
ox40;
gs&0x20)
table();

02A4 A
02A6 B
02A9 C

Fuzzy Logic
in Embedded Microcomputers

and Control Systems

Walter Banks / Gordon Hayward

Fuzz-C™
Fuzz-C™ is a stand-alone preprocessor
that seamlessly integrates fuzzy logic
into the C language. Now you can add
fuzzy logic to your applications without
expensive, specialized hardware or
software. Fuzz-C accepts fuzzy logic
rules, membership functions and
consequence functions, and produces
C source code that can be compiled by
most C compilers, including the Byte
Craft Limited Code Development
System.

The preprocessor generates C code
that is both compact and significantly
faster than most current fuzzy logic
commercial implementations—all with
your favorite C compiler.

Fuzz-C provides a practical, unified
solution for applications that require
fuzzy logic control systems. Use your
existing C libraries for program
management, keyboard handlers and
display functions without change; you
can implement system control functions
using fuzzy rules.

Fuzz-C is a flexible system that allows
all data types supported by your C
compiler. Standard defuzzification
methods, such as center of gravity, max
left, max right, and max average, are
provided in source form. Fuzz-C lets
you easily add new defuzzification
methods.

Fuzzy Logic Preprocessor for C
ox40;
gs&0x20)
table();

02A4 A
02A6 B
02A9 C

Fuzz-C™ includes one year technical support via phone
or email. Fuzz-C requires modest system resources:
DOS or Windows and less than 1 megabyte of memory.
Fuzz-C works with make and other industry-standard
build systems. Complete documentation is included.

Terms: prepaid American Express, VISA or cheque. Overseas orders prepaid in U.S. funds
drawn on a Canadian or U.S. bank only. Please obtain appropriate import documentation.
Canadian customers are subject to applicable taxes. Specifications and price information subject
to change without notice. Fuzz-C is a registered trademark of Byte Craft Limited. Other marks are
trademarks or registered trademarks of their respective holders.

/* Fuzzy Logic Climate Controller

This single page of code creates a fully
Functional controller for a simple air
conditioning system */

#define thermostat PORTA
#define airCon PORTB.7

/* degrees celsius */
LINGUISTIC room TYPE int MIN 0 MAX 50
{
 MEMBER cold { 0, 0, 15, 20 }
 MEMBER normal { 20, 23, 25 }
 MEMBER hot { 25, 30, 50, 50 }
}

/* A.C on or off */
CONSEQUENCE ac TYPE int DEFUZZ CG
{
 MEMBER ON { 1 }
 MEMBER OFF { 0 }
}

/* Rules to follow */
FUZZY climateControl
{
 IF room IS cold THEN
 ac IS OFF
 IF room IS normal THEN
 ac IS OFF
 IF room IS hot THEN
 ac IS ON
}

int main(void)
{
 while(1)
 {
 /* find the temperature */
 room = thermostat;
 /* apply the rules */
 climateControl();
 /* switch the A.C. */
 airCon = ac;
 wait(10);
 }
}

Binary

Trapezoidal

Triangle

"hot"

Membership

Functions

"normal"

room

Fuzzy 1

Fuzzy 0

"cold"

Center of Gravity

Calculation

Center of Gravity

Calculation

Manipulated
Variable

Process

Set Point

Process Error

Derivative

Integral

Fuzzy Logic
 in Embedded Microcomputers

 and Control Systems
Walter Banks / Gordon Hayward

Published by

BYTE CRAFT LIMITEDBYTE CRAFT LIMITEDBYTE CRAFT LIMITEDBYTE CRAFT LIMITED
A2-490 Dutton Drive

Waterloo, Ontario
Canada • N2L 6H7

Sales Information and Customer Support:

BBBBYTE CRAFT LIMITEDYTE CRAFT LIMITEDYTE CRAFT LIMITEDYTE CRAFT LIMITED
A2-490 Dutton Drive

Waterloo, Ontario
Canada NL 6H7

Phone (519) 888-6911

FAX (519) 746-6751

Web www.bytecraft.com

Copyright ! 1993, 2002 Byte Craft Limited.

Licensed Material. All rights reserved.

The Fuzz-C programs and manual are protected by copyrights. All rights reserved. No part of this
publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording, or otherwise without the prior written
permission of Byte Craft Limited.

Printed in Canada October, 2002

First Web Release October 2002

Byte Craft Limited i

Forward

This booklet started as a result of the rush of people who asked for copies of the overhead slides I
used in a talk on Fuzzy Logic For Control Systems at the 1993 Embedded Systems Show in
Santa Clara.

A fuzzy logic tutorial

There is a clear lack of basic tutorial materials for fuzzy logic. I decided that I did have enough
material to create a reasonable tutorial for those beginning to explore the possibilities of fuzzy
logic. In addition to the material presented at the embedded systems conference I have added
additional chapters.

Clear thinking on fuzzy linguistics

The first chapter essentially consists of the editorial I wrote for Electronic Engineering Times
(printed on October 4, 1993). The editorial presented a case for the addition of linguistic
variables to the programmer's toolbox.

Fuzzy logic implementation on embedded microcomputers

The second chapter is based upon a paper I presented at Fuzzy Logic '93 by Computer Design in
Burlingame, CA (in July of 1993). This paper described the implementation considerations of
fuzzy logic on conventional, small, embedded micro-computers. Many of the paper's design
considerations were essential to the development of our Fuzz-C" preprocessor. I have created
most of the included examples in Fuzz-C and although you don't need to use Fuzz-C to
implement a fuzzy logic system, you will find it useful to understand some of its design.

Software Reliability and Fuzzy Logic

Originally part of the implementation paper, this chapter presents what is actually a separate
subject. The inherent reliability and self scaling aspects of fuzzy logic are becoming important
and may in fact be the over riding reason for the use of fuzzy logic.

Fuzzy Logic in Embedded Microcomputers and Control Systems

ii Byte Craft Limited

Appendix

The appendix contains, in addition to copies of the slides, the actual code for a fuzzy PID
controller as well as the block diagram of the PID controller used in my Santa Clara talk entitled
Fuzzy Logic For Control Systems.

Adjusting to fuzzy design

While presenting the paper in Santa Clara, much of the discussion touched on provable control
stability. This final issue has discouraged many engineers from employing fuzzy logic in their
designs. Despite the great incentive to use fuzzy logic, I found it took me about a year and a half
to feel comfortable with the addition of linguistic variables to my software designs.

Fuzzy logic is not magic, but it has made many problems much easier to visualize and
implement. Debugging has generally been straight forward in my own code, and I think that most
who have implemented fuzzy logic applications share this opinion.

I have tried to make the material presented both in this booklet, and in my presentations in
public, as non-commercial as possible. The purpose here is to inform and educate. Some of the
slide material came from Dr. Gordon Hayward of the University of Guelph. Gord is a friend and
colleague dating back more than twenty years. Gord was the first to look at fuzzy logic through
transfer functions. The slides of the actual control system response were generated by a student
of Dr. Hayward's in a report (L. Seed 05-428 Project, Winter 1993). I thank both of them for this
material.

Much material has been published on fuzzy logic and linguistic variables. Most of the literature
available in the English-speaking world was written primarily by and for mathematicians, with
few papers and articles written for computer scientists or system implementors. This work started
with a paper by Lotfi Zadeh more than a quarter century ago ("Fuzzy Sets", Information and
Control 8, pp. 338-353, 1965). Professor Zadeh has remained a tireless promoter of the
technology.

Fuzzy Logic in Embedded Microcomputers and Control Systems

Byte Craft Limited iii

At the 1992 Embedded Systems Conference in Santa Clara, the genie was finally let out of the
bottle, and fuzzy logic came into its own with wide interest. Jim Sibigtroth's article in Embedded
Systems Programming magazine in December, 1991 cracked the bottle, describing for the first
time a widely available, understandable implementation of a fuzzy logic control system workable
for general purpose microprocessors. Jim Sibigtroth has been working on the promotion of fuzzy
logic control systems to the point of personal passion. As developers began to understand the real
power of using linguistic variables in control applications, the negative implications of the name
fuzzy logic have given way to a deep understanding that this is a powerful tool backed by solid
mathematical principles.

I thank all those who work with me at Byte Craft Limited for their efforts. A special thanks to
Viktor Haag who gets to do much of the hard work for our printed material and far too little
credit. For me I accept responsibility for all of the errors and inconsistencies.

Walter Banks
October 28, 1993.

Byte Craft Limited 1

Clear thinking on fuzzy linguistics

I have had a front row seat, watching a computing public finding uses for an almost 30 year-old
new technology.

Personally, I struggled with finding an application to clearly define what all the magic was about,
until I switched the question around and looked at how an ever increasing list of fuzzy logic
success stories might be implemented. I then looked at the language theory to see why linguistic
variables were important in describing and solving problems on computers.

Linguistic variables are central to fuzzy logic manipulations. Linguistic variables hold values
that are uniformly distributed between 0 and 1, depending on the relevance of a context-
dependent linguistic term. For example; we can say the room is hot and the furnace is hot, and
the linguistic variable hot has different meanings depending on whether we refer to the room or
the inside of the furnace.

The assigned value of 0 to a linguistic variable means that the linguistic term is not true and the
assigned value of 1 indicates the term is true. The "linguistic variables" used in everyday speech
convey relative information about our environment or an object under observation and can
convey a surprising amount of information.

The relationship between crisp numbers and linguistic variables is now generally well
understood. The linguistic variable HOT in the following graph has a value between 0 and 1
over the crisp range 60-80 (where 0 is not hot at all and 1 is undeniably hot). For each crisp
number in a variable space (say room), a number of linguistic terms may apply. Linguistic
variables in a computer require a formal way of describing a linguistic variable in the crisp terms
the computer can deal with.

The following graph shows the relationship between measured room temperature and the
linguistic term hot. In the space between hot and not hot, the temperature is, to some degree, a bit
of both.

The horizontal axis in the following graph shows the measured or crisp value of temperature. The
vertical axis describes the degree to which a linguistic variable fits with the crisp measured data.

Fuzzy Logic in Embedded Microcomputers and Control Systems

2 Byte Craft Limited

D
eg

re
e

of
 M

em
be

rs
hi

p

1

0
0 10 20 30 40 50 60 70 80 90 100

Temperature

60

80

100

100
Linguistic Variable HOT

Most fuzzy logic support software has a form resembling the following declaration of a linguistic
variable. In this case, a crisp variable room is associated with a linguistic variable hot, defined
using four break points from the graph.

LINGUISTIC room TYPE unsigned int MIN 0 MAX 100
 {
 MEMBER HOT { 60, 80, 100, 100 }
 }

We often use linguistic references enhanced with crisp definitions.

Cooking instructions are linguistic in nature: "Empty contents into a saucepan; add 4½ cups (1 L)
cold water." This quote from the instructions on a Minestrone soup mix packet shows just how
common linguistic references are in our descriptive language. These instructions are in both the
crisp and fuzzy domains.

The linguistic variable "saucepan", for example, is qualified by the quantity of liquid that is
expected. One litre (1 L) is not exactly 4½ cups but the measurement is accurate enough (within
6.5%) for the job at hand. "Cold water " is a linguistic variable that describes water whose
temperature is between the freezing point (where we all agree it is cold) to some higher
temperature (where it is cold to some degree).

The power of any computer language comes from being able to describe a problem in terms that
are relevant to the problem. Linguistic variables are relevant for many applications involving
human interface. Fuzzy logic success stories involve implementations of tasks commonly done
by humans but not easily described in crisp terms.

Fuzzy Logic in Embedded Microcomputers and Control Systems

Byte Craft Limited 3

Rice cookers, toasters, washing machines, environment control, subway trains, elevators, camera
focusing and picture stabilization are just a few examples. Linguistic variables do not simplify
the application or its implementation but they provide a convenient tool to describe a problem.

Applications may be computed in either the fuzzy linguistic domain or the conventional crisp
domain. Non-linear problems, such as process control in an environment that varies considerably
from usage to usage, yield very workable results with impressively little development time when
solved using fuzzy logic. Although fuzzy logic is not essential to solving this type of non-linear
control problem, it helps in describing some of the possible solutions.

Dr. Lotfi Zadeh, the originator of fuzzy logic, noted that ordinary language contains many
descriptive terms whose relevance is context-specific. I can, for example, say that the day is hot.
That statement conveys similar information to most people. In some ways, it conveys better
information than saying the temperature is 35 degrees, which implies hot in most European
countries and quite cool in the United States.

The day is muggy implies two pieces of information: the day is hot and the relative humidity is
high. We can have a day that is hot or muggy or cold or clammy. In common usage linguistic
variables are often overlapping.

Muggy implies both high humidity and hot temperatures. The variable day may have an extensive
list of linguistic values computed in the fuzzy domain associated with it (MUGGY, HUMID,
HOT, COLD, CLAMMY). If day is a linguistic variable, it doesn't have a crisp number
associated with it so that although we can say the day is HOT or MUGGY, assigning a value to
day is meaningless. All of the linguistic members associated with day are based on fuzzy logic
equations.

When fuzzy logic is used in an application program, it adds linguistic variables as a new variable
type. We might implement an air conditioner controller with a single fuzzy statement

IF room IS hot THEN air_conditioner is on;

We can extend basic air conditioner control to behave differently depending on the different
types of day.

The math developed to support linguistic variable manipulation conveniently implements an easy
method to switch smoothly from one possible solution to another. This means that, unlike a
conventional control system that easily implements a single well behaved control of a system, the
fuzzy logic design can have many solutions (or rules) which apply to a single problem and the
combined solutions can be appropriately weighted to a controlling action.

Fuzzy Logic in Embedded Microcomputers and Control Systems

4 Byte Craft Limited

Computers–especially those in embedded applications–can be programmed to perform
calculations in the fuzzy domain rather than the crisp domain. Fuzzy logic manipulations take
advantage of the fact that linguistic variables are only resolved to crisp values at the resolution of
the problem, a kind of self scaling feature that is objective-driven rather than data-driven.

To keep a room comfortable, the temperature and humidity need to be kept only within the fuzzy
comfort zone. Any calculations that have greater accuracy than the desired result are redundant,
and require more computing power than is needed. Fuzzy logic is not the only way to achieve
reductions in computing requirements but it is the best of the methods suggested so far to achieve
this goal.

Linguistic variable types are taking their place alongside such other data types as character,
string, real and float. They are, in some ways, an extension to the already familiar enumerated
data types common in many high level languages. In my view, the linguistic domain is simply
another tool that application developers have at their disposal to communicate clearly. When
applied appropriately, fuzzy logic solutions are competitive with conventional implementation
techniques with considerably less implementation effort.

Byte Craft Limited 5

Fuzzy logic implementation on embedded
microcomputers

Fuzzy logic operators provide a formal method of manipulating linguistic variables. It is a
reasonable comment to describe fuzzy logic as just another programming paradigm. Fuzzy logic
critics are correct in stating that they can do with conventional code everything that fuzzy logic
can do. For that matter, so can machine code, but I am not going to argue the point.

Central to fuzzy logic manipulations are linguistic variables. Linguistic variables are non-precise
variables that often convey a surprising amount of information. We can say, for example, that it
is warm outside or that it is cool outside. In the first case we may be going outside for a walk and
we want to know if we should wear a jacket so we ask the question, what is it like outside?, and
the answer is it is warm outside.

Experience has shown that a jacket is unnecessary if it is warm and it is mid-day; but, warm and
early evening might mean that taking a jacket along might be wise as the day will change from
warm to cool. The linguistic variables so common in everyday speech convey information about
our environment or an object under observation.

In common usage, linguistic variables often overlap. We can have a day in Boston that is, hot and
muggy, indicating high humidity and hot temperatures. Again, I have described one linguistic
variable in linguistic variable terms. The description hot and muggy is quite complex. Hot is
simple enough as the following description shows.

Linguistic variables in a computer require a formal way of describing a linguistic variable in
crisp terms the computer can deal with. The following graph shows the relationship between
measured temperature and the linguistic term hot. Although each of us may have slightly
differing ideas about the exact temperature that hot actually indicates, the form is consistent.

At some point all of us will say that it is not hot and at some point we will agree that it is hot.
The space between hot and not hot indicates a temperature that is, to some degree, a bit of both.
The horizontal axis in the following graph shows the measured or crisp value of temperature.
The vertical axis describes the degree to which a linguistic variable fits with the crisp measured
data.

Fuzzy Logic in Embedded Microcomputers and Control Systems

6 Byte Craft Limited

D
eg

re
e

of
 M

em
be

rs
hi

p

1

0
0 10 20 30 40 50 60 70 80 90 100

Temperature

NOT HOT HOT

Linguistic Variable HOT

We can describe temperature in a non-graphical way with the following declaration. This
declaration describes both the crisp variable Temperature as an unsigned int and a linguistic
member HOT as a trapezoid with specific parameters.

LINGUISTIC Temperature TYPE unsigned int MIN 0 MAX 100
 {
 MEMBER HOT { 60, 80, 100, 100 }
 }

To add the linguistic variable HOT to a computer program running in an embedded controller,
we need to translate the graphical representation into meaningful code. The following C code
fragment gives one example of how we might do this. The function Temperature_HOT returns
a degree of membership, scaled between 0 and 255, indicating the degree to which a given
temperature could be HOT. This type of simple calculation is the first tool required for
calculations of fuzzy logic operations.

unsigned int Temperature; /* Crisp value of Temperature */
unsigned char Temperature_HOT (unsigned int __CRISP)
 {
 if (__CRISP < 60) return(0);
 else
 {
 if (__CRISP <= 80) return(((__CRISP - 60) * 12) + 7);
 else
 {
 return(255);
 }
 }
 }

Fuzzy Logic in Embedded Microcomputers and Control Systems

Byte Craft Limited 7

The same code can be translated to run on many different embedded micros, as displayed in the
next two examples.

 Code for National COP8
0008 unsigned int Temperature ;
 unsigned int Temperature_HOT
 (unsigned int __CRISP)
0009 {
0005 56 LD B,#09 < 1 >
0006 A6 X A,[B] < 1 >
0007 AE LD A,[B] < 5 > if (__CRISP < 60) return(0);
0008 93 3B IFGT A,#03B < 2 >
000A 02 JP 0000D < 3 >
000B 64 CLRA < 1 >
000C 8E RET < 5 >
 else
 {
000D 56 LD B,#09 < 1 > if (__CRISP <= 80)
 return (((__CRISP - 60) * 12) + 7);
000E AE LD A,[B] < 5 >
000F 93 50 IFGT A,#050 < 2 >
0011 10 JP 00022 < 3 >
0012 AE LD A,[B] < 5 >
0013 94 C4 ADD A,#0C4 < 2 >
0015 9C 00 X A,000 < 3 >
0017 BC 01 0C LD 001,#0C < 3 >
001A AD 00 26 JSRL 00026 < 4 >
001D 9D 01 LD A,001 < 3 >
001F 94 07 ADD A,#007 < 2 >
0021 8E RET < 5 >
 else
 {
0022 98 FF LD A,#0FF < 2 > return(255);
0024 8E RET < 5 >
 }
 }

Fuzzy Logic in Embedded Microcomputers and Control Systems

8 Byte Craft Limited

Code for Motorola MC68HC08
0050 unsigned int Temperature ;

 unsigned int Temperature_HOT
 (unsigned int __CRISP)
0051 {
0100 B7 51 STA $51 < 3 >
0102 A1 3C CMP #$3C < 2 > if (__CRISP < 60) return(0);
0104 24 02 BCC $0108 < 3 >
0106 4F CLRA < 1 >
0107 81 RTS < 4 >
 else
 {
0108 B6 51 LDA $51 < 3 > if (__CRISP <= 80)
 return(((__CRISP - 60) * 12) + 7);
010A A1 50 CMP #$50 < 2 >
010C 22 08 BHI $0116 < 3 >
010E A0 3C SUB #$3C < 2 >
0110 AE 0C LDX #$0C < 2 >
0112 42 MUL < 5 >
0113 AB 07 ADD #$07 < 2 >
0115 81 RTS < 4 >
 else
 {
0116 A6 FF LDA #$FF < 2 > return(255);
0118 81 RTS < 4 >
 }
 }
 }

Central to the manipulation of fuzzy variables are fuzzy logic operators that parallel their boolean
logic counterparts; f_and, f_or and f_not. We can define these operators as three macros to most
embedded system C compilers as follows.

#define f_one 0xff
#define f_zero 0x00
#define f_or(a,b) ((a) > (b) ? (a) : (b))
#define f_and(a,b) ((a) < (b) ? (a) : (b))
#define f_not(a) (f_one+f_zero-a)

The linguistic variable HOT is straight forward in meaning; as the temperature rises, our
perceived degree of HOTness also rises, until and at some point we simply say it is hot.

Our description of the linguistic variable MUGGY is, however, more complex. Typically, we
think of the condition MUGGY as a combination of HOT and HUMID.

We can describe a controlling parameter for an air conditioner with the following equation.

IF Temperature IS HOT AND Humidity IS HUMID THEN ACcontrol is MUGGY;

Fuzzy Logic in Embedded Microcomputers and Control Systems

Byte Craft Limited 9

Different variables can have the same linguistic member names. Like members of a structure or
enumerated type in most programming languages, they do not have to be unique. It is important
to note that many of the linguistic conclusions are a result of the general form of the above
equation.

We have linguistic definitions of the variable day. The variable day can have a number of
linguistic terms associated with it. { MUGGY, HUMID, HOT, COLD, CLAMMY}. This list
may be extensive.

What is interesting, is that day, although a linguistic variable, doesn't have a crisp number
associated with it. For example we can say that the day is HOT or that the day is MUGGY, but
saying that the day = 29 is meaningless; day is a void variable.

All day's members are based on fuzzy logic equations. The following is a complete description of
day.

LINGUISTIC day TYPE void
 {
 MEMBER MUGGY { FUZZY (Temperature IS HOT AND Humidity IS HUMID) }
 MEMBER HOT { FUZZY Temperature IS HOT }
 MEMBER HUMID { FUZZY Humidity IS HUMID }
 MEMBER COLD { FUZZY Temperature IS COLD }
 MEMBER CLAMMY { FUZZY (Temperature IS COLD AND Humidity IS HUMID) }
 }

To calculate the Degree of Membership (DOM) of MUGGY in day, we need to calculate the
DOM of HOT in Temperature and HUMID in Humidity, and then combine them with the fuzzy
AND operator.

The following code fragment shows implementation of day is MUGGY. For each of the
linguistic members of day a similar equation needs to be generated.

unsigned int day_MUGGY(unsigned int__CRISP)
 {
 return (f_and(Temperature_HOT(__CRISP), Humidity_HUMID(__CRISP)));
 }

Fuzzy Logic in Embedded Microcomputers and Control Systems

10 Byte Craft Limited

Even more important is the calculation for day is MUGGY. This can be quite straightforward, as
the following graph shows.

At first look, this
doesn't seem much
different from the
evaluation of the two
membership
functions followed
by the execution of
the f_and function.
After all, the f_and
function is simple,
and not
computationally
intensive. The
graphical solution
suggests that if the
f_and evaluation
were mixed with the
evaluation of the
membership
function, substantial
savings in execution
time could result–in
the worst case, the
execution time
would be the same as
in the equation
above.

11

0

0

0

0

10

10

20

20

30

30

40

40

50

50

60

60

70

70

80

80

90

90

100

10
0

Fuzzy Zero

Fuzzy One

DOM (Temperature_HOT)

DOM (Humidity_HUMID)

MIN(
 DOM (Temperature_HOT),
 DOM (Humidity_HUMID)
)

Temp.
(HOT)

Humidity
(HUMID)

Temperature/Humidity Graph

Fuzzy Logic in Embedded Microcomputers and Control Systems

Byte Craft Limited 11

Each of the rectangles in the above graph have their own unique computational requirements.
The area that has a value of fuzzy_zero requires that either Temperature is less than 60 or
Humidity is less than 75 %. Similarly, if Temperature is greater than 80 and Humidity is greater
than 90% then the result is a fuzzy_one.

Even eliminating these areas won't necessarily require computation of both membership
functions. In two of the areas in the graph f_and produces a minimum of fuzzy_one and either a
function of Temperature or Humidity. In these cases, the minimum calculation requires a single
membership function.

In my experience, it is very common to combine two linguistic terms and define a new linguistic
variable, or find that a fuzzy rule is actually the simple combination of two linguistic variables.
The above diagram displays that it is at least possible that calculations combining two linguistic
variables may be considerably less complicated than suggested by earlier equations. In much of
the current application base, membership functions are some variation on simple trapezoids. The
above graphic representation makes calculations in these cases easy.

Some of the better implementation tools using fairly standard compiler technology can now
recognize and implement this simplification when appropriate. The resulting execution speed
increase can be impressive, even on simple 8 bit microcomputers.

Byte Craft Limited 13

Software reliability and fuzzy logic

Let us look at the lessons we can learn by applying high reliability principles to software
development. This approach tends to draw less specific conclusions, but can form the basis for
subjective evaluations of competing software designs, and can provide an effective tool for
software engineering.

Simple systems are components combined in series and parallel terms. Complex systems result
from the combination of simple systems. Real systems are rarely as simple as a few components
with easily identified relationships. Most reliability calculations, especially in software, are at
best good estimates based on individual component information and some hard data measured
from the system.

The math behind all system reliability calculations is based on combining individual components
(in software individual instructions or functions) using two basic formulas.

Given two components in a system with (Mean Time Between Failures) MTBF's of R1 and R2,
they can be combined into a single component whose reliability is given by the following
example.

R1

R2

RsRs = R1 * R2
R1 + R2

Combining series reliability terms

Fuzzy Logic in Embedded Microcomputers and Control Systems

14 Byte Craft Limited

The reliability Rs is indistinguishable from the reliability of the two components R1 and R2. The
units used in each of the reliabilities is time, usually measured in hours. In a practical system,
reliabilities are the combination of series and parallel terms. Although software cannot place
actual times on MTBF calculations, we can learn a lot about our system if we look at the relative
reliability of software structured in different ways.

If two components in a system function independently, and the system can continue to function
despite the failure of either component, then we can show the combined system reliability with
the following diagram. The reliability Rs is indistinguishable from the reliability of the two
components R1 and R2.

Take a program and give it a dimensionless reliability of unity. Now divide the program into two
parts such that each part performs a separate operation. This is often possible, because few
programs contain code for a single operation. Re-configure the program to function as two
independent tasks. You can then measure the reliability of the resulting two-task system.

Each of these tasks will be half as long as the original, meaning that if our original assumption
that the task reliability is a function of the code length is correct, each task will probably fail half
as often as the original program.

Each task then has a reliability of 2. If the correct operation of each half keeps the original
system running, what we have are parallel independent components. Two independent parts, each
with a reliability of 2, will improve the software reliability by a factor of 4. There may be some
overhead in additional system code, which should be factored in. Even accounting for the
additional code, the results are spectacular.

Rs

Rs = R1 + R2

R2R1

Combining independent parallel reliability terms

Fuzzy Logic in Embedded Microcomputers and Control Systems

Byte Craft Limited 15

Three essential assumptions are necessary to justify the above scenario.
the program really does have to perform two tasks

the program's tasks can be divided

a failure of either task will not cause a system failure

There are many systems that satisfy these conditions.

Here's a practical example involving a high-end product with an unacceptable number of failures.
We reorganized the task scheduler from round robin to non-preemptive with many independent
tasks. We made each task's execution independent rather than depending on other tasks in the
loop. The customer reported failures went essentially to zero, and less than one percent of the
code in the system was re-written!

For a moment, assume reliability is essentially the same for all instructions. Assume also the
reliability of a single task is essentially a function of the size of the task. In an isolated task this is
true, however, in the real world a task takes on arguments and returns results. This adds an
assumption that a task can cope with all of the possible arguments presented.

1 22 =4=

Divide a large program for improved system reliability

Fuzzy Logic in Embedded Microcomputers and Control Systems

16 Byte Craft Limited

What if the arguments presented to the task could in some way cause the task to fail? Then the
arguments themselves would be a part of the reliability of the task. This would indicate that the
reliability of a task is a function of the number of arguments presented to it. It also means that

anything that is
capable of altering
the value of the
arguments
presented to a task
is now a part of the
series terms in an
individual task's
reliability.

Consider the following example: two tasks exist in a system. One calls the second which
executes its code and returns a result.

As time passes, it is found the second task is useful for other things, and is called by a third task.
The third task requires a minor change that we feel the first task is unlikely to notice. Now, as
fate would have it, the first task calls the revised second task and the returned result causes the
previously functioning first task to fail.

This suggests that a task's reliability requires its interaction with other tasks be conducted
through a well defined interface. In fact, a task should not communicate directly with other tasks
at all, but through some abstract protocol. This would mean that a task could then be isolated
from its environment; as long as it responds to requests from the protocol it could be
implemented in any manner without affecting other tasks making requests of it through the
protocol.

The following figure depicts this implementation. The protocol provides the isolation needed to
protect the tasks. Each task communicates solely with the protocol, which makes calls to tasks
and receives their output. The protocol contains the list of expected responses for a given set of
arguments.

Task 1 Task 2

Tasks directly interfacing with each other

Fuzzy Logic in Embedded Microcomputers and Control Systems

Byte Craft Limited 17

Sound familiar? In implementing fuzzy logic systems the fuzzy logic rules operate independently
from each other to the degree that the rules in a block can usually be executed in any order, and
the result will still be the same. Each rule is small and may be implemented in a few instructions.
Fuzzy logic rules call membership functions through a well-defined interface providing isolation
and further parallelism. After a fuzzy logic rule is evaluated it calls CONSEQUENCE functions
through a well-defined interface.

As in our earlier example of dividing a problem to achieve improved reliability, the fuzzy logic
solution naturally breaks a problem into its component parts. There are other ways to visualize
the reliability of the system. The focus of the fuzzy logic rules is on a very different level of
detail than is the focus of the membership functions.

This reduces a problem's solution to its component parts. Compilers may reassemble the code for
effective execution on some target, but at the programmer level the problem is a number of
simple tasks.

Without trying, the implementation of a fuzzy logic system naturally follows a coding style that
lends itself to producing reliable code. Fuzzy logic is inherently robust, and this is the reason.

Task 1 Task 2

Protocol interfacing two tasks

Byte Craft Limited 19

Bibliography

There are a number of names that consistently appear in the fuzzy logic literature. In your search
for reading material, the following authors have much to offer both in their technical content and
their presentation. This list is not exhaustive, but it is a reasonable place to start a literature
search in most good libraries.

David I. Brubaker, The Huntington Group.

Madan M. Gupta, University of Saskatchewan, Saskatoon.

Bart Kosko, University of Southern California, Los Angeles.

Jim Sibigtroth, Motorola Semiconductor, Austin, Texas.

Lotfi Zadeh, University of California at Berkeley.

Hans-Jurgen Zimmermann.

Reading List
Bandemer, Hans, ed., "Some applications of fuzzy set theory in data analysis", 1. Aufl., Leipzig:

VEB Deutscher Verlag fur Grundstoffindustrie, c1988, ISBN 3-34-200985-3 (pbk.),
(Summaries in English, German and Russian).

Bezdek, James C. and Pal, Sankar K., "Fuzzy models for pattern recognition: methods that search
for structures in data", New York: IEEE Press, 1992, ISBN 0-78-030422-5.

Billot, Antoine, "Economic theory of fuzzy equilibria: an axiomatic analysis", Berlin: Springer-
Verlag, c1992, ISBN 3-54-054982-X (Berlin), ISBN 0-38-754982-X (New York).

Dubois, Diddier and Prade, Henri, "Possibility Theory, An Approach to Computerized
Processing of Uncertainty".

Fedrizzi, Mario; Kacprzyk, Janusz and Roubens, Marc, ed. "Interactive fuzzy optimization",
Berlin: Springer-Verlag, c1991, ISBN 0-38-754577-8, ISBN 0-38-754577-8 (U.S.).

Gupta, Madan M. and Sanchez, Elie, ed., "Approximate reasoning in decision analysis",
Amsterdam: North-Holland Pub. Co., 1982, ISBN 0-44-486492-X (U.S.).

Fuzzy Logic in Embedded Microcomputers and Control Systems

20 Byte Craft Limited

Gupta, Madan M. Gupta, et. al., ed., "Approximate reasoning in expert systems", Amsterdam:
North-Holland, 1985, ISBN 0-44-487808-4 (U.S.).

Gupta, Madan M. and Sanchez, Elie, ed., "Fuzzy information and decision processes",
Amsterdam: North-Holland, c1982, ISBN 0-44-486491-1. (Companion vol.: Approximate
reasoning in decision analysis).

Janko, Wolfgang H.; Roubens, Marc and Zimmermann, H.-J., ed., "Progress in fuzzy sets and
systems", Proceedings of the Second Joint IFSA-EC and EURO-WGFS Workshop on
Progress in Fuzzy Sets in Europe held on April 6-8, 1989, in Vienna, Austria, Dordrecht ;
Boston: Kluwer Academic Publishers, c1990, ISBN 0-79-230730-5.

Kacprzyk, Janusz and Fedrizzi, Mario, ed., "Combining fuzzy imprecision with probabilistic
uncertainty in decision making", Berlin: Springer-Verlag, c1988, ISBN 3-54-050005-7
(German), ISBN 0-38-750005-7 (U.S.).

Kacprzyk, Janusz and Yager, Ronald R., ed., "Management decision support systems using fuzzy
sets and possibility theory",

Kaufmann, Arnold and Gupta, Madan M., "Introduction to Fuzzy Arithmetic, Theory and
Applications", Von Nostrand Reinhold, 1984, ISBN 0-442-23007-9.

Kaufman, Arnold and Gupta, Madan M., "Fuzzy mathematical models in engineering and
management science", Amsterdam: North-Holland, c1988, ISBN 0-44-470501-5.

Koln: Verlag TUV Rheinland, c1985, ISBN 3-88-585143-1 (pbk.).Kacprzyk, Janusz and
Fedrizzi, Mario, ed.,"Multiperson decision making models using fuzzy sets and possibility
theory", Dordrecht: Kluwer Academic Publishers, 1990 ISBN 0-79-230884-0.

Kacprzyk, Janusz, "Multistage decision-making under fuzziness: theory and applications Koln:
Verlag TUV Rheinland, 1983, ISBN 3-88-585093-1.

Kacprzyk, J. and S.A. Orlovski, S.A., ed., "Optimization models using fuzzy sets and possibility
theory", Dordrecht: D. Reidel: International Institute for applied Systems Analysis, c1987,
ISBN 9-02-772492-X.

Kandel, Abraham, "Fuzzy mathematical techniques with applications", Reading, Mass. ; Don
Mills, Ont.: Addison-Wesley, c1986, ISBN 0-20-111752-5.

Kandel, Abraham, "Fuzzy techniques in pattern recognition", A Wiley-Interscience publication
New York ; Toronto: Wiley, c1982, ISBN 0-47-109136-7.

Fuzzy Logic in Embedded Microcomputers and Control Systems

Byte Craft Limited 21

Kandel, Abraham, ed., "Fuzzy expert systems", Boca Raton, FL: CRC Press, c1992, ISBN 0-84-
934297-X.

Karwowski, Waldemar and Mital, Anil, ed., "Applications of fuzzy set theory in human factors",
Advances in human factors/ergonomics; v. 6 Amsterdam: Elsevier, 1986, ISBN 0-44-442723-
6.

Klir, George J. and Folger, Tina A., "Fuzzy sets, uncertainty, and information", Englewood
Cliffs, N.J.: Prentice Hall, c1988, ISBN 0-13-345984-5.

Kosko, Bart, "Neural Networks and Fuzzy Systems, A Dynamical Systems Approach to Machine
Intelligence", Prentice Hall, 1992, ISBN 0-13-611435-0.

Kosko, Bart, "Fuzzy Thinking", Hyperion, 1993, ISBN 1-56282-839-8

Kruse, Rudolf and Meyer, Klaus Dieter, ed., "Statistics with vague data", Dordrecht: D. Reidel,
c1987, ISBN 9-02-772562-4.

Kruse, R.; Schwecke, E. and Heinsohn, J., "Uncertainty and vagueness in knowledge based
systems: numerical methods", Berlin: Springer-Verlag, c1991, ISBN 3-54-054165-9, ISBN 0-
38-754165-9 (New York).

Leung, Yee, "Spatial analysis and planning under imprecision", Amsterdam: North Holland,
1988, ISBN 0-44-470390-X (U.S.).

Mamdani, E. H. and Gaines, B. R., ed., "Fuzzy reasoning and its applications", London ;
Toronto: Academic Press, 1981, ISBN 0-12-467750-9.

McNeil, D. and Freiberger, P., "Fuzzy Logic", New York: Simon and Schuster, 1993, ISBN 0-
671-73843-7

Miyamoto, Sadaaki, "Fuzzy sets in information retrieval and cluster analysis", Dordrecht:
Kluwer Academic Publishers, c1990, ISBN 0-79-230721-6.

Negoita, Constantin V. and Ralescu, Dan, "Simulation, knowledge-based computing, and fuzzy
statistics", New York: Van Nostrand Reinhold, c1987, ISBN 0-44-226923-4.

Novak, Vilem, "Fuzzy sets and their applications", Bristol: Hilger, 1989, ISBN 0-85-274583-4.

Pal, Sankar K. and Majumder, Dwijesh K. Dutta, "Fuzzy mathematical approach to pattern
recognition", A Halsted Press book, New York ; Toronto: Wiley, c1986, ISBN 0-47-027463-
8.

Fuzzy Logic in Embedded Microcomputers and Control Systems

22 Byte Craft Limited

Pienkowski, Andrew E. K., "Artificial colour perception using fuzzy techniques in digital image
processing", Koln: TUV Rheinland, c1989, ISBN 3-88-585640-9.

Schefe, Peter, "On foundations of reasoning with uncertain facts and vague concepts", Hamburg:
Fachbereich Informatik, Universitat Hamburg, 1979.

Schmucker, Kurt J., (foreword by Lotfi A. Zadeh), "Fuzzy sets, natural language computations,
and risk analysis", Rockville, Md.: Computer Science Press, c1984, ISBN 0-91-489483-8.

Seo, Fumiko and Sakawa, Masatoshi, "Fuzzy multiattribute utility analysis for collective choice",
Laxenburg, Austria: International Institute for Applied Systems Analysis, 1987, (Reprinted
from IEEE Transactions on systems, man, and cybernetics, volume 15 (1985)).

Terano, Toshiro; Asai, Kiyoji and Sugeno, Michio, "Fuzzy systems theory and its applications",
San Diego, CA: Academic Press, 1991, (Translation of: "Fajii shisutemu nyumon"), ISBN 0-
12-685245-6.

Verdegay, Jose-Luis and Delgado, Miguel ed., "The interface between artificial intelligence and
operations research in fuzzy environment", Koln: Verlag TUV Rheinland, 1989, ISBN 3-88-
585702-2.

Yager, Ronald R. and Zadeh, Lotfi A., ed., "An Introduction to Fuzzy Logic Applications in
Intelligent Systems", Kluwer Academic Publishers, 1992, ISBN 0-7923-9191-8.

Zadeh, Lotfi and Kacprzyk, Janusz, ed., "Logic for the Management of Uncertainly", John Wiley
and Sons, 1992, ISBN 0-471-54799-9.

Zetenyi, Tamas, ed., "Fuzzy sets in psychology", Amsterdam: North-Holland, 1988, ISBN 0-44-
470504-X (U.S.).

Zimmermann, Hans-Jurgen; Zadeh, L.A. and Gaines, B.R., ed., "Fuzzy sets and decision
analysis", Amsterdam: North-Holland, c1984, ISBN 0-44-486593-4.

Zimmermann, Hans-Jurgen, "Fuzzy set theory and its applications", Boston: Kluwer-Nijhoff
Pub., c1985, ISBN 0-89-838150-9.

Zimmermann, H.-J., "Fuzzy set theory-and its applications", 2nd rev. ed., Boston: Kluwer
Academic Publishers, c1991, ISBN 0-79-239075-X.

Fuzzy Logic in Embedded Microcomputers and Control Systems

Byte Craft Limited 23

Journals on Fuzzy Logic
"Fuzzy Sets and Systems", North-Holland, Amsterdam, (started in 1978).

Article References
"Fuzzy sets as a basis for a theory of possibility.", Lofti Zadeh, Fuzzy Sets and Sytems I, 3-28

"Designing with Tolerance.", Walter Banks, Embedded Systems Programming June 1990

"Software Reliability", H.Kopetz, Springer_Verlag 1979

"Software Reliability", John D. Musa, Anthony Iannino, Kazuhira Okumoto McGraw-Hill 1990

"Reliability Principles and Practices", S.R. Calabro, McGraw Hill

Brubaker, David I., "Fuzzy-logic Basics: Intuitive Rules Replace Complex Math", EDN Asia,
August, 1992, pp. 59-63.

Khan, Emdad and Venkatupuram, Prahlad, "Fuzzy Logic Design Algorithms Using Neural Net
Based Learning", Embedded Systems Conference, September, 1992 Santa Clara, CA.

Sibigtroth, James M., "Creating Fuzzy Micros", December, 1991, Emedded Systems
Programming, pp. 20-31.

Sibigtroth, James M., "Fuzzy Logics", April, 1992, AI Expert.

Williams, Tom, "Fuzzy Logic Is Anything But Fuzzy", April, 1992, Computer Design, pp. 113-
127.

Byte Craft Limited 25

About the authors

Walter Banks is the president of Byte Craft Limited, a company specializing in code creation
tools for embedded systems. One of these products, Fuzz-C"""" Preprocessor for Fuzzy Logic,
adds linguistic variables and fuzzy logic operators to programs written in C . Fuzz-C is
implemented as a preprocessor, making it compatible with most C compilers.

Gordon Hayward is an associate professor in the School of Engineering at the University of
Guelph. His research is primarily in the field of instrument design, and his current projects
include the design of sensors to monitor environmental contaminants and the use of piezoelectric
crystals as chemical sensors. In many applications, the required information can not be measured
precisely (flavour is a good example), hence his interest in fuzzy logic.

Byte Craft Limited 27

Appendix

This appendix contains a selection of pages employed as overhead slides used in my talk on
Fuzzy Logic For Control Systems, at the 1993 Embedded Systems Show in Santa Clara.

In addition to copies of the slides, I've included the actual code for a fuzzy PID controller as well
as the block diagram of the PID controller used in Santa Clara.

Example of PID Controller:
 Int OldError,SumError;
 int process(void);

 LINGUISTIC Error TYPE int MIN -90 MAX 90
 {
 MEMBER LNegative { -90, -90, -20, 0 }
 MEMBER normal { -20, 0, 20 }
 MEMBER close { -3, 0, 3 }
 MEMBER LPositive { 0, 20, 90, 90 }
 }

 LINGUISTIC DeltaError TYPE int MIN -90 MAX 90
 {
 MEMBER Negative { -90, -90, -10, 0 }
 MEMBER Positive { 0, 10, 90, 90 }
 }

 LINGUISTIC SumError TYPE int MIN -90 MAX 90
 {
 MEMBER LNeg { -90, -90, -5, 0 }
 MEMBER LPos { 0, 5, 90, 90 }
 }

 CONSEQUENCE ManVar TYPE int MIN -20 MAX 20 DEFUZZ cg
 {
 MEMBER LNegative { -18 }
 MEMBER SNegative { -6 }
 MEMBER SPositive { 6 }
 MEMBER LPositive { 18 }
 }

 FUZZY pid
 {
 IF Error IS LNegative THEN ManVar IS LPositive

 IF Error IS LPositive THEN ManVar IS LNegative

 IF Error IS normal AND DeltaError IS Positive
 THEN ManVar IS SNegative

 IF Error IS normal AND DeltaError IS Negative
 THEN ManVar IS SPositive

Fuzzy Logic in Embedded Microcomputers and Control Systems

28 Byte Craft Limited

 IF Error IS close AND SumError IS LPos
 THEN ManVar IS SNegative

 IF Error IS close AND SumError IS LNeg
 THEN ManVar IS SPositive

 }

 void main (void)
 {
 while(1)
 {
 OldError = Error;
 Error = Setpoint - Process();
 DeltaError = Error - OldError;
 SumError := SumError + Error;
 pid();
 }
 }

Fuzzy Logic in Embedded Microcomputers and Control Systems

Byte Craft Limited 29

Example of Code for a fuzzy PID controller:
#include "fuzzc.h"
char __IDOM[2];
 Int OldError,SumError;
 int process(void);
/* LINGUISTIC Error TYPE int MIN -90 MAX 90 */
/* { */
int Error ;
/* MEMBER LNegative { -90, -90, -20, 0 } */
/*

 1-|
 | . .
 | . .
 | . .
 0-|

 -90 -45 0 45 90

*/
char Error_LNegative (int __CRISP)
 {
 {
 if (__CRISP <= -20) return(255);
 else
 {
 if (__CRISP <= 0)
 return((- __CRISP * 12) + 7);
 else
 return(0);
 }
 }
 }
/* MEMBER normal { -20, 0, 20 } */
/*

 1-| .
 | . .
 | . .
 | . .
 0-|

 -90 -45 0 45 90

*/
char Error_normal (int __CRISP)
 {
 if (__CRISP < -20) return(0);
 else
 {
 if (__CRISP <= 0) return(((__CRISP + 20) * 12) + 7);
 else
 {
 {
 if (__CRISP <= 20)
 return(((+ 20 - __CRISP) * 12) + 7);
 else
 return(0);
 }
 }
 }
 }
/* MEMBER close { -3, 0, 3 } */
/*

Fuzzy Logic in Embedded Microcomputers and Control Systems

30 Byte Craft Limited

 1-| .
 | .
 | .
 | ..
 0-|

 -90 -45 0 45 90

*/
char Error_close (int __CRISP)
 {
 if (__CRISP < -3) return(0);
 else
 {
 if (__CRISP <= 0) return((__CRISP + 3) * 85);
 else
 {
 {
 if (__CRISP <= 3)
 return((+ 3 - __CRISP) * 85);
 else
 return(0);
 }
 }
 }
 }
/* MEMBER LPositive { 0, 20, 90, 90 } */
/*

 1-|
 | . .
 | . .
 | . .
 0-|

 -90 -45 0 45 90

*/
char Error_LPositive (int __CRISP)
 {
 if (__CRISP < 0) return(0);
 else
 {
 if (__CRISP <= 20) return((__CRISP * 12) + 7);
 else
 {
 return(255);
 }
 }
 }
/* } */
/*

 Fuzzy Sets for Error

 1-|
 |
 |
 |
 0-|

 -90 -45 0 45 90

*/
/* LINGUISTIC DeltaError TYPE int MIN -90 MAX 90 */
/* { */
int DeltaError ;

Fuzzy Logic in Embedded Microcomputers and Control Systems

Byte Craft Limited 31

/* MEMBER Negative { -90, -90, -10, 0 } */
/*

 1-|
 | . .
 | . .
 | . .
 0-|

 -90 -45 0 45 90

*/
char DeltaError_Negative (int __CRISP)
 {
 {
 if (__CRISP <= -10) return(255);
 else
 {
 if (__CRISP <= 0)
 return((- __CRISP * 25) + 2);
 else
 return(0);
 }
 }
 }
/* MEMBER Positive { 0, 10, 90, 90 } */
/*

 1-|
 | . .
 | . .
 | . .
 0-|

 -90 -45 0 45 90

*/
char DeltaError_Positive (int __CRISP)
 {
 if (__CRISP < 0) return(0);
 else
 {
 if (__CRISP <= 10) return((__CRISP * 25) + 2);
 else
 {
 return(255);
 }
 }
 }
/* } */
/*

 Fuzzy Sets for DeltaError

 1-|
 |
 |
 | . . .
 0-|

 -90 -45 0 45 90

*/
/* LINGUISTIC SumError TYPE int MIN -90 MAX 90 */
/* { */
int SumError ;
/* MEMBER LNeg { -90, -90, -5, 0 } */

Fuzzy Logic in Embedded Microcomputers and Control Systems

32 Byte Craft Limited

/*

 1-|
 | . .
 | . .
 | . .
 0-|

 -90 -45 0 45 90

*/
char SumError_LNeg (int __CRISP)
 {
 {
 if (__CRISP <= -5) return(255);
 else
 {
 if (__CRISP <= 0)
 return(- __CRISP * 51);
 else
 return(0);
 }
 }
 }
/* MEMBER LPos { 0, 5, 90, 90 } */
/*

 1-|
 | . .
 | . .
 | . .
 0-|

 -90 -45 0 45 90

*/
char SumError_LPos (int __CRISP)
 {
 if (__CRISP < 0) return(0);
 else
 {
 if (__CRISP <= 5) return(__CRISP * 51);
 else
 {
 return(255);
 }
 }
 }
/* } */
/*

 Fuzzy Sets for SumError

 1-|
 |
 | . . .
 | . . .
 0-|

 -90 -45 0 45 90

*/
/* CONSEQUENCE ManVar TYPE int MIN -20 MAX 20 DEFUZZ cg */
/* { */
int ManVar ;
 long fa_@ConsName, fc_@ConsName;
/* MEMBER LNegative { -18 } */

Fuzzy Logic in Embedded Microcomputers and Control Systems

Byte Craft Limited 33

/*

 1-| .
 | .
 | .
 | .
 0-| .*...............................

 -20 -10 0 10 20

*/
void ManVar_LNegative (int __DOM)
 {
 fc_@ConsName += @ConsVol;
 fa_@ConsName += (@ConsVol * (@ConsPoint));
 }
/* MEMBER SNegative { -6 } */
/*

 1-| .
 | .
 | .
 | .
 0-|*.....................

 -20 -10 0 10 20

*/
void ManVar_SNegative (int __DOM)
 {
 fc_@ConsName += @ConsVol;
 fa_@ConsName += (@ConsVol * (@ConsPoint));
 }
/* MEMBER SPositive { 6 } */
/*

 1-| .
 | .
 | .
 | .
 0-|*............

 -20 -10 0 10 20

*/
void ManVar_SPositive (int __DOM)
 {
 fc_@ConsName += @ConsVol;
 fa_@ConsName += (@ConsVol * (@ConsPoint));
 }
/* MEMBER LPositive { 18 } */
/*

 1-| .
 | .
 | .
 | .
 0-|*..

 -20 -10 0 10 20

*/
void ManVar_LPositive (int __DOM)
 {

Fuzzy Logic in Embedded Microcomputers and Control Systems

34 Byte Craft Limited

 fc_@ConsName += @ConsVol;
 fa_@ConsName += (@ConsVol * (@ConsPoint));
 }
/* } */
/* FUZZY pid */
void pid (void)
 {
 fa_@ConsName = 0;
 fc_@ConsName = 0;
/* { */
/* IF Error IS LNegative THEN ManVar IS LPositive */
 ManVar_LPositive(Error_LNegative(Error));
/* IF Error IS LPositive THEN ManVar IS LNegative */
 ManVar_LNegative(Error_LPositive(Error));
/* IF Error IS normal AND DeltaError IS Positive */
/* THEN ManVar IS SNegative */
 __IDOM[1] = Error_normal(Error) ;
 __IDOM[0] = DeltaError_Positive(DeltaError) ;
 __IDOM[0] = F_AND(__IDOM[1],__IDOM[0]);
 ManVar_SNegative(__IDOM[0]);
/* IF Error IS normal AND DeltaError IS Negative */
/* THEN ManVar IS SPositive */
 __IDOM[1] = Error_normal(Error) ;
 __IDOM[0] = DeltaError_Negative(DeltaError) ;
 __IDOM[0] = F_AND(__IDOM[1],__IDOM[0]);
 ManVar_SPositive(__IDOM[0]);
/* IF Error IS close AND SumError IS LPos */
/* THEN ManVar IS SNegative */
 __IDOM[1] = Error_close(Error) ;
 __IDOM[0] = SumError_LPos(SumError) ;
 __IDOM[0] = F_AND(__IDOM[1],__IDOM[0]);
 ManVar_SNegative(__IDOM[0]);
/* IF Error IS close AND SumError IS LNeg */
/* THEN ManVar IS SPositive */
 __IDOM[1] = Error_close(Error) ;
 __IDOM[0] = SumError_LNeg(SumError) ;
 __IDOM[0] = F_AND(__IDOM[1],__IDOM[0]);
 ManVar_SPositive(__IDOM[0]);
/* } */
 @ConsName = fa_@ConsName / fc_@ConsName;
 }
 void main (void)
 {
 while(1)
 {
 OldError = Error;
 Error = Setpoint - Process();
 DeltaError = Error - OldError;
 SumError := SumError + Error;
 pid();
 }
 }

Byte Craft Limited 35

Fuzzy Logic Presentation Slides

These slides accompanied the presentation adapted for the first part of this book, Fuzzy logic
implementation on embedded microcomputers. The quality of some slides reflects their origin as
transparencies.

Fuzzy Logic in Embedded Microcomputers and Control Systems

36 Byte Craft Limited

Directions:

1. Empty contents into saucepan;

add 4½ cups (1 L) cold water.

2. Bring to a boil, stir
ring constantly.

3. Reduce heat; partially cover

and simmer for 15 minutes,

stirring occasionally.

4 to 6 servings, 4½ cups (1 L)

Soup Mix

Linguistic
Variables

Fuzzy Logic in Embedded Microcomputers and Control Systems

Byte Craft Limited 37

Linguistic Variables

Given a crisp temperature of 75:

Degree of Membership(COOL) = 0.0
Degree of Membership(WARM) = 0.7
Degree of Membership(HOT) = 0.23

#
#
#

D
eg

re
e

of
 M

em
be

rs
hi

p

1

0
0 37 75 112 150

Temperature

CRISP
Temperature = 75

COOL WARM HOT

Fuzzy Logic in Embedded Microcomputers and Control Systems

38 Byte Craft Limited

Linguistic Variables

D
eg

re
e

of
 M

em
be

rs
hi

p

1

0
0 37 75 112 150

Temperature

HOT

Linguistic Variable HOT

Fuzzy Logic in Embedded Microcomputers and Control Systems

Byte Craft Limited 39

Linguistic Variables

D
eg

re
e

of
 M

em
be

rs
hi

p

1

0
0 37 75 112 150

Temperature

HOT

Linguistic Variable HOT

73

90 150

150

LINGUISTIC Temperature TYPE unsigned int MIN 0 MAX 150
 {
 MEMBER HOT {73, 90, 150, 150}
 }

Fuzzy Logic in Embedded Microcomputers and Control Systems

40 Byte Craft Limited

Fuzzy Operators
F_NOT operator

F_OR operator

D
eg

re
e

of
 M

em
be

rs
hi

p

1

0
0 10 20 30 40 50 60 70 80 90 100

(Crisp)

AF_NOT A
D

eg
re

e
of

 M
em

be
rs

hi
p

1

0
0 10 20 30 40 50 60 70 80 90 100

(Crisp)

A B

F_OR (A,B)

F_AND operator

D
eg

re
e

of
 M

em
be

rs
hi

p

1

0
0 10 20 30 40 50 60 70 80 90 100

(Crisp)

A B

F_AND (A,B)

Fuzzy Logic in Embedded Microcomputers and Control Systems

Byte Craft Limited 41

Fuzzy
Proportional
Contoller

Manipulated
Variable

Process

Set Point

Process Error

Fuzzy Logic in Embedded Microcomputers and Control Systems

42 Byte Craft Limited

Process
Proportional
Band

Range of error to give
full-scale proportional
output

M
an

ip
ul

at
ed

 V
ar

ia
bl

e

Process Error

2
4
6

0

8
10

-2
-4
-6
-8

-10

-10 -5 -4 -3 -2 -1 0 1 2 3 4 5 10

5 volt band
2 volt band
1 volt band

Fuzzy Logic in Embedded Microcomputers and Control Systems

Byte Craft Limited 43

Fuzzy
Proportional
Controller

D
O

M

1

0

Process Error

Proportional
Band

Negative Zero Positive

1

0

Manipulated Variable

M Z P

Fuzzy Logic in Embedded Microcomputers and Control Systems

44 Byte Craft Limited

Fuzzy
Proportional
Controller

1

0

Process Error

1

0
M Z P

Rules:
if pe is POSITIVE THEN mv IS M
if pe is NEGATIVE THEN mv IS P
if pe is ZERO THEN mv is Z

#
#
#

Fuzzy Logic in Embedded Microcomputers and Control Systems

Byte Craft Limited 45

Fuzzy
Proportional
Controller

M
an

ip
ul

at
ed

 V
ar

ia
bl

e

Process Error

2
4
6

0

8
10

-2
-4
-6
-8

-10

-10 -5 -4 -3 -2 -1 0 1 2 3 4 5 10

Transfer Function

Fuzzy Logic in Embedded Microcomputers and Control Systems

46 Byte Craft Limited

Fuzzy
Proportional
Controller
Performance

Fuzzy Logic in Embedded Microcomputers and Control Systems

Byte Craft Limited 47

Fuzzy
Proportional
Controller
Performance

Fuzzy Logic in Embedded Microcomputers and Control Systems

48 Byte Craft Limited

Fuzzy
Proportional
Controller

1

0
M Z P

1

0

Process Error

DOM Negative Zero Positive

Fuzzy Logic in Embedded Microcomputers and Control Systems

Byte Craft Limited 49

Fuzzy
Proportional
Controller

M
an

ip
ul

at
ed

 V
ar

ia
bl

e

Process Error

2
4
6

0

8
10

-2
-4
-6
-8

-10

-10 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 10

Transfer Function

Fuzzy Logic in Embedded Microcomputers and Control Systems

50 Byte Craft Limited

Fuzzy
Proportional
Controller

1

0

Process Error

DOM Negative Positive

1

0
M Z P

Manipulated Variable

Fuzzy Logic in Embedded Microcomputers and Control Systems

Byte Craft Limited 51

Fuzzy
Proportional
Controller # Transfer Function

M
an

ip
ul

at
ed

 V
ar

ia
bl

e

Process Error

2
4
6

0

8
10

-2
-4
-6
-8

-10

-10 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 10

Fuzzy Logic in Embedded Microcomputers and Control Systems

52 Byte Craft Limited

Fuzzy
Proportional
Controller # Computationally less intensive

1

0
M Z P

Manipulated Variable

1

0

Process Error

DOM Negative Positive

Fuzzy Logic in Embedded Microcomputers and Control Systems

Byte Craft Limited 53

Bang Bang
Controller

1

0
M P

Manipulated Variable

Setpoint

1

0

Process

IF (process < setpoint)
 THEN mv is P
 ELSE mv is M

Fuzzy Logic in Embedded Microcomputers and Control Systems

54 Byte Craft Limited

Bang Bang
Controller

Transfer Function

M
an

ip
ul

at
ed

 V
ar

ia
bl

e

Process Error

2
4
6

0

8
10

-2
-4
-6
-8

-10

-10 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 10

Fuzzy Logic in Embedded Microcomputers and Control Systems

Byte Craft Limited 55

Fuzzy
Bang Bang

1

0
M P

1

0

pe

NOTNORMAL

Process

RULES:
IF pe IS NOTNORMAL
 THEN mv is P
 ELSE mv is M

Fuzzy Logic in Embedded Microcomputers and Control Systems

56 Byte Craft Limited

Fuzzy
Bang Bang # Transfer Function

M
an

ip
ul

at
ed

 V
ar

ia
bl

e

Process Error

2
4
6

0

8
10

-2
-4
-6
-8

-10

-10 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 10

Fuzzy Logic in Embedded Microcomputers and Control Systems

Byte Craft Limited 57

Manipulated
Variable

Process

Set Point

Process Error

Derivative

Integral

Fuzzy
PID
Controller

Fuzzy Logic in Embedded Microcomputers and Control Systems

58 Byte Craft Limited

Fuzzy
PID
Controller

#
#
Classical PID

Manipulated variable is the
sum of three terms:

mv = (pe × K1) + d pe
d t

× K2 + ($%pe × K3)

Fuzzy
PID
Controller

#

#

Break problem into
separate control zones.
Solve each part of the
problem individually.

Error

SP-

Time

Process

Fuzzy Logic in Embedded Microcomputers and Control Systems

Byte Craft Limited 59

Fuzzy
PID
Controller

#
#
#
#

Separate rules for
Error term
Derivative Term
Integral Term

Fuzzy Logic in Embedded Microcomputers and Control Systems

60 Byte Craft Limited

Fuzzy
Irrigation
Controller

Fuzzy Logic in Embedded Microcomputers and Control Systems

Byte Craft Limited 61

Fuzzy
Irrigation
Controller

Making the rules

Rotation

1

0

acuteDOM

0 178 180 182 360

obtuse

straight

Fuzzy Logic in Embedded Microcomputers and Control Systems

62 Byte Craft Limited

Fuzzy
Irrigation
Controller

Each node has its own rules

IF angle IS straight
 THEN speed IS same
IF angle IS acute
 THEN speed IS slowdown
IF angle IS obtuse
 THEN speed IS speedup

Fuzzy
Irrigation
Controller

#
#
#

#

Differential Control
speedup
slowdown

CONSEQUENCE functions may be non-linear

Fuzzy Logic in Embedded Microcomputers and Control Systems

Byte Craft Limited 63

Fuzzy
Irrigation
Controller

#
#
Normalized control values

Degree of membership range is two degrees

1

0

acuteDOM

0 178 180 182 360

obtuse

straight

The
Fuzzy
Advantage
#
#
#
#
#

Normalized number system
Natural smooth transition between different strategies
Focus on problem solution, not problem analysis
Works well on conventional embedded microprocessors
Can easily be combined with conventional software

Byte Craft Limited 65

Index

-A-
arguments, 16

-C-
CONSEQUENCE functions, 17
crisp, 1, 4, 5

-D-
data types, 4
Degree of Membership, 9

-F-
f_and, 8, 10, 11
f_not, 8
f_or, 8
fuzzy logic rule, 17
fuzzy_one, 11
fuzzy_zero, 11

-I-
interface, 16

-L-
linguistic variables, 1, 5

-M-
Mean Time Between Failures, 13
membership functions, 10, 11, 17

-O-
operators, 5, 8

-R-
reliability, 13

-T-
tasks, 14
trapezoid, 11

COP8C C6805 C6808 SXC Z8C C38 MPC

Code Development Systems
Byte Craft Limited specializes in embedded systems software development tools for single-chip microcontrollers. Byte
Craft Limited was the first company to develop a C compiler for the Motorola 68HC05 and the National Semiconductor
COP8™. Our compilers and related development tools are now being used by a wide range of design engineers and
manufacturers in areas of Commerce, Industry, Education, and Government.

! Supports all Microchip PIC 12x/14x/16x/17x
families, 8K and Flash parts

! Named address space supports variable grouping
! Works with Microchip's PICMASTER, ICE 2000 emulator,

MPLAB-SIM simulator, Advanced Transdata, Tech-Tools
Mathias, Clearview, iSystem

! Supports setting configuration fuses through C
! Demo at www.bytecraft.com/impc.html

CATALOG

! Supports the Feature Family, and SGR/SGE
! Supports LOCAL memory reuse, SPECIAL memory

through software
! Supports SREG memory management
! Support for symbolic debugging with emulators

including MetaLink
! Supports setting configuration fuses through C
! Demo at www.bytecraft.com/icop.html

! Supports all 68HC05 variants
! Supports LOCAL memory reuse, SPECIAL memory

through software
! Support for symbolic debugging with many emulators

including MMDS05, MMEVS, and Metalink iceMASTER
! E6805 available to support Motorola
! Supports setting Mask Option Register through C
! Demo at www.bytecraft.com/i05.html

EVM, EVS

! Supports all MELPS740 variants, including 7600 series,
M509xx, M371xx, M374xx and M38xxx

! Supports MUL, 7600
! Supports processor-specific instructions BRK, CLC, CLD,

CLI, CLT, CLV, NOP, PHA, PLA, PLP, ROL, ROR, RRF, SEC,
SED, SEI, SET, STP, WIT

! Allows direct access to AC, X, Y, CC registers
! Demo at www.bytecraft.com/ic38.html

! Supports all 68HC08 variants
! Supports LOCAL memory reuse, SPECIAL memory

through software
! Supports 6808 extended addressing, instructions
! Support for symbolic debugging with many emulators

including Motorola MMDS08 and MMEVS08, and the
Ashling CT68HC08

! Supports setting Mask Option Register through C
! Demo at www.bytecraft.com/i08.html

! Supports all SX variants, including SX48 and SX52
! Supports LOCAL memory reuse, SPECIAL memory

through software
! Supports virtual device drivers within C
! Data types include bit, bits, char, short, int,

int8/16/24/32, long, float and fixed point
! Support for assembly source-level debugging with

Parallax SX-Key
! Demo at www.bytecraft.com/isxc.html

! Supports all Zilog Z8 and Z8+ variants
! Supports instruction set variants C94, C95, HALT, MUL,

STOP, WAIT
! Supports processor-specific instructions DI, EI, HALT,

NOP, RCF, SCF, STOP, WAIT, WDT, WDH
! Generates information required for source-level

debugging
! Demo at www.bytecraft.com/iz8c.html

Features
Both DOS and Windows versions include an Integrated
Development Environment. The DOS IDE provides
source-level error reporting. The Windows IDE maintains
projects, gives access to online help, and can control third-
party tools.

The compilers generate tight, fast, and efficient
executables, as well as listing files that match the original C
source to the code generated. Several optional reports
(symbol information, nesting level, register contents) can
appear in the listing file.

Header files describe each processor derivative.
#pragma statements configure the compiler for available
interrupts, memory resources, ports, and configuration
registers. Convenient #defines make your programs
portable between members of a processor family.

C extensions include: bit and bits data types, binary
constants, case statement extensions, direct register access
in C, embedded assembly, initialization control, direct
variable placement, interrupt support in C.

Two forms of linking are available: Absolute Code Mode
links library modules into the executable during
compilation. The BClink linker uses a more traditional
linker command file and object files. Either route provides
optimization at final code generation.

You can include Macro Assembler instructions within C
code, or as separate source files. Embedded assembly code
can call C functions and access C variables directly. You
can also pass arguments to and from assembly code.

Availability
Byte Craft Limited products are available world-wide, both
directly from Byte Craft Limited and through our
distributors.

For more information, see www.bytecraft.com.

Upgrade Policy
Registered customers receive free upgrades and
technical support for the first year. All other registered
users may purchase major releases for a fraction of the
full cost. Along with our version upgrades, Byte Craft
Limited remains committed to maintaining a high level of
technical support.

Demonstration versions of the Code
Development System are available.

Byte Craft Limited
A2-490 Dutton Drive
Waterloo, Ontario
Canada • N2L 6H7

 519-888-6911
 519-746-6751

phone:
fax:

!

! Accepts fuzzy logic rules, membership functions and
consequence functions

! Standard defuzzification methods provided; add new
defuzzification methods easily

! Includes plots of membership and consequence
functions in generated comments

! Works with all Code Development Systems

Transforms fuzzy logic to plain C; call between C and
fuzzy functions

05/2001

in
fo

@
by

te
cr

af
t.c

om
ww

w.
by

te
cr

af
t.c

om

C38

C6805 Z8C

Fuzz-C™

MPC C6808

COP8Cfor DOS
or Windows SXCfor DOS

or Windows

Byte Craft Limited Publishing brings Embedded

Systems information and technology to developers.

Byte Craft Limited has more than twenty years'

experience in Embedded Systems, and significant

experience in publishing and document

management. We are devoting our efforts to

putting knowledge into developers' hands.

www.bytecraft.comox40;
gs&0x20)
table();

02A4 A
02A6 B
02A9 C

Byte Craft Limited
A2-490 Dutton Drive
Waterloo, Ontario, Canada
N2L 6H7
phone: +1 519.888.6911
fax : +1 519.746.6751
<info@bytecraft.com>

	Fuzzy Logic
	Forward
	A fuzzy logic tutorial
	Clear thinking on fuzzy linguistics
	Fuzzy logic implementation on embedded microcomputers
	Software Reliability and Fuzzy Logic
	Appendix

	Adjusting to fuzzy design

	Clear thinking on fuzzy linguistics
	Fuzzy logic implementation on embedded microcomputers
	Software reliability and fuzzy logic
	Bibliography
	Reading List
	Journals on Fuzzy Logic
	Article References

	About the authors
	Appendix
	Fuzzy Logic Presentation Slides

	Index

