
Attia, John Okyere. “Matlab Fundamentals.”
Electronics and Circuit Analysis using MATLAB.
Ed. John Okyere Attia
Boca Raton: CRC Press LLC, 1999

© 1999 by CRC PRESS LLC

CHAPTER ONE

MATLAB FUNDAMENTALS

MATLAB is a numeric computation software for engineering and scientific
calculations. The name MATLAB stands for MATRIX LABORATORY.
MATLAB is primarily a tool for matrix computations. It was developed by
John Little and Cleve Moler of MathWorks, Inc. MATLAB was originally
written to provide easy access to the matrix computation software packages
LINPACK and EISPACK.

MATLAB is a high-level language whose basic data type is a matrix that does
not require dimensioning. There is no compilation and linking as is done in
high-level languages, such as C or FORTRAN. Computer solutions in
MATLAB seem to be much quicker than those of a high-level language such
as C or FORTRAN. All computations are performed in complex-valued dou-
ble precision arithmetic to guarantee high accuracy.

MATLAB has a rich set of plotting capabilities. The graphics are integrated in
MATLAB. Since MATLAB is also a programming environment, a user can
extend the functional capabilities of MATLAB by writing new modules.

MATLAB has a large collection of toolboxes in a variety of domains. Some
examples of MATLAB toolboxes are control system, signal processing, neural
network, image processing, and system identification. The toolboxes consist
of functions that can be used to perform computations in a specific domain.

1.1 MATLAB BASIC OPERATIONS

When MATLAB is invoked, the command window will display the prompt >>.
MATLAB is then ready for entering data or executing commands. To quit
MATLAB, type the command

exit or quit

MATLAB has on-line help. To see the list of MATLAB’s help facility, type

help

The help command followed by a function name is used to obtain informa-
tion on a specific MATLAB function. For example, to obtain information on
the use of fast Fourier transform function, fft, one can type the command

© 1999 CRC Press LLC

© 1999 CRC Press LLC

help fft

The basic data object in MATLAB is a rectangular numerical matrix with real
or complex elements. Scalars are thought of as a 1-by-1 matrix. Vectors are
considered as matrices with a row or column. MATLAB has no dimension
statement or type declarations. Storage of data and variables is allocated
automatically once the data and variables are used.

MATLAB statements are normally of the form:

variable = expression

Expressions typed by the user are interpreted and immediately evaluated by the
MATLAB system. If a MATLAB statement ends with a semicolon, MATLAB
evaluates the statement but suppresses the display of the results. MATLAB
is also capable of executing a number of commands that are stored in a file.
This will be discussed in Section 1.6. A matrix

A =

1 2 3
2 3 4
3 4 5

may be entered as follows:

A = [1 2 3; 2 3 4; 3 4 5];

Note that the matrix entries must be surrounded by brackets [] with row
elements separated by blanks or by commas. The end of each row, with the
exception of the last row, is indicated by a semicolon. A matrix A can also be
entered across three input lines as

A = [1 2 3
 2 3 4
 3 4 5];

In this case, the carriage returns replace the semicolons. A row vector B with
four elements

B = [6 9 12 15 18]

can be entered in MATLAB as

© 1999 CRC Press LLC

© 1999 CRC Press LLC

B = [6 9 12 15 18];

or

B = [6 , 9,12,15,18]

For readability, it is better to use spaces rather than commas between the ele-
ments. The row vector B can be turned into a column vector by transposition,
which is obtained by typing

C = B’

The above results in

C =
 6
 9
 12
 15
 18

Other ways of entering the column vector C are

C = [6
 9
 12
 15
 18]

or

C = [6; 9; 12; 15; 18]

MATLAB is case sensitive in naming variables, commands and functions.
Thus b and B are not the same variable. If you do not want MATLAB to be
case sensitive, you can use the command

casesen off

To obtain the size of a specific variable, type size (). For example, to find the
size of matrix A, you can execute the following command:

size(A)

© 1999 CRC Press LLC

© 1999 CRC Press LLC

The result will be a row vector with two entries. The first is the number of
rows in A, the second the number of columns in A.

To find the list of variables that have been used in a MATLAB session, type
the command

whos

There will be a display of variable names and dimensions. Table 1.1 shows
the display of the variables that have been used so far in this book:

Table 1.1
Display of an output of whos command

Name

Size Elements Byte Density Complex

A 3 by 3 9 72 Full No
B 1 by 5 5 40 Full No
C 5 by 1 5 40 Full No
ans 1 by 2 2 16 Full No

The grand total is 21 elements using 168 bytes.

Table 1.2 shows additional MATLAB commands to get one started on
MATLAB. Detailed descriptions and usages of the commands can be obtained
from the MATLAB help facility or from MATLAB manuals.

Table 1.2
Some Basic MATLAB Commands

Command Description
% Comments. Everything appearing after % com-

mand is not executed.
demo Access on-line demo programs
length Length of a matrix
clear Clears the variables or functions from workspace
clc Clears the command window during a work session
clg Clears graphic window
diary Saves a session in a disk, possibly for printing at a

later date

© 1999 CRC Press LLC

© 1999 CRC Press LLC

1.2 MATRIX OPERATIONS

The basic matrix operations are addition(+), subtraction(-), multiplication (*),
and conjugate transpose(‘) of matrices. In addition to the above basic opera-
tions, MATLAB has two forms of matrix division: the left inverse operator \
or the right inverse operator /.

Matrices of the same dimension may be subtracted or added. Thus if E and F
are entered in MATLAB as

E = [7 2 3; 4 3 6; 8 1 5];

F = [1 4 2; 6 7 5; 1 9 1];

and
G = E - F
H = E + F

then, matrices G and H will appear on the screen as

G =
 6 -2 1
 -2 -4 1
 7 -8 4

H =
 8 6 5
 10 10 11
 9 10 6

A scalar (1-by-1 matrix) may be added to or subtracted from a matrix. In this
particular case, the scalar is added to or subtracted from all the elements of an-
other matrix. For example,

J = H + 1
gives

J =
 9 7 6
 11 11 12
 10 11 7

Matrix multiplication is defined provided the inner dimensions of the two op-
erands are the same. Thus, if X is an n-by-m matrix and Y is i-by-j matrix,

© 1999 CRC Press LLC

© 1999 CRC Press LLC

X*Y is defined provided m is equal to i. Since E and F are 3-by-3 matrices,
the product

Q = E*F

results as

Q =
 22 69 27
 28 91 29
 19 84 26

Any matrix can be multiplied by a scalar. For example,

2*Q
gives

ans =
 44 138 54
 56 182 58
 38 168 52

Note that if a variable name and the “=” sign are omitted, a variable name ans
is automatically created.

Matrix division can either be the left division operator \ or the right division
operator /. The right division a/b, for instance, is algebraically equivalent to
a
b

 while the left division a\b is algebraically equivalent to
b
a

.

If Z I V* = and Z is non-singular, the left division, Z\V is equivalent to
MATLAB expression

 I inv Z V= () *

where inv is the MATLAB function for obtaining the inverse of a matrix. The
right division denoted by V/Z is equivalent to the MATLAB expression

I V inv Z= * ()

There are MATLAB functions that can be used to produce special matrices.
Examples are given in Table 1.3.

© 1999 CRC Press LLC

© 1999 CRC Press LLC

Table 1.3
Some Utility Matrices

 Function Description
ones(n,m) Produces n-by-m matrix with all the elements being

unity
eye(n) gives n-by-n identity matrix
zeros(n,m) Produces n-by-m matrix of zeros
diag(A) Produce a vector consisting of diagonal of a square

matrix A

1.3 ARRAY OPERATIONS

Array operations refer to element-by-element arithmetic operations. Preceding
the linear algebraic matrix operations, * / \ ‘ , by a period (.) indicates an array
or element-by-element operation. Thus, the operators .* , .\ , ./, .^ , represent
element-by-element multiplication, left division, right division, and raising to
the power, respectively. For addition and subtraction, the array and matrix op-
erations are the same. Thus, + and .+ can be regarded as an array or matrix
addition.

If A1 and B1 are matrices of the same dimensions, then A1.*B1 denotes an ar-
ray whose elements are products of the corresponding elements of A1 and B1.
Thus, if

A1 = [2 7 6
 8 9 10];

B1 = [6 4 3
 2 3 4];

then
 C1 = A1.*B1
results in

C1 =
 12 28 18
 16 27 40

© 1999 CRC Press LLC

© 1999 CRC Press LLC

An array operation for left and right division also involves element-by-element
operation. The expressions A1./B1 and A1.\B1 give the quotient of element-
by-element division of matrices A1 and B1. The statement

D1 = A1./B1

gives the result

D1 =
 0.3333 1.7500 2.0000
 4.0000 3.0000 2.5000

and the statement

E1 = A1.\B1

gives

E1 =
 3.0000 0.5714 0.5000
 0.2500 0.3333 0.4000

The array operation of raising to the power is denoted by .^. The general
statement will be of the form:

q = r1.^s1

If r1 and s1 are matrices of the same dimensions, then the result q is also a ma-
trix of the same dimensions. For example, if

r1 = [7 3 5];

s1 = [2 4 3];

then

q1 = r1.^s1

gives the result

q1 =
 49 81 125

© 1999 CRC Press LLC

© 1999 CRC Press LLC

One of the operands can be scalar. For example,

q2 = r1.^2

q3 = (2).^s1

will give

q2 =
 49 9 25

and

q3 =
 4 16 8

Note that when one of the operands is scalar, the resulting matrix will have the
same dimensions as the matrix operand.

1.4 COMPLEX NUMBERS

MATLAB allows operations involving complex numbers. Complex numbers
are entered using function i or j. For example, a number z j= +2 2 may be
entered in MATLAB as

z = 2+2*i
or

z = 2+2*j

Also, a complex number za

za j= 2 2 4exp[(/)]π

can be entered in MATLAB as

za = 2*sqrt(2)*exp((pi/4)*j)

It should be noted that when complex numbers are entered as matrix elements
within brackets, one should avoid any blank spaces. For example,
y j= +3 4 is represented in MATLAB as

© 1999 CRC Press LLC

© 1999 CRC Press LLC

y = 3+4*j

If spaces exist around the + sign, such as

u= 3 + 4*j

MATLAB considers it as two separate numbers, and y will not be equal to u.

If w is a complex matrix given as

w =
1 1 2 2
3 2 4 3

+ −
+ +

j j
j j

then we can represent it in MATLAB as

w = [1+j 2-2*j; 3+2*j 4+3*j]

which will produce the result

w =
 1.0000 + 1.0000i 2.0000 - 2.0000i
 3.0000 + 2.0000i 4.0000 + 3.0000i

If the entries in a matrix are complex, then the “prime” (‘) operator produces
the conjugate transpose. Thus,

wp = w'
will produce

wp =
 1.0000 - 1.0000i 3.0000 - 2.0000i
 2.0000 + 2.0000i 4.0000 - 3.0000i

For the unconjugate transpose of a complex matrix, we can use the point trans-
pose (.’) command. For example,

wt = w.'

will yield

© 1999 CRC Press LLC

© 1999 CRC Press LLC

wt =
 1.0000 + 1.0000i 3.0000 + 2.0000i
 2.0000 - 2.0000i 4.0000 + 3.0000i

1.5 THE COLON SYMBOL (:)

The colon symbol (:) is one of the most important operators in MATLAB. It
can be used (1) to create vectors and matrices, (2) to specify sub-matrices and
vectors, and (3) to perform iterations. The statement

t1 = 1:6

will generate a row vector containing the numbers from 1 to 6 with unit incre-
ment. MATLAB produces the result

t1 =
 1 2 3 4 5 6

Non-unity, positive or negative increments, may be specified. For example,
the statement

t2 = 3:-0.5:1

will result in

t2 =
 3.0000 2.5000 2.0000 1.5000 1.0000

The statement

t3 = [(0:2:10);(5:-0.2:4)]

will result in a 2-by-4 matrix

t3 =
 0 2.0000 4.0000 6.0000 8.0000 10.0000
 5.0000 4.8000 4.6000 4.4000 4.2000 4.0000

Other MATLAB functions for generating vectors are linspace and logspace.
Linspace generates linearly evenly spaced vectors, while logspace generates

© 1999 CRC Press LLC

© 1999 CRC Press LLC

logarithmically evenly spaced vectors. The usage of these functions is of the
form:

linspace(i_value, f_value, np)

logspace(i_value, f_value, np)

where
 i_value is the initial value

 f_value is the final value

 np is the total number of elements in the vector.

For example,

t4 = linspace(2, 6, 8)

will generate the vector

t4 =
 Columns 1 through 7

 2.0000 2.5714 3.1429 3.7143 4.2857 4.8571
 5.4286

 Column 8

 6.0000

Individual elements in a matrix can be referenced with subscripts inside paren-
theses. For example, t2(4) is the fourth element of vector t2. Also, for matrix
t3, t3(2,3) denotes the entry in the second row and third column. Using the co-
lon as one of the subscripts denotes all of the corresponding row or column.
For example, t3(:,4) is the fourth column of matrix t3. Thus, the statement

t5 = t3(:,4)
will give

t5 =
 6.0000
 4.4000

© 1999 CRC Press LLC

© 1999 CRC Press LLC

Also, the statement t3(2,:) is the second row of matrix t3. That is the statement

t6 = t3(2,:)

will result in

t6 =
 5.0000 4.8000 4.6000 4.4000 4.2000 4.0000

If the colon exists as the only subscript, such as t3(:), the latter denotes the
elements of matrix t3 strung out in a long column vector. Thus, the statement

t7 = t3(:)
will result in

t7 =
 0
 5.0000
 2.0000
 4.8000
 4.0000
 4.6000
 6.0000
 4.4000
 8.0000
 4.2000
 10.0000
 4.0000

Example 1.1

The voltage, v, across a resistance is given as (Ohm’s Law), v Ri= , where
i is the current and R the resistance. The power dissipated in resistor R is
given by the expression

P Ri= 2

© 1999 CRC Press LLC

© 1999 CRC Press LLC

If R = 10 Ohms and the current is increased from 0 to 10 A with increments
of 2A, write a MATLAB program to generate a table of current, voltage and
power dissipation.

Solution:

MATLAB Script

diary ex1_1.dat
% diary causes output to be written into file ex1_1.dat
% Voltage and power calculation
R=10; % Resistance value
i=(0:2:10); % Generate current values
v=i.*R; % array multiplication to obtain voltage
p=(i.^2)*R; % power calculation
sol=[i v p] % current, voltage and power values are printed
diary
% the last diary command turns off the diary state

MATLAB produces the following result:

sol =
 Columns 1 through 6

 0 2 4 6 8 10

 Columns 7 through 12

 0 20 40 60 80 100

 Columns 13 through 18

 0 40 160 360 640 1000

Columns 1 through 6 constitute the current values, columns 7 through 12 are
the voltages, and columns 13 through 18 are the power dissipation values.

© 1999 CRC Press LLC

© 1999 CRC Press LLC

1.6 M-FILES

Normally, when single line commands are entered, MATLAB processes the
commands immediately and displays the results. MATLAB is also capable of
processing a sequence of commands that are stored in files with extension m.
MATLAB files with extension m are called m-files. The latter are ASCII text
files, and they are created with a text editor or word processor. To list m-files
in the current directory on your disk, you can use the MATLAB command
what. The MATLAB command, type, can be used to show the contents of a
specified file. M-files can either be script files or function files. Both script
and function files contain a sequence of commands. However, function files
take arguments and return values.

1.6.1 Script files

Script files are especially useful for analysis and design problems that require
long sequences of MATLAB commands. With script file written using a text
editor or word processor, the file can be invoked by entering the name of the
m-file, without the extension. Statements in a script file operate globally on
the workspace data. Normally, when m-files are executing, the commands are
not displayed on screen. The MATLAB echo command can be used to view
m-files while they are executing. To illustrate the use of script file, a script
file will be written to simplify the following complex valued expression z.

Example 1.2

Simplify the complex number z and express it both in rectangular and polar
form.

 z
j j

j j
=

+ + ∠
+ +

()()()
()()

3 4 5 2 2 60
3 6 1 2

0

Solution:

The following program shows the script file that was used to evaluate the
complex number, z, and express the result in polar notation and rectangular
form.

MATLAB Script

diary ex1_2.dat

© 1999 CRC Press LLC

© 1999 CRC Press LLC

% Evaluation of Z
% the complex numbers are entered
Z1 = 3+4*j;
Z2 = 5+2*j;
theta = (60/180)*pi; % angle in radians
Z3 = 2*exp(j*theta);
Z4 = 3+6*j;
Z5 = 1+2*j;
% Z_rect is complex number Z in rectangular form
disp('Z in rectangular form is'); % displays text inside brackets
Z_rect = Z1*Z2*Z3/(Z4+Z5);
Z_rect
Z_mag = abs (Z_rect); % magnitude of Z
Z_angle = angle(Z_rect)*(180/pi); % Angle in degrees
disp('complex number Z in polar form, mag, phase'); % displays text
%inside brackets
Z_polar = [Z_mag, Z_angle]
diary

The program is named ex1_2.m. It is included in the disk that accompanies
this book. Execute it by typing ex1_2 in the MATLAB command window.
Observe the result, which should be

Z in rectangular form is

Z_rect =
 1.9108 + 5.7095i

complex number Z in polar form (magnitude and phase) is

Z_polar =
 6.0208 71.4966

1.6.2 Function Files

Function files are m-files that are used to create new MATLAB functions.
Variables defined and manipulated inside a function file are local to the func-
tion, and they do not operate globally on the workspace. However, arguments
may be passed into and out of a function file.

The general form of a function file is

© 1999 CRC Press LLC

© 1999 CRC Press LLC

function variable(s) = function_name (arguments)
% help text in the usage of the function
%
.
.
end

To illustrate the usage of function files and rules for writing m-file function, let
us study the following two examples.

Example 1.3

Write a function file to solve the equivalent resistance of series connected re-
sistors, R1, R2, R3, …, Rn.

Solution:

MATLAB Script

function req = equiv_sr(r)
% equiv_sr is a function program for obtaining
% the equivalent resistance of series
% connected resistors
% usage: req = equiv_sr(r)
% r is an input vector of length n
% req is an output, the equivalent resistance(scalar)
%
n = length(r); % number of resistors
req = sum (r); % sum up all resistors
end

The above MATLAB script can be found in the function file equiv_sr.m,
which is available on the disk that accompanies this book.

Suppose we want to find the equivalent resistance of the series connected resis-
tors 10, 20, 15, 16 and 5 ohms. The following statements can be typed in the
MATLAB command window to reference the function equiv_sr

a = [10 20 15 16 5];
Rseries = equiv_sr(a)
diary

The result obtained from MATLAB is

© 1999 CRC Press LLC

© 1999 CRC Press LLC

Rseries =
 66

Example 1.4

Write a MATLAB function to obtain the roots of the quadratic equation

ax bx c2 0+ + =

Solution:

MATLAB Script

function rt = rt_quad(coef)
%
% rt_quad is a function for obtaining the roots of
% of a quadratic equation
% usage: rt = rt_quad(coef)
% coef is the coefficients a,b,c of the quadratic
% equation ax*x + bx + c =0
% rt are the roots, vector of length 2
% coefficient a, b, c are obtained from vector coef
a = coef(1); b = coef(2); c = coef(3);
int = b^2 - 4*a*c;
if int > 0
 srint = sqrt(int);
 x1= (-b + srint)/(2*a);
 x2= (-b - srint)/(2*a);
elseif int == 0
 x1= -b/(2*a);
 x2= x1;
elseif int < 0
 srint = sqrt(-int);
 p1 = -b/(2*a);
 p2 = srint/(2*a);
 x1 = p1+p2*j;
 x2 = p1-p2*j;
end
rt =[x1;
 x2];
end

© 1999 CRC Press LLC

© 1999 CRC Press LLC

The above MATLAB script can be found in the function file rt_quad.m, which
is available on the disk that accompanies this book.

We can use m-file function, rt_quad, to find the roots of the following quad-
ratic equations:

(a) x2 + 3x + 2 = 0

(b) x2 + 2x + 1 = 0

(c) x2 -2x +3 = 0

The following statements, that can be found in the m-file ex1_4.m, can be
used to obtain the roots:

diary ex1_4.dat
ca = [1 3 2];
ra = rt_quad(ca)
cb = [1 2 1];
rb = rt_quad(cb)
cc = [1 -2 3];
rc = rt_quad(cc)
diary

Type into the MATLAB command window the statement ex1_4 and observe
the results. The following results will be obtained:

ra =
 -1
 -2

rb =
 -1
 -1

rc=
 1.0000 + 1.4142i

 1.0000 - 1.4142i

The following is a summary of the rules for writing MATLAB m-file func-
tions:

(1) The word, function, appears as the first word in a function file. This
is followed by an output argument, an equal sign and the function name. The

© 1999 CRC Press LLC

© 1999 CRC Press LLC

arguments to the function follow the function name and are enclosed within pa-
rentheses.

(2) The information that follows the function, beginning with the % sign,
shows how the function is used and what arguments are passed. This informa-
tion is displayed if help is requested for the function name.

(3) MATLAB can accept multiple input arguments and multiple output
arguments can be returned.

(4) If a function is going to return more than one value, all the values
should be returned as a vector in the function statement. For example,

 function [mean, variance] = data_in(x)

will return the mean and variance of a vector x. The mean and variance are
computed with the function.

(5) If a function has multiple input arguments, the function statement
must list the input arguments. For example,

 function [mean, variance] = data(x,n)

will return mean and variance of a vector x of length n.

(6) The last statement in the function file should be an “end” statement.

SELECTED BIBLIOGRAPHY

1. MathWorks, Inc., MATLAB, High-Performance Numeric
 Computation Software, 1995.

2. Biran, A. and Breiner, M., MATLAB for Engineers, Addison-
 Wesley, 1995.

3. Etter, D.M., Engineering Problem Solving with MATLAB, 2nd Edi-
tion, Prentice Hall, 1997.

© 1999 CRC Press LLC

© 1999 CRC Press LLC

EXERCISES

1.1 The voltage across a discharging capacitor is

 v t e t() ().= − −10 1 0 2

Generate a table of voltage, v t() , versus time, t, for t = 0 to 50
 seconds with increment of 5 s.

1.2 Use MATLAB to evaluate the complex number

 z j j
j j

j= + +
+

+ +()()
()

3 6 6 4
2 1 2

7 10

1.3 Write a function-file to obtain the dot product and the vector product

of two vectors a and b. Use the function to evaluate the dot and
vector products of vectors x and y, where x = (1 5 6) and
 y = (2 3 8).

1.4 Write a function-file that can be used to calculate the equivalent

resistance of n parallel connected resistors. In general, the equivalent
resistance of resistors R R R Rn1 2 3, , ,, is given by

1 1 1 1 1

1 2 3R R R R Req n
= + + + +...

1.5 The voltage V is given as V RI= , where R and I are resistance
 matrix and I current vector. Evaluate V given that

 R =

1 2 4
2 3 6
3 6 7

 and I =

1
2
6

1.6 Use MATLAB to simplify the expression

 y j e j ej j= + + + +0 5 6 35 3 60 6 0 3. . (). . π

© 1999 CRC Press LLC

© 1999 CRC Press LLC

1.7 Write a function file to evaluate n factorial (i.e. n!); where

n n n n! ()()..()()= − −1 2 2 1

Use the function to compute x = 7
3 4

!
! !

1.8 For a triangle with sides of length a, b, and c, the area A is given as

A s s a s b s c
where
s a b c

= − − −

= + +

()()()

() / 2

Write a function to compute the area given the sides of a triangle.
Use the function to compute the area of triangles with the lengths:
(a) 56, 27 and 43 (b) 5, 12 and 13.

© 1999 CRC Press LLC

© 1999 CRC Press LLC

	Electronics and Circuit Analysis using MATLAB
	Contents
	Matlab Fundamentals
	1.1 Matlab Basic Operations
	1.2 Matrix Operations
	1.3 Array Operations
	1.4 Complex Numbers
	1.5 The Colon Symbol (:)
	Example 1.1
	Solution

	1.6 M-Files
	1.6.1 Script Files
	Example 1.2
	Solution

	1.6.2 Function Files
	Example 1.3
	Solution

	Example 1.4
	Solution

	Selected Bibliographies
	Exercises

