functions
	C++ Interactive Course:Virtual Functions and Friend Functions
	C++ Interactive Course:Virtual Functions and Friend Functions
	C++ Interactive Course:Virtual Functions and Friend Functions
	C++ Interactive Course:Virtual Functions and Friend Functions
	C++ Interactive Course:Virtual Functions and Friend Functions
	C++ Interactive Course:Virtual Functions and Friend Functions
	C++ Interactive Course:Streams and Files
	C++ Interactive Course:Streams and Files
	C++ Interactive Course:Streams and Files
	C++ Interactive Course:Streams and Files
	C++ Interactive Course:Streams and Files
	C++ Interactive Course:Streams and Files
	C++ Interactive Course:Streams and Files
	C++ Interactive Course:Streams and Files
	C++ Interactive Course:Streams and Files
	C++ Interactive Course:Streams and Files
	C++ Interactive Course:Streams and Files
	C++ Interactive Course:Streams and Files
	C++ Interactive Course:Streams and Files
	C++ Interactive Course:Streams and Files
	C++ Interactive Course:Streams and Files
	C++ Interactive Course:Streams and Files
	C++ Interactive Course:Streams and Files
	C++ Interactive Course:Streams and Files
	C++ Interactive Course:Streams and Files
	C++ Interactive Course:Streams and Files
	C++ Interactive Course:Streams and Files
	C++ Interactive Course:Streams and Files
	C++ Interactive Course:Streams and Files
	C++ Interactive Course:Streams and Files
	C++ Interactive Course:Streams and Files
	C++ Interactive Course:Streams and Files
	C++ Interactive Course:Streams and Files
	C++ Interactive Course:Streams and Files
	C++ Interactive Course:Streams and Files
	C++ Interactive Course:Templates, Exceptions, and More
	C++ Interactive Course:Templates, Exceptions, and More
	C++ Interactive Course:Templates, Exceptions, and More
	C++ Interactive Course:Templates, Exceptions, and More
	C++ Interactive Course:Templates, Exceptions, and More
	C++ Interactive Course:Templates, Exceptions, and More
	C++ Interactive Course:Templates, Exceptions, and More
	C++ Interactive Course:Templates, Exceptions, and More
	C++ Interactive Course:Templates, Exceptions, and More
	C++ Interactive Course:Templates, Exceptions, and More
	C++ Interactive Course:Templates, Exceptions, and More
	C++ Interactive Course:Templates, Exceptions, and More
	C++ Interactive Course:Templates, Exceptions, and More
	C++ Interactive Course:Templates, Exceptions, and More
	C++ Interactive Course:Templates, Exceptions, and More
	C++ Interactive Course:Templates, Exceptions, and More
	C++ Interactive Course:Templates, Exceptions, and More
	C++ Interactive Course:Templates, Exceptions, and More
	C++ Interactive Course:Templates, Exceptions, and More
	C++ Interactive Course:Templates, Exceptions, and More
	C++ Interactive Course:Templates, Exceptions, and More
	C++ Interactive Course:Templates, Exceptions, and More
	C++ Interactive Course:Templates, Exceptions, and More
	C++ Interactive Course:Templates, Exceptions, and More
	C++ Interactive Course:Templates, Exceptions, and More
	C++ Interactive Course:Templates, Exceptions, and More
	C++ Interactive Course:Templates, Exceptions, and More
	C++ Interactive Course:Templates, Exceptions, and More
	C++ Interactive Course:The Standard Template Library
	C++ Interactive Course:The Standard Template Library
	C++ Interactive Course:The Standard Template Library
	C++ Interactive Course:The Standard Template Library
	C++ Interactive Course:The Standard Template Library
	C++ Interactive Course:The Standard Template Library
	C++ Interactive Course:The Standard Template Library
	C++ Interactive Course:The Standard Template Library
	C++ Interactive Course:The Standard Template Library
	C++ Interactive Course:The Standard Template Library
	C++ Interactive Course:The Standard Template Library
	C++ Interactive Course:The Standard Template Library
	C++ Interactive Course:The Standard Template Library
	C++ Interactive Course:The Standard Template Library
	C++ Interactive Course:The Standard Template Library
	C++ Interactive Course:The Standard Template Library
	C++ Interactive Course:The Standard Template Library
	C++ Interactive Course:The Standard Template Library
	C++ Interactive Course:The Standard Template Library
	C++ Interactive Course:The Standard Template Library
	C++ Interactive Course:The Standard Template Library
	C++ Interactive Course:The Standard Template Library
	C++ Interactive Course:The Standard Template Library
	C++ Interactive Course:The Standard Template Library
	C++ Interactive Course:The Standard Template Library
	C++ Interactive Course:The Standard Template Library
	C++ Interactive Course:The Standard Template Library
	C++ Interactive Course:The Standard Template Library
	C++ Interactive Course:The Standard Template Library
	C++ Interactive Course:The Standard Template Library
	C++ Interactive Course:Appendix A Quiz Answers
	C++ Interactive Course:Appendix B STL Algorithms and Member Functions
	C++ Interactive Course:Appendix C Borland C++ and Turbo C++ for Windows
	C++ Interactive Course:Appendix D Microsoft Visual C++
	C++ Interactive Course:Appendix E ASCII Table
	C++ Interactive Course:Appendix F Program List
	C++ Interactive Course:Index

	MLJHJBOLAEHIHPEJKFFBFANHBNFGGHFC:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	JDPEMBIMGPBLCAGOLJHFCHKOFHFLKMII:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	NPBMAFOGBCNBOKPOOJOMBGHJODEOCNFH:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	DLHLPFLCBHCEMPDEGDBGLOMFLMLABDIE:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	PJNHBOPPMPOGHIKLOOLECDOKOMBKEJFD:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	NIIOGDLADHCCBJFBJIBAFPEJDEOCCMMP:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	GIBFPJOMCDIEIMEGGICIPHIIEFJNLOEG:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	KCOHKHDKJDKOOCNGLKJGMEBENPMANPFMAH:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	MNFFAGKOLNFMAHOEAEBPMPJCOAHBLDLJLH:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	ENGEJEECLBLHHFDDFCDKPKMJJPKOPNMK:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	IHAHMNNJNPAIHEKABEOALPKMMCHDHNJE:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	BCFPCBKBILIOAJBEEJGAFEDCBLIIPCNF:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	CAGOIFDHBLFILJJPCKEAPIGFGBOBMJOI:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	GBFMAHMFMKCDKBIOLKDJBLCFCHOLAFMLOJ:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	FMAHBHCFPPCHFHEOOLCFKPBAIFKMEDMFBN:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	CKKEFCKEECMNFGHNKJAEIJNDFCNCPDIE:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	PBHLJLLMPANIDEGEEHFPFFHNOMGLMBHM:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	HMPMICIDAFJJPMGCPKOGIOIBHDENPNBF:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	HOFNPEINDCIFIHGJIDINAIIAMIMIDDBH:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	EHNKKHBKDHJHBCFMDAGKIFIEBJMKPELGCI:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	PIPFCEONOOHFGCGDPPJBPCADLBALANCC:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	DNPAOIINMLOBBOBKPIEEILBHGNFMFMOJLP:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	MNAEBPPNKDMGLFGGHCFBGLNFILKECNGK:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	AEAFEMEFMOKPPKEBBELEKAPCPEAINBDL:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	GFOMFGADBMPINDEFNGLABLOFHECHMLIK:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	GEIBHMINLADAKKBEIFCIJDCDECHGDDJN:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	BFEKNBJLHONONLKOBJIDAOJCPGBPEGKA:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	ODKMGPDBHADGCNNMFJPKOHJABGBFPBAK:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	BOEIPCDEPDOPAIEKEJCGEDPIEBGCGLOH:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	JBKOBLDNBGMENKAGBHCCICPDCILJEPNL:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	GMFACIACBEBNEIGODPDFDIJDPNONEJGI:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	DKHEHIGJHNBBIDDJIIFKMPFLAGKNMBPF:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	EBHKNNEAEIPKLKLEDJLKGKMNOLLGPDPE:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	CFALOKIBOEPOPPKGCPIIOGLIGMOJLOEP:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	NBBDPHFAAFNBGJGGOMHAFLFKHPFBFOOL:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	DPMBKHNCPNCGCIPJFMFMHFPONDCCLBGGIP:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	NHPKBPPGNODJLGNCBMOBOLIJOAKPJAML:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	KNIIHKLMMOBCMMIKCLDCBBDGBJCMFNMN:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	BMBABPPIMBNGDOJDHNLEPFAHDHCMEGKL:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	NBBDPBAELBJJJCEBJMCFFEDNIJMMGOMC:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	ALHDPBBKMLEKHCAJOKGFHPDACLLNFOEJ:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	DMGODMANBJEIPPJHNOEODBJPADFCCDFF:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	ACINBBAMONJPBBFMFMCMBCFJDOPCDFEPJE:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	NPKIEGJNFMAHPFBMBJFNFAPGGIBNFKLDPP:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	NBLAEHBJEOCIOGPHKJFHCCFFFLNDHFNH:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	PFMBBBCCFOKMEPPIDAPOFNNMIGPFDEHM:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	KMEBMILPJGFMDACBHDIDEFBJDCIPPIDABD:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	OJPJDDOKAMNJLONBGHBHNMLEKJGPGDGM:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	IIBODKONHEAPAGJNFMDABCLEBIMEOBHHAO:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	PKPCMJNJIMLAMBJBPMLCMCBAOBAPFDMH:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	NLHCIHHJEMKPPMBPBEAFKKDHIHELKFGM:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	NJOHAFPFLMEDAEJNGBEPMAPHIBHLBBBM:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	KDJIJCPMFPLMGBKLPNFMAHCDGPBFHAKCKM:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	ENLJCHAHHODECFALMJLPGMAKEPLKHGCI:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	DMMDBDDKIJMJKIEFBADHDPGCJNCGBAGN:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	FJHBJNMAJEMJHIONJKACDGJNGFNODBPK:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	FNIJBMEKCNGLJBBCDIMKDKPFKOGDFKNM:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	DOIBEALAKEBAIEAGEOEDOPDLLIOGEIGB:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	HLMEEJMIFMAHGMINEMKOFJPMMLKGFHOMFO:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	NLPGPOCJIIEEGFNDDMEELHNIJFNDOCJI:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	HKAIAHGLLBFBNACIPLDAEEOKIGGFDKPB:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	HJHGFBNNNBBOLHBEGIAFGKMNFMFMNLJKFG:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	KMMBIMFLPFPFLGLOICGPOKCCGMFIMILO:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	DIKFPAGGKCMDBJNEAIPOKDLNEMMBMFFMFM:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	LCOKOCECHAMAJMMFMGLKAGBEPIEPPLAE:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	GFEFNEBINBKGEKOKFJPEHAAIKOKCJGMK:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	BHHIFFAPAFJNJOBJJADCGKNOFDNOKPCM:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	ONIPPGFEIEGFNNHOEKHCDDFGDPDPEENF:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	GIGHCKGBIMAGIMJALCDHJDPLNIMLKCDB:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	CBGBGGBOHBOEPOGDEDKMGGHOFKGMKJFE:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	HLOICBFMAHGHPPPNHJMMHNJOPEGFEBDLNF:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	BJAIOGEPPAMDOPHOODBACHPEBOOGLHKL:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	CHBHINHABPNEAFDPHPDJNPIJPHNKHEKA:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	DKKIPGIENJNDAPBMINDAHHCNJEAOFBHF:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	IHEHFCENPKJLMIIMBPFPIKFMAHOINMNPGM:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	PHMCALGGFCPJAJPLPDPLFEPBEDDJGBEJ:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	NKOBPKPPHHKDMLKCMFADPEBDLFLKMGDM:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	GEMEPHJMCKCEKJLEEKEPKMCMNIBLOMEM:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	DDGCECEMPJPBFMAHCNCIBDJEMIOFJJCMKE:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	ONPOALEIJNOHLFPMFKOCPGHJIDLKIGGF:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	DICCGPJCJLCDOKFJKBDFBJDDHFHALDJL:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	JGINMEDCHPGJNAFIGIBKOIDMCANLFNBO:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	CHFIDIEHBCJJDDPDIADDNIJDLJNADGGO:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	JIBOODOJAELKEHONNDFOLBLBDNLHKKKO:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	CIJJPKINMGHGNCBEEEKHOJMFIMKOOKOI:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	GEHKFEDIFMDAANBMEDFMFMNKPEHLKIHOHMDF:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	PCJDMGLCEKACNMKPACDPGEJEEALDCNOH:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	PLBFOEMHFMFMAPOKCMEGHHPMFLLIJKIMNA:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	DHHADKHIKIGECELAICEEFMAHHBCLGIMNCN:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	MLBIAIGLOPAECIGEHFAJILFEIAMKPCMC:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	DKJBLPCPLCDDOMPBFAINDAFIHMOAJFIL:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	CAGDEKIEOIFEMLFHFEKPNJKGILEEPJLP:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	NAIPKPCEHGDIMFANDPOHJIIGJLPLIJDI:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	FFLFBFLBDKIEKMIMIFIJKLIAIHAOPLFA:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	HODODOHDMJONOMPFOMPMHFCJOPIKDJPM:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	EDFMAHBDNKNLHFJAEDMEGLKOIPHDDGLCLA:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	JEFNBNNFPNIFEMLOLMDJMODCEBKIENPA:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	KGJPCHOGBLCMCFMFHLFMFMOPNGAHPAFCHG:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	DOLCLBFMDAEOLPBLGCMFNEFEEAPEMKCEDM:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	DGGEEJKBDBOHNJBKBDIHKHKLHLHHNGFA:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	AIMFPMPCEGOGOHAMECLFIDHPDCOFGBBP:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	FHFGLICNHDBIBJKALOPIPIGOHCNKKBDG:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	DGOFMLOPPEAMMBBDAGCEKLPKHEDKODID:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	IEFMAHAFBIFJONJGMEGJFFAPIJDCCLLLKE:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	EFCLALNLBKILNPIFGPBGGGMMBOFENKCM:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	OGGAEALMBAJNOJECPNBMICHAKMEDDJMI:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	GJHHPIOBKGEAPKOCOMBGINDPEMGOBADA:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	LILCIIOLOOOOGMCJNEFLOAJJKENCGBOP:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	AEOAHMELHKLIMIEEDOMAKKGPPKCECMOG:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	HIIDGLEDPELKGOHFAFOBIPGLKAHENLEP:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	KNBJECILDHJMGBHDOOJNLPDOECDDOLFB:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	JNPDOJGINKBEPJACPJDJLBJHNKPHCLEJ:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	DOAEDKHBOHFNLOLIEJEJMCFHIDDBDNHP:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	MONOOHOHOOGHDNJGAOLMLOEJCAMPNEBD:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	MIECEFGMBBKAJFBILBBHHEPKMIGBLOLN:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	MPNNDKIIBJBAEONPHICAHLGHCGIEFAHF:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	GMPLANLGPJIBAPMIMCFCHNFLKPKGBEMJ:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	BAMDNCJDNNOGPMLAGHMCNFFKJAMGMLAK:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	MGDKOGDADKAOCHNPAJNDIHJHHKDIJJKA:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	OAPKKHDOFHCCIKHNININAEELBEEINNIL:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	PFMPCJONJGAIOJALAJDBBAMGGLLHHMHN:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	ELBKMLIMMBMJNGDIGBAIGCCPJNCHGOHD:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	GKJLLKGFLBLFNGLKPGEEPAHLKHGHGDPD:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	BGBCFIEAHHIKEENGAFFNMNPHKAMBOFEF:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	GIOJLHMCIKHJKAIGFMAHBCGKPLPIJKGIIH:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	EENPFJJJNJLANLNGPEGBCJILFJDAIPNG:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	NPKBPPKPMENLFKLOCEJCGGBIMHPAKGNK:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	IAGDHJNOIOLJMEINHELKFAEIJHOEGEDO:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	NMKINMMHFDPBKAFEFNOJEEKPIDIHFDLM:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	HHHJLDDKCAANNLFMFMMCIHEEGOCNNBOAGI:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	LPAOHMFJMOLLGFDKJDKJNJAHCAEALMDG:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	AKECLPCFFJMGKFNDLEMHINGAOKMILFEA:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	GFHKFCEEDJMFIOMPNKIBGFFBGMCHCAJJ:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	LFHOKJNOGLEOIGCENCOFOCDLKCKPGECH:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	IFNHFNLHPPCBOLCLOPPEOBIDMKCJMOIK:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	JMKAIAODNIJGDMENJAJOECAPPDFKANKO:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	EMBANLAJNEPJMLLNPDKNFPMABKDFFLDP:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	PHPDOEIJIBHCKMJAPHGJJGKKMJGACLFMFM:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	LJBJAJNABLIGPLAIGCPMLKNDGNKBPDGM:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	LGPECFHBIKIEHCDNJBEEOOBMPGKPHFKK:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	AMPHMLNMNPFBFHJGLHPMMLEKGOLNHOOG:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	LGANOMKGDALGMAAMADNPOCPNNNPOPPBG:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	NINFINLDJMEEAGHONONHJPLEGJENHIPD:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	ADFHDGHPCPMGPEBHIDEMGIDHNBDDKLAI:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	FKFIPKJOAEEPCJPEHNCJLCMHOBIICDDC:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	KKNCLMHCKPEBJLPJEFIDHEICBLCABOAB:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	IAFOCNCILMDPKBGIBFPKNFNAPIECLFAB:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	DFIIMFCIAKDELOMIJKOLBIKMPENPFIHM:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	CJPLDCOCGDALOBFLMLJIKCILIMAJFECP:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	DCKCBONNJGBGLOGAEKBMKEGCDHIGLBAI:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	MOHGOKIEJAMOHFBDBJIIOFMHKJAINILF:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	MGBLGAFGILLCLHFBGHMLIPFKGPAHIBKE:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	NOMELHLAEEFMAHFHAFMGGDOJFCDDPINONJ:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	HDCBILAEIAOFMBAJECFMFMOAKHHHFIDFLO:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	DCGMBPJPPKPOJFKOFMFMIEEPGBEOJFEHOL:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	AKCPGMKEJHLGDNMLMIFCEKNCEIMCDFDG:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	OINPCGBHLEKINLHIDDGMKCHMGNCBPDOD:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	NINPDHCGGJMBGJGAGPOEKHEOIBHINPDG:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	BHGGNEPDPKMKNEPHOOJIILFMAHNAIDNEEE:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	FGJPANFHKGFFKGLDEOEPEMGLAFICLHDE:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	GJFJALPOFONKMGNOJANLCCIIBCINKOFD:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	LOECAKFGLGCDGAKADMAOJAMKDMIBGJMF:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	CANCLCIKICDLNCDMBALLJEIFHBKBHIBB:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	BBGEMPGPMOKEBJFHOBFNCEIDLNPHGPEE:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	CDMNOJMAOIOLHDIFBFPGCNGEOELPIDJD:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	MPIMENNMKDGCBMBHBNGEIIDNNDNCBFIJ:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	FNGLONGOBEIBBACPKPFAIPGAEOEMKLKC:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	ODJOGBDKFDNOAFMLALCPMCGGKADCACLL:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	PDMCDCGGDDAJKGHJEFADOBINBOKNKNGO:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	EPLPNHHHODOHNEIFDMJLBNAINGBLCEIL:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	NGBJIACCPJMMGNOEEJIJMKCEDPIGBOBF:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	CJFNAHFHHLMOLFLELGBFNBPPDDIEJEHM:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	GJFMAHOEJOEFAKMGKFOAPLNIDLJMFLKBDF:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	IJNJCFLAOKCLIHEOEGMGMBGGFOGDBNFG:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	ANFIMDFOANEGIMHDNPAPNBAFNOIJDLLO:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	FOPFKCJEIPKAAIEGJPPKJCCPKBFLCFCI:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	HKCNODPEMBDHNHOGDPIIGHFBFLBLEOME:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	HPFEIKJIFCDJAMACFBGMBLJIFMAHNBAKIB:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	JICLMNMIDKOBKGOFGEIHPMHNGHMPLONB:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	IOKCDFHIOHACHCMJMFNFDAEJDNBIEIJD:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	LCPFOFJLFMFMNDANBKPEPLOGJDPBNGKGPI:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	FNPAAPBJPOBJHCJMCENHJLDFABCDLLKP:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	KFEGEOKGLOGKJDNPGDFCMIJGNDGEGMCH:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	HPNMHLCBHBPFILNLFFNNBDDGOEEOEEAM:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	MKNIOEFGDKADEIHOBJAMBNPOBLKKLIEK:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	EMOJMOEFDMJBCAIDFMAHEJHBMLHBBNOCGK:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	FJMMFNPNGACNGBGKMOHPBNFANMECFKCB:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	KGPJEOOCDLEAEAINFAINIENNCBBJEBAB:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	EEKGCMEJEDOOAGPOMJDCDMLIKMJEPMLE:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	EIHJKKMPKJMDONGMMHGAKOONJGIOGJPO:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	DLFGIEIDNKHCGEMLEECMNEJGICOGPEHK:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	PCGLBABDEAJOAFAMONMKEAKDLKLEFBLG:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	NMADNFJDIHHBMOEPPBLKKKMNBDBEDLDO:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	LOBDBPNFJAHDDOOOALPBMDCFJHDMFENI:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	OEMNEEBIMFCCHBLJEIPHFEIPANGFJIMM:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	DBPGDJLLEJMONLHKJFKGELDCIAEAAELN:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	MNPINOKBEENIEIGPPJCEAFENDOODFEKL:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	BLGJBGFMFMKGKFANPDCIJHLKJLPBBDJEOI:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	KNIOLDLNMOIOBEKKCGNIJLGAIDJLMAEG:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	KLJKIPEIMMHHMBCLBDEAKGLMOAICBHPA:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	DNLOGKBDALBGEMLFHMMLMPCBDNOCGDIA:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	FMFMACBKCBFEEEKMHDHGPAEEDEEIGEJCCA:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	FCOLCAEPCGHEGKECGPBAINCMCFLMGGEP:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	ENDEILMDJOHLMEEKCBCJDFBMMOHBEKIG:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	ENLPBDDAPJBNBNLEJBGJNECEBPKHBMAI:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	AOFBEPCFIDBJMDNLPPFFOKGGFJABHEMF:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	BPNLFHHMMJGKKCFJHJMNPIBNLLKBMMLN:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	MAFIBLOHCJPAOLKMDNGBJOPNJFOGCNMG:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	JFMNOIDKPAEMBJLAACPMGPCELPLALBJO:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	HOBJCMDCGOGOBJCECLPMGOKHLFHLAEDH:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	IGAKALFAGDBCKBPHOOPMLNOJOPICCLGF:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	KGMOHEAJNJOEHFHKPPOEJAMKEKGGCIHD:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	HIOKNHPHCBOINDNDBHGPCGFCCFMNIPKF:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	ALKEFENCEOLOFEELDGNDDFBLEENOBFOL:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	PDOGENCEFNGEKFGKDJCGGCCABAEHPGJN:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	CJEBBHMBHBHAKEEAKMLKKJKOLENBJEHB:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	ECDBPBHFAKIPPPBMJAHLMFAMAIKFIOAL:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	KOFHPGAPFDBAFEBIJLEHFJNPGAOLCACK:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	NDCEIMOCLGDHMAHIJGHOEFDFLBLKEBIO:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	LADFGLAGOJGDFFKHJGPGMHNJMNOGMNMJ:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	GFDOLBJEMBMMOOPGEPADKCPDGAHPPPPP:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	NLPOMKBGIGDEKKCMOADOOOHJOJKPFLDH:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	HIBPBKHLILJEGJLNGCMJIHKIDHACADEG:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	PBJPDHPPFMAHMJDJAHLBMJBLADEFBFJNPP:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	PJFNMKHFEJIEEPDOHKADGKHJKGMNJHBC:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	HFOIEOAHEPCGFPCGJKLJAOBHAOHADHGL:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	JCPJIJHDNDCPCCGHGOFMFMJHCDNBFILLEL:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	KMBANLKJBFMDJAHMIGEFAJBINJPHOMDK:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	EGJCNKOADIANLMNMAJILNMIDNJJLADBI:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	OHIIGNKOPPHNNAFCOHECJBDFFGPOHCIA:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	OALBEGICKHKIGFJPKLJGOMAHIPDEAEFI:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	HHMFKLLEMKMGKBGCGGKDKOFGPNAGINAM:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	FOIPDFOKOICFALCANHEPOPFNNKJNCICC:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	DPPAGMNENDKCGDBCPBMDGBLJKDJCIBDE:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	DFMNADCICDKMMPACALLMHJMJPPGMAMJE:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	ECHCCLFFCLHDKKNPEHLCPNIPLCLDFPJM:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	LNAGPKIOOJKLCDHNCLJMIKPEDMNAEMAL:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	LOODFEDDNLDOENGBIFFEJFGIFNOCFCMB:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	NAOMPJFKKPEEMDMICEIONJBFKFJAGFKF:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	HOLEFDCPAFBDGKBDGIGCOMOPDJKNDEDE:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	JMBIGIDBHFCLAKPMGGNEIKIJGPKODFDJ:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	AOJHOMDHINNJFIMAGDADDGGNLLPFAJDE:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	FINAGEJDHIMODDMEJFPCMNLNILFJAKBP:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	MIKHKIKFBCNCHLMLJEFFPFONNKLNHKIN:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	DBIPALMACFFBHFLINKPKIMNGFICKGOOD:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	OODKDACFBAHJAPMJGCLBHLLHNCOIOOAP:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	BEBADCOCOBFMFMJDPPPIEJDOAKKOGFGNHC:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	KILCNNEAMHJLGONMLOIJACCBOMFMFMHHKN:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	PLFNBPOCNJCBJNONDBANFMAHAEONHFNDLI:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	OGBGFIACKAOKNFFICGNCHKCHKCGPCEIL:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	FHMFELBKAKBMEEACCGNLMLLFCPDIIAPB:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	GEGFFIKGJLFMAHIDAFCEMKIKBGIJNOGJAD:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	PIMJCLGNOAHNFIBKNLHBOHMOCKKGJEPC:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	IHNOKNCAPIKFOKDFDBMHINNEGLGPFJGL:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	MPIOMKDJMPPCLODJJPNGMNPPGHILOMPH:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	BAFKOALDHNOAMMLIHDHFIJNHDLJFCNIG:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	GOECACFMFMGJPJBDHCLLHPHBOBKBONMNDK:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	ADDLGOKALCLAGOLHMCAIBNGGFKBMCIKK:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	MADGCEBHHBMKADLDICCDBJDOMKDPAHLM:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	POFMAHOHEOFAHHICFKHMOHNCPMNOBDOALK:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	GOFMAHDKKLMDBIBNCNAOBGOONBBICGFKND:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	BJKNGOOCINLJECINFFFMFMNLNGLCIDKOHC:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	NJFMFMLKDPOGEONHOKAJKDCDKLBPJAGGFD:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	GBKEFKFEMCLHPHEFPCLKCCFPGLFIONDB:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	APBKEOGIEEDKJABILJKGNMLIDJJNEKJK:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	AKDFCMGILEMCHJELOBAGFFODBMNCAOEI:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	KHBBOMFNMPJBFNJFFIFPKIHLLPLPCFLC:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	OCEIAHMDNNEEOHJIAMMLILLDMMGLIHJE:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	DDMHJJAIFPDCBOMBLFKHHGNNMLIJNJFP:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	CBGAAFODGIJKBBEDDIMJLOJLIDGDEDDA:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	OHACPMNCNBLBABNPOGOBIDMLMJCBDMFMAH:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	OBGKOFFJIGDGPHNKILPKLIDOFJDDAHNI:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	FNDPKCJFPDDDIAAGPBKHKDDDJHEILLEA:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	NMCBMFCCBAMINCHGBLEDMODKJJNBEGPP:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	DPJEEDFELPOOPIMGBOFGJOKOMBLOLLPO:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	KGJPCKJKJDOHPEJILMOBHILIBECHBBAD:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	OHJIFFMBODJDBCEMOHLHHMKANDAMFFIG:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	BFKMIKKKFMAHCFFNDGFKBGMJPOPOKGNFHA:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	KMICEMDCEBENJIFFDCLJAIMMNIHMGMBF:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	JJAPHFLGJHIICHKONABDFCEAPNDBIENA:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	IJHHLGINJBNNFFHEEBJPBAPHIINIGODH:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	ALDJDEFBABNLLIBMKFONAJNKNGDLMGKP:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	EBCJEEEGFJFOGNMLMGGMPBLKANBMEMCC:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	KAJECINGKLEGCICJGOPDOECCBOMFHMCH:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	LAPODHIGKACMCHFECGBFCCFGDHMGNIDN:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	DEMHGAPHFNMHNFDJBFACCHFPGBLBFONG:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	NCEFDPFDFFDOPHMLCBBACINOKCGADMDE:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	DLBBKFOLPIGNBMAEHPPNNGGIHDJIDDHJ:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	OGNJEPJHAOOFDDGNLFIPEGAMKHJOAFGF:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	BJHFIPPIIEHGMKKNIKNDGHOBMAEEMGIC:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	OLNADFHJFMFMKOFFDELFODJHOKIGPDHLOK:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	AOLGEEKANNIFBMIIEHFDHLOAODEJGENG:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	IMMLOPENDLPLLFCCIGMFNJEPLJNCGENP:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	DINBPOJHMFJMPKNEBEBDONADBOIHDLBG:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	GBOFCEFNBONBAFFMFMNMBFHNMNCCLBLNDH:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	HJOCKMOKDFMDELNIEANPHDLDDGGFJACM:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

	JBPIIIILKPMFBJLIHCPJMBBNJGDJFJHH:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690638/
	f8:
	f9: Go!

	f10:

