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Fuzz-C™
Fuzz-C™ is a stand-alone preprocessor 
that seamlessly integrates fuzzy logic 
into the C language. Now you can add 
fuzzy logic to your applications without 
expensive, specialized hardware or 
software. Fuzz-C accepts fuzzy logic 
rules, membership functions and 
consequence functions, and produces 
C source code that can be compiled by 
most C compilers, including the Byte 
Craft Limited Code Development 
System.

The preprocessor generates C code 
that is both compact and significantly 
faster than most current fuzzy logic 
commercial implementations—all with 
your favorite C compiler.

Fuzz-C provides a practical, unified 
solution for applications that require 
fuzzy logic control systems. Use your 
existing C libraries for program 
management, keyboard handlers and 
display functions without change; you 
can implement system control functions 
using fuzzy rules.

Fuzz-C is a flexible system that allows 
all data types supported by your C 
compiler. Standard defuzzification 
methods, such as center of gravity, max 
left, max right, and max average, are 
provided in source form. Fuzz-C lets 
you easily add new defuzzification 
methods.

Fuzzy Logic Preprocessor for C
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Fuzz-C™ includes one year technical support via phone 
or email.  Fuzz-C requires modest system resources: 
DOS or Windows and less than 1 megabyte of memory. 
Fuzz-C works with make and other industry-standard 
build systems. Complete documentation is included.

Terms: prepaid American Express, VISA or cheque. Overseas orders prepaid in U.S. funds 
drawn on a Canadian or U.S. bank only. Please obtain appropriate import documentation. 
Canadian customers are subject to applicable taxes. Specifications and price information subject 
to change without notice. Fuzz-C is a registered trademark of Byte Craft Limited. Other marks are 
trademarks or registered trademarks of their respective holders.

/* Fuzzy Logic Climate Controller

This single page of code creates a fully
Functional controller for a simple air 
conditioning system */

#define thermostat PORTA
#define airCon PORTB.7

/* degrees celsius */
LINGUISTIC room TYPE int MIN 0 MAX 50
{
  MEMBER cold   { 0, 0, 15, 20 }
  MEMBER normal { 20, 23, 25 }
  MEMBER hot    { 25, 30, 50, 50 }
}

/* A.C on or off */
CONSEQUENCE ac TYPE int DEFUZZ CG
{
  MEMBER ON  { 1 }
  MEMBER OFF { 0 }
}

/* Rules to follow */
FUZZY climateControl
{
  IF room IS cold THEN
    ac IS OFF
  IF room IS normal THEN
    ac IS OFF
  IF room IS hot THEN
    ac IS ON
}

int main(void)
{
  while(1)
    {
      /* find the temperature */
      room = thermostat;
      /* apply the rules */
      climateControl();
      /* switch the A.C. */
      airCon = ac;
      wait(10);
    }
}
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Forward 

This booklet started as a result of the rush of people who asked for copies of the overhead slides I 
used in a talk on Fuzzy Logic For Control Systems at the 1993 Embedded Systems Show in 
Santa Clara. 

A fuzzy logic tutorial 

There is a clear lack of basic tutorial materials for fuzzy logic. I decided that I did have enough 
material to create a reasonable tutorial for those beginning to explore the possibilities of fuzzy 
logic. In addition to the material presented at the embedded systems conference I have added 
additional chapters. 

Clear thinking on fuzzy linguistics 

The first chapter essentially consists of the editorial I wrote for Electronic Engineering Times 
(printed on October 4, 1993). The editorial presented a case for the addition of linguistic 
variables to the programmer's toolbox. 

Fuzzy logic implementation on embedded microcomputers 

The second chapter is based upon a paper I presented at Fuzzy Logic '93 by Computer Design in 
Burlingame, CA (in July of 1993). This paper described the implementation considerations of 
fuzzy logic on conventional, small, embedded micro-computers. Many of the paper's design 
considerations were essential to the development of our Fuzz-C" preprocessor. I have created 
most of the included examples in Fuzz-C and although you don't need to use Fuzz-C to 
implement a fuzzy logic system, you will find it useful to understand some of its design. 

Software Reliability and Fuzzy Logic 

Originally part of the implementation paper, this chapter presents what is actually a separate 
subject. The inherent reliability and self scaling aspects of fuzzy logic are becoming important 
and may in fact be the over riding reason for the use of fuzzy logic. 
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Appendix 

The appendix contains, in addition to copies of the slides, the actual code for a fuzzy PID 
controller as well as the block diagram of the PID controller used in my Santa Clara talk entitled 
Fuzzy Logic For Control Systems. 

Adjusting to fuzzy design 

While presenting the paper in Santa Clara, much of the discussion touched on provable control 
stability. This final issue has discouraged many engineers from employing fuzzy logic in their 
designs. Despite the great incentive to use fuzzy logic, I found it took me about a year and a half 
to feel comfortable with the addition of linguistic variables to my software designs. 

Fuzzy logic is not magic, but it has made many problems much easier to visualize and 
implement. Debugging has generally been straight forward in my own code, and I think that most 
who have implemented fuzzy logic applications share this opinion. 

I have tried to make the material presented both in this booklet, and in my presentations in 
public, as non-commercial as possible. The purpose here is to inform and educate. Some of the 
slide material came from Dr. Gordon Hayward of the University of Guelph. Gord is a friend and 
colleague dating back more than twenty years. Gord was the first to look at fuzzy logic through 
transfer functions. The slides of the actual control system response were generated by a student 
of Dr. Hayward's in a report (L. Seed 05-428 Project, Winter 1993). I thank both of them for this 
material. 

Much material has been published on fuzzy logic and linguistic variables. Most of the literature 
available in the English-speaking world was written primarily by and for mathematicians, with 
few papers and articles written for computer scientists or system implementors. This work started 
with a paper by Lotfi Zadeh more than a quarter century ago ("Fuzzy Sets", Information and 
Control 8, pp. 338-353, 1965). Professor Zadeh has remained a tireless promoter of the 
technology. 
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At the 1992 Embedded Systems Conference in Santa Clara, the genie was finally let out of the 
bottle, and fuzzy logic came into its own with wide interest. Jim Sibigtroth's article in Embedded 
Systems Programming magazine in December, 1991 cracked the bottle, describing for the first 
time a widely available, understandable implementation of a fuzzy logic control system workable 
for general purpose microprocessors. Jim Sibigtroth has been working on the promotion of fuzzy 
logic control systems to the point of personal passion. As developers began to understand the real 
power of using linguistic variables in control applications, the negative implications of the name 
fuzzy logic have given way to a deep understanding that this is a powerful tool backed by solid 
mathematical principles. 

I thank all those who work with me at Byte Craft Limited for their efforts.  A special thanks to 
Viktor Haag who gets to do much of the hard work for our printed material and far too little 
credit.  For me I accept responsibility for all of the errors and inconsistencies. 

Walter Banks 
October 28, 1993. 
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Clear thinking on fuzzy linguistics 

I have had a front row seat, watching a computing public finding uses for an almost 30 year-old 
new technology. 

Personally, I struggled with finding an application to clearly define what all the magic was about, 
until I switched the question around and looked at how an ever increasing list of fuzzy logic 
success stories might be implemented. I then looked at the language theory to see why linguistic 
variables were important in describing and solving problems on computers. 

Linguistic variables are central to fuzzy logic manipulations. Linguistic variables hold values 
that are uniformly distributed between 0 and 1, depending on the relevance of a context-
dependent linguistic term. For example; we can say the room is hot and the furnace is hot, and 
the linguistic variable hot has different meanings depending on whether we refer to the room or 
the inside of the furnace. 

The assigned value of 0 to a linguistic variable means that the linguistic term is not true and the 
assigned value of 1 indicates the term is true. The "linguistic variables" used in everyday speech 
convey relative information about our environment or an object under observation and can 
convey a surprising amount of information. 

The relationship between crisp numbers and linguistic variables is now generally well 
understood. The linguistic variable HOT in the following graph has a value between 0 and 1 
over the crisp range 60-80 (where 0 is not hot at all and 1 is undeniably hot). For each crisp 
number in a variable space (say room), a number of linguistic terms may apply. Linguistic 
variables in a computer require a formal way of describing a linguistic variable in the crisp terms 
the computer can deal with. 

The following graph shows the relationship between measured room temperature and the 
linguistic term hot. In the space between hot and not hot, the temperature is, to some degree, a bit 
of both. 

The horizontal axis in the following graph shows the measured or crisp value of temperature. The 
vertical axis describes the degree to which a linguistic variable fits with the crisp measured data. 
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Most fuzzy logic support software has a form resembling the following declaration of a linguistic 
variable. In this case, a crisp variable room is associated with a linguistic variable hot, defined 
using four break points from the graph. 

LINGUISTIC room TYPE unsigned int MIN 0 MAX 100 
 { 
  MEMBER HOT { 60, 80, 100, 100 } 
 } 

We often use linguistic references enhanced with crisp definitions.  

Cooking instructions are linguistic in nature: "Empty contents into a saucepan; add 4½ cups (1 L) 
cold water." This quote from the instructions on a Minestrone soup mix packet shows just how 
common linguistic references are in our descriptive language. These instructions are in both the 
crisp and fuzzy domains. 

The linguistic variable "saucepan", for example, is qualified by the quantity of liquid that is 
expected. One litre (1 L) is not exactly 4½ cups but the measurement is accurate enough (within 
6.5%) for the job at hand. "Cold water " is a linguistic variable that describes water whose 
temperature is between the freezing point (where we all agree it is cold) to some higher 
temperature (where it is cold to some degree). 

The power of any computer language comes from being able to describe a problem in terms that 
are relevant to the problem. Linguistic variables are relevant for many applications involving 
human interface. Fuzzy logic success stories involve implementations of tasks commonly done 
by humans but not easily described in crisp terms. 
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Rice cookers, toasters, washing machines, environment control, subway trains, elevators, camera 
focusing and picture stabilization are just a few examples. Linguistic variables do not simplify 
the application or its implementation but they provide a convenient tool to describe a problem. 

Applications may be computed in either the fuzzy linguistic domain or the conventional crisp 
domain. Non-linear problems, such as process control in an environment that varies considerably 
from usage to usage, yield very workable results with impressively little development time when 
solved using fuzzy logic. Although fuzzy logic is not essential to solving this type of non-linear 
control problem, it helps in describing some of the possible solutions. 

Dr. Lotfi Zadeh, the originator of fuzzy logic, noted that ordinary language contains many 
descriptive terms whose relevance is context-specific. I can, for example, say that the day is hot. 
That statement conveys similar information to most people. In some ways, it conveys better 
information than saying the temperature is 35 degrees, which implies hot in most European 
countries and quite cool in the United States. 

The day is muggy implies two pieces of information: the day is hot and the relative humidity is 
high. We can have a day that is hot or muggy or cold or clammy. In common usage linguistic 
variables are often overlapping. 

Muggy implies both high humidity and hot temperatures. The variable day may have an extensive 
list of linguistic values computed in the fuzzy domain associated with it (MUGGY, HUMID, 
HOT, COLD, CLAMMY). If day is a linguistic variable, it doesn't have a crisp number 
associated with it so that although we can say the day is HOT or MUGGY, assigning a value to 
day is meaningless. All of the linguistic members associated with day are based on fuzzy logic 
equations. 

When fuzzy logic is used in an application program, it adds linguistic variables as a new variable 
type. We might implement an air conditioner controller with a single fuzzy statement 

IF room IS hot THEN air_conditioner is on; 

We can extend basic air conditioner control to behave differently depending on the different 
types of day. 

The math developed to support linguistic variable manipulation conveniently implements an easy 
method to switch smoothly from one possible solution to another. This means that, unlike a 
conventional control system that easily implements a single well behaved control of a system, the 
fuzzy logic design can have many solutions (or rules) which apply to a single problem and the 
combined solutions can be appropriately weighted to a controlling action. 
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Computers–especially those in embedded applications–can be programmed to perform 
calculations in the fuzzy domain rather than the crisp domain. Fuzzy logic manipulations take 
advantage of the fact that linguistic variables are only resolved to crisp values at the resolution of 
the problem, a kind of self scaling feature that is objective-driven rather than data-driven. 

To keep a room comfortable, the temperature and humidity need to be kept only within the fuzzy 
comfort zone. Any calculations that have greater accuracy than the desired result are redundant, 
and require more computing power than is needed. Fuzzy logic is not the only way to achieve 
reductions in computing requirements but it is the best of the methods suggested so far to achieve 
this goal. 

Linguistic variable types are taking their place alongside such other data types as character, 
string, real and float. They are, in some ways, an extension to the already familiar enumerated 
data types common in many high level languages. In my view, the linguistic domain is simply 
another tool that application developers have at their disposal to communicate clearly. When 
applied appropriately, fuzzy logic solutions are competitive with conventional implementation 
techniques with considerably less implementation effort. 
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Fuzzy logic implementation on embedded 
microcomputers 

Fuzzy logic operators provide a formal method of manipulating linguistic variables. It is a 
reasonable comment to describe fuzzy logic as just another programming paradigm. Fuzzy logic 
critics are correct in stating that they can do with conventional code everything that fuzzy logic 
can do. For that matter, so can machine code, but I am not going to argue the point. 

Central to fuzzy logic manipulations are linguistic variables. Linguistic variables are non-precise 
variables that often convey a surprising amount of information. We can say, for example, that it 
is warm outside or that it is cool outside. In the first case we may be going outside for a walk and 
we want to know if we should wear a jacket so we ask the question, what is it like outside?, and 
the answer is it is warm outside. 

Experience has shown that a jacket is unnecessary if it is warm and it is mid-day; but, warm and 
early evening might mean that taking a jacket along might be wise as the day will change from 
warm to cool. The linguistic variables so common in everyday speech convey information about 
our environment or an object under observation. 

In common usage, linguistic variables often overlap. We can have a day in Boston that is, hot and 
muggy, indicating high humidity and hot temperatures. Again, I have described one linguistic 
variable in linguistic variable terms. The description hot and muggy is quite complex. Hot is 
simple enough as the following description shows. 

Linguistic variables in a computer require a formal way of describing a linguistic variable in 
crisp terms the computer can deal with. The following graph shows the relationship between 
measured temperature and the linguistic term hot. Although each of us may have slightly 
differing ideas about the exact temperature that hot actually indicates, the form is consistent. 

At some point all of us will say that it is not hot and at some point we will agree that it is hot. 
The space between hot and not hot indicates a temperature that is, to some degree, a bit of both. 
The horizontal axis in the following graph shows the measured or crisp value of temperature. 
The vertical axis describes the degree to which a linguistic variable fits with the crisp measured 
data. 
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We can describe temperature in a non-graphical way with the following declaration. This 
declaration describes both the crisp variable Temperature as an unsigned int and a linguistic 
member HOT as a trapezoid with specific parameters. 

LINGUISTIC Temperature TYPE unsigned int MIN 0 MAX 100 
 { 
  MEMBER HOT { 60, 80, 100, 100 } 
 } 

To add the linguistic variable HOT to a computer program running in an embedded controller, 
we need to translate the graphical representation into meaningful code. The following C code 
fragment gives one example of how we might do this. The function Temperature_HOT returns 
a degree of membership, scaled between 0 and 255, indicating the degree to which a given 
temperature could be HOT. This type of simple calculation is the first tool required for 
calculations of fuzzy logic operations. 

unsigned int Temperature; /* Crisp value of Temperature */ 
unsigned char Temperature_HOT (unsigned int __CRISP) 
 { 
  if (__CRISP < 60) return(0); 
  else 
  { 
   if (__CRISP <= 80) return(((__CRISP - 60) * 12) + 7); 
   else 
   { 
    return(255); 
   } 
 } 
 } 
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The same code can be translated to run on many different embedded micros, as displayed in the 
next two examples. 

 Code for National COP8 
0008   unsigned int Temperature ; 
    unsigned int Temperature_HOT 
    (unsigned int __CRISP) 
0009    { 
0005 56 LD B,#09 < 1 > 
0006 A6 X A,[B] < 1 > 
0007 AE LD A,[B] < 5 >  if (__CRISP < 60) return(0); 
0008 93 3B IFGT A,#03B < 2 > 
000A 02 JP 0000D < 3 > 
000B 64 CLRA < 1 > 
000C 8E RET < 5 > 
    else 
    { 
000D 56 LD B,#09 < 1 >   if (__CRISP <= 80) 
     return (((__CRISP - 60) * 12) + 7);  
000E AE LD A,[B] < 5 > 
000F 93 50 IFGT A,#050 < 2 > 
0011 10 JP 00022 < 3 > 
0012 AE LD A,[B] < 5 > 
0013 94 C4 ADD A,#0C4 < 2 > 
0015 9C 00 X A,000 < 3 > 
0017 BC 01 0C LD 001,#0C < 3 > 
001A AD 00 26 JSRL 00026 < 4 > 
001D 9D 01 LD A,001 < 3 > 
001F 94 07 ADD A,#007 < 2 > 
0021 8E RET < 5 > 
     else 
     { 
0022 98 FF LD A,#0FF < 2 >    return(255); 
0024 8E RET < 5 > 
     } 
    } 
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Code for Motorola MC68HC08  
0050   unsigned int Temperature ; 
 
   unsigned int Temperature_HOT 
   (unsigned int __CRISP) 
0051    { 
0100 B7 51 STA $51 < 3 > 
0102 A1 3C CMP #$3C < 2 >  if (__CRISP < 60) return(0); 
0104 24 02 BCC $0108 < 3 > 
0106 4F CLRA < 1 > 
0107 81 RTS < 4 > 
    else 
    { 
0108 B6 51 LDA $51 < 3 >   if (__CRISP <= 80) 
     return(((__CRISP - 60) * 12) + 7); 
010A A1 50 CMP #$50 < 2 > 
010C 22 08 BHI $0116 < 3 > 
010E A0 3C SUB #$3C < 2 > 
0110 AE 0C LDX #$0C < 2 > 
0112 42 MUL < 5 > 
0113 AB 07 ADD #$07 < 2 > 
0115 81 RTS < 4 > 
     else 
     { 
0116 A6 FF LDA #$FF < 2 >    return(255); 
0118 81 RTS < 4 > 
     } 
    } 
   } 

Central to the manipulation of fuzzy variables are fuzzy logic operators that parallel their boolean 
logic counterparts; f_and, f_or and f_not. We can define these operators as three macros to most 
embedded system C compilers as follows. 

#define f_one 0xff 
#define f_zero 0x00 
#define f_or(a,b) ((a) > (b) ? (a) : (b)) 
#define f_and(a,b) ((a) < (b) ? (a) : (b)) 
#define f_not(a) (f_one+f_zero-a) 

The linguistic variable HOT is straight forward in meaning; as the temperature rises, our 
perceived degree of HOTness also rises, until and at some point we simply say it is hot. 

Our description of the linguistic variable MUGGY is, however, more complex. Typically, we 
think of the condition MUGGY as a combination of HOT and HUMID. 

We can describe a controlling parameter for an air conditioner with the following equation. 

IF Temperature IS HOT AND Humidity IS HUMID THEN ACcontrol is MUGGY; 
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Different variables can have the same linguistic member names. Like members of a structure or 
enumerated type in most programming languages, they do not have to be unique. It is important 
to note that many of the linguistic conclusions are a result of the general form of the above 
equation. 

We have linguistic definitions of the variable day. The variable day can have a number of 
linguistic terms associated with it. { MUGGY, HUMID, HOT, COLD, CLAMMY}. This list 
may be extensive. 

What is interesting, is that day, although a linguistic variable, doesn't have a crisp number 
associated with it. For example we can say that the day is HOT or that the day is MUGGY, but 
saying that the day = 29 is meaningless; day is a void variable. 

All day's members are based on fuzzy logic equations. The following is a complete description of 
day. 

LINGUISTIC day TYPE void 
 { 
  MEMBER MUGGY { FUZZY ( Temperature IS HOT AND Humidity IS HUMID ) } 
 MEMBER HOT { FUZZY Temperature IS HOT } 
 MEMBER HUMID { FUZZY Humidity IS HUMID } 
 MEMBER COLD { FUZZY Temperature IS COLD } 
 MEMBER CLAMMY { FUZZY ( Temperature IS COLD AND Humidity IS HUMID ) } 
 } 

To calculate the Degree of Membership (DOM) of MUGGY in day, we need to calculate the 
DOM of HOT in Temperature and HUMID in Humidity, and then combine them with the fuzzy 
AND operator. 

The following code fragment shows implementation of day is MUGGY. For each of the 
linguistic members of day a similar equation needs to be generated. 

unsigned int day_MUGGY( unsigned int__CRISP) 
 { 
 return (f_and(Temperature_HOT(__CRISP), Humidity_HUMID(__CRISP))); 
 } 
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Even more important is the calculation for day is MUGGY. This can be quite straightforward, as 
the following graph shows. 

At first look, this 
doesn't seem much 
different from the 
evaluation of the two 
membership 
functions followed 
by the execution of 
the f_and function. 
After all, the f_and 
function is simple, 
and not 
computationally 
intensive. The 
graphical solution 
suggests that if the 
f_and evaluation 
were mixed with the 
evaluation of the 
membership 
function, substantial 
savings in execution 
time could result–in 
the worst case, the 
execution time 
would be the same as 
in the equation 
above. 
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Each of the rectangles in the above graph have their own unique computational requirements. 
The area that has a value of fuzzy_zero requires that either Temperature is less than 60 or 
Humidity is less than 75 %. Similarly, if Temperature is greater than 80 and Humidity is greater 
than 90% then the result is a fuzzy_one. 

Even eliminating these areas won't necessarily require computation of both membership 
functions. In two of the areas in the graph  f_and produces a minimum of fuzzy_one and either a 
function of Temperature or Humidity. In these cases, the minimum calculation requires a single 
membership function. 

In my experience, it is very common to combine two linguistic terms and define a new linguistic 
variable, or find that a fuzzy rule is actually the simple combination of two linguistic variables. 
The above diagram displays that it is at least possible that calculations combining two linguistic 
variables may be considerably less complicated than suggested by earlier equations. In much of 
the current application base, membership functions are some variation on simple trapezoids. The 
above graphic representation makes calculations in these cases easy. 

Some of the better implementation tools using fairly standard compiler technology can now 
recognize and implement this simplification when appropriate. The resulting execution speed 
increase can be impressive, even on simple 8 bit microcomputers. 
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Software reliability and fuzzy logic 

Let us look at the lessons we can learn by applying high reliability principles to software 
development. This approach tends to draw less specific conclusions, but can form the basis for 
subjective evaluations of competing software designs, and can provide an effective tool for 
software engineering. 

Simple systems are components combined in series and parallel terms. Complex systems result 
from the combination of simple systems. Real systems are rarely as simple as a few components 
with easily identified relationships. Most reliability calculations, especially in software, are at 
best good estimates based on individual component information and some hard data measured 
from the system. 

The math behind all system reliability calculations is based on combining individual components 
(in software individual instructions or functions) using two basic formulas. 

Given two components in a system with (Mean Time Between Failures) MTBF's of R1 and R2, 
they can be combined into a single component whose reliability is given by the following 
example. 

R1

R2

RsRs = R1 * R2
R1 + R2

 
Combining series reliability terms 
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The reliability Rs is indistinguishable from the reliability of the two components R1 and R2. The 
units used in each of the reliabilities is time, usually measured in hours. In a practical system, 
reliabilities are the combination of series and parallel terms. Although software cannot place 
actual times on MTBF calculations, we can learn a lot about our system if we look at the relative 
reliability of software structured in different ways. 

If two components in a system function independently, and the system can continue to function 
despite the failure of either component, then we can show the combined system reliability with 
the following diagram. The reliability Rs is indistinguishable from the reliability of the two 
components R1 and R2. 

Take a program and give it a dimensionless reliability of unity. Now divide the program into two 
parts such that each part performs a separate operation. This is often possible, because few 
programs contain code for a single operation. Re-configure the program to function as two 
independent tasks. You can then measure the reliability of the resulting two-task system. 

Each of these tasks will be half as long as the original, meaning that if our original assumption 
that the task reliability is a function of the code length is correct, each task will probably fail half 
as often as the original program. 

Each task then has a reliability of 2. If the correct operation of each half keeps the original 
system running, what we have are parallel independent components. Two independent parts, each 
with a reliability of 2, will improve the software reliability by a factor of 4. There may be some 
overhead in additional system code, which should be factored in. Even accounting for the 
additional code, the results are spectacular. 

Rs

Rs = R1 + R2

R2R1

 
Combining independent parallel reliability terms 
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Three essential assumptions are necessary to justify the above scenario.  
# the program really does have to perform two tasks 

# the program's tasks can be divided 

# a failure of either task will not cause a system failure 

There are many systems that satisfy these conditions. 

Here's a practical example involving a high-end product with an unacceptable number of failures. 
We reorganized the task scheduler from round robin to non-preemptive with many independent 
tasks. We made each task's execution independent rather than depending on other tasks in the 
loop. The customer reported failures went essentially to zero, and less than one percent of the 
code in the system was re-written! 

For a moment, assume reliability is essentially the same for all instructions. Assume also the 
reliability of a single task is essentially a function of the size of the task. In an isolated task this is 
true, however, in the real world a task takes on arguments and returns results. This adds an 
assumption that a task can cope with all of the possible arguments presented. 

1 22 =4=

 
Divide a large program for improved system reliability 
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What if the arguments presented to the task could in some way cause the task to fail? Then the 
arguments themselves would be a part of the reliability of the task. This would indicate that the 
reliability of a task is a function of the number of arguments presented to it. It also means that 

anything that is 
capable of altering 
the value of the 
arguments 
presented to a task 
is now a part of the 
series terms in an 
individual task's 
reliability. 

Consider the following example: two tasks exist in a system. One calls the second which 
executes its code and returns a result. 

As time passes, it is found the second task is useful for other things, and is called by a third task. 
The third task requires a minor change that we feel the first task is unlikely to notice. Now, as 
fate would have it, the first task calls the revised second task and the returned result causes the 
previously functioning first task to fail. 

This suggests that a task's reliability requires its interaction with other tasks be conducted 
through a well defined interface. In fact, a task should not communicate directly with other tasks 
at all, but through some abstract protocol. This would mean that a task could then be isolated 
from its environment; as long as it responds to requests from the protocol it could be 
implemented in any manner without affecting other tasks making requests of it through the 
protocol. 

The following figure depicts this implementation. The protocol provides the isolation needed to 
protect the tasks. Each task communicates solely with the protocol, which makes calls to tasks 
and receives their output. The protocol contains the list of expected responses for a given set of 
arguments. 

Task 1 Task 2

 
Tasks directly interfacing with each other 
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Sound familiar? In implementing fuzzy logic systems the fuzzy logic rules operate independently 
from each other to the degree that the rules in a block can usually be executed in any order, and 
the result will still be the same. Each rule is small and may be implemented in a few instructions. 
Fuzzy logic rules call membership functions through a well-defined interface providing isolation 
and further parallelism. After a fuzzy logic rule is evaluated it calls CONSEQUENCE functions 
through a well-defined interface. 

As in our earlier example of dividing a problem to achieve improved reliability, the fuzzy logic 
solution naturally breaks a problem into its component parts. There are other ways to visualize 
the reliability of the system. The focus of the fuzzy logic rules is on a very different level of 
detail than is the focus of the membership functions. 

This reduces a problem's solution to its component parts. Compilers may reassemble the code for 
effective execution on some target, but at the programmer level the problem is a number of 
simple tasks. 

Without trying, the implementation of a fuzzy logic system naturally follows a coding style that 
lends itself to producing reliable code. Fuzzy logic is inherently robust, and this is the reason. 

Task 1 Task 2

 
Protocol interfacing two tasks 
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Appendix 

This appendix contains a selection of pages employed as overhead slides used in my talk on 
Fuzzy Logic For Control Systems, at the 1993 Embedded Systems Show in Santa Clara. 

In addition to copies of the slides, I've included the actual code for a fuzzy PID controller as well 
as the block diagram of the PID controller used in Santa Clara. 

Example of PID Controller: 
 Int OldError,SumError; 
 int process(void); 
 
 LINGUISTIC Error  TYPE int  MIN -90  MAX 90 
  { 
  MEMBER LNegative   { -90, -90, -20,  0  } 
  MEMBER normal      { -20,   0,  20      } 
  MEMBER close       {  -3,   0,   3      } 
  MEMBER LPositive   {   0,  20,  90,  90 } 
  } 
 
 LINGUISTIC DeltaError  TYPE int  MIN -90  MAX 90 
  { 
  MEMBER Negative    { -90, -90, -10,  0  } 
  MEMBER Positive    {   0,  10,  90,  90 } 
  } 
 
 LINGUISTIC SumError  TYPE int  MIN -90  MAX 90 
  { 
  MEMBER LNeg    { -90, -90,  -5,  0  } 
  MEMBER LPos    {   0,   5,  90,  90 } 
  } 
 
 CONSEQUENCE  ManVar TYPE int   MIN -20  MAX 20 DEFUZZ cg 
 { 
     MEMBER  LNegative  {  -18 } 
     MEMBER  SNegative  {   -6 } 
     MEMBER  SPositive  {    6 } 
     MEMBER  LPositive  {   18 } 
 } 
 
 FUZZY pid 
   { 
    IF Error IS LNegative THEN ManVar IS LPositive 
 
    IF Error IS LPositive THEN ManVar IS LNegative 
 
    IF Error IS normal AND DeltaError IS Positive 
      THEN ManVar IS SNegative 
 
    IF Error IS normal AND DeltaError IS Negative 
      THEN ManVar IS SPositive 
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    IF Error IS close AND SumError IS LPos 
      THEN ManVar IS SNegative 
 
    IF Error IS close AND SumError IS LNeg 
      THEN ManVar IS SPositive 
 
   } 
 
 void main (void) 
   { 
    while(1) 
      { 
        OldError = Error; 
        Error = Setpoint - Process(); 
        DeltaError = Error - OldError; 
        SumError := SumError + Error; 
        pid(); 
       } 
    } 
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Example of Code for a fuzzy PID controller: 
#include "fuzzc.h" 
char __IDOM[2];                                          
 Int OldError,SumError; 
 int process(void); 
/*  LINGUISTIC Error  TYPE int  MIN -90  MAX 90 */ 
/*   { */ 
int  Error ; 
/*   MEMBER LNegative   { -90, -90, -20,  0  } */ 
/* 
  
  1-| .............                       
    | .            .                      
    | .             .                     
    | .              .                    
  0-| .               .................   
     ---------------------------------- 
    -90     -45       0      45      90 
  
*/ 
char Error_LNegative (int __CRISP)  
  { 
    { 
    if (__CRISP <= -20) return(255); 
    else 
      { 
      if (__CRISP <= 0) 
        return(( - __CRISP * 12) + 7); 
      else 
        return(0); 
      } 
    } 
  } 
/*   MEMBER normal      { -20,   0,  20      } */ 
/* 
  
  1-|                 .                   
    |                . .                  
    |               .   .                 
    |              .     .                
  0-| .............      ..............   
     ---------------------------------- 
    -90     -45       0      45      90 
  
*/ 
char Error_normal (int __CRISP)  
  { 
  if (__CRISP < -20) return(0); 
  else  
    { 
    if (__CRISP <= 0) return(((__CRISP + 20) * 12) + 7); 
    else 
      { 
        { 
        if (__CRISP <= 20) 
          return((( + 20 - __CRISP) * 12) + 7); 
        else 
          return(0); 
        } 
      } 
    } 
  } 
/*   MEMBER close       {  -3,   0,   3      } */ 
/* 
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  1-|                 .                   
    |                 .                   
    |                 .                   
    |                ..                   
  0-| .................................   
     ---------------------------------- 
    -90     -45       0      45      90 
  
*/ 
char Error_close (int __CRISP)  
  { 
  if (__CRISP < -3) return(0); 
  else  
    { 
    if (__CRISP <= 0) return((__CRISP + 3) * 85); 
    else 
      { 
        { 
        if (__CRISP <= 3) 
          return(( + 3 - __CRISP) * 85); 
        else 
          return(0); 
        } 
      } 
    } 
  } 
/*   MEMBER LPositive   {   0,  20,  90,  90 } */ 
/* 
  
  1-|                    ..............   
    |                    .            .   
    |                   .             .   
    |                  .              .   
  0-| .................               .   
     ---------------------------------- 
    -90     -45       0      45      90 
  
*/ 
char Error_LPositive (int __CRISP)  
  { 
  if (__CRISP < 0) return(0); 
  else  
    { 
    if (__CRISP <= 20) return((__CRISP * 12) + 7); 
    else 
      { 
        return(255); 
      } 
    } 
  } 
/*   } */ 
/* 
  
     Fuzzy Sets for Error 
  
  1-| .............   .  ..............   
    | .            . ... .            .   
    | .             . . .             .   
    | .            . ... .            .   
  0-| .............  ..  ..............   
     ---------------------------------- 
    -90     -45       0      45      90 
  
  
*/ 
/*  LINGUISTIC DeltaError  TYPE int  MIN -90  MAX 90 */ 
/*   { */ 
int  DeltaError ; 
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/*   MEMBER Negative    { -90, -90, -10,  0  } */ 
/* 
  
  1-| ...............                     
    | .              .                    
    | .              .                    
    | .               .                   
  0-| .               .................   
     ---------------------------------- 
    -90     -45       0      45      90 
  
*/ 
char DeltaError_Negative (int __CRISP)  
  { 
    { 
    if (__CRISP <= -10) return(255); 
    else 
      { 
      if (__CRISP <= 0) 
        return(( - __CRISP * 25) + 2); 
      else 
        return(0); 
      } 
    } 
  } 
/*   MEMBER Positive    {   0,  10,  90,  90 } */ 
/* 
  
  1-|                  ................   
    |                  .              .   
    |                  .              .   
    |                 .               .   
  0-| .................               .   
     ---------------------------------- 
    -90     -45       0      45      90 
  
*/ 
char DeltaError_Positive (int __CRISP)  
  { 
  if (__CRISP < 0) return(0); 
  else  
    { 
    if (__CRISP <= 10) return((__CRISP * 25) + 2); 
    else 
      { 
        return(255); 
      } 
    } 
  } 
/*   } */ 
/* 
  
     Fuzzy Sets for DeltaError 
  
  1-| ...............  ................   
    | .              . .              .   
    | .              . .              .   
    | .               .               .   
  0-| .................................   
     ---------------------------------- 
    -90     -45       0      45      90 
  
  
*/ 
/*  LINGUISTIC SumError  TYPE int  MIN -90  MAX 90 */ 
/*   { */ 
int  SumError ; 
/*   MEMBER LNeg    { -90, -90,  -5,  0  } */ 
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/* 
  
  1-| ................                    
    | .              .                    
    | .               .                   
    | .               .                   
  0-| .               .................   
     ---------------------------------- 
    -90     -45       0      45      90 
  
*/ 
char SumError_LNeg (int __CRISP)  
  { 
    { 
    if (__CRISP <= -5) return(255); 
    else 
      { 
      if (__CRISP <= 0) 
        return( - __CRISP * 51); 
      else 
        return(0); 
      } 
    } 
  } 
/*   MEMBER LPos    {   0,   5,  90,  90 } */ 
/* 
  
  1-|                 .................   
    |                 .               .   
    |                 .               .   
    |                 .               .   
  0-| .................               .   
     ---------------------------------- 
    -90     -45       0      45      90 
  
*/ 
char SumError_LPos (int __CRISP)  
  { 
  if (__CRISP < 0) return(0); 
  else  
    { 
    if (__CRISP <= 5) return(__CRISP * 51); 
    else 
      { 
        return(255); 
      } 
    } 
  } 
/*   } */ 
/* 
  
     Fuzzy Sets for SumError 
  
  1-| .................................   
    | .              ..               .   
    | .               .               .   
    | .               .               .   
  0-| .................................   
     ---------------------------------- 
    -90     -45       0      45      90 
  
  
*/ 
/*  CONSEQUENCE  ManVar TYPE int   MIN -20  MAX 20 DEFUZZ cg */ 
/*  { */ 
int   ManVar ; 
   long fa_@ConsName, fc_@ConsName; 
/*      MEMBER  LNegative  {  -18 } */ 
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/* 
  
  1-|  .                                  
    |  .                                  
    |  .                                  
    |  .                                  
  0-| .*...............................   
     ---------------------------------- 
    -20     -10       0      10      20 
  
  
*/ 
void ManVar_LNegative (int  __DOM)  
  { 
     fc_@ConsName += @ConsVol; 
     fa_@ConsName += (@ConsVol * (@ConsPoint)); 
  } 
/*      MEMBER  SNegative  {   -6 } */ 
/* 
  
  1-|            .                        
    |            .                        
    |            .                        
    |            .                        
  0-| ...........*.....................   
     ---------------------------------- 
    -20     -10       0      10      20 
  
  
*/ 
void ManVar_SNegative (int  __DOM)  
  { 
     fc_@ConsName += @ConsVol; 
     fa_@ConsName += (@ConsVol * (@ConsPoint)); 
  } 
/*      MEMBER  SPositive  {    6 } */ 
/* 
  
  1-|                     .               
    |                     .               
    |                     .               
    |                     .               
  0-| ....................*............   
     ---------------------------------- 
    -20     -10       0      10      20 
  
  
*/ 
void ManVar_SPositive (int  __DOM)  
  { 
     fc_@ConsName += @ConsVol; 
     fa_@ConsName += (@ConsVol * (@ConsPoint)); 
  } 
/*      MEMBER  LPositive  {   18 } */ 
/* 
  
  1-|                               .     
    |                               .     
    |                               .     
    |                               .     
  0-| ..............................*..   
     ---------------------------------- 
    -20     -10       0      10      20 
  
  
*/ 
void ManVar_LPositive (int  __DOM)  
  { 
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     fc_@ConsName += @ConsVol; 
     fa_@ConsName += (@ConsVol * (@ConsPoint)); 
  } 
/*  } */ 
/*  FUZZY pid */ 
void pid (void) 
  { 
     fa_@ConsName = 0; 
     fc_@ConsName = 0; 
/*    { */ 
/*     IF Error IS LNegative THEN ManVar IS LPositive */ 
  ManVar_LPositive( Error_LNegative(Error)  ); 
/*     IF Error IS LPositive THEN ManVar IS LNegative */ 
  ManVar_LNegative( Error_LPositive(Error)  ); 
/*     IF Error IS normal AND DeltaError IS Positive */ 
/*       THEN ManVar IS SNegative */ 
  __IDOM[1] = Error_normal(Error) ; 
  __IDOM[0] = DeltaError_Positive(DeltaError) ; 
  __IDOM[0] = F_AND(__IDOM[1],__IDOM[0]); 
  ManVar_SNegative( __IDOM[0] ); 
/*     IF Error IS normal AND DeltaError IS Negative */ 
/*       THEN ManVar IS SPositive */ 
  __IDOM[1] = Error_normal(Error) ; 
  __IDOM[0] = DeltaError_Negative(DeltaError) ; 
  __IDOM[0] = F_AND(__IDOM[1],__IDOM[0]); 
  ManVar_SPositive( __IDOM[0] ); 
/*     IF Error IS close AND SumError IS LPos */ 
/*       THEN ManVar IS SNegative */ 
  __IDOM[1] = Error_close(Error) ; 
  __IDOM[0] = SumError_LPos(SumError) ; 
  __IDOM[0] = F_AND(__IDOM[1],__IDOM[0]); 
  ManVar_SNegative( __IDOM[0] ); 
/*     IF Error IS close AND SumError IS LNeg */ 
/*       THEN ManVar IS SPositive */ 
  __IDOM[1] = Error_close(Error) ; 
  __IDOM[0] = SumError_LNeg(SumError) ; 
  __IDOM[0] = F_AND(__IDOM[1],__IDOM[0]); 
  ManVar_SPositive( __IDOM[0] ); 
/*    } */ 
     @ConsName = fa_@ConsName / fc_@ConsName; 
   } 
 void main (void) 
   { 
    while(1) 
      { 
        OldError = Error; 
        Error = Setpoint - Process(); 
        DeltaError = Error - OldError; 
        SumError := SumError + Error; 
        pid(); 
       } 
    } 



 

Byte Craft Limited 35 

Fuzzy Logic Presentation Slides 

These slides accompanied the presentation adapted for the first part of this book, Fuzzy logic 
implementation on embedded microcomputers. The quality of some slides reflects their origin as 
transparencies. 
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Directions:

1. Empty contents into saucepan;

add 4½ cups (1 L) cold water.

2. Bring to a boil, stir
ring constantly.

3. Reduce heat; partially cover

and simmer for 15 minutes, 

stirring occasionally.

4 to 6 servings, 4½ cups (1 L)

Soup Mix

Linguistic
Variables
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Linguistic Variables

Given a crisp temperature of 75:

Degree of Membership(COOL) = 0.0
Degree of Membership(WARM) = 0.7
Degree of Membership(HOT) = 0.23
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Linguistic Variables
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Linguistic Variables
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0
0 37 75 112 150

Temperature

HOT

Linguistic Variable HOT

73

90 150

150

LINGUISTIC Temperature TYPE unsigned int MIN 0 MAX 150
   {
     MEMBER HOT {73, 90, 150, 150}
   }
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Fuzzy Operators
F_NOT operator

F_OR operator
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F_AND operator
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Fuzzy
Proportional
Contoller

Manipulated
Variable

Process

Set Point

Process Error
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Process
Proportional
Band

# Range of error to give 
full-scale proportional 
output
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Fuzzy
Proportional
Controller
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Fuzzy
Proportional
Controller

1

0

Process Error

1

0
M Z P

Rules:
if pe is POSITIVE THEN mv IS M
if pe is NEGATIVE THEN mv IS P
if pe is ZERO THEN mv is Z 

#
#
#
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Fuzzy
Proportional
Controller
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Fuzzy
Proportional
Controller
Performance
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Fuzzy
Proportional
Controller
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Fuzzy
Proportional
Controller
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Fuzzy
Proportional
Controller

1

0

Process Error

DOM Negative Positive
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Manipulated Variable
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Fuzzy
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Controller # Transfer Function
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Fuzzy
Proportional
Controller # Computationally less intensive
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Bang Bang
Controller

1

0
M P

Manipulated Variable

Setpoint

1

0

Process

IF (process < setpoint)
   THEN mv is P
   ELSE mv is M
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Bang Bang
Controller
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Fuzzy
Bang Bang

1

0
M P

1

0

pe

NOTNORMAL

Process

RULES:
IF pe IS NOTNORMAL
   THEN mv is P
   ELSE mv is M
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Fuzzy
Bang Bang # Transfer Function

M
an

ip
ul

at
ed

 V
ar

ia
bl

e

Process Error

2
4
6

0

8
10

-2
-4
-6
-8

-10

-10 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 10

 



Fuzzy Logic in Embedded Microcomputers and Control Systems 

Byte Craft Limited 57 

Manipulated
Variable

Process

Set Point

Process Error

Derivative

Integral

Fuzzy
PID
Controller
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Fuzzy
PID
Controller

#
#
Classical PID

Manipulated variable is the 
sum of three terms:

mv = (pe × K1) + d pe
d t

× K2 + ($%pe × K3)

 

Fuzzy
PID
Controller

#

#

Break problem into 
separate control zones.
Solve each part of the 
problem individually.

Error

SP-

Time

Process

 



Fuzzy Logic in Embedded Microcomputers and Control Systems 

Byte Craft Limited 59 

Fuzzy
PID
Controller

#
#
#
#

Separate rules for
Error term
Derivative Term
Integral Term
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Fuzzy
Irrigation
Controller

 

 

 



Fuzzy Logic in Embedded Microcomputers and Control Systems 

Byte Craft Limited 61 

Fuzzy
Irrigation
Controller

# Making the rules

Rotation

1

0

acuteDOM

0 178 180 182 360

obtuse

straight
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Fuzzy
Irrigation
Controller

# Each node has its own rules

IF angle IS straight
    THEN speed IS same
IF angle IS acute
    THEN speed IS slowdown
IF angle IS obtuse
    THEN speed IS speedup

 

Fuzzy
Irrigation
Controller

#
#
#

#

Differential Control
speedup
slowdown

CONSEQUENCE functions may be non-linear
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Fuzzy
Irrigation
Controller

#
#
Normalized control values

Degree of membership range is two degrees

1

0

acuteDOM

0 178 180 182 360

obtuse

straight

 

The
Fuzzy
Advantage
#
#
#
#
#

Normalized number system
Natural smooth transition between different strategies
Focus on problem solution, not problem analysis
Works well on conventional embedded microprocessors
Can easily be combined with conventional software
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