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Principles of Semiconductor Devices

Appendix: 

Appendix 1: List of Symbols 

Symbol Description MKS Units 
A Area m2

c Speed of light in vacuum m/s
C Capacitance per unit area F/m2

CFB Flatband capacitance per unit area of a MOS structure F/m2

Cj Junction capacitance per unit area F/m2

Cox Oxide capacitance per unit area F/m2

Dn Electron diffusion constant m2/s
Dp Hole diffusion constant m2/s
E Energy Joule
E Electric field V/m
Ea Acceptor energy Joule

Ec Conduction band energy of a semiconductor Joule

Ed Donor energy Joule

EF Fermi energy (thermal equilibrium) Joule

Eg Energy bandgap of a semiconductor Joule

Ei Intrinsic Fermi energy Joule

Ev Valence band energy of a semiconductor Joule

Evacuum Electron energy in vacumm Joule

f(E) Distribution function (probability density function)  
Fn Quasi-Fermi energy of electrons Joule

Fp Quasi-Fermi energy of holes Joule

gc(E) Density of states in the conduction band per unit energy and 
per unit volume m-3J-1

gv(E) Density of states in the valence band per unit energy and per 
unit volume m-3J-1

Gn Electron generation rate m-3s-1

Gp Hole generation rate m-3s-1

h Plank's constant Js

Reduced Plank's (= h /2π) Js
I Current A
J Current density A/m2

Jn Electron current density A/m2

Jp Hole current density A/m2

k Boltzmann's constant J/K 
l Mean free path m
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L Length m
Ln Electron diffusion length m

Lp Hole diffusion length m

m Mass kg
m0 Free electron mass kg

me
* Effective mass of electrons kg

mh
* Effective mass of holes kg

n Electron density m-3

ni Intrinsic carrier density m-3

n(E) Electron density per unit energy and per unit volume m-3

n0 Electron density in thermal equilibrium m-3

ni Intrinsic carrier density m-3

N Doping density  
Na Acceptor doping density m-3

Na
- Ionized acceptor density m-3

NB Base doping density m-3

Nc Effective density of states in the conduction band m-3

NC Collector doping density m-3

Nd Donor doping density m-3

Nd
+ Ionized donor density m-3

NE Emitter doping density m-3

Nv Effective density of states in the valence band m-3

p Hole density m-3

p(E) Hole density per unit energy m-3

p0 Hole density in thermal equilibrium m-3

pn Hole density in an n-type semiconductor m-3

q electronic charge C
Q Charge C

Qd
Charge density per unit area in the depletion layer of an MOS 
structure C/m2

Qd,T
Charge density per unit area at threshold in the depletion layer 
of an MOS structure C/m2

Qi Interface charge density per unit area C/m2

R Resistance Ohm
Rn Electron recombination rate m-3s-1

Rp Hole recombination rate m-3s-1

t Thickness m
tox Oxide thickness m

T Temperature Kelvin
Un Net recombination rate of electrons m-3s-1

Up Net recombination rate of holes m-3s-1
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v Velocity m/s
vth Thermal velocity m/s

Va Applied voltage V

VB Base voltage V

VC Collector voltage V

VD Drain voltage V

VE Emitter voltage V

VFB Flatband voltage V

VG Gate voltage V

Vt Thermal voltage V

VT Threshold voltage of an MOS structure V

w Depletion layer width m
wB Base width m

wC Collector width m

wE Emitter width m

wn Width of an n-type region m

wp Width of a p-type region m

x Position m
xd Depletion layer width in an MOS structure m

xd,T Depletion layer width in an MOS structure at threshold m

xj Junction depth m

xn Depletion layer width in an n-type semiconductor m

xp Depletion layer width in a p-type semiconductor m

α Transport factor  

β Current gain  

γ Body effect parameter V1/2

γE Emitter efficiency  

δ n Excess electron density m-3

δ p Excess hole density m-3

∆Qn,B Excess electron charge density in the base C/m2

εox Dielectric constant of the oxide F/m

εs Dielectric constant of the semiconductor F/m

µn Electron mobility m2/V-s

µp Hole mobility m2/V-s

ρ
Charge density per unit volume
Resistivity 

C/m3

Ωm

ρox Charge density per unit volume in the oxide C/m3

σ Conductivity Ω−1m-1

τn Electron lifetime s
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τp Hole lifetime s

φ Potential V

φB Barrier height V

φF Bulk potential V

φi Built-in potential of a p-n diode or Schottky diode V

φs Potential at the semiconductor surface V

ΦM Workfunction of the metal V

ΦMS
Workfunction difference between the metal and the 
semiconductor

V

ΦS Workfunction of the semiconductor V

χ Electron affinity of the semiconductor V
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Chapter 7: MOS Field-Effect-Transistors

7.1. Introduction

The n-type Metal-Oxide-Semiconductor Field-Effect-Transistor (nMOSFET) consists of a source and a drain, two highly 
conducting n-type semiconductor regions, which are isolated from the p-type substrate by reversed-biased p-n diodes. A 
metal or poly-crystalline gate covers the region between source and drain. The gate is separated from the semiconductor by 
the gate oxide. The basic structure of an n-type MOSFET and the corresponding circuit symbol are shown in Figure 7.1.1. 

Figure 7.1.1 : Cross-section and circuit symbol of an n-type Metal-Oxide-Semiconductor-Field-Effect-Transistor 
(MOSFET)

As can be seen on the figure the source and drain regions are identical. It is the applied voltages, which determine which n-
type region provides the electrons and becomes the source, while the other n-type region collects the electrons and becomes 
the drain. The voltages applied to the drain and gate electrode as well as to the substrate by means of a back contact are 
referred to the source potential, as also indicated Figure 7.1.1. 

A conceptually similar structure was proposed and patented independently by Lilienfeld and Heil in 1930, but was not 
successfully demonstrated until 1960. The main technological problem was the control and reduction of the surface states 
at the interface between the oxide and the semiconductor. 

Initially it was only possible to deplete an existing n-type channel by applying a negative voltage to the gate. Such devices 
have a conducting channel between source and drain even when no gate voltage is applied and are called "depletion-mode" 
devices.

A reduction of the surface states enabled the fabrication of devices, which do not have a conducting channel unless a 
positive voltage is applied. Such devices are referred to as "enhancement-mode" devices. The electrons at the oxide-
semiconductor interface are concentrated in a thin (~10 nm thick) "inversion" layer. By now, most MOSFETs are 
"enhancement-mode" devices. 

While a minimum requirement for amplification of electrical signals is power gain, one finds that a device with both 
voltage and current gain is a highly desirable circuit element. The MOSFET provides current and voltage gain yielding an 
output current into an external load which exceeds the input current and an output voltage across that external load which 
exceeds the input voltage.
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The current gain capability of a Field-Effect-Transistor (FET) is easily explained by the fact that no gate current is required 
to maintain the inversion layer and the resulting current between drain and source. The device has therefore an infinite 
current gain in DC. The current gain is inversely proportional to the signal frequency, reaching unity current gain at the 
transit frequency.

The voltage gain of the MOSFET is caused by the current saturation at higher drain-source voltages, so that a small drain-
current variation can cause a large drain voltage variation.
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Chapter 6: MOS Capacitors

6.1. Introduction

The primary reason to study the Metal-Oxide-Silicon (MOS) capacitor is to understand the principle of operation as well as 
the detailed analysis of the Metal-Oxide-Silicon Field Effect Transistor (MOSFET). In this chapter, we introduce the MOS 
structure and its four different modes of operation, namely accumulation, flatband, depletion and inversion. We then 
consider the flatband voltage in more detail and present the MOS analysis based on the full depletion approximation. 
Finally, we analyze and discuss the MOS capacitance.
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Chapter 5: Bipolar Junction Transistors

5.1. Introduction

The bipolar junction transistor was the first solid-state amplifier element and started the solid-state electronics revolution. 
Bardeen, Brattain and Shockley at the Bell Laboratories invented it in 1948 as part of a post-war effort to replace vacuum 
tubes with solid-state devices. Solid-state rectifiers were already in use at the time and were preferred over vacuum diodes 
because of their smaller size, lower weight and higher reliability. A solid-state replacement for a vacuum triode was 
expected to yield similar advantages. The work at Bell Laboratories was highly successful and culminated in Bardeen, 
Brattain and Shockley receiving the Nobel Prize in 1956.

Their work led them first to the point-contact transistor and then to the bipolar junction transistor. They used germanium as 
the semiconductor of choice because it was possible to obtain high purity material. The extraordinarily large diffusion 
length of minority carriers in germanium provided functional structures despite the large dimensions of the early devices.

Since then, the technology has progressed rapidly. The development of a planar process yielded the first circuits on a chip 
and for a decade, bipolar transistor operational amplifiers, like the 741, and digital TTL circuits were the workhorses of any 
circuit designer.

The spectacular rise of the MOSFET market share during the last decade has completely removed the bipolar transistor 
from center stage. Almost all logic circuits, microprocessor and memory chips contain exclusively MOSFETs.

Nevertheless, bipolar transistors remain important devices for ultra-high-speed discrete logic circuits such as emitter 
coupled logic (ECL), power-switching applications and in microwave power amplifiers.

In this chapter we first present the structure of the bipolar transistor and show how a three-layer structure with alternating n-
type and p-type regions can provide current and voltage amplification. We then present the ideal transistor model and 
derive an expression for the current gain in the forward active mode of operation. Next, we discuss the non-ideal effects, 
the modulation of the base width and recombination in the depletion region of the base-emitter junction.
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Chapter 4: p-n Junctions

4.1. Introduction

P-n junctions consist of two semiconductor regions of opposite type. Such junctions show a pronounced rectifying 
behavior. They are also called p-n diodes.

The p-n junction is a versatile element, which can be used as a rectifier, as an isolation structure and as a voltage-dependent 
capacitor. In addition, they can be used as solar cells, photodiodes, light emitting diodes and even laser diodes. They are 
also an essential part of Metal-Oxide-Silicon Field-Effects-Transistors (MOSFETs) and Bipolar Junction Transistors 
(BJTs). 
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Chapter 3: Metal-Semiconductor 
Junctions

3.1 Introduction

Metal-to-semiconductor junctions are of great importance since they are present in every semiconductor device. They can 
behave either as a Schottky  barrier or as an ohmic contact dependent on the characteristics of the interface. We will focus 
primarily on the Schottky barriers. This chapter contains an analysis of the electrostatics of the M-S junction. Calculated 
are the charge, field and potential distribution within the device. This chapter also contains a derivation of the current 
voltage characteristics due to diffusion, thermionic emission and tunneling in Metal-Semiconductor junctions.
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Chapter 2: Semiconductor Fundamentals

2.1 Introduction

To understand the fundamental concepts of semiconductors, one must apply modern physics to solid materials. More 
specifically, we are interested in semiconductor crystals. Crystals are solid materials consisting of atoms, which are placed 
in a highly ordered structure called a lattice. Such a structure yields a periodic potential throughout the material. 

Two properties of crystals are of particular interest, since they are needed to calculate the current in a semiconductor. First, 
we need to know how many fixed and mobile charges are present in the material. Second, we need to understand the 
transport of the mobile carriers through the semiconductor.

In this chapter we start from the atomic structure of semiconductors and explain the concepts of energy band gaps, energy 
bands and the density of states in an energy band. We also show how the current in an almost filled band can more easily 
be analyzed using the concept of holes. Next, we discuss the probability that energy levels within an energy band are 
occupied. We will use this probability density to find the density of electrons and holes in a band. 

Two transport mechanisms will be considered. The drift of carriers in an electric field and the diffusion of carriers due to a 
carrier density gradient will be discussed. Recombination mechanisms and the continuity equations are then combined into 
the diffusion equation. Finally, we present the drift-diffusion model, which combines all the essential elements discussed in 
this chapter.
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Chapter 1: Review of Modern Physics

1.1 Introduction

The fundamentals of semiconductors are typically found in textbooks discussing quantum mechanics, electro-magnetics, 
solid-state physics and statistical thermodynamics. The purpose of this chapter is to review the physical concepts, which 
are needed to understand the semiconductor fundamentals of semiconductor devices. While an attempt was made to make 
this section comprehensible even to readers with a minimal background in the different areas of physics, readers are still 
referred to the bibliography for a more thorough treatment of this material. Readers with sufficient background in modern 
physics can skip this chapter without loss of continuity.
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Foreword

Introduction

The Semiconductor Industry

Semiconductor devices such as diodes, transistors and integrated circuits can be found everywhere in our daily lives, in 
Walkman, televisions, automobiles, washing machines and computers. We have come to rely on them and increasingly 
have come to expect higher performance at lower cost.

Personal computers clearly illustrate this trend. Anyone who wants to replace a three to five year old computer finds that 
the trade-in value of his or her computer is surprising low. On the bright side, one finds that the complexity and 
performance of the today’s personal computers vastly exceeds that of their old computer and that for about the same 
purchase price, adjusted for inflation.

While this economic reality reflects the massive growth of the industry, it is hard to even imagine a similar growth in any 
other industry. For instance, in the automobile industry, no one would even expect a five times faster car with a five times 
larger capacity at the same price when comparing to what was offered five years ago. Nevertheless, when it comes to 
personal computers, such expectations are very realistic.

The essential fact which has driven the successful growth of the computer industry is that through industrial skill and 
technological advances one manages to make smaller and smaller transistors. These devices deliver year after year better 
performance while consuming less power and because of their smaller size they can also be manufactured at a lower cost 
per device.

Purpose and Goal of the Text

The purpose of this text is to explore the internal behavior of semiconductor devices, so that we can understand the relation 
between the device geometry and material parameters on one hand and the resulting electrical characteristics on the other 
hand.

This text provides the link between the physics of semiconductors and the design of electronic circuits. The material 
covered in this text is therefore required to successfully design CMOS-based integrated circuits.

The Primary Focus: The MOSFET and CMOS Integrated 
Circuits

The Metal-Oxide-Silicon Field-Effect-Transistor (MOSFET) is the main subject of this text, since it is already the 
prevailing device in microprocessors and memory circuits. In addition, the MOSFET is increasingly used in areas as 
diverse as mainframe computers and power electronics. The MOSFET’s advantages over other types of devices are its 
mature fabrication technology, its successful scaling characteristics and the combination of complementary MOSFETs 
yielding CMOS circuits.

The fabrication process of silicon devices has evolved over the last 25 years into a mature, reproducible and reliable 
integrated circuit manufacturing technology. While the focus in this text is on individual devices, one must realize that the 
manufacturability of millions of such devices on a single substrate is a minimum requirement in today’s industry. Silicon 
has evolved as the material of choice for such devices, for a large part because of its stable oxide, silicon dioxide (SiO2), 
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which is used as an insulator, as a surface passivation layer and as a superior gate dielectric.

The scaling of MOSFETs started in the seventies. Since then, the initial 10 micron gatelength of the devices was gradually 
reduced by about a factor two every five years, while in 2000 MOSFETs with a 0.18 micron gatelength were manufactured 
on a large scale. This scaling is expected to continue well into the 21st century, as devices with a gatelength smaller than 30 
nm have already been demonstrated. While the size reduction is a minimum condition when scaling MOSFETs, successful 
scaling also requires the reduction of all the other dimensions of the device so that the device indeed delivers superior 
performance. Devices with record gate lengths are typically not fully scaled, so that several years go by until the large-scale 
production of such device takes place.

The combination of complementary MOSFETs in logic circuits also called CMOS circuits has the unique advantage that 
carriers only flow through the devices when the logic circuit changes its logic state. Therefore, there is no associated power 
dissipation if the logic state must not be changed. The use of CMOS circuits immediately reduces the overall power 
dissipation by a factor ten, since less that one out of ten gates of a large logic circuit switch at any given time.

Bart Van Zeghbroeck, Boulder, March 2001
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Chapter 1: Review of Modern Physics

Examples  

Example 1.1  A metal has a workfunction of 4.3 V. What is the minimum photon energy in Joule to emit an 
electron from this metal through the photo-electric effect? What are the photon frequency in 
Terahertz and the photon wavelength in micrometer? What is the corresponding photon momentum? 
What is the velocity of a free electron with the same momentum?

Example 1.2  The spectral density of the sun peaks at a wavelength of 900 nm. If the sun behaves as a black body, 
what is the temperature of the sun?

Example 1.3  An electron is confined to a 1 micron thin layer of silicon. Assuming that the semiconductor can be 
adequately described by a one-dimensional quantum well with infinite walls, calculate the lowest 
possible energy within the material in units of electron volt. If the energy is interpreted as the kinetic 
energy of the electron, what is the corresponding electron velocity? (The effective mass of electrons 
in silicon is 0.26 m0, where m0 = 9.11 x 10-31 kg is the free electron rest mass).

Example 1.4  Consider an infinitely long cylinder with charge density r, dielectric constant ε0 and radius r0. What 

is the electric field in and around the cylinder?

Example 1.5  Calculate the energy relative to the Fermi energy for which the Fermi function equals 5%. Write the 
answer in units of kT. 
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Chapter 1: Review of Modern Physics

1.2 Quantum Mechanics

1.2.1. Particle-wave duality
1.2.2. The photo-electric effect
1.2.3. Blackbody radiation
1.2.4. The Bohr model
1.2.5. Schrödinger's equation
1.2.6. Pauli exclusion principle
1.2.7. Electronic configuration of the elements

Quantum mechanics emerged in the beginning of the twentieth century as a new discipline because of the need to explain 
phenomena, which could not be explained using Newtonian mechanics or classical electromagnetic theory. These 
phenomena include the photoelectric effect, blackbody radiation and the rather complex radiation from an excited hydrogen 
gas. It is these and other experimental observations which lead to the concepts of quantization of light into photons, the 
particle-wave duality, the de Broglie wavelength and the fundamental equation describing quantum mechanics, namely the 
Schrödinger equation. This section also contains a discussion of the energy levels of an infinite one-dimensional quantum 
well and those of the hydrogen atom. 

1.2.1 Particle-wave duality

Quantum mechanics acknowledges the fact that particles exhibit wave properties. For instance, particles can produce 
interference patterns and can penetrate or "tunnel" through potential barriers. Neither of these effects can be explained 
using Newtonian mechanics. Photons on the other hand can behave as particles with well-defined energy. These 
observations blur the classical distinction between waves and particles. Two specific experiments demonstrate the particle-
like behavior of light, namely the photoelectric effect and blackbody radiation. Both can only be explained by treating 
photons as discreet particles with an energy per photon which is proportional to the frequency of the light. The emission 
spectrum of an excited hydrogen gas demonstrates that electrons confined to an atom can only have discreet energies. Niels 
Bohr explained the emission spectrum by assuming that the wavelength of an electron wave is inversely proportional to the 
electron momentum. 

The particle and the wave picture are both simplified forms of the wave packet description, a localized wave consisting of a 
combination of plane waves with different wavelength. As the range of wavelength is compressed to a single value, the 
wave becomes a plane wave at a single frequency and yields the wave picture. As the range of wavelength is increased, the 
size of the wave packet is reduced, yielding a localized particle.

1.2.2 The photo-electric effect
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The photoelectric effect is by now the "classic" experiment, which demonstrates the quantized nature of light: when 
applying monochromatic light to a metal in vacuum one finds that electrons are released from the metal. This experiment 
confirms the notion that electrons are confined to the metal, but can escape when provided sufficient energy, for instance in 
the form of light. However, the surprising fact is that when illuminating with long wavelengths (typically larger than 400 
nm) no electrons are emitted from the metal even if the light intensity is increased. On the other hand, one easily observes 
electron emission at ultra-violet wavelengths for which the number of electrons emitted does vary with the light intensity. 
A more detailed analysis reveals that the maximum kinetic energy of the emitted electrons varies linearly with the inverse 
of the wavelength, for wavelengths shorter than the maximum wavelength.

The experiment is illustrated with Figure 1.2.1: 

Figure 1.2.1.: Experimental set-up to measure the photoelectric effect.

The experimental apparatus consists of two metal electrodes within a vacuum chamber. Light is incident on one of two 
electrodes to which an external voltage is applied. The external voltage is adjusted so that the current due to the photo-
emitted electrons becomes zero. This voltage corresponds to the maximum kinetic energy, K.E., of the electrons in units of 
electron volt. That voltage is measured for different wavelengths and is plotted as a function of the inverse of the 
wavelength as shown in Figure 1.2.2. The resulting graph is a straight line.
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Figure 1.2.2 : Maximum kinetic energy, K.E., of electrons emitted from a metal upon illumination with photon energy, 
Eph. The energy is plotted versus the inverse of the wavelength of the light.

Albert Einstein explained this experiment by postulating that the energy of light is quantized. He assumed that light 
consists of individual particles called photons, so that the kinetic energy of the electrons, K.E., equals the energy of the 
photons, Eph, minus the energy, qΦM, required to extract the electrons from the metal. The workfunction, ΦM, therefore 

quantifies the potential, which the electrons have to overcome to leave the metal. The slope of the curve was measured to 
be 1.24 eV/micron, which yielded the following relation for the photon energy, Eph: 

(1.2.1)

where h is Planck's constant, ν is the frequency of the light, c is the speed of light in vacuum and λ is the wavelength of the 
light. 

While other light-related phenomena such as the interference of two coherent light beams demonstrate the wave 
characteristics of light, it is the photoelectric effect, which demonstrates the particle-like behavior of light. These 
experiments lead to the particle-wave duality concept, namely that particles observed in an appropriate environment behave 
as waves, while waves can also behave as particles. This concept applies to all waves and particles. For instance, coherent 
electron beams also yield interference patterns similar to those of light beams. 

It is the wave-like behavior of particles, which led to the de Broglie wavelength: since particles have wave-like properties, 
there is an associated wavelength, which is called the de Broglie wavelength and is given by: 

(1.2.2)

where λ is the wavelength, h is Planck's constant and p is the particle momentum. This expression enables a correct 
calculation of the ground energy of an electron in a hydrogen atom using the Bohr model described in Section 1.2.4. One 
can also show that the same expression applies to photons by combining equation (1.2.1) with Eph = p c.
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Example 1.1

 

A metal has a workfunction of 4.3 V. What is the minimum photon energy in Joule to emit an electron 
from this metal through the photo-electric effect? What are the photon frequency in Terahertz and the 
photon wavelength in micrometer? What is the corresponding photon momentum? What is the velocity 
of a free electron with the same momentum?

Solution The minumum photon energy, Eph, equals the workfunction, ΦM, in units of electron volt or 4.3 eV. This 

also equals:

The corresponding photon frequency is: 

The corresponding wavelength equals:

The photon momentum, p, is: 

And the velocity, v, of a free electron with the same momentum equals:

Where m0 is the free electron mass.

1.2.3 Blackbody radiation
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Another experiment which could not be explained without quantum mechanics is the blackbody radiation experiment: By 
heating an object to high temperatures one finds that it radiates energy in the form of infra-red, visible and ultra-violet light. 
The appearance is that of a red glow at temperatures around 800° C which becomes brighter at higher temperatures and 
eventually looks like white light. The spectrum of the radiation is continuous, which led scientists to initially believe that 
classical electro-magnetic theory should apply. However, all attempts to describe this phenomenon failed until Max Planck 
developed the blackbody radiation theory based on the assumption that the energy associated with light is quantized and the 
energy quantum or photon energy equals: 

(1.2.3)

Where  is the reduced Planck's constant (= h/2π), and ω is the radial frequency (= 2π ν). 

The spectral density, uω, or the energy density per unit volume and per unit frequency is given by:

(1.2.4)

Where k is Boltzmann's constant and T is the temperature. The spectral density is shown versus energy in Figure 1.2.3. 

Figure 1.2.3: Spectral density of a blackbody at 2000, 3000, 4000 and 5000 K versus energy. 

The peak value of the blackbody radiation occurs at 2.82 kT and increases with the third power of the temperature. 
Radiation from the sun closely fits that of a black body at 5800 K.

Example 1.2

 

The spectral density of the sun peaks at a wavelength of 900 nm. If the sun behaves as a black body, 
what is the temperature of the sun?
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Solution A wavelength of 900 nm corresponds to a photon energy of: 

Since the peak of the spectral density occurs at 2.82 kT, the corresponding temperature equals: 

1.2.4 The Bohr model

The spectrum of electromagnetic radiation from an excited hydrogen gas was yet another experiment, which was difficult 
to explain since it is discreet rather than continuous. The emitted wavelengths were early on associated with a set of 
discreet energy levels En described by: 

(1.2.5)

and the emitted photon energies equal the energy difference released when an electron makes a transition from a higher 
energy Ei to a lower energy Ej.

(1.2.6)

The maximum photon energy emitted from a hydrogen atom equals 13.6 eV. This energy is also called one Rydberg or one 
atomic unit. The electron transitions and the resulting photon energies are further illustrated by Figure 1.2.4.

Figure 1.2.4 : Energy levels and possible electronic transitions in a hydrogen atom. Shown are the first six energy 
levels, as well as six possible transitions involving the lowest energy level (n = 1) 
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However, there was no explanation why the possible energy values were not continuous. No classical theory based on 
Newtonian mechanics could provide such spectrum. Further more, there was no theory, which could explain these specific 
values.

Niels Bohr provided a part of the puzzle. He assumed that electrons move along a circular trajectory around the proton like 
the earth around the sun, as shown in Figure 1.2.5.

Figure 1.2.5: Trajectory of an electron in a hydrogen atom as used in the Bohr model.

He also assumed that electrons behave within the hydrogen atom as a wave rather than a particle. Therefore, the orbit-like 
electron trajectories around the proton are limited to those with a length, which equals an integer number of wavelengths so 
that

(1.2.7)

where r is the radius of the circular electron trajectory and n is a positive integer. The Bohr model also assumes that the 
momentum of the particle is linked to the de Broglie wavelength (equation (1.2.2)) 

The model further assumes a circular trajectory and that the centrifugal force equals the electrostatic force, or: 

(1.2.8)

Solving for the radius of the trajectory one finds the Bohr radius, a0: 

(1.2.9)

and the corresponding energy is obtained by adding the kinetic energy and the potential energy of the particle, yielding: 

(1.2.10)

Where the potential energy is the electrostatic potential of the proton:

(1.2.11)

Note that all the possible energy values are negative. Electrons with positive energy are not bound to the proton and behave 
as free electrons. 

The Bohr model does provide the correct electron energies. However, it leaves many unanswered questions and, more 
importantly, it does not provide a general method to solve other problems of this type. The wave equation of electrons 
presented in the next section does provide a way to solve any quantum mechanical problem.
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1.2.5 Schrödinger's equation

1.2.5.1. The infinite quantum well
1.2.5.2. The hydrogen atom

A general procedure to solve quantum mechanical problems was proposed by Erwin Schrödinger. Starting from a classical 
description of the total energy, E, which equals the sum of the kinetic energy, K.E., and potential energy, V, or:

(1.2.12)

He converted this expression into a wave equation by defining a wavefunction, Ψ, and multiplied each term in the equation 
with that wavefunction:

(1.2.13)

To incorporate the de Broglie wavelength of the particle we now introduce the operator,  , which provides the 
square of the momentum, p, when applied to a plane wave:

(1.2.14)

Where k is the wavenumber, which equals 2π /λ. Without claiming that this is an actual proof we now simply replace the 
momentum squared, p2, in equation (1.2.13) by this operator yielding the time-independent Schrödinger equation.

(1.2.15)

To illustrate the use of Schrödinger's equation, we present two solutions of Schrödinger's equation, that for an infinite 
quantum well and that for the hydrogen atom.

1.2.5.1. The infinite quantum well

The one-dimensional infinite quantum well represents one of the simplest quantum mechanical structures. We use it here to 
illustrate some specific properties of quantum mechanical systems. The potential in an infinite well is zero between x = 0 
and x = Lx and is infinite on either side of the well. The potential and the first five possible energy levels an electron can 

occupy are shown in Figure 1.2.6: 
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Figure 1.2.6 : Potential energy of an infinite well, with width Lx. Also indicated are the lowest five energy levels in the 

well.

The energy levels in such a infinite well are given by: 

(1.2.16)

where h is Planck's constant and m* is the effective mass of the particle. n is the quantum number associated with the nth 
energy level, with energy En. Note that the lowest possible energy is not zero although the potential is zero within the well. 

Only discreet energy values are obtained as eigenvalues of the Schrödinger equation. The energy difference between 
adjacent energy levels increases as the energy increases. An electron occupying one of the energy levels can have a positive 
or negative spin (s = 1/2 or s = -1/2). Both quantum numbers, n and s, are the only two quantum numbers needed to 
describe this system.

The wavefunctions corresponding to each energy level are shown in Figure 1.2.7 (a). Each wavefunction has been shifted 

by the corresponding energy. The probability density function, calculated as |Ψ|2, provides the probability of finding an 
electron in a certain location in the well. These probability density functions are shown in Figure 1.2.7 (b) for the first five 
energy levels. For instance, for n = 2 the electron is least likely to be in the middle of the well and at the edges of the well. 
The electron is most likely to be one quarter of the well width away from either edge.
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Figure 1.2.7 : Energy levels, wavefunctions (left) and probability density functions (right) in an infinite quantum well. 
The figure is calculated for a 10 nm wide well containing an electron with mass m0. The wavefunctions 

and the probability density functions are not normalized and shifted by the corresponding electron 

energy. 

Example 1.3

 

An electron is confined to a 1 micron thin layer of silicon. Assuming that the semiconductor can be 
adequately described by a one-dimensional quantum well with infinite walls, calculate the lowest 
possible energy within the material in units of electron volt. If the energy is interpreted as the kinetic 
energy of the electron, what is the corresponding electron velocity? (The effective mass of electrons in 
silicon is 0.26 m0, where m0 = 9.11 x 10-31 kg is the free electron rest mass).

Solution The lowest energy in the quantum well equals: 

= 2.32 x 10-25 Joules = 1.45 meV

The velocity of an electron with this energy equals: 

=1.399 km/s

1.2.5.2. The hydrogen atom

The hydrogen atom represents the simplest possible atom since it consists of only one proton and one electron. 
Nevertheless, the solution to Schrödinger's equation as applied to the potential of the hydrogen atom is rather complex due 
to the three-dimensional nature of the problem. The potential, V(r) (equation (1.2.11)), is due to the electrostatic force 
between the positively charged proton and the negatively charged electron. This potential as well as the first three 
probability density functions (r2|Ψ|2) of the radially symmetric wavefunctions (l = 0) is shown in Figure 1.2.8.
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Figure 1.2.8 : Potential energy, V(x), in a hydrogen atom and first three probability densities with l = 0. The probability 
densities are shifted by the corresponding electron energy.

Since the hydrogen atom is a three-dimensional problem, three quantum numbers, labeled n, l, and m, are needed to 
describe all possible solutions to Schrödinger's equation. The spin of the electron is described by the quantum number s. 
The energy levels only depend on n, the principal quantum number and are given by equation (1.2.10). The electron 
wavefunctions however are different for every different set of quantum numbers. While a derivation of the actual 
wavefunctions is beyond the scope of this text, a list of the possible quantum numbers is needed for further discussion and 
is therefore provided in Table 1.2.1. For each principal quantum number n, all smaller positive integers are possible values 
for the angular momentum quantum number l. The quantum number m can take on all integers between l and -l, while s can 
be ½ or -½. This leads to a maximum of 2 unique sets of quantum numbers for all s orbitals (l = 0), 6 for all p orbitals (l = 
1), 10 for all d orbitals (l = 2) and 14 for all f orbitals (l = 3).

Table 1.2.1: First ten orbitals and corresponding quantum numbers of a hydrogen atom

1.2.6 Pauli exclusion principle
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Once the energy levels of an atom are known, one can find the electron configurations of the atom, provided the number of 
electrons occupying each energy level is known. Electrons are Fermions since they have a half integer spin. They must 
therefore obey the Pauli exclusion principle. This exclusion principle states that no two Fermions can occupy the same 
energy level corresponding to a unique set of quantum numbers n, l, m or s. The ground state of an atom is therefore 
obtained by filling each energy level, starting with the lowest energy, up to the maximum number as allowed by the Pauli 
exclusion principle.

1.2.7 Electronic configuration of the elements

The electronic configuration of the elements of the periodic table can be constructed using the quantum numbers of the 
hydrogen atom and the Pauli exclusion principle, starting with the lightest element hydrogen. Hydrogen contains only one 
proton and one electron. The electron therefore occupies the lowest energy level of the hydrogen atom, characterized by the 
principal quantum number n = 1. The orbital quantum number l equals zero and is referred to as an s orbital (not to be 
confused with the quantum number for spin, s). The s orbital can accommodate two electrons with opposite spin, but only 
one is occupied. This leads to the short-hand notation of 1s1 for the electronic configuration of hydrogen as listed in Table 
1.2.2.

Helium is the second element of the periodic table. For this and all other atoms one still uses the same quantum numbers as 
for the hydrogen atom. This approach is justified since all atom cores can be treated as a single charged particle, which 
yields a potential very similar to that of a proton. While the electron energies are no longer the same as for the hydrogen 
atom, the electron wavefunctions are very similar and can be classified in the same way. Since helium contains two 
electrons it can accommodate two electrons in the 1s orbital, hence the notation 1s2. Since the s orbitals can only 
accommodate two electrons, this orbital is now completely filled, so that all other atoms will have more than one filled or 
partially-filled orbital. The two electrons in the helium atom also fill all available orbitals associated with the first principal 
quantum number, yielding a filled outer shell. Atoms with a filled outer shell are called noble gases as they are known to be 
chemically inert.

Lithium contains three electrons and therefore has a completely filled 1s orbital and one more electron in the next higher 2s 
orbital. The electronic configuration is therefore 1s22s1 or [He]2s1, where [He] refers to the electronic configuration of 
helium. Beryllium has four electrons, two in the 1s orbital and two in the 2s orbital. The next six atoms also have a 
completely filled 1s and 2s orbital as well as the remaining number of electrons in the 2p orbitals. Neon has six electrons in 
the 2p orbitals, thereby completely filling the outer shell of this noble gas.

The next eight elements follow the same pattern leading to argon, the third noble gas. After that the pattern changes as the 
underlying 3d orbitals of the transition metals (scandium through zinc) are filled before the 4p orbitals, leading eventually 
to the fourth noble gas, krypton. Exceptions are chromium and zinc, which have one more electron in the 3d orbital and 
only one electron in the 4s orbital. A similar pattern change occurs for the remaining transition metals, where for the 
lanthanides and actinides the underlying f orbitals are filled first. 
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Table 1.2.2: Electronic configuration of the first thirty-six elements of the periodic table.
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1.4. Statistical Thermodynamics

1.4.1.. Thermal equilibrium
1.4.2. Laws of thermodynamics
1.4.3. The thermodynamic identity
1.4.4. The Fermi energy
1.4.5. Some useful thermodynamics results

Thermodynamics describes the behavior of systems containing a large number of particles. These systems are characterized 
by their temperature, volume, number and the type of particles. The state of the system is then further described by its total 
energy and a variety of other parameters including the entropy. Such a characterization of a system is much simpler than 
trying to keep track of each particle individually, hence its usefulness. In addition, such a characterization is general in 
nature so that it can be applied to mechanical, electrical and chemical systems.

The term thermodynamics is somewhat misleading as one deals primarily with systems in thermal equilibrium. These 
systems have constant temperature, volume and number of particles and their macroscopic parameters do not change over 
time, so that the dynamics are limited to the microscopic dynamics of the particles within the system. 

Statistical thermodynamics is based on the fundamental assumption that all possible configurations of a given system, 
which satisfy the given boundary conditions such as temperature, volume and number of particles, are equally likely to 
occur. The overall system will therefore be in the statistically most probable configuration. The entropy of a system is 
defined as the logarithm of the number of possible configurations. While such definition does not immediately provide 
insight into the meaning of entropy, it does provide a straightforward analysis since the number of configurations can be 
calculated for any given system. 

Classical thermodynamics provides the same concepts. However, they are obtained through experimental observation. The 
classical analysis is therefore more tangible compared to the abstract mathematical treatment of the statistical approach. 

The study of semiconductor devices requires some specific results, which naturally emerge from statistical 
thermodynamics. In this section, we review basic thermodynamic principles as well as some specific results. These include 
the thermal equilibrium concept, the thermodynamic identity, the basic laws of thermodynamics, the thermal energy per 
particle and the Fermi function.

1.4.1. Thermal equilibrium

A system is in thermal equilibrium if detailed balance is obtained: i.e. every process in the system is exactly balanced by its 
inverse process so that there is no net effect on the system. 

This definition implies that in thermal equilibrium no energy (heat, work or particle energy) is exchanged between the parts 
within the system or between the system and the environment. Thermal equilibrium is obtained by isolating a system from 
its environment, removing any internal sources of energy, and waiting for a long enough time until the system does not 
change any more. 

The concept of thermal equilibrium is of interest since various thermodynamic results assume that the system under 
consideration is in thermal equilibrium. Few systems of interest rigorously satisfy this condition so that we often apply the 
thermodynamical results to systems that are "close" to thermal equilibrium. Agreement between theories based on this 
assumption and experiments justify this approach. 
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1.4.2. Laws of thermodynamics

If two systems are in thermal equilibrium with a third system, they must be in thermal equilibrium with each other.

1.  Heat is a form of energy.
2.  The second law can be stated either (a) in its classical form or (b) in its statistical form

a.  Heat can only flow from a higher temperature to a lower temperature.
b.  The entropy of a closed system tends to remain constant or increases monotonically over time.

Both forms of the second law could not seem more different. A more rigorous treatment proves the equivalence of 
both. 

3.  The entropy of a system approaches a constant as the temperature approaches zero Kelvin.

1.4.3. The thermodynamic identity

The thermodynamic identity states that a change in energy can be caused by adding heat, work or particles. Mathematically 
this is expressed by: 

(1.4.1)

where U is the total energy, Q is the heat and W is the work. µ is the energy added to a system when adding one particle 
without adding either heat or work. This energy is also called the electro-chemical potential. N is the number of particles.

1.4.4. The Fermi energy

The Fermi energy, EF, is the energy associated with a particle, which is in thermal equilibrium with the system of interest. 

The energy is strictly associated with the particle and does not consist even in part of heat or work. This same quantity is 
called the electro-chemical potential, µ, in most thermodynamics texts. 

1.4.5. Some useful thermodynamics results

Listed below are two results, which will be used while analyzing semiconductor devices. The actual derivation is beyond 
the scope of this text.

1.  The thermal energy of a particle, whose energy depends quadratically on its velocity, equals kT/2 per degree of 
freedom, where k is Boltzmann's constant. This thermal energy is a kinetic energy, which must be added to the 
potential energy of the particle, and any other kinetic energy. The thermal energy of a non-relativistic electron, 
which is allowed to move in three dimensions, equals 3/2 kT.

2.  Consider an energy level at energy, E, which is in thermal equilibrium with a large system characterized by a 
temperature T and Fermi energy EF. The probability that an electron occupies such energy level is given by: 

(1.4.2)

The function f(E) is called the Fermi function and applies to all particles with half-integer spin. These particles, also called 
Fermions, obey the Pauli exclusion principle, which states that no two Fermions in a given system can have the exact same 
set of quantum numbers. Since electrons are Fermions, their probability distribution also equals the Fermi function.

Example 1.5

 

Calculate the energy relative to the Fermi energy for which the Fermi function equals 5%. Write the 
answer in units of kT. 

http://ece-www.colorado.edu/~bart/book/book/chapter1/ch1_4.htm (2 of 3) [2/28/2002 5:26:33 PM]

http://ece-www.colorado.edu/~bart/book/book/chapter1/xls/ex1_5.xls


Statistical Thermodynamics

Solution The problems states that:

which can be solved yielding: 
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1.3 Electromagnetic Theory

1.3.1. Gauss's law
1.3.2. Poisson's equation

The analysis of most semiconductor devices includes the calculation of the electrostatic potential within the device as a 
function of the existing charge distribution. Electromagnetic theory and more specifically electrostatic theory are used to 
obtain the potential. A short description of the necessary tools, namely Gauss's law and Poisson's equation, is provided 
below.

1.3.1 Gauss's law

Gauss's law is one of Maxwell's equations and provides the relation between the charge density, ρ, and the electric field, 

. In the absence of time dependent magnetic fields the one-dimensional equation is given by:

(1.3.1)

This equation can be integrated to yield the electric field for a given one-dimensional charge distribution:

(1.3.2)

Gauss's law as applied to a three-dimensional charge distribution relates the divergence of the electric field to the charge 
density:

(1.3.3)

This equation can be simplified if the field is constant on a closed surface, A, enclosing a charge Q, yielding:

(1.3.4)

Example 1.4

 
Consider an infinitely long cylinder with charge density r, dielectric constant ε0 and radius r0. What is 

the electric field in and around the cylinder?
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Solution Because of the cylinder symmetry one expects the electric field to be only dependent on the radius, r. 
Applying Gauss's law one finds:

and

where a cylinder with length L was chosen to define the surface A, and edge effects were ignored. The 
electric field then equals:

The electric field increases within the cylinder with increasing radius. The electric field decreases 
outside the cylinder with increasing radius.

1.3.2 Poisson's equation

Gauss's law is one of Maxwell's equations and provides the relation between the charge density, ρ, and the electric field, 

. In the absence of time dependent magnetic fields the one-dimensional equation is given by:

(1.3.5)

The electric field vector therefore originates at a point of higher potential and points towards a point of lower potential.

The potential can be obtained by integrating the electric field as described by:

(1.3.6)

At times, it is convenient to link the charge density to the potential by combining equation (1.3.5) with Gauss's law in the 
form of equation (1.3.1), yielding:

(1.3.7)

which is referred to as Poisson's equation.

For a three-dimensional field distribution, the gradient of the potential as described by:

(1.3.8)

can be combined with Gauss's law as formulated with equation (1.3.3), yielding a more general form of Poisson's equation:
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(1.3.9)
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Example 1.5 Calculate the energy relative to the Fermi energy for which the 
Fermi function equals 5%. Write the answer in units of kT.  

Solution The problems states that:  
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example 3

Chapter 2: Semiconductor Fundamentals

Examples  

Example 2.1  Calculate the maximum fraction of the volume in a simple cubic crystal occupied by the atoms. 
Assume that the atoms are closely packed and that they can be treated as hard spheres. This fraction 
is also called the packing density. 

Example 2.2  Calculate the energy bandgap of germanium, silicon and gallium arsenide at 300, 400, 500 and 600 
K.

Example 2.3  Calculate the number of states per unit energy in a 100 by 100 by 10 nm piece of silicon (m* = 1.08 
m0) 100 meV above the conduction band edge. Write the result in units of eV-1.

Example 2.4  Calculate the effective densities of states in the conduction and valence bands of germanium, silicon 
and gallium arsenide at 300 K.

Example 2.4b  Calculate the intrinsic carrier density in germanium, silicon and gallium arsenide at 300, 400, 500 
and 600 K.

Example 2.5  Calculate the ionization energy for shallow donors and acceptors in germanium and silicon using the 
hydrogen-like model.

Example 2.6a  A germanium wafer is doped with a shallow donor density of 3ni/2. Calculate the electron and hole 

density.

Example 2.6b  A silicon wafer is doped with a shallow acceptor doping of 1016 cm-3. Calculate the electron and hole 
density.

Example 2.7  A piece of germanium doped with 1016 cm-3 shallow donors is illuminated with light generating 1015 
cm-3 excess electrons and holes. Calculate the quasi-Fermi energies relative to the intrinsic energy 
and compare it to the Fermi energy in the absence of illumination.

Example 2.8  Electrons in undoped gallium arsenide have a mobility of 8,800 cm2/V-s. Calculate the average time 
between collisions. Calculate the distance traveled between two collisions (also called the mean free 
path). Use an average velocity of 107 cm/s.

Example 2.9  A piece of silicon doped with arsenic (Nd = 1017 cm-3) is 100 mm long, 10 mm wide and 1 mm thick. 

Calculate the resistance of this sample when contacted one each end. 

Example 2.10  The hole density in an n-type silicon wafer (Nd = 1017 cm-3) decreases linearly from 1014 cm-3 to 

1013 cm-3 between x = 0 and x = 1 µm. Calculate the hole diffusion current density.

Example 2.11  Calculate the electron and hole densities in an n-type silicon wafer (Nd = 1017 cm-3) illuminated 

uniformly with 10 mW/cm2 of red light (Eph = 1.8 eV). The absorption coefficient of red light in 

silicon is 10-3 cm-1. The minority carrier lifetime is 10 µs.
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Equations  

(2.2.1)

(2.3.1)

(2.3.2)

(2.3.3)

(2.3.4)

(2.4.1)

(2.4.2)

(2.4.3)

(2.4.4)
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(2.4.5)

(2.4.6)

(2.4.7)

(2.5.1)

(2.5.2)

(2.5.3)
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(2.5.5)

(2.6.1)
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Chapter 2: Semiconductor Fundamentals

Problems  

1.  Calculate the packing density of the body centered cubic, the face centered cubic and the diamond lattice, listed in 

example 2.1.

2.  At what temperature does the energy bandgap of silicon equal exactly 1 eV?

3.  Prove that the probability of occupying an energy level below the Fermi energy equals the probability that an energy 

level above the Fermi energy and equally far away from the Fermi energy is not occupied.

4.  At what energy (in units of kT) is the Fermi function within 1 % of the Maxwell-Boltzmann distribution function? 

What is the corresponding probability of occupancy?

5.  Calculate the Fermi function at 6.5 eV if EF = 6.25 eV and T = 300 K. Repeat at T = 950 K assuming that the Fermi 

energy does not change. At what temperature does the probability that an energy level at E = 5.95 eV is empty equal 

1 %.

6.  Calculate the effective density of states for electrons and holes in germanium, silicon and gallium arsenide at room 

temperature and at 100 °C. Use the effective masses for density of states calculations.

7.  Calculate the intrinsic carrier density in germanium, silicon and gallium arsenide at room temperature (300 K). 
Repeat at 100 °C. Assume that the energy bandgap is independent of temperature and use the room temperature 

values.

8.  Calculate the position of the intrinsic energy level relative to the midgap energy 

Emidgap = (Ec + Ev)/2

in germanium, silicon and gallium arsenide at 300 K. Repeat at T = 100 °C. 

9.  Calculate the electron and hole density in germanium, silicon and gallium arsenide if the Fermi energy is 0.3 eV 
above the intrinsic energy level. Repeat if the Fermi energy is 0.3 eV below the conduction band edge. Assume that 

T = 300 K.

10.  The equations (2.6.34) and (2.6.35) derived in section 2.6 are only valid for non-degenerate semiconductors (i.e. Ev 

+ 3kT < EF < Ec - 3kT). Where exactly in the derivation was the assumption made that the semiconductor is non-

degenerate? 

11.  A silicon wafer contains 1016 cm-3 electrons. Calculate the hole density and the position of the intrinsic energy and 
the Fermi energy at 300 K. Draw the corresponding band diagram to scale, indicating the conduction and valence 
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band edge, the intrinsic energy level and the Fermi energy level. Use ni = 1010 cm-3.

12.  A silicon wafer is doped with 1013 cm-3 shallow donors and 9 x 1012 cm-3 shallow acceptors. Calculate the electron 

and hole density at 300 K. Use ni = 1010 cm-3.

13.  The resistivity of a silicon wafer at room temperature is 5 Ωcm. What is the doping density? Find all possible 

solutions.

14.  How many phosphorus atoms must be added to decrease the resistivity of n-type silicon at room temperature from 1 

Ωcm to 0.1 Ωcm. Make sure you include the doping dependence of the mobility. State your assumptions.

15.  A piece of n-type silicon (Nd = 1017 cm-3) is uniformly illuminated with green light (λ = 550 nm) so that the power 

density in the material equals 1 mW/cm2. a) Calculate the generation rate of electron-hole pairs using an absorption 
coefficient of 104 cm-1. b) Calculate the excess electron and hole density using the generation rate obtained in (a) 
and a minority carrier lifetime due to Shockley-Read-Hall recombination of 0.1 ms. c) Calculate the electron and 

hole quasi-Fermi energies (relative to Ei) based on the excess densities obtained in (b). 

16.  A piece of intrinsic silicon is instantaneously heated from 0 K to room temperature (300 K). The minority carrier 
lifetime due to Shockley-Read-Hall recombination in the material is 1 ms. Calculate the generation rate of electron-
hole pairs immediately after reaching room temperature. (Et = Ei). If the generation rate is constant, how long does 

it take to reach thermal equilibrium?

17.  Calculate the conductivity and resistivity of intrinsic silicon. Use ni = 1010 cm-3, µn = 1400 cm2/V-sec and µp = 450 

cm2/V-sec. 

18.  Consider the problem of finding the doping density which results the maximum possible resistivity of silicon at 
room temperature. (ni = 1010, µn = 1400 cm2/V-sec and µp = 450 cm2V-sec.) 

Should the silicon be doped at all or do you expect the maximum resistivity when dopants are added? 

If the silicon should be doped, should it be doped with acceptors or donors (assume that all dopant are shallow). 

Calculate the maximum resistivity, the corresponding electron and hole density and the doping density. 

19.  The electron density in silicon at room temperature is twice the intrinsic density. Calculate the hole density, the 
donor density and the Fermi energy relative to the intrinsic energy. Repeat for n = 5 ni and n = 10 ni. Also repeat for 

p = 2 ni, p = 5 ni and p = 10 ni, calculating the electron and acceptor density as well as the Fermi energy relative to 

the intrinsic energy level. 

20.  The expression for the Bohr radius can also be applied to the hydrogen-like atom consisting of an ionized donor and 
the electron provided by the donor. Modify the expression for the Bohr radius so that it applies to this hydrogen-like 
atom. Calculate the Bohr radius of an electron orbiting around the ionized donor in silicon. ( εr = 11.9 and me

* = 

0.26 m0)

21.  Calculate the density of electrons per unit energy (in electron volt) and per unit area (per cubic centimeter) at 1 eV 
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above the band minimum. Assume that me
* = 1.08 m0.

22.  Calculate the probability that an electron occupies an energy level which is 3kT below the Fermi energy. Repeat for 

an energy level which is 3kT above the Fermi energy. 

23.  Calculate and plot as a function of energy the product of the probability that an energy level is occupied with the 

probability that that same energy level is not occupied. Assume that the Fermi energy is zero and that kT = 1 eV 

24.  The effective mass of electrons in silicon is 0.26 m0 and the effective mass of holes is 0.36 m0. If the scattering time 

is the same for both carrier types, what is the ratio of the electron mobility and the hole mobility. 

25.  Electrons in silicon carbide have a mobility of 1000 cm2/V-sec. At what value of the electric field do the electrons 
reach a velocity of 3 x 107 cm/s? Assume that the mobility is constant and independent of the electric field. What 
voltage is required to obtain this field in a 5 micron thick region? How much time do the electrons need to cross the 

5 micron thick region? 

26.  A piece of silicon has a resistivity which is specified by the manufacturer to be between 2 and 5 Ohm cm. Assuming 
that the mobility of electrons is 1400 cm2/V-sec and that of holes is 450 cm2/V-sec, what is the minimum possible 

carrier density and what is the corresponding carrier type? Repeat for the maximum possible carrier density. 

27.  A silicon wafer has a 2 inch diameter and contains 1014 cm-3 electrons with a mobility of 1400 cm2/V-sec. How 

thick should the wafer be so that the resistance between the front and back surface equals 0.1 Ohm. 

28.  The electron mobility is germanium is 1000 cm2/V-sec. If this mobility is due to impurity and lattice scattering and 
the mobility due to lattice scattering only is 1900 cm2/V-sec, what is the mobility due to impurity scattering only? 

29.  A piece of n-type silicon is doped with 1017 cm-3 shallow donors. Calculate the density of electrons per unit energy 
at kT/2 above the conduction band edge. T = 300 K. Calculate the electron energy for which the density of electrons 

per unit energy has a maximum. What is the corresponding probability of occupancy at that maximum?

30.  Phosphorous donor atoms with a concentration of 1016 cm-3 are added to a piece of silicon. Assume that the 
phosphorous atoms are distributed homogeneously throughout the silicon. The atomic weight of phosphorous is 31.

a.  What is the sample resistivity at 300 K?
b.  What proportion by weight does the donor impurity comprise? The density of silicon is 2.33 gram/cm3

c.  If 1017 atoms cm-3 of boron are included in addition to phosphorous, and distributed uniformly, what is the 
resulting resistivity and type (i.e., p- or n-type material)?

d.  Sketch the energy-band diagram under the condition of part c) and show the position of the Fermi energy 
relative to the valence band edge.

31.  Find the equilibrium electron and hole concentrations and the location of the Fermi energy relative to the intrinsic 
energy in silicon at 27 oC, if the silicon contains the following concentrations of shallow dopants.

a.  1 x 1016 cm-3 boron atoms
b.  3 x 1016 cm-3 arsenic atoms and 2.9 x 1016 cm-3 boron atoms.

http://ece-www.colorado.edu/~bart/book/book/chapter2/ch2_p.htm (3 of 4) [2/28/2002 5:27:00 PM]

http://ece-www.colorado.edu/~bart/book/book/chapter2/pdf/pr2_21.pdf
http://ece-www.colorado.edu/~bart/book/book/chapter2/pdf/pr2_22.pdf
http://ece-www.colorado.edu/~bart/book/book/chapter2/pdf/pr2_23.pdf
http://ece-www.colorado.edu/~bart/book/book/chapter2/pdf/pr2_24.pdf
http://ece-www.colorado.edu/~bart/book/book/chapter2/pdf/pr2_28.pdf


http://ece-www.colorado.edu/~bart/book/book/chapter2/ch2_p.htm

32.  The electron concentration in a piece of lightly doped, n-type silicon at room temperature varies linearly from 1017 
cm-3 at x = 0 to 6 x 1016 cm-3 at x = 2 µm. Electrons are supplied to keep this concentration constant with time. 
Calculate the electron current density in the silicon if no electric field is present. Assume µn = 1000 cm2/V-s and T 

= 300 K.

http://ece-www.colorado.edu/~bart/book/book/chapter2/ch2_p.htm (4 of 4) [2/28/2002 5:27:00 PM]



example 3

Chapter 3: Metal-Semiconductor 
Junctions

Examples

Example 3.1  Consider a chrome-silicon metal-semiconductor junction with Nd = 1017 cm-3. Calculate the barrier 

height and the built-in potential. Repeat for a p-type semiconductor with the same doping density.

Example 3.2  Consider a chrome-silicon metal-semiconductor junction with Nd = 1017 cm-3. Calculate the 

depletion layer width, the electric field in the silicon at the metal-semiconductor interface, the 
potential across the semiconductor and the capacitance per unit area for an applied voltage of -5 V.
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Example 2.1 Calculate the maximum fraction of the volume in a simple cubic 
crystal occupied by the atoms. Assume that the atoms are closely 
packed and that they can be treated as hard spheres. This fraction 
is also called the packing density.  

Solution The atoms in a simple cubic crystal are located at the corners of 
the units cell, a cube with side a. Adjacent atoms touch each other 
so that the radius of each atom equals a/2. There are eight atoms 
occupying the corners of the cube, but only one eighth of each is 
within the unit cell so that the number of atoms equals one per unit 
cell. The packing density is then obtained from: 
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or about half the volume of the unit cell is occupied by the atoms. 
The packing density of four cubic crystals is listed in the table 
below. 
 Radius Atoms/ 

unit cell 
Packing density 

Simple cubic 
2
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Body centered cubic 
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Face centered cubic 
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Example 2.2 Calculate the energy bandgap of germanium, silicon and gallium 
arsenide at 300, 400, 500 and 600 K. 

Solution The bandgap of silicon at 300 K equals: 
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Similarly one finds the energy bandgap for germanium and 
gallium arsenide, as well as at different temperatures, yielding: 

 Germanium Silicon Gallium 
Arsenide 

T = 300 K 0.66 eV 1.12 eV 1.42 eV 
T = 400 K 0.62 eV 1.09 eV 1.38 eV 
T = 500 K 0.58 eV 1.06 eV 1.33 eV 

 

T = 600 K 0.54 eV 1.03 eV 1.28 eV 
 



Example 2.3 Calculate the number of states per unit energy in a 100 by 100 by 
10 nm piece of silicon (m* = 1.08 m0) 100 meV above the 
conduction band edge. Write the result in units of eV-1. 

Solution The density of states equals: 

1-3-56

19
334

2/331

2/3*
3

Jm 1051.1           

106.11.0
)10626.6(

)101.908.1(28
           

28
)(

×=

××
×

××
=

−=

−
−

−π

π
cEEm

h
Eg

 

So that the total number of states per unit energy equals: 

 eV 1041.2J 101051.1)( -15-12256 ×=××= −VEg  
 



Example 2.4 Calculate the effective densities of states in the conduction and 
valence bands of germanium, silicon and gallium arsenide at 300 
K. 

Solution The effective density of states in the conduction band of 
germanium equals: 
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where the effective mass for density of states was used (see 
appendix 3 or section 2.3.6). Similarly one finds the effective 
density of states in the conduction band for other semiconductors 
and the effective density of states in the valence band: 

 Germanium Silicon Gallium 
Arsenide 

Nc (cm-3) 1.02 x 1019 2.81 x 1019 4.35 x 1017 

 

Nv (cm-3) 5.64 x 1018 1.83 x 1019 7.57 x 1018 
 Note that the effective density of states is temperature dependent 

and can be obtain from: 
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where Nc(300 K) is the effective density of states at 300 K. 
 



Example 
2.4b 

Calculate the intrinsic carrier density in germanium, silicon and 
gallium arsenide at 300, 400, 500 and 600 K. 

Solution The intrinsic carrier density in silicon at 300 K equals: 
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Similarly one finds the intrinsic carrier density for germanium and 
gallium arsenide at different temperatures, yielding: 

 Germanium Silicon Gallium 
Arsenide 

300 K 2.02 x 1013 8.72 x 109 2.03 x 106 
400 K 1.38 x 1015 4.52 x 1012 5.98 x 109 
500 K 1.91 x 1016 2.16 x 1014 7.98 x 1011 

 

600 K 1.18 x 1017 3.07 x 1015 2.22 x 1013 
 



Example 2.5 Calculate the ionization energy for shallow donors and acceptors 
in germanium and silicon using the hydrogen-like model. 

Solution Using the effective mass for conductivity calculations (Appendix 
3) one finds the ionization energy for shallow donors in 
germanium to be: 
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The calculated ionization energies for donors and acceptors in 
germanium and silicon are provided below. 

 Germanium Silicon 
donors 6.4 meV 13.8 meV 

 

acceptors 11.2 meV 20.5 meV 
 Note that the actual ionization energies differ from this value and 

depend on the actual donor atom. 
 



Example 2.6a A germanium wafer is doped with a shallow donor density of 
3ni/2. Calculate the electron and hole density. 

Solution The electron density is obtained from equation (2.6.34) 
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and the hole density is obtained using the mass action law: 
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Example 2.6b A silicon wafer is doped with a shallow acceptor doping of 1016 
cm-3. Calculate the electron and hole density. 

Solution Since the acceptor doping is much larger than the intrinsic 
density and much smaller than the effective density of states, the 
hole density equals: 
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The electron density is then obtained using the mass action law 
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The approach described in example 2.6a yields the same result. 
 



Example 2.7 A piece of germanium doped with 1016 cm-3 shallow donors is 
illuminated with light generating 1015 cm-3 excess electrons and 
holes. Calculate the quasi-Fermi energies relative to the intrinsic 
energy and compare it to the Fermi energy in the absence of 
illumination. 

Solution The carrier densities when illuminating the semiconductor are:  
-3161516 cm 101.11010 ×=+=+= nnn o δ  
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and the quasi-Fermi energies are: 
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In comparison, the Fermi energy in the absence of light equals 
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which is very close to the quasi-Fermi energy of the majority 
carriers. 

 



Example 2.8 Electrons in undoped gallium arsenide have a mobility of 8,800 
cm2/V-s. Calculate the average time between collisions. 
Calculate the distance traveled between two collisions (also 
called the mean free path). Use an average velocity of 107 cm/s. 

Solution The collision time, τc, is obtained from: 
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where the mobility was first converted to MKS units. 
The mean free path, l, equals: 
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Example 2.9 A piece of silicon doped with arsenic (Nd = 1017 cm-3) is 100 µm 
long, 10 µm wide and 1 µm thick. Calculate the resistance of this 
sample when contacted one each end.  

Solution The resistivity of the silicon equals: 
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where the mobility was obtained from Table 2.7.3. 
The resistance then equals: 
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An alternate approach is to first calculate the sheet resistance, Rs: 

square/ 860
10

086.0
4 Ω=== −t

Rs
ρ

 

From which one then obtains the resistance: 
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Example 2.10 The hole density in an n-type silicon wafer (Nd = 1017 cm-3) 
decreases linearly from 1014 cm-3 to 1013 cm-3 between x = 0 and 
x = 1 µm. Calculate the hole diffusion current density. 

Solution The hole diffusion current density equals: 
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where the diffusion constant was calculated using the Einstein 
relation: 

/scm 2.83170259.0 2=×== ptp VD µ  
and the hole mobility in the n-type wafer was obtained from 
Table 2.7.3 as the hole mobility in a p-type material with the 
same doping density. 

 



Example 2.11 Calculate the electron and hole densities in an n-type silicon 
wafer (Nd = 1017 cm-3) illuminated uniformly with 10 mW/cm2 
of red light (Eph = 1.8 eV). The absorption coefficient of red 
light in silicon is 10-3 cm-1. The minority carrier lifetime is 10 
µs. 

Solution The generation rate of electrons and holes equals: 
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where the photon energy was converted into Joules. The excess 
carrier densities are then obtained from: 
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So that the electron and hole densities equal: 
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Semiconductor Fundamentals

Chapter 2: Semiconductor Fundamentals

2.2. Crystals and crystal structures

2.2.1. Bravais lattices
2.2.2. Common semiconductor crystal structures
2.2.3. Growth of semiconductor crystals

Solid materials are classified by the way the atoms are arranged within the solid. Materials in which atoms are placed 
randomly are called amorphous. Materials in which atoms are placed in a high ordered structure are called crystalline. Poly-
crystalline materials are materials with a high degree of short-range order and no long-range order. These materials consist 
of small crystalline regions with random orientation called grains, separated by grain boundaries.

Of primary interest in this text are crystalline semiconductors in which atoms are placed in a highly ordered structure. 
Crystals are categorized by their crystal structure and the underlying lattice. While some crystals have a single atom placed 
at each lattice point, most crystals have a combination of atoms associated with each lattice point. This combination of 
atoms is also called the basis.

The classification of lattices, the common semiconductor crystal structures and the growth of single-crystal semiconductors 
are discussed in the following sections.

2.2.1 Bravais lattices  

The Bravais lattices are the distinct lattice types, which when repeated can fill the whole space. The lattice can therefore be 

generated by three unit vectors,  and a set of integers k, l and m so that each lattice point, identified by a 

vector , can be obtained from: 

(2.2.1)

The construction of the lattice points based on a set of unit vectors is illustrated by Figure 2.2.1.
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Figure 2.2.1: The construction of lattice points using unit vectors 

In two dimensions, there are five distinct Bravais lattices, while in three dimensions there are fourteen. The lattices in two 
dimensions are the square lattice, the rectangular lattice, the centered rectangular lattice, the hexagonal lattice and the 
oblique lattice as shown in Figure 2.2.2. It is customary to organize these lattices in groups which have the same symmetry. 
An example is the rectangular and the centered rectangular lattice. As can be seen on the figure, all the lattice points of the 
rectangular lattice can be obtained by a combination of the lattice vectors . The centered rectangular lattice can be 
constructed in two ways. It can be obtained by starting with the same lattice vectors as those of the rectangular lattice and 
then adding an additional atom at the center of each rectangle in the lattice. This approach is illustrated by Figure 2.2.2 c). 
The lattice vectors generate the traditional unit cell and the center atom is obtained by attaching two lattice points to every 
lattice point of the traditional unit cell. The alternate approach is to define a new set of lattice vectors, one identical to and 
another starting from the same origin and ending on the center atom. These lattice vectors generate the so-called primitive 
cell and directly define the centered rectangular lattice. 

Figure 2.2.2.: The five Bravais lattices of two-dimensional crystals: (a) cubic, (b) rectangular, (c) centered rectangular, 
(d) hexagonal and (e) oblique 

These lattices are listed in Table 2.2.1. a1 and a2 are the magnitudes of the unit vectors and α is the angle between them.

Table 2.2.1.: Bravais lattices of two-dimensional crystals

The same approach is used for lattices in three dimensions. The fourteen lattices of three-dimensional crystals are classified 
as shown in Table 2.2.2, where a1, a2 and a3 are the magnitudes of the unit vectors defining the traditional unit cell and α, 

β and γ are the angles between these unit vectors. 
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Table 2.2.2.: Bravais lattices of three-dimensional crystals

The cubic lattices are an important subset of these fourteen Bravais lattices since a large number of semiconductors are 
cubic. The three cubic Bravais lattices are the simple cubic lattice, the body-centered cubic lattice and the face-centered 
cubic lattice as shown in Figure 2.2.3. Since all unit vectors identifying the traditional unit cell have the same size, the 
crystal structure is completely defined by a single number. This number is the lattice constant, a.

Figure 2.2.3.: The simple cubic (a), the body-centered cubic (b) and the face centered cubic (c) lattice.

2.2.2 Common semiconductor crystal structures  

The most common crystal structure among frequently used semiconductors is the diamond lattice, shown in Figure 2.2.4. 
Each atom in the diamond lattice has a covalent bond with four adjacent atoms, which together form a tetrahedron. This 
lattice can also be formed from two face-centered-cubic lattices, which are displaced along the body diagonal of the larger 
cube in Figure 2.2.4 by one quarter of that body diagonal. The diamond lattice therefore is a face-centered-cubic lattice 
with a basis containing two identical atoms.
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Figure 2.2.4.: The diamond lattice of silicon and germanium 

Compound semiconductors such as GaAs and InP have a crystal structure that is similar to that of diamond. However, the 
lattice contains two different types of atoms. Each atom still has four covalent bonds, but they are bonds with atoms of the 
other type. This structure is referred to as the zinc-blende lattice, named after zinc-blende (ZnS) as shown in Figure 2.2.5. 
Both the diamond lattice and the zinc-blende lattice are cubic lattices. A third common crystal structure is the hexagonal 
structure also referred to as the wurzite crystal structure, which is the hexagonal form of zinc sulfide (ZnS). 

Many semiconductor materials can have more than one crystal structure. A large number of compound semiconductors 
including GaAs, GaN and ZnS can be either cubic or hexagonal. SiC can be cubic or one of several different hexagonal 
crystal structures.

The cubic crystals are characterized by a single parameter, the lattice constant a, while the hexagonal structures are 
characterized in the hexagonal plane by a lattice constant a and by the distance between the hexagonal planes, c.

Figure 2.2.5 : The zinc-blende crystal structure of GaAs and InP 

Example 2.1

 

Calculate the maximum fraction of the volume in a simple cubic crystal occupied by the atoms. Assume 
that the atoms are closely packed and that they can be treated as hard spheres. This fraction is also called 
the packing density. 
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Solution The atoms in a simple cubic crystal are located at the corners of the units cell, a cube with side a. 
Adjacent atoms touch each other so that the radius of each atom equals a/2. There are eight atoms 
occupying the corners of the cube, but only one eighth of each is within the unit cell so that the number 
of atoms equals one per unit cell. The packing density is then obtained from:

or about half the volume of the unit cell is occupied by the atoms.

The packing density of four cubic crystals is listed in the table below.

2.2.3 Growth of semiconductor crystals  

Like all crystals, semiconductor crystals can be obtained by cooling the molten semiconductor material. However, this 
procedure yields poly-crystalline material since crystals start growing in different locations with a different orientation. 
Instead when growing single-crystalline silicon one starts with a seed crystal and dips one end into the melt. By controlling 
the temperature difference between the seed crystal and the molten silicon, the seed crystal slowly grows. The result is a 
large single-crystal silicon boule. Such boules have a cylindrical shape, in part because the seed crystal is rotated during 
growth and in part because of the cylindrical shape of the crucible containing the melt. The boule is then cut into wafers 
with a diamond saw and further polished to yield the starting material for silicon device fabrication.
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2.3 Energy bands

2.3.1. Free electron model
2.3.2. Periodic potentials
2.3.3. Energy bands of semiconductors
2.3.4. Metals, insulators and semiconductors
2.3.5. Electrons and holes in semiconductors
2.3.6. The effective mass concept

Energy bands consisting of a large number of closely spaced energy levels exist in crystalline materials. The bands can be 
thought of as the collection of the individual energy levels of electrons surrounding each atom. The wavefunctions of the 
individual electrons, however, overlap with those of electrons confined to neighboring atoms. The Pauli exclusion principle 
does not allow the electron energy levels to be the same so that one obtains a set of closely spaced energy levels, forming 
an energy band. The energy band model is crucial to any detailed treatment of semiconductor devices. It provides the 
framework needed to understand the concept of an energy bandgap and that of conduction in an almost filled band as 
described by the empty states.

2.3.1 Free electron model  

The free electron model of metals has been used to explain the photo-electric effect (see section 1.2.2). This model assumes 
that electrons are free to move within the metal but are confined to the metal by potential barriers as illustrated by Figure 
2.3.1. The minimum energy needed to extract an electron from the metal equals qΦM, where ΦM is the workfunction. This 

model is frequently used when analyzing metals. However, this model does not work well for semiconductors since the 
effect of the periodic potential due to the atoms in the crystal has been ignored.

Figure 2.3.1.: The free electron model of a metal.
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2.3.2 Periodic potentials  

The analysis of periodic potentials is required to find the energy levels in a semiconductor. This requires the use of periodic 
wave functions, called Bloch functions which are beyond the scope of this text. The result of this analysis is that the energy 
levels are grouped in bands, separated by energy band gaps. The behavior of electrons at the top and bottom of such a band 
is similar to that of a free electron. However, the electrons are affected by the presence of the periodic potential. The 
combined effect of the periodic potential is included by adjusting the mass of the electron to a different value. This mass 
will be referred to as the effective mass.

The effect of a periodic arrangement on the electron energy levels is illustrated by Figure 2.3.2. Shown are the energy 
levels of electrons in a carbon crystal with the atoms arranged in a diamond lattice. These energy levels are plotted as a 
function of the lattice constant, a.

Figure 2.3.2. : Energy bands for diamond versus lattice constant . One atomic unit equals 1 Rydberg = 13.6 eV.

Isolated carbon atoms contain six electrons, which occupy the 1s, 2s and 2p orbital in pairs. The energy of an electron 
occupying the 2s and 2p orbital is indicated on the figure. The energy of the 1s orbital is not shown. As the lattice constant 
is reduced, there is an overlap of the electron wavefunctions occupying adjacent atoms. This leads to a splitting of the 
energy levels consistent with the Pauli exclusion principle. The splitting results in an energy band containing 2N states in 
the 2s band and 6N states in the 2p band, where N is the number of atoms in the crystal. A further reduction of the lattice 
constant causes the 2s and 2p energy bands to merge and split again into two bands containing 4N states each. At zero 
Kelvin, the lower band is completely filled with electrons and labeled as the valence band. The upper band is empty and 
labeled as the conduction band.

2.3.3 Energy bands of semiconductors  
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2.3.3.1. Energy band diagrams of common semiconductors
2.3.3.2. Simple energy band diagram of a semiconductor
2.3.3.3. Temperature dependence of the energy bandgap

Complete energy band diagrams of semiconductors are very complex. However, most have features similar to that of the 
diamond crystal discussed in section 2.3.2. In this section, we first take a closer look at the energy band diagrams of 
common semiconductors. We then present a simple diagram containing some of the most important feature and discuss the 
temperature dependence of the energy bandgap.

2.3.3.1. Energy band diagrams of common semiconductors

The energy band diagrams of semiconductors are rather complex. The detailed energy band diagrams of germanium, 
silicon and gallium arsenide are shown in Figure 2.3.3. The energy is plotted as a function of the wavenumber, k, along the 
main crystallographic directions in the crystal, since the band diagram depends on the direction in the crystal. The energy 
band diagrams contain multiple completely-filled and completely-empty bands. In addition, there are multiple partially-
filled band. 

Figure 2.3.3.: Energy band diagram of (a) germanium, (b) silicon and (c) gallium arsenide
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Fortunately, we can simplify the energy band diagram since only the electrons in the highest almost-filled band and the 
lowest almost-empty band dominate the behavior of the semiconductor. These bands are indicated on the figure by the + 
and - signs corresponding to the charge of the carriers in those bands.

2.3.3.2. Simple energy band diagram of a semiconductor

The energy band diagrams shown in the previous section are frequently simplified when analyzing semiconductor devices. 
Since the electronic properties of a semiconductor are dominated by the highest partially empty band and the lowest 
partially filled band, it is often sufficient to only consider those bands. This leads to a simplified energy band diagram for 
semiconductors as shown in Figure 2.3.4: 

Figure 2.3.4.: A simplified energy band diagram used to describe semiconductors. Shown are the valence and 
conduction band as indicated by the valence band edge, Ev, and the conduction band edge, Ec. The 

vacuum level, Evacuum, and the electron affinity, χ, are also indicated on the figure.

The diagram identifies the almost-empty conduction band by a horizontal line. This line indicates the bottom edge of the 
conduction band and is labeled Ec. Similarly, the top of the valence band is indicated by a horizontal line labeled Ev. The 

energy band gap is located between the two lines, which are separated by the bandgap energy Eg. The distance between the 

conduction band edge, Ec, and the energy of a free electron outside the crystal (called the vacuum level labeled Evacuum) is 

quantified by the electron affinity, χ multiplied with the electronic charge q.

An important feature of an energy band diagram, which is not included on the simplified diagram, is whether the 
conduction band minimum and the valence band maximum occur at the same value for the wavenumber. If so, the energy 
bandgap is called direct. If not, the energy bandgap is called indirect. This distinction is of interest for optoelectronic 
devices as direct bandgap materials provide more efficient absorption and emission of light. For instance, the smallest 
bandgap of germanium and silicon is indirect, while gallium arsenide has a direct bandgap as can be seen on Figure 2.3.3.

2.3.3.3. Temperature dependence of the energy bandgap
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The energy bandgap of semiconductors tends to decrease as the temperature is increased. This behavior can be better 
understood if one considers that the interatomic spacing increases when the amplitude of the atomic vibrations increases 
due to the increased thermal energy. This effect is quantified by the linear expansion coefficient of a material. An increased 
interatomic spacing decreases the average potential seen by the electrons in the material, which in turn reduces the size of 
the energy bandgap. A direct modulation of the interatomic distance - such as by applying compressive (tensile) stress - 
also causes an increase (decrease) of the bandgap.

The temperature dependence of the energy bandgap, Eg, has been experimentally determined yielding the following 

expression for Eg as a function of the temperature, T: 

(2.3.1)

where Eg(0), α and β are the fitting parameters. These fitting parameters are listed for germanium, silicon and gallium 

arsenide in Table 2.3.1: 

Table 2.3.1.: Parameters used to calculate the energy bandgap of germanium, silicon and gallium arsenide (GaAs) as a 
function of temperature

A plot of the resulting bandgap versus temperature is shown in Figure 2.3.5 for germanium, silicon and gallium arsenide. 

Figure 2.3.5.: Temperature dependence of the energy bandgap of germanium (Ge), silicon (Si) and gallium arsenide 

(GaAs). 

Example 2.2. Calculate the energy bandgap of germanium, silicon and gallium arsenide at 300, 400, 500 and 600 K.
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Solution The bandgap of silicon at 300 K equals:

Similarly one finds the energy bandgap for germanium and gallium arsenide, as well as at different 
temperatures, yielding:

2.3.4 Metals, insulators and semiconductors  

Once we know the bandstructure of a given material we still need to find out which energy levels are occupied and whether 
specific bands are empty, partially filled or completely filled. 

Empty bands do not contain electrons. Therefore, they are not expected to contribute to the electrical conductivity of the 
material. Partially filled bands do contain electrons as well as available energy levels at slightly higher energies. These 
unoccupied energy levels enable carriers to gain energy when moving in an applied electric field. Electrons in a partially 
filled band therefore do contribute to the electrical conductivity of the material. 

Completely filled bands do contain plenty of electrons but do not contribute to the conductivity of the material. This is 
because the electrons cannot gain energy since all energy levels are already filled. 

In order to find the filled and empty bands we must find out how many electrons can be placed in each band and how many 
electrons are available. Each band is formed due to the splitting of one or more atomic energy levels. Therefore, the 
minimum number of states in a band equals twice the number of atoms in the material. The reason for the factor of two is 
that every energy level can contain two electrons with opposite spin. 

To further simplify the analysis, we assume that only the valence electrons (the electrons in the outer shell) are of interest. 
The core electrons are tightly bound to the atom and are not allowed to freely move in the material. 

Four different possible scenarios are shown in Figure 2.3.6: 
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Figure 2.3.6.: Possible energy band diagrams of a crystal. Shown are a) a half filled band, b) two overlapping bands, c) 
an almost full band separated by a small bandgap from an almost empty band and d) a full band and an 
empty band separated by a large bandgap.

A half-filled band is shown in Figure 2.3.6 a). This situation occurs in materials consisting of atoms, which contain only 
one valence electron per atom. Most highly conducting metals including copper, gold and silver satisfy this condition. 
Materials consisting of atoms that contain two valence electrons can still be highly conducting if the resulting filled band 
overlaps with an empty band. This scenario is shown in b). No conduction is expected for scenario d) where a completely 
filled band is separated from the next higher empty band by a larger energy gap. Such materials behave as insulators. 
Finally, scenario c) depicts the situation in a semiconductor. The completely filled band is now close enough to the next 
higher empty band that electrons can make it into the next higher band. This yields an almost full band below an almost 
empty band. We will call the almost full band the valence band since it is occupied by valence electrons. The almost empty 
band will be called the conduction band, as electrons are free to move in this band and contribute to the conduction of the 
material. 

2.3.5 Electrons and holes in semiconductors  

As pointed out in section 2.3.4, semiconductors differ from metals and insulators by the fact that they contain an "almost-
empty" conduction band and an "almost-full" valence band. This also means that we will have to deal with the transport of 
carriers in both bands. 

To facilitate the discussion of the transport in the "almost-full" valence band of a semiconductor, we will introduce the 
concept of holes. It is important for the reader to understand that one could deal with only electrons if one is willing to keep 
track of all the electrons in the "almost-full" valence band. After all, electrons are the only real particles available in a 
semiconductor.

The concepts of holes is introduced in semiconductors since it is easier to keep track of the missing electrons in an "almost-
full" band, rather than keeping track of the actual electrons in that band. We will now first explain the concept of a hole and 
then point out how the hole concept simplifies the analysis. 

Holes are missing electrons. They behave as particles with the same properties as the electrons would have when 
occupying the same states except that they carry a positive charge. This definition is illustrated further with Figure 2.3.7, 
which presents the energy band diagram in the presence of an electric field. 
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Figure 2.3.7.: Energy band diagram in the presence of a uniform electric field. Shown are the upper almost-empty band 
and the lower almost-filled band. The tilt of the bands is caused by an externally applied electric field.

A uniform electric field is assumed which causes a constant gradient of the bands.

The electrons in the almost-empty band are negatively charged particles, which therefore move in a direction, which 
opposes the direction of the field. Electrons therefore move down hill in the upper band. Electrons in the lower band also 
move in the same direction. The total current density due to the electrons in the valence band can therefore be written as: 

(2.3.2)

where V is the volume of the semiconductor, q is the electronic charge and v is the electron velocity. The sum is taken over 
all occupied or filled states in the lower band. This equation can be reformulated by first taking the sum over all the states 
in the lower band and subtracting the current due to the electrons, which are missing in the almost-filled band. This last 
term therefore represents the sum taken over all the empty states in the lower band, or: 

(2.3.3)

The sum over all the states in the lower band has to equal zero since electrons in a completely filled band do not contribute 
to current, while the remaining term can be written as: 

(2.3.4)

which states that the current is due to positively charged particles associated with the empty states in the almost-filled band. 
We call these particles holes. Keep in mind that there is no real particle associated with a hole. Instead, the combined 
behavior of all the electrons, which occupy states in the almost-filled band, is the same as that of positively charge particles 
associated with the unoccupied states. 
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The reason the concept of holes simplifies the analysis is that the density of states function of a whole band can be rather 
complex. However, it can be dramatically simplified if only states close to the band edge need to be considered. 

2.3.6 The effective mass concept  

Electrons with an energy close to a band minimum behave as free electrons. They accelerate in an applied electric field just 
like a free electron in vacuum. Their wavefunctions are periodic and extend over the size of the material. The presence of 
the periodic potential, due to the atoms in the crystal without the valence electrons, changes the properties of the electrons. 
Therefore, the mass of the electron differs from the free electron mass, m0. Because of the anisotropy of the effective mass 

and the presence of multiple equivalent band minima, we define two types of effective mass, the effective mass for density 
of states calculations and the effective mass for conductivity calculations. The effective mass values for electrons and holes 
are listed together with the value of the smallest energy bandgap in Table 2.3.2. Electrons in gallium arsenide have an 
isotropic effective mass so that the conductivity effective mass equals the density of states effective mass.

Table 2.3.2.: Effective mass of carriers in germanium, silicon and gallium arsenide (GaAs)
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Chapter 2: Semiconductor Fundamentals

2.10. The drift-diffusion model

The drift-diffusion model of a semiconductor is frequently used to describe semiconductor devices. It contains all the 
features described in this chapter. 

Starting with Chapter 3, we will apply the drift-diffusion model to a variety of different devices. To facilitate this analysis, 
we present here a simplified drift-diffusion model, which contains all the essential features. This model results in a set of 
ten variables and ten equations.

The assumptions of the simplified drift-diffusion model are:

Full ionization: all dopants are assumed to be ionized (shallow dopants)

Non-degenerate: the Fermi energy is assumed to be at least 3 kT below/above the conduction/valence band edge.

Steady state: All variables are independent of time

Constant temperature: The temperature is constant throughout the device.

The ten variables are the following:

ρ, the charge density

n, the electron density

p, the hole density

, the electric field

φ, the potential

Ei, the intrinsic energy

Fn, the electron quasi-Fermi energy

Fp, the hole quasi-Fermi energy

Jn, the electron current density

Jp, the hole current density

The ten equations are:

Charge density equation

(2.10.1)

Electric field and potential equations

(2.10.2)
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(2.10.3)

(2.10.4)

Carrier density equations

(2.10.5)

(2.10.6)

Drift and diffusion current equations

(2.10.7)

(2.10.8)

Continuity equation in steady state with SHR recombination

(2.10.9)

(2.10.10)
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2.9. Continuity equation

2.9.1. Derivation
2.9.2. The diffusion equation
2.9.3. Steady state solution to the diffusion equation

2.9.1. Derivation  

The continuity equation describes a basic concept, namely that a change in carrier density over time is due to the difference 
between the incoming and outgoing flux of carriers plus the generation and minus the recombination. The flow of carriers 
and recombination and generation rates are illustrated with Figure 2.9.1.

Figure 2.9.1 : Electron currents and possible recombination and generation processes

The rate of change of the carriers between x and x + dx equals the difference between the incoming flux and the outgoing 
flux plus the generation and minus the recombination:

(2.9.1)

where n(x,t) is the carrier density, A is the area, Gn(x,t) is the generation rate and Rn(x,t) is the recombination rate. Using a 

Taylor series expansion, 

(2.9.2)

this equation can be formulated as a function of the derivative of the current:
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(2.9.3)

and similarly for holes one finds:

(2.9.4)

A solution to these equations can be obtained by substituting the expression for the electron and hole current, (2.7.29) and 
(2.7.30). This then yields two partial differential equations as a function of the electron density, the hole density and the 
electric field. The electric field itself is obtained from Gauss's law.

(2.9.5)

(2.9.6)

A generalization in three dimensions yields the following continuity equations for electrons and holes:

(2.9.7)

(2.9.8)

2.9.2. The diffusion equation  

In the quasi-neutral region - a region containing mobile carriers, where the electric field is small - the current is due to 
diffusion only. In addition, we can use the simple recombination model for the net recombination rate. This leads to the 
time-dependent diffusion equations for electrons in p-type material and for holes in n-type material: 

(2.9.9)

(2.9.10)

2.9.3. Steady state solution to the diffusion equation  

In steady state, the partial derivatives with respect to time are zero, yielding: 
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(2.9.11)

(2.9.12)

The general solution to these second order differential equations are: 

(2.9.13)

(2.9.14)

where Ln and Lp are the diffusion lengths given by: 

(2.9.15)

(2.9.16)

The diffusion constants, Dn and Dp, are obtained using the Einstein relations (2.7.27) and (2.7.28). The diffusion equations 

can also be written as a function of the excess carrier densities, δn and δp, which are related to the total carrier densities, n 
and p, and the thermal equilibrium densities, n0 and p0, by: 

(2.9.17)

(2.9.18)

yielding: 

(2.9.19)

(2.9.20)

The diffusion equation will be used to calculate the diffusion current in p-n junctions and bipolar transistors.
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2.8. Carrier recombination and generation

2.8.1. Simple recombination-generation model
2.8.2. Band-to-band recombination
2.8.3. Trap assisted recombination
2.8.4. Surface recombination
2.8.5. Auger recombination
2.8.6. Generation due to light 

Recombination of electrons and holes is a process by which both carriers annihilate each other: electrons occupy - through 
one or multiple steps - the empty state associated with a hole. Both carriers eventually disappear in the process. The energy 
difference between the initial and final state of the electron is released in the process. This leads to one possible 
classification of the recombination processes. In the case of radiative recombination, this energy is emitted in the form of a 
photon. In the case of non-radiative recombination, it is passed on to one or more phonons and in Auger recombination it is 
given off in the form of kinetic energy to another electron. Another classification scheme considers the individual energy 
levels and particles involved. These different processes are further illustrated with Figure 2.8.1. 

Figure 2.8.1 : Carrier recombination mechanisms in semiconductors

Band-to-band recombination occurs when an electron falls from its conduction band state into the empty valence band state 
associated with the hole. This band-to-band transition is typically also a radiative transition in direct bandgap 
semiconductors. 
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Trap-assisted recombination occurs when an electron falls into a "trap", an energy level within the bandgap caused by the 
presence of a foreign atom or a structural defect. Once the trap is filled it cannot accept another electron. The electron 
occupying the trap, in a second step, falls into an empty valence band state, thereby completing the recombination process. 
One can envision this process as a two-step transition of an electron from the conduction band to the valence band or as the 
annihilation of the electron and hole, which meet each other in the trap. We will refer to this process as Shockley-Read-
Hall (SRH) recombination. 

Auger recombination is a process in which an electron and a hole recombine in a band-to-band transition, but now the 
resulting energy is given off to another electron or hole. The involvement of a third particle affects the recombination rate 
so that we need to treat Auger recombination differently from band-to-band recombination. 

Each of these recombination mechanisms can be reversed leading to carrier generation rather than recombination. A single 
expression will be used to describe recombination as well as generation for each of the above mechanisms. 

In addition, there are generation mechanisms, which do not have an associated recombination mechanism: generation of 
carriers by light absorption or a high-energy electron/particle beam. These processes are referred to as ionization processes. 
Impact ionization, which is the generation mechanism, associated with Auger recombination also belongs to this category. 
The generation mechanisms are illustrated with Figure 2.8.2. 

Figure 2.8.2 : Carrier generation due to light absorption and ionization due to high-energy particle beams

Carrier generation due to light absorption occurs if the photon energy is large enough to lift an electron from the valence 
band into an empty conduction band state, generating one electron-hole pair. The photon energy needs to be larger than the 
bandgap energy to satisfy this condition. The photon is absorbed in this process and the excess energy, Eph - Eg, is added to 

the electron and the hole in the form of kinetic energy. 

Carrier generation or ionization due to a high-energy beam consisting of charged particles is similar except that the 
available energy can be much larger than the bandgap energy so that multiple electron-hole pairs can be formed. The high-
energy particle gradually loses its energy and eventually stops. This generation mechanism is used in semiconductor-based 
nuclear particle counters. As the number of ionized electron-hole pairs varies with the energy of the particle, one can also 
use such detector to measure the particle energy. 

Finally, there is a generation process called impact ionization, the generation mechanism that is the counterpart of Auger 
recombination. Impact ionization is caused by an electron/hole with an energy, which is much larger/smaller than the 
conduction/valence band edge. The detailed mechanism is illustrated with Figure 2.8.3. 
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Figure 2.8.3: Impact ionization and avalanche multiplication of electrons and holes in the presence of a large electric 
field.

The excess energy is given off to generate an electron-hole pair through a band-to-band transition. This generation process 
causes avalanche multiplication in semiconductor diodes under high reverse bias: As one carrier accelerates in the electric 
field it gains energy. The kinetic energy is given off to an electron in the valence band, thereby creating an electron-hole 
pair. The resulting two electrons can create two more electrons which generate four more causing an avalanche 
multiplication effect. Electrons as well as holes contribute to avalanche multiplication. 

2.8.1. Simple recombination-generation model  

A simple model for the recombination-generation mechanisms states that the recombination-generation rate is proportional 
to the excess carrier density. It acknowledges the fact that no recombination takes place if the carrier density equals the 
thermal equilibrium value. The resulting expression for the recombination of electrons in a p-type semiconductor is given 
by: 

(2.8.1)

and similarly for holes in an n-type semiconductor: 
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(2.8.2)

where the parameter τ can be interpreted as the average time after which an excess minority carrier recombines. 

We will show for each of the different recombination mechanisms that the recombination rate can be simplified to this 
form when applied to minority carriers in a "quasi-neutral" semiconductor. The above expressions are therefore only valid 
under these conditions. The recombination rates of the majority carriers equals that of the minority carriers since in steady 
state recombination involves an equal number of holes and electrons. Therefore, the recombination rate of the majority 
carriers depends on the excess-minority-carrier-density as the minority carriers limit the recombination rate. 

Recombination in a depletion region and in situations where the hole and electron density are close to each other cannot be 
described with the simple model and the more elaborate expressions for the individual recombination mechanisms must be 
used. 

2.8.2. Band-to-band recombination  

Band-to-band recombination depends on the density of available electrons and holes. Both carrier types need to be 
available in the recombination process. Therefore, the rate is expected to be proportional to the product of n and p. Also, in 
thermal equilibrium, the recombination rate must equal the generation rate since there is no net recombination or 
generation. As the product of n and p equals ni

2 in thermal equilibrium, the net recombination rate can be expressed as: 

(2.8.3)

where b is the bimolecular recombination constant. 

2.8.3. Trap assisted recombination  

The net recombination rate for trap-assisted recombination is given by: 

(2.8.4)

This expression can be further simplified for p >> n to: 

(2.8.5)

and for n >> p to: 

(2.8.6)

were 

(2.8.7)
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2.8.4. Surface recombination  

Recombination at semiconductor surfaces and interfaces can have a significant impact on the behavior of devices. This is 
because surfaces and interfaces typically contain a large number of recombination centers because of the abrupt termination 
of the semiconductor crystal, which leaves a large number of electrically active dangling bonds. In addition, the surfaces 
and interfaces are more likely to contain impurities since they are exposed during the device fabrication process. The net 
recombination rate due to trap-assisted recombination and generation is given by: 

(2.8.8)

This expression is almost identical to that of Shockley-Hall-Read recombination. The only difference is that the 
recombination is due to a two-dimensional density of traps, Nts, as the traps only exist at the surface or interface.

This equation can be further simplified for minority carriers in a quasi-neutral region. For instance for electrons in a quasi-
neutral p-type region p >> n and p >> ni so that for Ei = Est, it can be simplified to: 

(2.8.9)

where the recombination velocity, vs, is given by: 

(2.8.10)

2.8.5. Auger recombination  

Auger recombination involves three particles: an electron and a hole, which recombine in a band-to-band transition and 
give off the resulting energy to another electron or hole. The expression for the net recombination rate is therefore similar 
to that of band-to-band recombination but includes the density of the electrons or holes, which receive the released energy 
from the electron-hole annihilation: 

(2.8.11)

The two terms correspond to the two possible mechanisms. 

2.8.6. Generation due to light  

Carriers can be generated in semiconductors by illuminating the semiconductor with light. The energy of the incoming 
photons is used to bring an electron from a lower energy level to a higher energy level. In the case where an electron is 
removed from the valence band and added to the conduction band, an electron-hole pair is generated. A necessary 
condition for this to happen is that the energy of the photon, Eph, is larger than the bandgap energy, Eg. As the energy of 

the photon is given off to the electron, the photon no longer exists.

If each absorbed photon creates one electron-hole pair, the electron and hole generation rates are given by: 
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(2.8.12)

where α is the absorption coefficient of the material at the energy of the incoming photon. The absorption of light in a 
semiconductor causes the optical power to decrease with distance. This effect is described mathematically by:

(2.8.13)

The calculation of the generation rate of carriers therefore requires first a calculation of the optical power within the 
structure from which the generation rate can then be obtained using (2.8.12). 

Example 2.11 Calculate the electron and hole densities in an n-type silicon wafer (Nd = 1017 cm-3) illuminated 

uniformly with 10 mW/cm2 of red light (Eph = 1.8 eV). The absorption coefficient of red light in silicon 

is 10-3 cm-1. The minority carrier lifetime is 10 µs.

Solution The generation rate of electrons and holes equals: 

where the photon energy was converted into Joules. The excess carrier densities are then obtained from: 

The excess carrier densities are then obtained from: So that the electron and hole densities equal: 
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Chapter 3: Metal-Semiconductor Junctions 
3.2. Structure and principle of operation 
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3.3. Electrostatic analysis 
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3.4. Schottky diode current 
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Chapter 3: Metal-Semiconductor 
Junctions

Problems  

1.  Consider a gold-GaAs Schottky diode with a capacitance of 1 pF at -1 V. What is the doping density of the GaAs? 
Also calculate the depletion layer width at zero bias and the field at the surface of the semiconductor at -10 V. The 

area of the diode is 10-5 cm2.

2.  Using the work functions listed in table 3.2.1, predict which metal-semiconductor junctions are expected to be 
ohmic contacts. Use the ideal interface model.

3.  Design a platinum-silicon diode with a capacitance of 1 pF and a maximum electric field less than 104 V/cm at -10 
V bias. Provide a possible doping density and area. Make sure the diode has an area between 10-5 and 10-7 cm2. Is it 
possible to satisfy all requirements if the doping density equals 1017 cm-3?

4.  A platinum-silicon diode (area = 10-4 cm-3, Nd = 1017 cm-3) is part of an LC tuning circuit containing a 100 nH 

inductance. The applied voltage must be less than 5 V. What is the tuning range of the circuit? The resonant 
frequency equals

, where L is the inductance and C is the diode capacitance.
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Chapter 3: Metal-Semiconductor 
Junctions

Review Questions  

1.  What is a flatband diagram? 

2.  Define the barrier height of a metal-semiconductor junction. Can the barrier height be negative? Explain.

3.  Define the built-in potential. Also provide an equation and state the implicit assumption(s). 

4.  Name three possible reasons why a measured barrier height can differ from the value calculated using equations 
(3.2.1) or (3.2.2).

5.  How does the energy band diagram of a metal-semiconductor junction change under forward and reverse bias? How 
does the depletion layer width change with bias?

6.  What is the full depletion approximation? Why do we need the full depletion approximation? 

7.  What mechanism(s) cause(s) current in a metal-semiconductor junction? 
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Chapter 4: p-n Junctions

Problems  

1.  A silicon p-n junction (Na = 1016 cm-3 and Nd = 4 x 1016 cm-3) is biased with Va = -3 V. Calculate the built-in 

potential, the depletion layer width and the maximum electric field of the junction.

2.  An abrupt silicon p-n junction consists of a p-type region containing 1016 cm-3 acceptors and an n-type region 
containing also 1016 cm-3 acceptors in addition to 1017 cm-3 donors. 

a.  Calculate the thermal equilibrium density of electrons and holes in the p-type region as well as both densities 
in the n-type region.

b.  Calculate the built-in potential of the p-n junction. 
c.  Calculate the built-in potential of the p-n junction at 100°C. 

3.  For a p-n junction with a built-in potential of 0.62 V 
a.  What is the potential across the depletion region at an applied voltage, Va, of 0, 0.5 and -2 Volt? 

b.  If the depletion layer is 1 micrometer at Va = 0 Volt, find the maximum electric field in the depletion region. 

c.  Assuming that the net doping density |Nd - Na| is the same in the n-type and p-type region of the diode, 

carefully sketch the electric field and the potential as a function of position throughout the depletion region. 
Add numeric values wherever possible.

4.  An abrupt silicon (ni = 1010 cm-3) p-n junction consists of a p-type region containing 1016 cm-3 acceptors and an n-

type region containing 5 x 1016 cm-3 donors. 
a.  Calculate the built-in potential of this p-n junction. 
b.  Calculate the total width of the depletion region if the applied voltage, Va equals 0, 0.5 and -2.5 V. 

c.  Calculate maximum electric field in the depletion region at 0, 0.5 and -2.5 V. 
d.  Calculate the potential across the depletion region in the n-type semiconductor at 0, 0.5 and -2.5 V. 

5.  Consider an abrupt p-n diode in thermal equilibrium with as many donors in the n-type region as acceptors in the p-
type region and a maximum electric field of -13 kV/cm and a total depletion layer width of 1 µm. (assume εs/ ε0 = 

12) 
a.  What is the applied voltage, Va? 
b.  What is the built-in potential of the diode? 
c.  What is the donor density in the n-type region and the acceptor density in the p-type region? 
d.  What is the intrinsic carrier density of the semiconductor if the temperature is 300 K ? 

6.  A silicon (nI = 1010 cm-3) p-n diode with Na = 1018 cm-3 has a capacitance of 10-8 F/cm2 at an applied voltage of 

0.5 V. Find the donor density.

7.  A silicon (ni = 1010 cm-3) p-n diode has a maximum electric field of -106 V/cm and a depletion layer width of 1 µm. 

The acceptor density in the p-type region is four times larger than the donor density in the n-type region. Calculate 
both doping densities.

8.  Consider a symmetric silicon p-n diode (Na = Nd)
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a.  Calculate the built-in potential if Na = 1013, 1015 and 1017 cm-3. Also, calculate the doping densities 

corresponding to a built-in potential of 0.7 V.
b.  For the same as in part a), calculate the total depletion layer widths, the capacitance per unit area and the 

maximum electric field in thermal equilibrium.
c.  For the same as in part a), calculate the total depletion layer widths, the capacitance per unit area and the 

maximum electric field in thermal equilibrium.
d.  Repeat part a) and b) with Na = 3 Nd. 

9.  A one-sided silicon diode has a breakdown voltage of 1000 V for which the maximum electric field at breakdown is 
100 kV/cm. What is the maximum possible doping density in the low doped region, the built-in potential, the 
depletion layer width and the capacitance per unit area? Assume that bulk potential of the highly doped region is 
Eg/2 (= 0.56 V).

10.  A silicon p-n junction (Na = 1016 cm-3 and Nd = 4 x 1016 cm-3) is biased with Va = 0.6 V. Calculate the ideal diode 

current assuming that the n-type region is much smaller than the diffusion length with wn
' = 1 µm and assuming a 

"long" p-type region. Use µn = 1000 cm2/V-s and µp = 300 cm2/V-s. The minority carrier lifetime is 10 µs and the 

diode area is 100 µm by 100 µm.

11.  Derive equation 4.4.24.

12.  Calculate the relative error when using the "short diode" approximation if Ln = 2 wp
' and Lp = 2 wn

'.

13.  A silicon p-n junction (Na = 1015 cm-3, wp = 1 µm and Nd = 4 x 1016 cm-3, wn = 1 µm) is biased with Va = 0.5 V. 

Use µn = 1000 cm2/V-s and µp = 300 cm2/V-s. The minority carrier lifetime is 10 µs and the diode area is 100 µm 

by 100 µm.
a.  Calculate the built-in potential of the diode. 
b.  Calculate the depletion layer widths, xn and xp, and the widths of the quasi-neutral regions. 

c.  Compare the width of the quasi-neutral regions with the minority-carrier diffusion-lengths and decide 
whether to use the "long" or "short" diode approximation. Calculate the current through the diode. 

d.  Compare the result of part c) with the current obtained by using the general solution (equation 4.4.24) 
e.  Using the approximation chosen in part c) calculate the ratio of the electron current to the hole current 

traversing the depletion region. 

14.  An abrupt silicon p-n diode consists of a p-type region containing 1018 cm-3 acceptors and an n-type region 
containing 1015 cm-3 donors.

a.  Calculate the breakdown field in the n-type region. 
b.  Using the breakdown field from part a), calculate the breakdown voltage of the diode. 
c.  What is the depletion layer width at breakdown? 
d.  Discuss edge effects and specify the minimum junction depth needed to avoid these effects. 

15.  A 1 cm2 solar cell consists of a p-type region containing 1018 cm-3 acceptors and an n-type region containing 1015 
cm-3 donors. wp

' = 0.1 µm and wn >> Lp. Use µn = 1000 cm2/V-s and µp = 300 cm2/V-s. . The minority carrier 

lifetime is 10 µs . The diode is illuminated with sun light, yielding a photocurrent density of 30 mA/cm2.
a.  Calculate the open circuit voltage and short-circuit current of the solar cell. 
b.  Calculate the maximum power generated by the call and the corresponding voltage and current. 
c.  Calculate the fill factor of the solar cell. 
d.  Calculate the fill factor for the same cell when it is illuminated by a concentrator so that the photocurrent 
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density equals 300 A/cm2. 
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Problems 
1. Consider a gold-GaAs Schottky diode with a capacitance of 1 pF at -1 V. What is the doping 

density of the GaAs? Also calculate the depletion layer width at zero bias and the field at the 
surface of the semiconductor at -10 V bias voltage. The area of the diode is 10-5 cm2. 

2. Using the work functions listed in table 3.2.1, predict which metal-semiconductor junctions 
are expected to be ohmic contacts. Use the ideal interface model. 

3. Design a platinum-silicon diode with a capacitance of 1 pF and a maximum electric field less 
than 104 V/cm at -10 V bias. Provide a possible doping density and area. Make sure the diode 
has an area between 10-5 and 10-7 cm2. Is it possible to satisfy all requirements if the doping 
density equals 1017 cm-3? 

4. A platinum-silicon diode (area  = 10-4 cm-2, Nd =1017 cm-3) is part of an LC tuning circuit 
containing a 100 nH inductance. The applied voltage must be less than 5 V. What is the 

tuning range of the circuit? The resonant frequency equals 
LCπ

ν
2

1
= , where L is the 

inductance and C is the diode capacitance.  



Problem 3.1 Consider a gold-GaAs Schottky diode with a capacitance of 1 pF 
at -1 V. What is the doping density of the GaAs? Also calculate 
the depletion layer width at zero bias and the field at the surface 
of the semiconductor at -10 V. The area of the diode is 10-5 cm2.  

Solution The depletion layer width can be calculated from the capacitance 
yielding: 
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Provided one knows the built-in potential 
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Which in turn depends on the doping density. 
Starting with φi = 0.7 one finds Nd = 1.83 x 1017 cm-3 and the 
corresponding built-in potential φi = 0.708. Further iteration 
yields the result: Nd = 1.84 x 1017 cm-3. 
 
The depletion layer width at zero bias equals: 
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Metal-Semicond. Junctions

Chapter 3: Metal-Semiconductor 
Junctions

3.2. Structure and principle of operation

3.2.1. Structure
3.2.2. Flatband diagram and built-in potential
3.2.3. Thermal equilibrium
3.2.4. Forward and reverse bias

3.2.1. Structure  

The structure of a metal-semiconductor junction is shown in Figure 3.2.1. It consists of a metal contacting a piece of 
semiconductor. An ideal Ohmic contact, a contact such that no potential exists between the metal and the semiconductor, is 
made to the other side of the semiconductor. The sign convention of the applied voltage and current is also shown on 
Figure 3.2.1. 

Figure 3.2.1 : Structure and sign convention of a metal-semiconductor junction

3.2.2. Flatband diagram and built-in potential  
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The barrier between the metal and the semiconductor can be identified on an energy band diagram. To construct such 
diagram we first consider the energy band diagram of the metal and the semiconductor, and align them using the same 
vacuum level as shown in Figure 3.2.2 (a). As the metal and semiconductor are brought together, the Fermi energies of the 
metal and the semiconductor do not change right away. This yields the flatband diagram of Figure 3.2.2 (b).

Figure 3.2.2 : Energy band diagram of the metal and the semiconductor before (a) and after (b) contact is made.

The barrier height, φB, is defined as the potential difference between the Fermi energy of the metal and the band edge 

where the majority carriers reside. From Figure 3.2.2 (b) one finds that for an n-type semiconductor the barrier height is 
obtained from:

(3.2.1)

Where ΦM is the work function of the metal and χ is the electron affinity. The work function of selected metals as 

measured in vacuum can be found in Table 3.2.1. For p-type material, the barrier height is given by the difference between 
the valence band edge and the Fermi energy in the metal:

(3.2.2)

A metal-semiconductor junction will therefore form a barrier for electrons and holes if the Fermi energy of the metal as 
drawn on the flatband diagram is somewhere between the conduction and valence band edge. 

In addition, we define the built-in potential, φI, as the difference between the Fermi energy of the metal and that of the 

semiconductor. 

(3.2.3)

(3.2.4)
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The measured barrier height for selected metal-semiconductor junctions is listed in Table 3.2.1. These experimental barrier 
heights often differ from the ones calculated using (3.2.1) or (3.2.2). This is due to the detailed behavior of the metal-
semiconductor interface. The ideal metal-semiconductor theory assumes that both materials are infinitely pure, that there is 
no interaction between the two materials nor is there an interfacial layer. Chemical reactions between the metal and the 
semiconductor alter the barrier height as do interface states at the surface of the semiconductor and interfacial layers. Some 
general trends however can still be observed. As predicted by (3.2.1), the barrier height on n-type semiconductors increases 
for metals with a higher work function as can be verified for silicon. Gallium arsenide on the other hand is known to have a 
large density of surface states so that the barrier height becomes virtually independent of the metal. Furthermore, one finds 
the barrier heights reported in the literature to vary widely due to different surface cleaning procedures.

Table 3.2.1: Workfunction of selected metals and their measured barrier height on germanium, silicon and gallium 
arsenide.

Example 3.1 Consider a chrome-silicon metal-semiconductor junction with Nd = 1017 cm-3. Calculate the barrier 

height and the built-in potential. Repeat for a p-type semiconductor with the same doping density.

Solution The barrier height equals: 

Note that this value differs from the one listed in Table 3.2.1 since the work function in vacuum was 
used. See the discussion in the text for more details.

The built-in potential equals: 

The barrier height for the chrome/p-silicon junction equals:

And the built-in potential equals: 
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3.2.3. Thermal equilibrium  

The flatband diagram, shown in Figure 3.2.2 (b), is not a thermal equilibrium diagram, since the Fermi energy in the metal 
differs from that in the semiconductor. Electrons in the n-type semiconductor can lower their energy by traversing the 
junction. As the electrons leave the semiconductor, a positive charge, due to the ionized donor atoms, stays behind. This 
charge creates a negative field and lowers the band edges of the semiconductor. Electrons flow into the metal until 
equilibrium is reached between the diffusion of electrons from the semiconductor into the metal and the drift of electrons 
caused by the field created by the ionized impurity atoms. This equilibrium is characterized by a constant Fermi energy 
throughout the structure. 

Figure 3.2.3 : Energy band diagram of a metal-semiconductor contact in thermal equilibrium.

It is of interest to note that in thermal equilibrium, i.e. with no external voltage applied, there is a region in the 
semiconductor close to the junction ( ), which is depleted of mobile carriers. We call this the depletion region. The 
potential across the semiconductor equals the built-in potential, φi.

3.2.4. Forward and reverse bias  
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Operation of a metal-semiconductor junction under forward and reverse bias is illustrated with Figure 3.2.4. As a positive 
bias is applied to the metal (Figure 3.2.4 (a)), the Fermi energy of the metal is lowered with respect to the Fermi energy in 
the semiconductor. This results in a smaller potential drop across the semiconductor. The balance between diffusion and 
drift is disturbed and more electrons will diffuse towards the metal than the number drifting into the semiconductor. This 
leads to a positive current through the junction at a voltage comparable to the built-in potential.

Figure 3.2.4 : Energy band diagram of a metal-semiconductor junction under (a) forward and (b) reverse bias

As a negative voltage is applied (Figure 3.2.4 (b)), the Fermi energy of the metal is raised with respect to the Fermi energy 
in the semiconductor. The potential across the semiconductor now increases, yielding a larger depletion region and a larger 
electric field at the interface. The barrier, which restricts the electrons to the metal, is unchanged so that the flow of 
electrons is limited by that barrier independent of the applied voltage. The metal-semiconductor junction with positive 
barrier height has therefore a pronounced rectifying behavior. A large current exists under forward bias, while almost no 
current exists under reverse bias.

The potential across the semiconductor therefore equals the built-in potential, φi, minus the applied voltage, Va.

(3.2.5)
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Chapter 4 Examples

Chapter 4: p-n Junctions

Examples

Example 4.1  An abrupt silicon p-n junction consists of a p-type region containing 2 x 1016 cm-3 acceptors and an n-
type region containing also 1016 cm-3 acceptors in addition to 1017 cm-3 donors. 

Example 4.2  An abrupt silicon (nI = 1010 cm-3) p-n junction consists of a p-type region containing 1016 cm-3 

acceptors and an n-type region containing 5 x 1016 cm-3 donors. 

a.  Calculate the built-in potential of this p-n junction.
b.  Calculate the total width of the depletion region if the applied voltage Va equals 0, 0.5 and -

2.5 V.
c.  Calculate maximum electric field in the depletion region at 0, 0.5 and -2.5 V.
d.  Calculate the potential across the depletion region in the n-type semiconductor at 0, 0.5 and -

2.5 V.

Example 4.3  Consider an abrupt p-n diode with Na = 1018 cm-3 and Nd = 1016 cm-3. Calculate the junction 

capacitance at zero bias. The diode area equals 10-4 cm2. Repeat the problem while treating the diode 
as a one-sided diode and calculate the relative error.

Example 4.4  An abrupt silicon p-n junction (Na = 1016 cm-3 and Nd = 4 x 1016 cm-3) is biased with Va = 0.6 V. 

Calculate the ideal diode current assuming that the n-type region is much smaller than the diffusion 
length with wn

' = 1 µm and assuming a "long" p-type region. Use µn = 1000 cm2/V-s and µp = 300 

cm2/V-s. The minority carrier lifetime is 10 µs and the diode area is 100 µm by 100 µm. 

Example 4.5  a.  Calculate the diffusion capacitance of the diode described in Example 4.4 at zero bias. Use 
µn= 1000 cm2/V-s, µp = 300 cm2/V-s, wp

' = 1 µm and wn
' = 1 mm. The minority carrier 

lifetime equals 0.1 ms.
b.  For the same diode, find the voltage for which the junction capacitance equals the diffusion 

capacitance.

Example 4.6  A 1 cm2 silicon solar cell has a saturation current of 10-12 A and is illuminated with sunlight yielding 
a short-circuit photocurrent of 25 mA. Calculate the solar cell efficiency and fill factor.
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Chapter 5: Bipolar Junction Transistors

Examples

Example 5.1  A bipolar transistor with an emitter current of 1 mA has an emitter efficiency of 0.99, a base transport 
factor of 0.995 and a depletion layer recombination factor of 0.998. Calculate the base current, the 
collector current, the transport factor and the current gain of the transistor. 

Example 5.2  Consider a pnp bipolar transistor with emitter doping of 1018 cm-3 and base doping of 1017 cm-3. The 
quasi-neutral region width in the emitter is 1 µm and 0.2 µm in the base. Use µn = 1000 cm2/V-s and 

µp = 300 cm2/V-s . The minority carrier lifetime in the base is 10 ns.Calculate the emitter efficiency, 
the base transport factor, and the current gain of the transistor biased in the forward active mode. 
Assume there is no recombination in the depletion region.

Example 5.3  Calculate the saturation voltage of a bipolar transistor biased with a base current of 1 mA and a 
collector current of 10 mA. Use αR = 0.993 and αF = 0.2.

Example 5.4  Consider a bipolar transistor with a base doping of 1017 cm-3 and a quasi-neutral base width of 0.2 
µm. Calculate the Early voltage and collector current ideality factor given that the base-emitter 
capacitance and the base-collector capacitance are 0.2 nF and 0.2 pF. The collector area equals 10-4 
cm-2.
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Example 4.1 An abrupt silicon p-n junction consists of a p-type region
containing 2 x 1016 cm-3 acceptors and an n-type region
containing also 1016 cm-3 acceptors in addition to 1017 cm-3

donors.
a. Calculate the thermal equilibrium density of electrons

and holes in the p-type region as well as both densities in
the n-type region.

b. Calculate the built-in potential of the p-n junction.
c. Calculate the built-in potential of the p-n junction at 400

K.
Solution a. The thermal equilibrium densities are:

In the p-type region:
p = Na = 2 x 1016 cm-3

n = ni
2/p = 1020/2 x 1016 = 5 x 103 cm-3

In the n-type region
n = Nd - Na = 9 x 1016 cm-3

p = ni
2/n = 1020/1 x 1016 = 1.11 x 103 cm-3

b. The built-in potential is obtained from
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= 0.79 V

c. Similarly, the built-in potential at 400 K equals
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= 0.63 V

where the intrinsic carrier density at 400 K was obtained
from Example 2.4 b.



Example 4.2 An abrupt silicon (ni = 1010 cm-3) p-n junction consists of a p-
type region containing 1016 cm-3 acceptors and an n-type region
containing 5 x 1016 cm-3 donors.

a. Calculate the built-in potential of this p-n junction.
b. Calculate the total width of the depletion region if the

applied voltage Va equals 0, 0.5 and -2.5 V.
c. Calculate maximum electric field in the depletion region

at 0, 0.5 and -2.5 V.
d. Calculate the potential across the depletion region in the

n-type semiconductor at 0, 0.5 and -2.5 V.
The built-in potential is calculated from:
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The depletion layer width is obtained from:
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This yields the following numeric values:

Va = 0 V Va = 0.5 V Va = -2.5 V
w 0.315 µm 0.143 µm 0.703 µm
E 40 kV/cm 18 kV/cm 89 kV/cm
φn 0.105 V 0.0216 V 0.522 V



Example 4.3 An abrupt silicon p-n junction (Na = 1016 cm-3 and Nd = 4 x 1016

cm-3) is biased with Va = 0.6 V. Calculate the ideal diode current
assuming that the n-type region is much smaller than the
diffusion length with wn

' = 1 µm and assuming a "long" p-type
region. Use µn = 1000 cm2/V-s and µp = 300 cm2/V-s. The
minority carrier lifetime is 10 µs and the diode area is 100 µm
by 100 µm.
The current is calculated from:
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with
Dn = µn Vt = 1000 x 0.0258 = 25.8 cm2/V-s
DP = µP Vt = 300 x 0.0258 = 7.75 cm2/V-s

np0 = ni
2/Na = 1020/1016 = 104 cm-3

pn0 = ni
2/Nd = 1020/4 x 1016 = 2.5 x 103 cm-3

=×== −5108.25nnn DL τ 161 µm

yielding I = 40.7 µΑ
Note that the hole diffusion current occurs in the "short" n-type
region and therefore depends on the quasi-neutral width in that
region. The electron diffusion current occurs in the "long" p-type
region and therefore depends on the electron diffusion length in
that region.



Example 4.4 Consider an abrupt p-n diode with Na = 1018 cm-3 and Nd = 1016

cm-3. Calculate the junction capacitance at zero bias. The diode
area equals 10-4 cm2. Repeat the problem while treating the
diode as a one-sided diode and calculate the relative error.

Solution The built in potential of the diode equals:
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The depletion layer width at zero bias equals:
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And the junction capacitance at zero bias equals:
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= 3.17 pF

Repeating the analysis while treating the diode as a one-sided
diode, one only has to consider the region with the lower doping
density so that
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And the junction capacitance at zero bias equals
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= 3.18 pF

The relative error equals 0.5 %, which justifies the use of the
one-sided approximation.



Example 4.5 a. Calculate the diffusion capacitance of the diode described in
Example 4.4 at zero bias. Use µn = 1000 cm2/V-s, µp = 300
cm2/V-s, wp' = 1 µm and wn' = 1 mm. The minority carrier
lifetime equals 0.1 ms.

b. For the same diode, find the voltage for which the junction
capacitance equals the diffusion capacitance.

Solution a. The diffusion capacitance at zero volts equals
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Where the "short" diode expression was used for the
capacitance associated with the excess charge due to
electrons in the p-type region. The "long" diode expression
was used for the capacitance associated with the excess
charge due to holes in the n-type region.
The diffusion constants and diffusion lengths equal

Dn = µn x Vt = 25.8 cm2/s
Dp = µp x Vt = 7.75 cm2/s

ppp DL τ=

And the electron transit time in the p-type region equals
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b. The voltage at which the junction capacitance equals the
diffusion capacitance is obtained by solving
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yielding Va = 0.442 V

:



Example 4.6 A 1 cm2 silicon solar cell has a saturation current of 10-12 A and
is illuminated with sunlight yielding a short-circuit photocurrent
of 25 mA. Calculate the solar cell efficiency and fill factor.

Solution The maximum power is generated for:
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where the voltage, Vm, is the voltage corresponding to the
maximum power point. This voltage is obtained by solving the
following transcendental equation:
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Using iteration and a starting value of 0.5 V one obtains the
following successive values for Vm:

Vm = 0.5, 0.542, 0.540 V
and the efficiency equals:
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The current, Im, corresponding to the voltage, Vm, was calculated
using equation (4.6.1) and the power of the sun was assumed
100 mW/cm2. The fill factor equals:
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where the open circuit voltage is calculated using equation
(4.6.1) and I = 0. The short circuit current equals the
photocurrent.



Example 3.1 Consider a chrome-silicon metal-semiconductor junction with Nd 
= 1017 cm-3. Calculate the barrier height and the built-in 
potential. Repeat for a p-type semiconductor with the same 
doping density. 

Solution The barrier height equals: 
V 45.005.45.4 =−=−Φ= χφ MB  

Note that this value differs from the one listed in Table 3.2.1 
since the work function in vacuum was used. See the discussion 
in the text for more details. 
The built-in potential equals: 
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The barrier height for the chrome/p-silicon junction equals: 
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Example 3.2 Consider a chrome-silicon metal-semiconductor junction with Nd 
= 1017 cm-3. Calculate the depletion layer width, the electric field 
in the silicon at the metal-semiconductor interface, the potential 
across the semiconductor and the capacitance per unit area for an 
applied voltage of -5 V. 

Solution The depletion layer width equals: 
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where the built-in potential was already calculated in Example 
3.1. The electric field in the semiconductor at the interface is: 
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The potential equals: 
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And the capacitance per unit area is obtained from: 
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Electrostatic analysis

Chapter 3: Metal-Semiconductor 
Junctions

3.3. Electrostatic analysis

3.3.1. General discussion - Poisson's equation
3.3.2. Full depletion approximation
3.3.3. Full depletion analysis
3.3.4. Junction capacitance
3.3.5. Schottky barrier lowering

3.3.1. General discussion - Poisson's equation  

The electrostatic analysis of a metal-semiconductor junction is of interest since it provides knowledge about the charge and 
field in the depletion region. It is also required to obtain the capacitance-voltage characteristics of the diode.

The general analysis starts by setting up Poisson's equation: 

(3.3.1)

where the charge density, ρ, is written as a function of the electron density, the hole density and the donor and acceptor 
densities. To solve the equation, we have to express the electron and hole density, n and p, as a function of the potential, φ, 
yielding: 

(3.3.2)

with 

(3.3.3)

where the potential is chosen to be zero in the n-type region, where x >> xn.

This second-order non-linear differential equation (3.3.2) can not be solved analytically. Instead we will make the 
simplifying assumption that the depletion region is fully depleted and that the adjacent neutral regions contain no charge. 
This full depletion approximation is the topic of section 3.3.2. 

3.3.2. Full depletion approximation  
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The simple analytic model of the metal-semiconductor junction is based on the full depletion approximation. This 
approximation is obtained by assuming that the semiconductor is fully depleted over a distance xd, called the depletion 

region. While this assumption does not provide an accurate charge distribution, it does provide very reasonable 
approximate expressions for the electric field and potential throughout the semiconductor. These are derived in section 
3.3.3.

3.3.3. Full depletion analysis  

We now apply the full depletion approximation to an M-S junction containing an n-type semiconductor. We define the 
depletion region to be between the metal-semiconductor interface (x = 0) and the edge of the depletion region (x = xd). The 

depletion layer width, xd, is unknown at this point but will later be expressed as a function of the applied voltage.

To find the depletion layer width, we start with the charge density in the semiconductor and calculate the electric field and 
the potential across the semiconductor as a function of the depletion layer width. We then solve for the depletion layer 
width by requiring the potential across the semiconductor to equal the difference between the built-in potential and the 
applied voltage, φi - Va. The different steps of the analysis are illustrated by Figure 3.3.1.

As the semiconductor is depleted of mobile carriers within the depletion region, the charge density in that region is due to 
the ionized donors. Outside the depletion region, the semiconductor is assumed neutral. This yields the following 
expressions for the charge density, ρ: 

(3.3.4)

where we assumed full ionization so that the ionized donor density equals the donor density, Nd. This charge density is 

shown in Figure 3.3.1 (a). The charge in the semiconductor is exactly balanced by the charge in the metal, QM, so that no 

electric field exists except around the metal-semiconductor interface. 
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Figure 3.3.1 : (a) Charge density, (b) electric field, (c) potential and (d) energy as obtained with the full depletion 
analysis.

Using Gauss's law we obtain electric field as a function of position, also shown in Figure 3.3.1 (b): 

(3.3.5)

where εs is the dielectric constant of the semiconductor. We also assumed that the electric field is zero outside the depletion 

region. It is expected to be zero there since a non-zero field would cause the mobile carriers to redistribute until there is no 
field. The depletion region does not contain mobile carriers so that there can be an electric field. The largest (absolute) 
value of the electric field is obtained at the interface and is given by: 

(3.3.6)

where the electric field was also related to the total charge (per unit area), Qd, in the depletion layer. Since the electric field 

is minus the gradient of the potential, one obtains the potential by integrating the expression for the electric field, yielding: 
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(3.3.7)

We now assume that the potential across the metal can be neglected. Since the density of free carriers is very high in a 
metal, the thickness of the charge layer in the metal is very thin. Therefore, the potential across the metal is several orders 
of magnitude smaller that that across the semiconductor, even though the total amount of charge is the same in both 
regions.

The total potential difference across the semiconductor equals the built-in potential, φi, in thermal equilibrium and is further 

reduced/increased by the applied voltage when a positive/negative voltage is applied to the metal as described by equation 
(3.2.5). This boundary condition provides the following relation between the semiconductor potential at the surface, the 
applied voltage and the depletion layer width: 

(3.3.8)

Solving this expression for the depletion layer width, xd, yields: 

(3.3.9)

3.3.4. Junction capacitance  

In addition, we can obtain the capacitance as a function of the applied voltage by taking the derivative of the charge with 
respect to the applied voltage yielding: 

(3.3.10)

The last term in the equation indicates that the expression of a parallel plate capacitor still applies. One can understand this 
once one realizes that the charge added/removed from the depletion layer as one decreases/increases the applied voltage is 
added/removed only at the edge of the depletion region. While the parallel plate capacitor expression seems to imply that 
the capacitance is constant, the metal-semiconductor junction capacitance is not constant since the depletion layer width, 
xd, varies with the applied voltage. 

Example 3.2 Consider a chrome-silicon metal-semiconductor junction with Nd = 1017 cm-3. Calculate the depletion 

layer width, the electric field in the silicon at the metal-semiconductor interface, the potential across the 
semiconductor and the capacitance per unit area for an applied voltage of -5 V.
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Solution The depletion layer width equals:

where the built-in potential was already calculated in Example 3.1. 

The electric field in the semiconductor at the interface is: 

The potential equals:

And the capacitance per unit area is obtained from: 

3.3.5. Schottky barrier lowering  

Image charges build up in the metal electrode of a metal-semiconductor junction as carriers approach the metal-
semiconductor interface. The potential associated with these charges reduces the effective barrier height. This barrier 
reduction tends to be rather small compared to the barrier height itself. Nevertheless this barrier reduction is of interest 
since it depends on the applied voltage and leads to a voltage dependence of the reverse bias current. Note that this barrier 
lowering is only experienced by a carrier while approaching the interface and will therefore not be noticeable in a 
capacitance-voltage measurement. 

An energy band diagram of an n-type silicon Schottky barrier including the barrier lowering is shown in Figure 3.3.2: 
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Figure 3.3.2: Energy band diagram of a silicon Schottky barrier with φB = 0.8 V and Nd = 1019 cm-3.

Shown is the energy band diagram obtained using the full-depletion approximation, the potential reduction experienced by 
electrons, which approach the interface and the resulting conduction band edge. A rounding of the conduction band edge 
can be observed at the metal-semiconductor interface as well as a reduction of the height of the barrier.

The calculation of the barrier reduction assumes that the charge of an electron close to the metal-semiconductor interface 
attracts an opposite surface charge, which exactly balances the electron's charge so that the electric field surrounding the 
electron does not penetrate beyond this surface charge. The time to build-up the surface charge and the time to polarize the 
semiconductor around the moving electron is assumed to be much shorter than the transit time of the electron . This 
scenario is based on the assumption that there are no mobile or fixed charges around the electron as it approaches the metal-
semiconductor interface. The electron and the induced surface charges are shown in Figure 3.3.3: 

Figure 3.3.3: a) Field lines and surface charges due to an electron in close proximity to a perfect conductor and b) the 
field lines and image charge of an electron. 

It can be shown that the electric field in the semiconductor is identical to that of the carrier itself and another carrier with 
opposite charge at equal distance but on the opposite side of the interface. This charge is called the image charge. The 
difference between the actual surface charges and the image charge is that the fields in the metal are distinctly different. 
The image charge concepts is justified on the basis that the electric field lines are perpendicular to the surface a perfect 
conductor, so that, in the case of a flat interface, the mirror image of the field lines provides continuous field lines across 
the interface. 

The barrier lowering depends on the square root of the electric field at the interface and is calculated from:

(3.3.11)

http://ece-www.colorado.edu/~bart/book/book/chapter3/ch3_3.htm (6 of 6) [2/28/2002 5:28:00 PM]



Schottky diode current

Chapter 3: Metal-Semiconductor 
Junctions

3.4. Schottky diode current

3.4.1. Diffusion current
3.4.2. Thermionic emission
3.4.3. Tunneling

The current across a metal-semiconductor junction is mainly due to majority carriers. Three distinctly different mechanisms 
exist: diffusion of carriers from the semiconductor into the metal, thermionic emission of carriers across the Schottky 
barrier and quantum-mechanical tunneling through the barrier. The diffusion theory assumes that the driving force is 
distributed over the length of the depletion layer. The thermionic emission theory on the other hand postulates that only 
energetic carriers, those, which have an energy equal to or larger than the conduction band energy at the metal-
semiconductor interface, contribute to the current flow. Quantum-mechanical tunneling through the barrier takes into 
account the wave-nature of the electrons, allowing them to penetrate through thin barriers. In a given junction, a 
combination of all three mechanisms could exist. However, typically one finds that only one limits the current, making it 
the dominant current mechanism.

The analysis reveals that the diffusion and thermionic emission currents can be written in the following form:

(3.4.1)

This expression states that the current is the product of the electronic charge, q, a velocity, v, and the density of available 
carriers in the semiconductor located next to the interface. The velocity equals the mobility multiplied with the field at the 
interface for the diffusion current and the Richardson velocity (see section 3.4.2) for the thermionic emission current. The 
minus one term ensures that the current is zero if no voltage is applied as in thermal equilibrium any motion of carriers is 
balanced by a motion of carriers in the opposite direction. 

The tunneling current is of a similar form, namely:

(3.4.2)

where vR is the Richardson velocity and n is the density of carriers in the semiconductor. The tunneling probability term, 

Θ, is added since the total current depends on the carrier flux arriving at the tunnel barrier multiplied with the probability, 
Θ, that they tunnel through the barrier. 

3.4.1. Diffusion current  

This analysis assumes that the depletion layer is large compared to the mean free path, so that the concepts of drift and 
diffusion are valid. The resulting current density equals:

(3.4.3)
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The current therefore depends exponentially on the applied voltage, Va, and the barrier height, φB. The prefactor can more 

easily be understood if one rewrites it as a function of the electric field at the metal-semiconductor interface, max:

(3.4.4)

yielding:

(3.4.5)

so that the prefactor equals the drift current at the metal-semiconductor interface, which for zero 

3.4.2 Thermionic emission  

The thermionic emission theory assumes that electrons, which have an energy larger than the top of the barrier, will cross 
the barrier provided they move towards the barrier. The actual shape of the barrier is hereby ignored. The current can be 
expressed as:

(3.4.6)

where  is the Richardson constant and φB is the Schottky barrier height.

The expression for the current due to thermionic emission can also be written as a function of the average velocity with 
which the electrons at the interface approach the barrier. This velocity is referred to as the Richardson velocity given by:

(3.4.7)

So that the current density becomes:

(3.4.8)

3.4.3. Tunneling  

The tunneling current is obtained from the product of the carrier charge, velocity and density. The velocity equals the 
Richardson velocity, the velocity with which on average the carriers approach the barrier. The carrier density equals the 
density of available electrons, n, multiplied with the tunneling probability, Θ, yielding:

(3.4.9)

Where the tunneling probability is obtained from:

(3.4.10)
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and the electric field equals  = φB/L. 

The tunneling current therefore depends exponentially on the barrier height, φB, to the 3/2 power.
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Chapter 4: p-n Junctions

Review Questions  

1.  What is a flatband diagram? 

2.  Discuss the motion of electrons and holes in a p-n junction in thermal equilibrium. 

3.  Define the built-in potential. Also provide an equation and state the implicit assumption(s). 

4.  How does the energy band diagram of a p-n junction change under forward and reverse bias? 

5.  What is the full depletion approximation? Why do we need the full depletion approximation? 

6.  Derive equation (4.3.17) from (4.3.13), (4.3.14) and (4.3.16). 

7.  Explain why the capacitance of a p-n junction (4.3.22) equals that of a parallel plate capacitor. How does the 
capacitance differ from a parallel plate capacitor? 

8.  How do you extract the doping profile shown in Fig. 4.3.4 from the capacitance shown in Fig. 4.3.3?

9.  What mechanism(s) cause(s) current in a p-n junction? 

10.  How does one calculate the current in a p-n junction? 

11.  How does one solve the diffusion equation in the quasi-neutral regions? 

12.  What is the difference between the "long" and "short" diode analysis? 

13.  When can the recombination/generation current in the depletion region be ignored? 

14.  Which saturation current is voltage dependent, that for the "long" diode or the one for the "short" diode? 

15.  Why does one need to include edge effects when calculating the breakdown voltage of a diode? 

16.  Name two breakdown mechanisms and discuss the temperature dependence of the resulting breakdown voltage. 

17.  Describe the avalanche breakdown mechanism. 

18.  Describe tunneling. 

19.  Illustrate the generation of a photocurrent in a p-n diode by drawing an energy band diagram. Indicate the photo-
generated carriers and their direction of motion. 
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20.  Why is the photocurrent negative compared to the forward bias current through the same diode? 

21.  What limits the quantum efficiency of a photodiode? 

22.  What is the difference between a solar cell and a photodiode? 

23.  Why would solar cells be more efficient if the sun where a laser rather than a black body radiator? 

24.  What limits the power conversion efficiency of a solar cell? 

25.  Using equation 4.6.1 show that the open-circuit voltage increases as the photocurrent increases. Use this result to 
prove that the power conversion efficiency of a solar increases when using a concentrator which increases the 
incident power density. 

26.  Why is silicon not used to fabricated LEDs or laser diodes? 

27.  Why are planar LEDs so inefficient? How can the efficiency of an LED be improved beyond that of a planar LED? 

28.  How does the light emitted by an LED differ from that emitted by a laser diode? 

29.  What is stimulated emission? 

30.  Why does a laser diode need a waveguide? 

31.  Explain the lasing condition in words. 

32.  Describe the power versus current characteristic of a laser diode.
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Chapter 5: Bipolar Junction Transistors 

5.1. Introduction 

5.2. Structure and principle of operation 
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5.3. Ideal transistor model 
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5.3.1. General bias modes of a bipolar transistor 
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5.4. Non-ideal effects 
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4.2. Structure and principle of operation 
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4.3. Electrostatic analysis of a p-n diode 
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4.4. The p-n diode current 
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4.6. Optoelectronic devices 
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Chapter 5: Bipolar Junction Transistors

Review Questions  

1.  Describe the motion of electrons and holes in a pnp bipolar transistor biased in the forward active mode with VBC = 

0. 

2.  What is the definition of the emitter efficiency? Explain in words and provide the corresponding equation. 

3.  What is the definition of the base transport factor? Explain in words and provide the corresponding equation. 

4.  Derive the relation between the current gain and the transport factor. 

5.  How does recombination in the quasi-neutral base region affect the emitter, base and collector current? 

6.  How does recombination in the base-emitter depletion region affect the emitter, base and collector current? 

7.  Explain the four different bias modes of a bipolar transistor. 

8.  Explain why a transistor can have a current gain larger than one in the common emitter mode. Provide the necessary 
and sufficient conditions needed to obtain a current gain larger than one. 

9.  What is the Early effect and how does it affect the transistor characteristics?
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Review Questions 
1. What is a flatband diagram?  

2. Discuss the motion of electrons and holes in a p-n junction in thermal equilibrium.  

3. Define the built-in potential. Also provide an equation and state the implicit assumption(s).  

4. How does the energy band diagram of a p-n junction change under forward and reverse bias?  

5. What is the full depletion approximation? Why do we need the full depletion approximation?  

6. Derive equation (4.3.17) from (4.3.13), (4.3.14) and (4.3.16).  

7. Explain why the capacitance of a p-n junction (4.3.22) equals that of a parallel plate 
capacitor. How does the capacitance differ from a parallel plate capacitor?  

8. How do you extract the doping profile shown in Fig. 4.3.4 from the capacitance shown in 
Fig. 4.3.3? 

9. What mechanism(s) cause(s) current in a p-n junction?  

10. How does one calculate the current in a p-n junction?  

11. How does one solve the diffusion equation in the quasi-neutral regions?  

12. What is the difference between the "long" and "short" diode analysis?  

13. When can the recombination/generation current in the depletion region be ignored?  

14. Which saturation current is voltage dependent, that for the "long" diode or the one for the 
"short" diode?  

15. Why does one need to include edge effects when calculating the breakdown voltage of a 
diode?  

16. Name two breakdown mechanisms and discuss the temperature dependence of the resulting 
breakdown voltage.  

17. Describe the avalanche breakdown mechanism.  

18. Describe tunneling.  

19. Illustrate the generation of a photocurrent in a p-n diode by drawing an energy band diagram. 
Indicate the photo-generated carriers and their direction of motion.  

20. Why is the photocurrent negative compared to the forward bias current through the same 
diode?  

21. What limits the quantum efficiency of a photodiode?  

22. What is the difference between a solar cell and a photodiode?  

23. Why would solar cells be more efficient if the sun where a laser rather than a black body 
radiator?  



 

     

24. What limits the power conversion efficiency of a solar cell?  

25. Using equation 4.6.1 show that the open-circuit voltage increases as the photocurrent 
increases. Use this result to prove that the power conversion efficiency of a solar increases 
when using a concentrator which increases the incident power density.  

26. Why is silicon not used to fabricated LEDs or laser diodes?  

27. Why are planar LEDs so inefficient? How can the efficiency of an LED be improved beyond 
that of a planar LED?  

28. How does the light emitted by an LED differ from that emitted by a laser diode?  

29. What is stimulated emission?  

30. Why does a laser diode need a waveguide?  

31. Explain the lasing condition in words.  

32. Describe the power versus current characteristic of a laser diode. 



Electrostatic analysis of a p-n diode

Chapter 4: p-n Junctions

4.3. Electrostatic analysis of a p-n diode

4.3.1. General discussion - Poisson's equation
4.3.2. The full-depletion approximation
4.3.3. Full depletion analysis
4.3.4. Junction capacitance

The electrostatic analysis of a p-n diode is of interest since it provides knowledge about the charge density and the electric 
field in the depletion region. It is also required to obtain the capacitance-voltage characteristics of the diode. The analysis is 
very similar to that of a metal-semiconductor junction (section 3.3). A key difference is that a p-n diode contains two 
depletion regions of opposite type.

4.3.1. General discussion - Poisson's equation  

The general analysis starts by setting up Poisson's equation: 

(4.3.1)

where the charge density, ρ, is written as a function of the electron density, the hole density and the donor and acceptor 
densities. To solve the equation, we have to express the electron and hole density, n and p, as a function of the potential, φ, 
yielding: 

(4.3.2)

with 

(4.3.3)

where the potential is chosen to be zero in the n-type region, far away from the p-n interface.

This second-order non-linear differential equation (4.3.2) can not be solved analytically. Instead we will make the 
simplifying assumption that the depletion region is fully depleted and that the adjacent neutral regions contain no charge. 
This full depletion approximation is the topic of the next section. 

4.3.2. The full-depletion approximation  
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Electrostatic analysis of a p-n diode

The full-depletion approximation assumes that the depletion region around the metallurgical junction has well-defined 
edges. It also assumes that the transition between the depleted and the quasi-neutral region is abrupt. We define the quasi-
neutral region as the region adjacent to the depletion region where the electric field is small and the free carrier density is 
close to the net doping density.

The full-depletion approximation is justified by the fact that the carrier densities change exponentially with the position of 
the Fermi energy relative to the band edges. For example, as the distance between the Fermi energy and the conduction 
band edge is increased by 59 meV, the electron concentration at room temperature decreases to one tenth of its original 
value. The charge in the depletion layer is then quickly dominated by the remaining ionized impurities, yielding a constant 
charge density for uniformly doped regions. 

We will therefore start the electrostatic analysis using an abrupt charge density profile, while introducing two unknowns, 
namely the depletion layer width in the p-type region, xp, and the depletion region width in the n-type region, xn. The sum 

of the two depletion layer widths in each region is the total depletion layer width xd, or: 

(4.3.4)

From the charge density, we then calculate the electric field and the potential across the depletion region. A first 
relationship between the two unknowns is obtained by setting the positive charge in the depletion layer equal to the 
negative charge. This is required since the electric field in both quasi-neutral regions must be zero. A second relationship 
between the two unknowns is obtained by relating the potential across the depletion layer width to the applied voltage. The 
combination of both relations yields a solution for xp and xn, from which all other parameters can be obtained. 

4.3.3. Full depletion analysis  

Once the full-depletion approximation is made it is easy to find the charge density profile: It equals the sum of the charges 
due to the holes, electrons, ionized acceptors and ionized holes: 

(4.3.5)

where it is assumed that no free carriers are present within the depletion region. For an abrupt p-n diode with doping 
densities, Na and Nd, the charge density is then given by:

(4.3.6)

This charge density, ρ, is shown in Figure 4.3.1 (a). 
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Electrostatic analysis of a p-n diode

Figure 4.3.1: (a) Charge density in a p-n junction, (b) Electric field, (c) Potential and (d) Energy band diagram

As can be seen from Figure 4.3.1 (a), the charge density is constant in each region, as dictated by the full-depletion 
approximation. The total charge per unit area in each region is also indicated on the figure. The charge in the n-type region, 
Qn, and the charge in the p-type region, Qp, are given by:

(4.3.7)

(4.3.8)

The electric field is obtained from the charge density using Gauss's law, which states that the field gradient equals the 
charge density divided by the dielectric constant or: 

(4.3.9)

The electric field is obtained by integrating equation (4.3.9). The boundary conditions consistent with the full depletion 
approximation are that the electric field is zero at both edges of the depletion region, namely at x = -xp and x = xn. The 

electric field has to be zero outside the depletion region since any field would cause the free carriers to move thereby 
eliminating the electric field. Integration of the charge density in an abrupt p-n diode as shown in Figure 4.3.1 (a) is given 
by:
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Electrostatic analysis of a p-n diode

(4.3.10)

The electric field varies linearly in the depletion region and reaches a maximum value at x = 0 as can be seen on Figure 
4.3.1(b). This maximum field can be calculated on either side of the depletion region, yielding: 

(4.3.11)

This provides the first relationship between the two unknowns, xp and xn, namely: 

(4.3.12)

This equation expresses the fact that the total positive charge in the n-type depletion region, Qn, exactly balances the total 

negative charge in the p-type depletion region, Qp. We can then combine equation (4.3.4) with expression (4.3.12) for the 

total depletion-layer width, xd, yielding: 

(4.3.13)

and 

(4.3.14)

The potential in the semiconductor is obtained from the electric field using: 

(4.3.15)

We therefore integrate the electric field yielding a piece-wise parabolic potential versus position as shown in Figure 4.3.1 
(c)

The total potential across the semiconductor must equal the difference between the built-in potential and the applied 
voltage, which provides a second relation between xp and xn, namely: 

(4.3.16)

The depletion layer width is obtained by substituting the expressions for xp and xn, (4.3.13) and (4.3.14), into the 

expression for the potential across the depletion region, yielding: 

(4.3.17)
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Electrostatic analysis of a p-n diode

from which the solutions for the individual depletion layer widths, xp and xn are obtained: 

(4.3.18)

(4.3.19)

Example 4.2 An abrupt silicon (nI = 1010 cm-3) p-n junction consists of a p-type region containing 1016 cm-3 

acceptors and an n-type region containing 5 x 1016 cm-3 donors. 

a.  Calculate the built-in potential of this p-n junction.
b.  Calculate the total width of the depletion region if the applied voltage Va equals 0, 0.5 and -2.5 V.

c.  Calculate maximum electric field in the depletion region at 0, 0.5 and -2.5 V.
d.  Calculate the potential across the depletion region in the n-type semiconductor at 0, 0.5 and -2.5 

V.

Solution The built-in potential is calculated from:

The depletion layer width is obtained from:

the electric field from

and the potential across the n-type region equals

where

one can also show that:
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Electrostatic analysis of a p-n diode

This yields the following numeric values:

4.3.4. Junction capacitance  

Any variation of the charge within a p-n diode with an applied voltage variation yields a capacitance, which must be added 
to the circuit model of a p-n diode. This capacitance related to the depletion layer charge in a p-n diode is called the 
junction capacitance. 

The capacitance versus applied voltage is by definition the change in charge for a change in applied voltage, or: 

(4.3.20)

The absolute value sign is added in the definition so that either the positive or the negative charge can be used in the 
calculation, as they are equal in magnitude. Using equation (4.3.7) and (4.3.18) one obtains:

(4.3.21)

A comparison with equation (4.3.17), which provides the depletion layer width, xd, as a function of voltage, reveals that the 

expression for the junction capacitance, Cj, seems to be identical to that of a parallel plate capacitor, namely:

(4.3.22)

The difference, however, is that the depletion layer width and hence the capacitance is voltage dependent. The parallel plate 
expression still applies since charge is only added at the edge of the depletion regions. The distance between the added 
negative and positive charge equals the depletion layer width, xd. A capacitance versus voltage measurement can be used to 

obtain the built-in voltage and the doping density of a one-sided p-n diode. When plotting the inverse of the capacitance 
squared, one expects a linear dependence as expressed by: 

(4.3.23)

The capacitance-voltage characteristic and the corresponding 1/C2 curve are shown in Figure 4.3.2.
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Electrostatic analysis of a p-n diode

Figure 4.3.2 : Capacitance and 1/C2 versus voltage of a p-n diode with Na = 1016 cm-3, Nd = 1017 cm-3 and an area of 

10-4 cm2.

The built-in voltage is obtained at the intersection of the 1/C2 curve and the horizontal axis, while the doping density is 
obtained from the slope of the curve. 

(4.3.24)

Example 4.3 Consider an abrupt p-n diode with Na = 1018 cm-3 and Nd = 1016 cm-3. Calculate the junction 

capacitance at zero bias. The diode area equals 10-4 cm2. Repeat the problem while treating the diode as 
a one-sided diode and calculate the relative error.

Solution The built in potential of the diode equals:

The depletion layer width at zero bias equals:

And the junction capacitance at zero bias equals:

Repeating the analysis while treating the diode as a one-sided diode, one only has to consider the region 
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Electrostatic analysis of a p-n diode

with the lower doping density so that

And the junction capacitance at zero bias equals

The relative error equals 0.5 %, which justifies the use of the one-sided approximation.

A capacitance-voltage measurement also provides the doping density profile of one-sided p-n diodes. For a p+-n diode, one 
obtains the doping density from: 

(4.3.25)

while the depth equals the depletion layer width which is obtained from xd = εsA/Cj. Both the doping density and the 

corresponding depth can be obtained at each voltage, yielding a doping density profile. Note that the capacitance in 
equations (4.3.21), (4.3.22), (4.3.23), and (4.3.25) is a capacitance per unit area.

As an example, we consider the measured capacitance-voltage data obtained on a 6H-SiC p-n diode. The diode consists of 
a highly doped p-type region on a lightly doped n-type region on top of a highly doped n-type substrate. The measured 
capacitance as well as 1/C2 is plotted as a function of the applied voltage. The dotted line forms a reasonable fit at voltages 
close to zero from which one can conclude that the doping density is almost constant close to the p-n interface. At large 
negative voltages the capacitance becomes almost constant which corresponds to a high doping density according to 
equation (4.3.25). 
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Electrostatic analysis of a p-n diode

Figure 4.3.3 : Capacitance and 1/C2 versus voltage of a 6H-SiC p-n diode.

The doping profile calculated from the date presented in Figure 4.3.3 is shown in Figure 4.3.4. The figure confirms the 
presence of the highly doped substrate and yields the thickness of the n-type layer. No information is obtained at the 
interface (x = 0) as is typical for doping profiles obtained from C-V measurements. This is because the capacitance 
measurement is limited to small forward bias voltages since the forward bias current and the diffusion capacitance affect 
the accuracy of the capacitance measurement. 

Figure 4.3.4 : Doping profile corresponding to the measured data, shown in Figure 4.3.3.
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Chapter 5: Bipolar Junction Transistors

Problems  

1.  A silicon npn bipolar transistor with NE = 1018 cm-3, NB = 1017 cm-3 and NC = 1016 cm-3, wE = 1 µm, wB = 0.5 µm , 

and wC = 4 µm is biased with VBE = 0.6 V and VCB = 0 V. Use µn = 1000 cm2/V-s, µp = 300 cm2/V-s and τn = τp = 

100 ns. The emitter area equals 10-4 cm2. 
a.  Calculate the width of the quasi-neutral regions in the emitter, base and collector. 
b.  Calculate the minority-carrier diffusion lengths in the emitter, base and collector. Calculate the ratio of the 

minority-carrier diffusion length and the quasi-neutral region width in each region. 
c.  Calculate the excess-minority-carrier charge density per unit area in the emitter, base and collector. 
d.  Calculate the emitter current while ignoring the recombination in the depletion region. 
e.  Calculate the base transit time and the current due to recombination of electrons in the base. 
f.  Calculate the emitter efficiency and the base transport factor. 
g.  Calculate the transport factor and the current gain assuming there is no recombination in the depletion 

regions. 
h.  Calculate the collector capacitance, the majority-carrier charge density in the base and the Early voltage. 

2.  A silicon npn bipolar transistor has an emitter doping, NE = 2 x1018 cm-3, an emitter width wE
' = 1 µm, and a base 

doping of 2 x 1017 cm-3. A current gain of 100 and an early voltage of 100 V is desired. Using µn = 1000 cm2/V-s, 

µp = 300 cm2/V-s and τn = τp = 100 ns, find the corresponding base width and collector doping. The emitter area 

equals 10-4 cm2.
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Chapter 6: MOS Capacitors

Problems  

1.  Consider an aluminum-SiO2-silicon MOS capacitor (ΦM = 4.1 V, εox/ε0 = 3.9, χ = 4.05 V and Na = 1017 cm-3) 

MOS capacitor with tox = 5 nm.

a.  Calculate the flatband voltage and threshold voltage. 
b.  

Repeat for an n-type silicon substrate with Nd= 1016cm-3. 

c.  
Repeat with a surface charge of 10-7C/cm2

d.  
Repeat with a charge density in the oxide of 10-1C/cm3

●     A high-frequency capacitance voltage measurement of a silicon MOS structure was fitted by the following expression: 

C(VG) = 6 pF + 12 pF/(1 + exp(VG))

a.  Calculate the oxide capacitance per unit area and the oxide thickness. The area of the capacitor is 100 x 100 micron 
and the relative dielectric constant equals 3.9. 

From the minimum capacitance, calculate the maximum depletion layer width and the substrate doping density. 
●     Calculate the bulk potential. 
●     Calculate the flatband capacitance and the flatband voltage. 
●     Calculate the threshold voltage.

●     An MOS capacitor with an oxide thickness of 20 nm has an oxide capacitance, which is three times larger than the 
minimum high-frequency capacitance in inversion. Find the substrate doping density. 

●     A CMOS gate requires n-type and p-type MOS capacitors with a threshold voltage of 2 and -2 Volt respectively. If the 
gate oxide is 50 nm what are the required substrate doping densities? Assume the gate electrode is aluminum. Repeat for a 
p+ poly-silicon gate. 

●     Consider a p-MOS capacitor (with an n-type substrate) and with an aluminum gate. Find the doping density for which 
the threshold voltage is 3 times larger than the flat band voltage. tox = 25 nm. Repeat for a capacitor with 1011 cm-2 

electronic charges at the oxide-semiconductor interface.

●     A silicon p-MOS capacitor . (Nd = 4 x 1016 cm-3, tox = 40 nm) is biased halfway between the flatband and threshold 

voltage. Calculate the applied voltage and the corresponding capacitance 
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Problems 
1. A silicon npn bipolar transistor with NE = 1018 cm-3, NB = 1017 cm-3 and NC = 1016 cm-3, wE = 

1 µm, wB = 0.5 µm , and wC = 4 µm is biased with VBE = 0.6 V and VCB = 0 V. Use µn = 1000 
cm2/V-s, µp = 300 cm2/V-s and τn = τp = 100 ns. The emitter area equals 10-4 cm2. 

a) Calculate the width of the quasi-neutral regions in the emitter, base and collector.  

b) Calculate the minority-carrier diffusion lengths in the emitter, base and collector. 
Calculate the ratio of the minority-carrier diffusion length and the quasi-neutral region 
width in each region.  

c) Calculate the excess-minority-carrier charge density per unit area in the emitter, base and 
collector.  

d) Calculate the emitter current while ignoring the recombination in the depletion region.  

e) Calculate the base transit time and the current due to recombination of electrons in the 
base.  

f) Calculate the emitter efficiency and the base transport factor.  

g) Calculate the transport factor and the current gain assuming there is no recombination in 
the depletion regions.  

h) Calculate the collector capacitance, the majority-carrier charge density in the base and the 
Early voltage.  

2. A silicon npn bipolar transistor has an emitter doping, NE = 2 x1018 cm-3, an emitter width wE 
= 1 µm, and a base doping of 2 x 1017 cm-3. A current gain of 100 and an early voltage of 100 
V is desired. Using µn = 1000 cm2/V-s, µp = 300 cm2/V-s and τn = τp = 100 ns, find the 
corresponding base width and base doping. The emitter area equals 10-4 cm2. 



Problems 
1. A silicon p-n junction (Na = 1016 cm-3 and Nd = 4 x 1016 cm-3) is biased with Va = -3 V. 

Calculate the built-in potential, the depletion layer width and the maximum electric field of 
the junction. 

2. An abrupt silicon p-n junction consists of a p-type region containing 1016 cm-3 acceptors and 
an n-type region containing also 1016 cm-3 acceptors in addition to 1017 cm-3 donors.  

a) Calculate the thermal equilibrium density of electrons and holes in the p-type region as 
well as both densities in the n-type region.  

b) Calculate the built-in potential of the p-n junction.  

c) Calculate the built-in potential of the p-n junction at 100°C.   

3. For a p-n junction with a built-in potential of 0.62 V  

a) What is the potential across the depletion region at an applied voltage, Va, of 0, 0.5 and -2 
Volt?  

b) If the depletion layer is 1 micrometer at Va = 0 Volt, find the maximum electric field in 
the depletion region.  

c) Assuming that the net doping density |Nd - Na| is the same in the n-type and p-type region 
of the diode, carefully sketch the electric field and the potential as a function of position 
throughout the depletion region. Add numeric values wherever possible. 

4. An abrupt silicon (ni = 1010 cm-3) p-n junction consists of a p-type region containing 1016 cm-

3 acceptors and an n-type region containing 5 x 1016 cm-3 donors.  

a) Calculate the built-in potential of this p-n junction.  

b) Calculate the total width of the depletion region if the applied voltage Va equals 0, 0.5 
and -2.5 V.  

c) Calculate maximum electric field in the depletion region at 0, 0.5 and -2.5 V.  

d) Calculate the potential across the depletion region in the n-type semiconductor at 0, 0.5 
and -2.5 V.  

5. Consider an abrupt p-n diode in thermal equilibrium with as many donors in the n-type 
region as acceptors in the p-type region and a maximum electric field of -13 kV/cm and a 
total depletion layer width of 1 µm. (assume εs/ ε0 = 12)  

a) What is the applied voltage, Va?  

b) What is the built-in potential of the diode?  

c) What is the donor density in the n-type region and the acceptor density in the p-type 
region?  

d) What is the intrinsic carrier density of the semiconductor if the temperature is 300 K ?  



 

     

6. A silicon (ni = 1010 cm-3) p-n diode with Na = 1018 cm-3 has a capacitance of 10-8 F/cm2 at an 
applied voltage of 0.5 V. Find the donor density. 

7. A silicon (ni = 1010 cm-3) p-n diode has a maximum electric field of -106 V/cm and a 
depletion layer width of 1 µm. The acceptor density in the p-type region is four times larger 
than the donor density in the n-type region. Calculate both doping densities. 

8. Consider a symmetric silicon p-n diode (Na = Nd) 

a) Calculate the built-in potential if Na = 1013, 1015 and 1017 cm-3. Also, calculate the doping 
densities corresponding to a built-in potential of 0.7 V. 

b) For the same as in part a), calculate the total depletion layer widths, the capacitance per 
unit area and the maximum electric field in thermal equilibrium. 

c) Repeat part a) and b) with Na = 3 Nd.  

9. A one-sided silicon diode has a breakdown voltage of 1000 V for which the maximum 
electric field at breakdown is 100 kV/cm. What is the maximum possible doping density in 
the low doped region, the built-in potential, the depletion layer width and the capacitance per 
unit area? Assume that bulk potential of the highly doped region is Eg/2 (= 0.56 V). 

10. A silicon p-n junction (Na = 1016 cm-3 and Nd = 4 x 1016 cm-3) is biased with Va = 0.6 V. 
Calculate the ideal diode current assuming that the n-type region is much smaller than the 
diffusion length with wn

' = 1 µm and assuming a "long" p-type region. Use µn = 1000 cm2/V-
s and µp = 300 cm2/V-s. The minority carrier lifetime is 10 µs and the diode area is 100 µm 
by 100 µm. 

11. Derive equation 4.4.14. 

12. Calculate the relative error when using the "short diode" approximation if Ln = 2 wp
' and Lp = 

2 wn
'. 

13. A silicon p-n junction (Na = 1015 cm-3, wp = 1 µm and Nd = 4 x 1016 cm-3, wn = 1 µm) is 
biased with Va = 0.5 V. Use µn = 1000 cm2/V-s and µp = 300 cm2/V-s. The minority carrier 
lifetime is 10 µs and the diode area is 100 µm by 100 µm. 

a) Calculate the built-in potential of the diode.  

b) Calculate the depletion layer widths, xn and xp, and the widths of the quasi-neutral 
regions.  

c) Compare the width of the quasi-neutral regions with the minority-carrier diffusion-
lengths and decide whether to use the "long" or "short" diode approximation. Calculate 
the current through the diode.  

d) Compare the result of part c) with the current obtained by using the general solution 
(equation 4.4.14)  



 

e) Using the approximation chosen in part c) calculate the ratio of the electron current to the 
hole current traversing the depletion region.  

14. An abrupt silicon p-n diode consists of a p-type region containing 1018 cm-3 acceptors and an 
n-type region containing 1015 cm-3 donors. 

a) Calculate the breakdown field in the n-type region.  

b) Using the breakdown field from part a), calculate the breakdown voltage of the diode.  

c) What is the depletion layer width at breakdown?  

d) Discuss edge effects and specify the minimum junction depth needed to avoid these 
effects.  

15. A 1 cm2 solar cell consists of a p-type region containing 1018 cm-3 acceptors and an n-type 
region containing 1015 cm-3 donors. wp

' = 0.1 µm and wn >> Lp. Use µn = 1000 cm2/V-s and 
µp = 300 cm2/V-s. . The minority carrier lifetime is 10 µs . The diode is illuminated with sun 
light, yielding a photocurrent density of 30 mA/cm2. 

a) Calculate the open circuit voltage and short-circuit current of the solar cell.  

b) Calculate the maximum power generated by the call and the corresponding voltage and 
current.  

c) Calculate the fill factor of the solar cell.  

d) Calculate the fill factor for the same cell when a concentrator illuminates it so that the 
photocurrent density equals 300 A/cm2.  



example 3

Chapter 6: MOS Capacitors

Examples

Example 6.1  Calculate the flatband voltage of a silicon nMOS capacitor with a substrate doping Na = 1017 cm-3 

and an aluminum gate (ΦM = 4.1 V). Assume there is no fixed charge in the oxide or at the oxide-

silicon interface.

Example 6.2  Calculate the threshold voltage of a silicon nMOS capacitor with a substrate doping Na = 1017 cm-3, 

a 20 nm thick oxide (εox = 3.9 ε0) and an aluminum gate (ΦM = 4.1 V). Assume there is no fixed 

charge in the oxide or at the oxide-silicon interface.

Example 6.3  Calculate the oxide capacitance, the flatband capacitance and the high frequency capacitance in 
inversion of a silicon nMOS capacitor with a substrate doping Na = 1017 cm-3, a 20 nm thick oxide 

(εox = 3.9 ε0) and an aluminum gate (ΦM = 4.1 V). 
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Chapter 7 examples

Chapter 7: MOS Field-Effect-Transistors

Examples

Example 7.1  Calculate the drain current of a silicon nMOSFET with VT = 1 V, W = 10 µm, L = 1 µm and tox = 20 

nm. The device is biased with VGS = 3 V and VDS = 5 V. Use the quadratic model, a surface mobility 

of 300 cm2/V-s and set VBS = 0 V.

Also calculate the transconductance at VGS = 3 V and VDS = 5 V and compare it to the output 

conductance at VGS = 3 V and VDS = 0 V.

Example 7.2  Repeat example 7.1 using the variable depletion layer model. Use VFB = -0.807 V and Na = 1017 cm-

3.

Example 7.3  Calculate the threshold voltage of a silicon nMOSFET when applying a substrate voltage, VBS = 0, -

2.5, -5, -7.5 and -10 V. The capacitor has a substrate doping Na = 1017 cm-3, a 20 nm thick oxide (εox 

= 3.9 ε0) and an aluminum gate (ΦM = 4.1 V). Assume there is no fixed charge in the oxide or at the 

oxide-silicon interface.
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Example 6.1 Calculate the flatband voltage of a silicon nMOS capacitor with 
a substrate doping Na = 1017 cm-3 and an aluminum gate (ΦM = 
4.1 V). Assume there is no fixed charge in the oxide or at the 
oxide-silicon interface. 

Solution The flatband voltage equals the work function difference since 
there is no charge in the oxide or at the oxide-semiconductor 
interface. 

V 93.0
10

10
ln026.056.005.41.4        

ln
2

10

17
−=×−−−=

−−−Φ=Φ=
i

a
t

g
MMSFB n

N
V

q

E
V χ

 

The flatband voltages for nMOS and pMOS capacitors with an 
aluminum or a poly-silicon gate are listed in the table below. 
 Aluminum p+ poly n+ poly 
nMOS -0.93 V 0.14 V -0.98 V 

 

pMOS -0.09 V 0.98 V -0.14 V 
 



Example 6.2 Calculate the threshold voltage of a silicon nMOS capacitor with 
a substrate doping Na = 1017 cm-3, a 20 nm thick oxide (εox = 3.9 
ε0) and an aluminum gate (ΦM = 4.1 V). Assume there is no 
fixed charge in the oxide or at the oxide-silicon interface. 

Solution The threshold voltage equals: 
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Where the flatband voltage was already calculated in example 
6.1. The threshold voltage voltages for nMOS and pMOS 
capacitors with an aluminum or a poly-silicon gate are listed in 
the table below. 
 Aluminum p+ poly n+ poly 
nMOS -0.09 V 0.98 V -0.14 V 

 

pMOS -0.93 V 0.14 V -0.98 V 
 



Example 6.3 Calculate the oxide capacitance, the flatband capacitance and the 
high frequency capacitance in inversion of a silicon nMOS 
capacitor with a substrate doping Na = 1017 cm-3, a 20 nm thick 
oxide (εox = 3.9 ε0) and an aluminum gate (ΦM = 4.1 V).  

Solution The oxide capacitance equals: 
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The flatband capacitance equals: 
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where the Debye length is obtained from: 
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The high frequency capacitance in inversion equals: 
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and the depletion layer width at threshold equals: 
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The bulk potential, φF, was already calculated in example 6.1 
 



Example 5.1 A bipolar transistor with an emitter current of 1 mA has an emitter 
efficiency of 0.99, a base transport factor of 0.995 and a depletion 
layer recombination factor of 0.998. Calculate the base current, the 
collector current, the transport factor and the current gain of the 
transistor.  

Solution The transport factor and current gain are: 
983.0998.0995.099.0 =××== rTE δαγα  

and 
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The collector current then equals 

mA 0.983== EC II α  
And the base current is obtained from: 

µA 17=−= CEB III  
 



Example 5.2 Consider a pnp bipolar transistor with emitter doping of 1018 cm-3 

and base doping of 1017 cm-3. The quasi-neutral region width in 
the emitter is 1 µm and 0.2 µm in the base. Use µn = 1000 cm2/V-s 
and µp = 300 cm2/V-s . The minority carrier lifetime in the base is 
10 ns. 
Calculate the emitter efficiency, the base transport factor, and the 
current gain of the transistor biased in the forward active mode. 
Assume there is no recombination in the depletion region. 

Solution The emitter efficiency is obtained from: 
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The current gain then becomes: 
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where the transport factor, α, was calculated as the product of the 
emitter efficiency and the base transport factor: 

993.09992.0994.0 =×== TE αγα  
 



Example 5.3 Calculate the saturation voltage of a bipolar transistor biased with 
a base current of 1 mA and a collector current of 10 mA. Use αR = 
0.993 and αF = 0.2. 

Solution The saturation voltage equals: 
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Example 5.4 Consider a bipolar transistor with a base doping of 1017 cm-3 and a 
quasi-neutral base width of 0.2 µm. Calculate the Early voltage 
and collector current ideality factor given that the base-emitter 
capacitance and the base-collector capacitance are 0.2 nF and 0.2 
pF. The collector area equals 10-4 cm-2. 

Solution The Early voltage equals: 
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The saturation voltage equals: 
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p-n Junctions

Chapter 4: p-n Junctions

4.2. Structure and principle of operation

4.2.1. Structure
4.2.2. Thermal equilibrium
4.2.3. The built-in potential
4.2.4. Forward and reverse bias

A p-n junction consists of two semiconductor regions with opposite doping type as shown in Figure 4.2.1. The region on 
the left is p-type with an acceptor density Na, while the region on the right is n-type with a donor density Nd. The dopants 

are assumed to be shallow, so that the electron (hole) density in the n-type (p-type) region is approximately equal to the 
donor (acceptor) density. 

Figure 4.2.1 : Cross-section of a p-n junction

We will assume, unless stated otherwise, that the doped regions are uniformly doped and that the transition between the 
two regions is abrupt. We will refer to this structure as being an abrupt p-n junction. 

Frequently we will deal with p-n junctions in which one side is distinctly higher-doped than the other. We will find that in 
such a case only the low-doped region needs to be considered, since it primarily determines the device characteristics. We 
will refer to such a structure as a one-sided abrupt p-n junction. 

The junction is biased with a voltage Va as shown in Figure 4.2.1. We will call the junction forward-biased if a positive 

voltage is applied to the p-doped region and reversed-biased if a negative voltage is applied to the p-doped region. The 
contact to the p-type region is also called the anode, while the contact to the n-type region is called the cathode, in 
reference to the anions or positive carriers and cations or negative carriers in each of these regions. 
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p-n Junctions

4.2.1. Flatband diagram  

The principle of operation will be explained using a gedanken experiment, an experiment, which is in principle possible but 
not necessarily executable in practice. We imagine that one can bring both semiconductor regions together, aligning both 
the conduction and valence band energies of each region. This yields the so-called flatband diagram shown in Figure 4.2.2. 

Figure 4.2.2 : Energy band diagram of a p-n junction (a) before and (b) after merging the n-type and p-type regions

Note that this does not automatically align the Fermi energies, EFn and EFp. Also, note that this flatband diagram is not an 

equilibrium diagram since both electrons and holes can lower their energy by crossing the junction. A motion of electrons 
and holes is therefore expected before thermal equilibrium is obtained. The diagram shown in Figure 4.2.2 (b) is called a 
flatband diagram. This name refers to the horizontal band edges. It also implies that there is no field in the semiconductor 
and no charge.

4.2.2. Thermal equilibrium  

To reach thermal equilibrium, electrons/holes close to the metallurgical junction diffuse across the junction into the p-
type/n-type region where hardly any electrons/holes are present. This process leaves the ionized donors (acceptors) behind, 
creating a region around the junction, which is depleted of mobile carriers. We call this region the depletion region, 
extending from x = -xp to x = xn. The charge due to the ionized donors and acceptors causes an electric field, which in turn 

causes a drift of carriers in the opposite direction. The diffusion of carriers continues until the drift current balances the 
diffusion current, thereby reaching thermal equilibrium as indicated by a constant Fermi energy. This situation is shown in 
Figure 4.2.3: 
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p-n Junctions

Figure 4.2.3 : Energy band diagram of a p-n junction in thermal equilibrium

While in thermal equilibrium no external voltage is applied between the n-type and p-type material, there is an internal 
potential, φi, which is caused by the workfunction difference between the n-type and p-type semiconductors. This potential 

equals the built-in potential, which will be further discussed in the next section. 

4.2.3. The built-in potential  

The built-in potential in a semiconductor equals the potential across the depletion region in thermal equilibrium. Since 
thermal equilibrium implies that the Fermi energy is constant throughout the p-n diode, the built-in potential equals the 
difference in the Fermi energies, EFn and EFp, divided by the electronic charge. It also equals the sum of the bulk potentials 

of each region, φn and φp, since the bulk potential quantifies the distance between the Fermi energy and the intrinsic 

energy. This yields the following expression for the built-in potential. 

(4.2.1)

Example 4.1 An abrupt silicon p-n junction consists of a p-type region containing 2 x 1016 cm-3 acceptors and an n-
type region containing also 1016 cm-3 acceptors in addition to 1017 cm-3 donors. 

a.  Calculate the thermal equilibrium density of electrons and holes in the p-type region as well as 
both densities in the n-type region.

b.  Calculate the built-in potential of the p-n junction.
c.  Calculate the built-in potential of the p-n junction at 400 K.
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p-n Junctions

Solution a.  The thermal equilibrium densities are:
In the p-type region:

p = Na = 2 x 1016 cm-3

n = ni
2/p = 1020/2 x 1016 = 5 x 103 cm-3

In the n-type region
n = Nd - Na = 9 x 1016 cm-3

p = ni2/n = 1020/(1 x 1016) = 1.11 x 103 cm-3

b.  The built-in potential is obtained from:

c.  Similarly, the built-in potential at 400 K equals:

where the instrinsic carrier density at 400 K was obtained from example 2.4.b

4.2.4. Forward and reverse bias  

We now consider a p-n diode with an applied bias voltage, Va. A forward bias corresponds to applying a positive voltage to 

the anode (p-type region) relative to the cathode (n-type region). A reverse bias corresponds to a negative voltage applied 
to the cathode. Both bias modes are illustrated with Figure 4.2.4. The applied voltage is proportional to the difference 
between the Fermi energy in the n-type and p-type quasi-neutral regions. 

As a negative voltage is applied, the potential across the semiconductor increases and so does the depletion layer width. As 
a positive voltage is applied, the potential across the semiconductor decreases and with it the depletion layer width. The 
total potential across the semiconductor equals the built-in potential minus the applied voltage, or:

(4.2.1)
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Figure 4.2.4: Energy band diagram of a p-n junction under reverse and forward bias
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The p-n diode current

Chapter 4: p-n Junctions

4.4. The p-n diode current

4.4.1. General discussion
4.4.2. The ideal diode current
4.4.3. Recombination-Generation current
4.4.4. I-V characteristics of real p-n diodes
4.4.5. The diffusion capacitance

4.4.1. General discussion  

The current in a p-n diode is due to carrier recombination or generation somewhere within the p-n diode structure. Under 
forward bias, the diode current is due to recombination. This recombination can occur within the quasi-neutral 
semiconductor, within the depletion region or at the metal-semiconductor Ohmic contacts. Under reverse bias, the current 
is due to generation. Carrier generation due to light will further increase the current under forward as well as reverse bias. 

In this section, we first derive the ideal diode current. We will also distinguish between the "long" diode and "short" diode 
case. The "long" diode expression applies to p-n diodes in which recombination/generation occurs in the quasi-neutral 
region only. This is the case if the quasi-neutral region is much larger than the carrier diffusion length. The "short" diode 
expression applies to p-n diodes in which recombination/generation occurs at the contacts only. In a short diode, the quasi-
neutral region is much smaller than the diffusion length. In addition to the "long" and "short" diode expressions, we also 
present the general result, which deals with recombination/generation in a finite quasi-neutral region.

Next, we derive expressions for the recombination/generation in the depletion region. Here we have to distinguish between 
the different recombination mechanisms - band-to-band recombination and Shockley-Hall-Read recombination - as they 
lead to different current-voltage characteristics. 

4.4.2. The ideal diode current  

4.4.2.1. General discussion and overview

When calculating the current in a p-n diode one needs to know the carrier density and the electric field throughout the p-n 
diode which can then be used to obtain the drift and diffusion current. Unfortunately, this requires the knowledge of the 
quasi-Fermi energies, which is only known if the currents are known. The straightforward approach is to simply solve the 
drift-diffusion equation listed in section 2.10 simultaneously. This approach however does not yield an analytic solution.

To avoid this problem we will assume that the electron and hole quasi-Fermi energies in the depletion region equal those in 
the adjacent n-type and p-type quasi-neutral regions. We will derive an expression for "long" and "short" diodes as well as 
a general expression, which is to be used if the quasi-neutral region is comparable in size to the diffusion length. 
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The p-n diode current

4.4.2.2. Assumptions and boundary conditions

The electric field and potential are obtained by using the full depletion approximation. Assuming that the quasi-Fermi 
energies are constant throughout the depletion region, one obtains the minority carrier densities at the edges of the 
depletion region, yielding: 

(4.4.1)

and

(4.4.2)

These equations can be verified to yield the thermal-equilibrium carrier density for zero applied voltage. In addition, an 
increase of the applied voltage will increase the separation between the two quasi-Fermi energies by the applied voltage 
multiplied with the electronic charge and the carrier density depends exponentially on this quantity.

The carrier density at the metal contacts is assumed to equal the thermal-equilibrium carrier density. This assumption 
implies that excess carriers immediately recombine when reaching either of the two metal-semiconductor contacts. As 
recombination is typically higher at a semiconductor surface and is further enhanced by the presence of the metal, this is 
found to be a reasonable assumption. This results in the following set of boundary conditions:

(4.4.3)

and

(4.4.4)

4.4.2.3. General current expression

The general expression for the ideal diode current is obtained by applying the boundary conditions to the general solution 
of the diffusion equation for each of the quasi-neutral regions, as described by equation (2.9.13) and (2.9.14): 

(2.9.13)

(2.9.14)

The boundary conditions at the edge of the depletion regions are described by (4.4.1), (4.4.2), (4.4.3) and (4.4.4).

Before applying the boundary conditions, it is convenient to rewrite the general solution in terms of hyperbolic functions:

(4.4.5)

(4.4.6)

where A*, B*, C* and D* are constants whose value remains to be determined. Applying the boundary conditions then 
yields:

(4.4.7)

(4.4.8)
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Where the quasi-neutral region widths, wn
' and wp

', are defined as:

(4.4.9)

and 

(4.4.10)

The current density in each region is obtained by calculating the diffusion current density using equations (2.7.22) and 
(2.7.23):

(4.4.11)

(4.4.12)

The total current must be constant throughout the structure since a steady state case is assumed. No charge can accumulate 
or disappear somewhere in the structure so that the charge flow must be constant throughout the diode. The total current 
then equals the sum of the maximum electron current in the p-type region, the maximum hole current in the n-type regions 
and the current due to recombination within the depletion region. The maximum currents in the quasi-neutral regions occur 
at either side of the depletion region and can therefore be calculated from equations (4.4.11) and (4.4.12). Since we do not 
know the current due to recombination in the depletion region we will simply assume that it can be ignored. Later we will 
more closely examine this assumption. The total current is then given by: 

(4.4.13)

where Is can be written in the following form: 

(4.4.14)

4.4.2.4. The p-n diode with a "long" quasi-neutral region

A diode with a "long" quasi-neutral region has a quasi-neutral region which is much larger than the minority-carrier 
diffusion length in that region, or wn

' > Lp and wp
' > Ln. The general solution can be simplified under those conditions 

using:

(4.4.15)

Yielding the following carrier densities, current densities and saturation currents: 

(4.4.16)
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(4.4.17)

(4.4.18)

(4.4.19)

(4.4.20)

We now come back to our assumption that the current due to recombination in the depletion region can be simply ignored. 
Given that there is recombination in the quasi-neutral region, it would be unreasonable to suggest that the recombination 
rate would simply drop to zero in the depletion region. Instead, we assume that the recombination rate is constant in the 
depletion region. To further simplify the analysis we will consider a p+-n junction so that we only need to consider the 
recombination in the n-type region. The current due to recombination in the depletion region is then given by: 

(4.4.21)

so that Ir can be ignored if: 

(4.4.22)

A necessary, but not sufficient requirement is therefore that the depletion region width is much smaller than the diffusion 
length for the ideal diode assumption to be valid. Silicon and germanium p-n diodes usually satisfy this requirement, while 
gallium arsenide p-n diodes rarely do because of the short carrier lifetime and diffusion length.

As an example we now consider a silicon p-n diode with Na = 1.5 x 1014 cm-3 and Nd = 1014 cm-3. The minority carrier 

lifetime was chosen to be very short, namely 400 ps, so that most features of interest can be easily observed. We start by 
examining the electron and hole density throughout the p-n diode, shown in Figure 4.4.1: 

Figure 4.4.1 : Electron and hole density throughout a forward biased p-n diode.
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The majority carrier densities in the quasi-neutral region simply equal the doping density. The minority carrier densities in 
the quasi-neutral regions are obtained from the equations (4.4.16) and (4.4.17). The electron and hole densities in the 
depletion region are calculating using the assumption that the electron/hole quasi-Fermi energy in the depletion region 
equals the electron/hole quasi-Fermi energy in the quasi-neutral n-type/p-type region. The corresponding band diagram is 
shown in Figure 4.4.2: 

Figure 4.4.2 : Energy band diagram of a p-n diode. Shown are the conduction band edge, Ec, and the valence band 

edge, Ev, the intrinsic energy, EI, the electron quasi-Fermi energy, Fn, and the hole quasi-Fermi energy, 

Fp.

The quasi-Fermi energies were obtained by combining (4.4.16) and (4.4.17) with (2.6.37) and (2.6.38). Note that the quasi-
Fermi energies vary linearly within the quasi-neutral regions.

Next, we discuss the current density. Shown in Figure 4.4.3 is the electron and hole current density as calculated using 
(4.4.18) and (4.4.19). The current due to recombination in the depletion region was assumed to be constant. 
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Figure 4.4.3 : Electron and hole current density versus position. The vertical lines indicate the edges of the depletion 
region.

4.4.2.5. The p-n diode with a "short" quasi-neutral region

A "short" diode is a diode with quasi-neutral regions, which are much shorter than the minority-carrier diffusion lengths. 
As the quasi-neutral region is much smaller than the diffusion length one finds that recombination in the quasi-neutral 
region is negligible so that the diffusion equations are reduced to: 

(4.4.23)

The resulting carrier density varies linearly throughout the quasi-neutral region and in general is given by: 

(4.4.24)

where A, B, C and D are constants obtained by satisfying the boundary conditions. Applying the same boundary conditions 
at the edge of the depletion region as above (equations (4.4.3) and (4.4.4)) and requiring thermal equilibrium at the contacts 
yields: 

(4.4.25)

(4.4.26)

for the hole and electron density in the n-type quasi-neutral region. 

The current in a "short" diode is again obtained by adding the maximum diffusion currents in each of the quasi-neutral 
regions and ignoring the current due to recombination in the depletion region, yielding: 

(4.4.27)
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where the saturation current, Is is given by: 

(4.4.28)

A comparison of the "short" diode expression with the "long" diode expression reveals that they are the same except for the 
use of either the diffusion length or the quasi-neutral region width in the denominator, whichever is smaller. 

Given that we now have two approximate expressions, it is of interest to know when to use one or the other. To this end, 
we now consider a one-sided n+-p diode. The p-type semiconductor has a width wp and we normalize the excess electron 
density relative to its value at x = 0. The Ohmic contact to the p-type region is ideal so that the excess density is zero at x = 
wp

'. The normalized excess carrier density is shown in Figure 4.4.4 for different values of the diffusion length. 

Figure 4.4.4 : Excess electron density versus position as obtained by solving the diffusion equation with δn(x = 0) = 1 
and δn(x/wp

' = 1) = 0 . The ratio of the diffusion length to the width of the quasi-neutral region is varied 

from 0.1 (Bottom curve), 0.3, 0.5, 1 and 10 (top curve)

The figure illustrates how the excess electron density changes as the diffusion length is varied relative to the width of the 
quasi-neutral region. For the case where the diffusion length is much smaller than the width (Ln << wp

'), the electron 

density decays exponentially and the "long" diode expression can be used. If the diffusion length is much longer than the 
width (Ln >> wp

'), the electron density reduces linearly with position and the "short" diode expression can be used. If the 

diffusion length is comparable to the width of the quasi-neutral region width one must use the general expression. A 
numeric analysis reveals that the error is less than 10 % when using the short diode expression with Ln > wp

'/2 and when 

using the long diode expression with Ln > 2 wp
'.

Example 4.4 An abrupt silicon p-n junction (Na = 1016 cm-3 and Nd = 4 x 1016 cm-3) is biased with Va = 0.6 V. 

Calculate the ideal diode current assuming that the n-type region is much smaller than the diffusion 
length with wn

' = 1 µm and assuming a "long" p-type region. Use µn = 1000 cm2/V-s and µp = 300 

cm2/V-s. The minority carrier lifetime is 10 µs and the diode area is 100 µm by 100 µm. 
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Solution The current is calculated from: 

with 

●     Dn = µn Vt = 1000 x 0.0258 = 25.8 cm2/V-s

●     Dp = µp Vt = 300 x 0.0258 = 7.75 cm2/V-s

●     np0 = ni
2/Na = 1020/1016 = 104 cm-3

●     pn0 = ni
2/Nd = 1020/4 x 1016 = 2.5 x 103 cm-3 

yielding I = 40.7 mA

Note that the hole diffusion current occurs in the "short" n-type region and therefore depends on the 
quasi-neutral width in that region. The electron diffusion current occurs in the "long" p-type region and 
therefore depends on the electron diffusion length in that region.

4.4.3. Recombination-Generation current  

4.4.3.1. Band-to-band Recombination-Generation current

The recombination/generation current due to band-to-band recombination/generation is obtained by integrating the net 
recombination rate, Ub-b, over the depletion region: 

(4.4.29)

where the net recombination rate is given by:

(4.4.30)

The carrier densities can be related to the constant quasi-Fermi energies and the product is independent of position: 

(4.4.31)

This allows the integral to be solved analytically yielding: 
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(4.4.32)

The current due to band-to-band recombination has therefore the same voltage dependence as the ideal diode current and 
simply adds an additional term to the expression for the saturation current. 

4.4.3.2. Shockley-Hall-Read Recombination-Generation current

The current due to trap-assisted recombination in the depletion region is also obtained by integrating the trap-assisted 
recombination rate over the depletion region width: 

(4.4.33)

Substituting the expression for the recombination rate yields: 

(4.4.34)

where the product of the electron and hole densities was obtained by assuming that the quasi-Fermi energies are constant 
throughout the depletion region, which leads to: 

(4.4.35)

The maximum recombination rate is obtained when the electron and hole densities are equal and therefore equals the 
square root of the product yielding: 

(4.4.36)

From which an effective width can be defined which, when multiplied with the maximum recombination rate, equals the 
integral of the recombination rate over the depletion region. This effective width, x', is then defined by: 

(4.4.37)

and the associated current due to trap-assisted recombination in the depletion region is given by: 

(4.4.38)

This does not provide an actual solution since the effective width, x', still must be determined by performing a numeric 
integration. Nevertheless, the above expression provides a way to obtain an upper estimate by substituting the depletion 
layer width, xd, as it is always larger than the effective width. 
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4.4.4. I-V characteristics of real p-n diodes  

The forward biased I-V characteristics of real p-n diodes are further affected by high injection and the series resistance of 
the diode. To illustrate these effects while summarizing the current mechanisms discussed previously we consider the I-V 
characteristics of a silicon p+-n diode with Nd = 4 x 1014 cm-3, τp = 10 ms, and µp = 450 cm2/V-s. The I-V characteristics 

are plotted on a semi-logarithmic scale and four different regions can be distinguished as indicated on Figure 4.4.5. First, 
there is the ideal diode region where the current increases by one order of magnitude as the voltage is increased by 60 mV. 
This region is referred to as having an ideality factor, n, of one. This ideality factor is obtained by fitting a section of the 
curve to the following expression for the current:

(4.4.39)

The ideality factor can also be obtained from the slope of the curve on a semi-logarithmic scale using:

(4.4.40)

where the slope is in units of V/decade. To the left of the ideal diode region there is the region where the current is 
dominated by the trap-assisted recombination in the depletion region described in section 4.4.3.2. This part of the curve has 
an ideality factor of two. To the right of the ideal diode region, the current becomes limited by high injection effects and by 
the series resistance.

High injection occurs in a forward biased p-n diode when the injected minority carrier density exceeds the doping density. 
High injection will therefore occur first in the lowest doped region of the diode since that region has the highest minority 
carrier density.

Using equations (4.4.1) and (4.4.2), one finds that high injection occurs in a p+-n diode for the following applied voltage:

(4.4.41)

or at Va = 0.55 V for the diode of Figure 4.4.5 as can be verified on the figure as the voltage where the ideality factor 

changes from one to two. For higher forward bias voltages, the current does no longer increase exponentially with voltage. 
Instead, it increases linearly due to the series resistance of the diode. This series resistance can be due to the contact 
resistance between the metal and the semiconductor, due to the resistivity of the semiconductor or due to the series 
resistance of the connecting wires. This series resistance increases the external voltage, Va

*, relative to the internal voltage, 

Va, considered so far.

(4.4.42)

Where I is the diode current and Rs is the value of the series resistance.

These four regions can be observed in most p-n diodes although the high-injection region rarely occurs, as the series 
resistance tends to limit the current first.
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Figure 4.4.5: Current-Voltage characteristics of a silicon diode under forward bias.

4.4.5. The diffusion capacitance  

As a p-n diode is forward biased, the minority carrier distribution in the quasi-neutral region increases dramatically. In 
addition, to preserve quasi-neutrality, the majority carrier density increases by the same amount. This effect leads to an 
additional capacitance called the diffusion capacitance. 

The diffusion capacitance is calculated from the change in charge with voltage:

(4.4.43)

Where the charge, ∆Q, is due to the excess carriers. Unlike a parallel plate capacitor, the positive and negative charge is no 
longer separated in space. Instead, the electrons and holes are separated by the energy bandgap. Nevertheless, these voltage 
dependent charges yield a capacitance just as the one associated with a parallel plate capacitor. The excess minority-carrier 
charge is obtained by integrating the charge density over the quasi-neutral region:

(4.4.44)

We now distinguish between the two limiting cases as discussed when calculating the ideal diode current, namely the 
"long" diode and a "short" diode. The carrier distribution, pn(x), in a "long" diode is illustrated by Figure 4.4.6 (a). 
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Figure 4.4.6: Minority carrier distribution in (a) a "long" diode, and (b) a "short" diode. The excess minority-carrier 
charge, ∆Qp, in the quasi-neutral region, is proportional to the area defined by the solid and dotted lines.

Using equation (4.4.18), the excess charge, ∆Qp, becomes:

(4.4.45)

where Is,p is the saturation current for holes, given by:

(4.4.46)

Equation (4.4.45) directly links the excess charge to the diffusion current. Since all injected minority carriers recombine in 
the quasi-neutral region, the current equals the excess charge divided by the average time needed to recombine with the 
majority carriers, i.e. the carrier lifetime, τp. This relation is the corner stone of the charge control model of p-n diodes and 

bipolar junction transistors. 

The diffusion capacitance then equals: 

(4.4.47)

Similarly, for a "short" diode, as illustrated by Figure 4.4.6 (b), one obtains:

(4.4.48)

Where tr,p is the hole transit time given by:

(4.4.49)

Again, the excess charge can be related to the current. However, in the case of a "short" diode all minority carriers flow 
through the quasi-neutral region and do not recombine with the majority carriers. The current therefore equals the excess 
charge divided by the average time needed to traverse the quasi-neutral region, i.e. the transit time, tr,p.
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The total diffusion capacitance is obtained by adding the diffusion capacitance of the n-type quasi-neutral region to that of 
the p-type quasi-neutral region.

The total capacitance of the junction equals the sum of the junction capacitance, discussed in section 4.3.4, and the 
diffusion capacitance. For reverse biased voltages and small forward bias voltages, one finds that the junction capacitance 
is dominant. As the forward bias voltage is further increased the diffusion capacitance increases exponentially and 
eventually becomes larger than the junction capacitance.

Example 4.5 a.  Calculate the diffusion capacitance of the diode described in Example 4.4 at zero bias. Use µn= 

1000 cm2/V-s, µp = 300 cm2/V-s, wp
' = 1 µm and wn

' = 1 mm. The minority carrier lifetime 

equals 0.1 ms.
b.  For the same diode, find the voltage for which the junction capacitance equals the diffusion 

capacitance.

Solution a.  The diffusion capacitance at zero volts equals

using

and

where the "short" diode expression was used for the capacitance associated with the excess 
charge due to electrons in the p-type region. The "long" diode expression was used for the 
capacitance associated with the excess charge due to holes in the n-type region.The diffusion 
constants and diffusion lengths equal

Dn = µn x Vt = 25.8 cm2/s

Dp = µp x Vt = 7.75 cm2/s

And the electron transit time in the p-type region equals
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b.  The voltage at which the junction capacitance equals the diffusion capacitance is obtained by 
solving

yielding Va = 0.442 V
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Chapter 4: p-n Junctions

4.5. Reverse bias breakdown

4.5.1. General breakdown characteristics
4.5.2. Edge effects
4.5.3. Avalanche breakdown
4.5.4. Zener breakdown

4.5.1. General breakdown characteristics  

The maximum reverse bias voltage that can be applied to a p-n diode is limited by breakdown. Breakdown is characterized 
by the rapid increase of the current under reverse bias. The corresponding applied voltage is referred to as the breakdown 
voltage. 

The breakdown voltage is a key parameter of power devices. The breakdown of logic devices is equally important as one 
typically reduces the device dimensions without reducing the applied voltages, thereby increasing the internal electric field.

Two mechanisms can cause breakdown, namely avalanche multiplication and quantum mechanical tunneling of carriers 
through the bandgap. Neither of the two breakdown mechanisms is destructive. However heating caused by the large 
breakdown current and high breakdown voltage causes the diode to be destroyed unless sufficient heat sinking is provided.

Breakdown in silicon at room temperature can be predicted using the following empirical expression for the electric field at 
breakdown. 

(4.5.1)

Assuming a one-sided abrupt p-n diode, the corresponding breakdown voltage can then be calculated, yielding:

(4.5.2)

The resulting breakdown voltage is inversely proportional to the square of the doping density if one ignores the weak 
doping dependence of the electric field at breakdown. The corresponding depletion layer width equals:

(4.5.3)

4.5.2. Edge effects  
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Few p-n diodes are truly planar and typically have higher electric fields at the edges. Since the diodes will break down in 
the regions where the breakdown field is reached first, one has to take into account the radius of curvature of the 
metallurgical junction at the edges. Most doping processes including diffusion and ion implantation yield a radius of 
curvature on the order of the junction depth, xj. The p-n diode interface can then be approximated as having a cylindrical 

shape along a straight edge and a spherical at a corner of a rectangular pattern. Both structures can be solved analytically as 
a function of the doping density, N, and the radius of curvature, xj. 

The resulting breakdown voltages and depletion layer widths are plotted below as a function of the doping density of an 
abrupt one-sided junction.

Figure 4.5.1 : Breakdown voltage and depletion layer width at breakdown versus doping density of an abrupt one-sided 
p-n diode. Shown are the voltage and width for a planar (top curves), cylindrical (middle curves) and 
spherical (bottom curves) junction.

4.5.3. Avalanche breakdown  

Avalanche breakdown is caused by impact ionization of electron-hole pairs. This process was described previously in 
section 2.8. When applying a high electric field, carriers gain kinetic energy and generate additional electron-hole pairs 
through impact ionization. The ionization rate is quantified by the ionization constants of electrons and holes, an and ap. 
These ionization constants are defined as the change of the carrier density with position divided by the carrier density or:

(4.5.4)

The ionization causes a generation of additional electrons and holes. Assuming that the ionization coefficients of electrons 
and holes are the same, the multiplication factor M, can be calculated from:
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(4.5.5)

The integral is taken between x1 and x2, the region within the depletion layer where the electric field is assumed constant 

and large enough to cause impact ionization. Outside this range, the electric field is assumed to be too low to cause impact 
ionization. The equation for the multiplication factor reaches infinity if the integral equals one. This condition can be 
interpreted as follows: For each electron coming to the high field at point x1 one additional electron-hole pair is generated 

arriving at point x2. This hole drifts in the opposite direction and generates an additional electron-hole pair at the starting 

point x1. One initial electron therefore yields an infinite number of electrons arriving at x2, hence an infinite multiplication 

factor.

The multiplication factor is commonly expressed as a function of the applied voltage and the breakdown voltage using the 
following empirical relation:

(4.5.6)

4.5.4. Zener breakdown  

Quantum mechanical tunneling of carriers through the bandgap is the dominant breakdown mechanism for highly doped p-
n junctions. The analysis is identical to that of tunneling in a metal-semiconductor junction where the barrier height is 
replaced by the energy bandgap of the material.

The tunneling probability equals:

(4.5.7)

where the electric field equals  = Eg/(qL). 

The tunneling current is obtained from the product of the carrier charge, velocity and carrier density. The velocity equals 
the Richardson velocity, the velocity with which on average the carriers approach the barrier while the carrier density 
equals the density of available electrons multiplied with the tunneling probability, yielding:

(4.5.8)

The tunneling current therefore depends exponentially on the bandgap energy to the 3/2 power.

http://ece-www.colorado.edu/~bart/book/book/chapter4/ch4_5.htm (3 of 4) [2/28/2002 5:28:42 PM]



Reverse bias breakdown

 

http://ece-www.colorado.edu/~bart/book/book/chapter4/ch4_5.htm (4 of 4) [2/28/2002 5:28:42 PM]



Optoelectronic devices

Chapter 4: p-n Junctions

4.6. Optoelectronic devices

4.6.1. Photodiodes
4.6.2. Solar cells
4.6.3. LEDs
4.6.4. Laser diodes

P-n junctions are an integral part of several optoelectronic devices. These include photodiodes, solar cells light emitting 
diodes (LEDs) and semiconductor lasers. In this section we discuss the principle of operation of these devices and derive an 
expression for key parameters.

4.6.1. Photodiodes  

Photodiodes and crystalline solar cells are essentially the same as the p-n diodes, which have been described in this chapter. 
However, the diode is exposed to light, which yields a photocurrent in addition to the diode current so that the total diode 
current is given by: 

(4.6.1)

where the additional photocurrent, Iph, is due to photogeneration of electrons and holes shown in Figure 4.6.1. These 

electrons and holes are pulled into the region where they are majority carriers by the electric field in the depletion region.

Figure 4.6.1: Motion of photo-generated carriers in a p-n photodiode.

The photo-generated carriers cause a photocurrent, which opposes the diode current under forward bias. Therefore, the 
diode can be used as a photodetector - using a reverse or zero bias voltage - as the measured photocurrent is proportional to 
the incident light intensity. The diode can also be used as a solar cell - using a forward bias - to generate electrical power.

The primary characteristics of a photodiode are the responsivity, the dark current and the bandwidth. The responsivity is 
the photocurrent divided by the incident optical power. The maximum photocurrent in a photodiode equals
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(4.6.2)

Where Pin is the incident optical power. This maximum photocurrent occurs when each incoming photon creates one 

electron-hole pair, which contributes to the photocurrent. The photocurrent in the presence of a reflection R at the surface 
of the photodiode and an absorption over a thickness d in a material with an absorption coefficient α is given by:

(4.6.3)

The photocurrent is further reduced if photo-generated electron-hole pairs recombine within the photodiode instead of 
being swept into the regions where they are majority carriers. 

The dark current is the current through the diode in the absence of light. This current is due to the ideal diode current, the 
generation/recombination of carriers in the depletion region and any surface leakage, which occurs in the diode. The dark 
current obviously limits the minimum power detected by the photodiode, since a photocurrent much smaller than the dark 
current would be hard to measure. 

However, the true limitation is the shot noise generated by the current through the diode. The shot noise as quantified by 
the average of the square of the noise current is given by:

(4.6.4)

Where I is the diode current and ∆f is the bandwidth of the detector. The bandwidth of the diode is affected by the transit 
time of the photo-generated carriers through the diode and by the capacitance if the diode. The carrier transit time yields 
the intrinsic bandwidth of the diode while the capacitance together the impedance of the amplifier or the transmission line 
connected to the diode yields a the parasitic RC delay.

4.6.2. Solar cells  

Solar cells are typically illuminated with sunlight and are intended to convert the solar energy into electrical energy. The 
solar energy is in the form of electromagnetic radiation, more specifically "black-body" radiation as described in section 
1.2.3. The sun's spectrum is consistent with that of a black body at a temperature of 5800 K. The radiation spectrum has a 
peak at 0.8 eV. A significant part of the spectrum is in the visible range of the spectrum (400 - 700 nm). The power density 
is approximately 100 mW/cm2. 

Only part of the solar spectrum actually makes it to the earth's surface. Scattering and absorption in the earth's atmosphere, 
and the incident angle affect the incident power density. Therefore, the available power density depends on the time of the 
day, the season and the latitude of a specific location. 

Of the solar light, which does reach a solar cell, only photons with energy larger than the energy bandgap of the 
semiconductor generate electron-hole pairs. In addition, one finds that the voltage across the solar cell at the point where it 
delivers its maximum power is less than the bandgap energy in electron volt. The overall power-conversion efficiency of 
single-crystalline solar cells ranges from 10 to 30 % yielding 10 to 30 mW/cm2. 

The calculation of the maximum power of a solar cell is illustrated by Figure 4.6.2 and Figure 4.6.3. The sign convention of 
the current and voltage is shown as well. It considers a current coming out of the cell to be positive as it leads to electrical 
power generation. The power generated depends on the solar cell itself and the load connected to it. As an example, a 
resistive load is shown in the diagram below. 
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Figure 4.6.2 : Circuit diagram and sign convention of a p-n diode solar cell connected to a resistive load.

The current and the power as function of the forward bias voltage across the diode are shown in Figure 4.6.3 for a 
photocurrent of 1 mA: 

Figure 4.6.3 : Current-Voltage (I-V) and Power-Voltage (P-V) characteristics of a p-n diode solar cell with Iph = 1 mA 

and Is = 10-10 A. The crosshatched area indicates the power generated by the solar cell. The markers 

indicate the voltage and current, Vm and Im, for which the maximum power, Pm is generated. 

We identify the open-circuit voltage, Voc, as the voltage across the illuminated cell at zero current. The short-circuit 

current, Isc, is the current through the illuminated cell if the voltage across the cell is zero. The short-circuit current is close 

to the photocurrent while the open-circuit voltage is close to the turn-on voltage of the diode as measured on a current scale 
similar to that of the photocurrent. 

The power equals the product of the diode voltage and current and at first increases linearly with the diode voltage but then 
rapidly goes to zero around the turn-on voltage of the diode. The maximum power is obtained at a voltage labeled as Vm 

with Im being the current at that voltage. 

The fill factor of the solar cell is defined as the ratio of the maximum power of the cell to the product of the open-circuit 
voltage, Voc, and the short-circuit current, Isc, or: 

(4.6.5)
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Example 4.6 A 1 cm2 silicon solar cell has a saturation current of 10-12 A and is illuminated with sunlight yielding a 
short-circuit photocurrent of 25 mA. Calculate the solar cell efficiency and fill factor.

Solution The maximum power is generated for:

where the voltage, Vm, is the voltage corresponding to the maximum power point. This voltage is 

obtained by solving the following transcendental equation:

Using iteration and a starting value of 0.5 V one obtains the following successive values for Vm:

Vm = 0.5, 0.542, 0.540 V

and the efficiency equals:

The current, Im, corresponding to the voltage, Vm, was calculated using equation (4.6.1) and the power of 

the sun was assumed 100 mW/cm2. The fill factor equals:

where the open circuit voltage is calculated using equation (4.6.1) and I = 0. The short circuit current 
equals the photocurrent.

4.6.3. LEDs  

Light emitting diodes are p-n diodes in which the recombination of electrons and holes yields a photon. This radiative 
recombination process occurs primarily in direct bandgap semiconductors where the lowest conduction band minimum and 
the highest valence band maximum occur at k = 0, where k is the wavenumber. Examples of direct bandgap semiconductors 
are GaAs, InP, GaP, GaN while most group IV semiconductors including Si, Ge and SiC are indirect bandgap 
semiconductors.
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The radiative recombination process is in competition with non-radiative recombination processes such as trap-assisted 
recombination. Radiative recombination dominates at high minority-carrier densities. Using a quantum well, a thin region 
with a lower bandgap, positioned at the metallurgical junction, one can obtain high carrier densities at low current 
densities. These quantum well LEDs have high internal quantum efficiency as almost every electron injected in the 
quantum well recombines with a hole yielding a photon.

The external quantum efficiency of planar LEDs is much lower than unity due to total internal reflection. As the photons 
are generated in the semiconductor, which has a high refractive index, only photons traveling normal to the semiconductor-
air interface can exit the semiconductor. For GaAs with a refractive index of 3.5, the angle for total internal reflection 
equals 17o so that only a few percent of the generated photons can escape the semiconductor. This effect can be avoided by 
having a spherical semiconductor shape, which ensures that most photons are normal to the interface. The external 
quantum efficiency can thereby be increased to values larger than 50%.

4.6.4. Laser diodes  

Laser diodes are very similar to LEDs since they also consist of a p-n diode with an active region where electrons and holes 
recombine resulting in light emission. However, a laser diode also contains an optical cavity where stimulated emission 
takes place. The laser cavity consists of a waveguide terminated on each end by a mirror. As an example, the structure of an 
edge-emitting laser diode is shown in Figure 4.6.4. Photons, which are emitted into the waveguide, can travel back and 
forth in this waveguide provided they are reflected at the mirrors. 

Figure 4.6.4 : Structure of an edge-emitting laser diode.

The light in the waveguide is amplified by stimulated emission. Stimulated emission is a process where a photon triggers 
the radiative recombination of an electron and hole thereby creating an additional photon with the same energy and phase 
as the incident photon. This process is illustrated with Figure 4.6.5. This "cloning" of photons results in a coherent beam.
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Figure 4.6.5 : Stimulated emission of a photon.

The stimulated emission process yields an increase in photons as they travel along the waveguide. Combined with the 
waveguide losses, stimulated emission yields a net gain per unit length, g. The number of photons can therefore be 
maintained if the roundtrip amplification in a cavity of length, L, including the partial reflection at the mirrors with 
reflectivity R1 and R2 equals unity.

This yields the following lasing condition:

(4.6.6)

If the roundtrip amplification is less than one then the number of photons steadily decreases. If the roundtrip amplification 
is larger than one, the number of photons increases as the photons travel back and forth in the cavity and no steady state 
value would be obtained. The gain required for lasing therefore equals:

(4.6.7)

Initially, the gain is negative if no current is applied to the laser diode as absorption dominates in the waveguide. As the 
laser current is increased, the absorption first decreases and the gain increases. The current for which the gain satisfies the 
lasing condition is the threshold current of the laser, Ith. Below the threshold current very little light is emitted by the laser 

structure. For an applied current larger than the threshold current, the output power, Pout, increases linearly with the applied 

current, as each additional incoming electron-hole pair is converted into an additional photon. The output power therefore 
equals:

(4.6.8)

where hν is the energy per photon. The factor, η, indicates that only a fraction of the generated photons contribute to the 
output power of the laser as photons are partially lost through the other mirror and throughout the waveguide.

Figure 4.6.6 : Output power from a laser diode versus the applied current.
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Example 1.1 A metal has a workfunction of 4.3 V. What is the minimum 
photon energy in Joule to emit an electron from this metal through 
the photo-electric effect? What are the photon frequency in 
Terahertz and the photon wavelength in micrometer? What is the 
corresponding photon momentum? What is the velocity of a free 
electron with the same momentum? 

Solution The minumum photon energy, Eph, equals the workfunction, ΦM, 
in units of electron volt or 4.3 eV. This also equals 

Joule 1089.63.4106.1 1919 −− ×=××=Φ= Mph qE  

The corresponding photon frequency is: 

THz 1040
10626.6

1089.6
34

19
=

×

×
==

−

−

h

E ph
ν  

The corresponding wavelength equals: 

m 288.0
(eV) 

m 24.1
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µ
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×××
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−

phph EE
hc

 

The photon momentum, p, is: 

s
m kg

 10297.2
10288.0

10626.6 27
6
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−

−

−
×=

×

×
==

λ
h

p  

And the velocity, v, of a free electron with the same momentum 
equals 

m/s 2522
1011.9

10297.2
31

27

0
=

×

×
==

−

−

m
p

v  

Where m0 is the free electron mass. 

 



Example 1.2 The spectral density of the sun peaks at a wavelength of 900 nm. If 
the sun behaves as a black body, what is the temperature of the 
sun? 

Solution A wavelength of 900 nm corresponds to a photon energy of: 

Joule 1021.2
10900

10310626.6 19
9

834
−

−

−

×=
×

×××
==

λ
hc

E ph  

Since the peak of the spectral density occurs at 2.82 kT, the 
corresponding temperature equals: 

Kelvin 5672
1038.182.2

1021.2
82.2 23

19

=
××

×
==

−

−

k

E
T ph  
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Example 1.3 An electron is confined to a 1 micron thin layer of silicon. 
Assuming that the semiconductor can be adequately described 
by a one-dimensional quantum well with infinite walls, 
calculate the lowest possible energy within the material in units 
of electron volt. If the energy is interpreted as the kinetic energy 
of the electron, what is the corresponding electron velocity? 
(The effective mass of electrons in silicon is 0.26 m0, where m0 
= 9.11 x 10-31 kg is the free electron rest mass). 

Solution The lowest energy in the quantum well equals: 

2
631

234
2

*

2

1 )
102
1

(
1011.926.02
)10626.6(

)
2
1

(
2 −−

−

××××
×

==
xLm

h
E  

= 2.32 x 10-25 Joules = 1.45 µeV 

The velocity of an electron with this energy equals: 

31

25

*
1

1011.926.0
1032.222

−

−

××
××

==
m
E

v =1.399 km/s 
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Chapter 2: Semiconductor Fundamentals

2.7. Carrier Transport

2.7.1. Carrier drift
2.7.2. Carrier Mobility
2.7.3. Velocity saturation
2.7.4. Carrier diffusion

A motion of free carriers in a semiconductor leads to a current. This motion can be caused by an electric field due to an 
externally applied voltage, since the carriers are charged particles. We will refer to this as carrier drift. In addition, carriers 
also move from regions where the carrier density is high to regions where the carrier density is low. This carrier transport 
mechanism is due to the thermal energy and the associated random motion of the carriers. We will refer to this transport 
mechanism as carrier diffusion. The total current in a semiconductor equals the sum of the drift and the diffusion current.

As one applies an electric field to a semiconductor, the electrostatic force causes the carriers to first accelerate and then 
reach a constant average velocity, v, due to collisions with impurities and lattice vibrations. The ratio of the velocity to the 
applied field is called the mobility. The velocity saturates at high electric fields reaching the saturation velocity. Additional 
scattering occurs when carriers flow at the surface of a semiconductor, resulting in a lower mobility due to surface or 
interface scattering mechanisms.

Diffusion of carriers is obtained by creating a carrier density gradient. Such gradient can be obtained by varying the doping 
density in a semiconductor or by applying a thermal gradient.

Both carrier transport mechanisms are related since the same particles and scattering mechanisms are involved. This leads 
to a relationship between the mobility and the diffusion constant called the Einstein relation.

2.7.1. Carrier drift  

2.7.1.1 Impurity scattering
2.7.1.2 Lattice scattering
2.7.1.3 Surface scattering

The motion of a carrier drifting in a semiconductor due to an applied electric field is illustrated in Figure 2.7.1. The field 
causes the carrier to move with a velocity, v. 
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Figure 2.7.1 : Drift of a carrier due to an applied electric field.

Assuming that all the carriers in the semiconductor move with the same velocity, the current can be expressed as the total 
charge in the semiconductor divided by the time needed to travel from one electrode to the other, or: 

(2.7.1)

where τr is the transit time of a particle, traveling with velocity, v, over the distance L. The current density can then be 

rewritten as a function of either the charge density, ρ, or the density of carriers, n in the semiconductor: 

(2.7.2)

Carriers however do not follow a straight path along the electric field lines, but instead bounce around in the semiconductor 
and constantly change direction and velocity due to scattering. This behavior occurs even when no electric field is applied 
and is due to the thermal energy of the electrons. Electrons in a non-degenerate and non-relativistic electron gas have a 
thermal energy, which equals kT/2 per particle per degree of freedom. A typical thermal velocity at room temperature is 
around 107 cm/s, which exceeds the typical drift velocity in semiconductors. The carrier motion in the semiconductor in the 
absence and in the presence of an electric field can therefore be visualized as in Figure 2.7.2. 

Figure 2.7.2 : Random motion of carriers in a semiconductor with and without an applied electric field.

In the absence of an applied electric field, the carrier exhibits random motion and the carriers move quickly through the 
semiconductor and frequently change direction. When an electric field is applied, the random motion still occurs but in 
addition, there is on average a net motion along the direction of the field.
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We now analyze the carrier motion considering only the average velocity,  of the carriers. Applying Newton's law, 
we state that the acceleration of the carriers is proportional to the applied force: 

(2.7.3)

The force consists of the difference between the electrostatic force and the scattering force due to the loss of momentum at 
the time of scattering. This scattering force equals the momentum divided by the average time between scattering events, so 
that: 

(2.7.4)

Combining both relations yields an expression for the average particle velocity: 

(2.7.5)

We now consider only the steady state situation in which the particle has already accelerated and has reached a constant 
average velocity. Under such conditions, the velocity is proportional to the applied electric field and we define the mobility 
as the velocity to field ratio: 

(2.7.6)

The mobility of a particle in a semiconductor is therefore expected to be large if its mass is small and the time between 
scattering events is large.

The drift current, described by (2.7.2), can then be rewritten as a function of the mobility, yielding: 

(2.7.7)

Throughout this derivation, we simply considered the mass, m, of the particle. However in order to incorporate the effect of 
the periodic potential of the atoms in the semiconductor we must use the effective mass, m*, rather than the free particle 
mass: 

(2.7.8)

Example 2.8 Electrons in undoped gallium arsenide have a mobility of 8,800 cm2/V-s. Calculate the average time 
between collisions. Calculate the distance traveled between two collisions (also called the mean free 
path). Use an average velocity of 107 cm/s.

Solution The collision time, τc, is obtained from: 

where the mobility was first converted in MKS units.

The mean free path, l, equals:
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2.7.1.1 Impurity scattering

By impurities, we mean foreign atoms in the solid, which are efficient scattering centers especially when they have a net 
charge. Ionized donors and acceptors in a semiconductor are a common example of such impurities. The amount of 
scattering due to electrostatic forces between the carrier and the ionized impurity depends on the interaction time and the 
number of impurities. Larger impurity concentrations result in a lower mobility. The dependence on the interaction time 
helps to explain the temperature dependence. The interaction time is directly linked to the relative velocity of the carrier 
and the impurity, which is related to the thermal velocity of the carriers. This thermal velocity increases with the ambient 
temperature so that the interaction time increases. Thereby, the amount of scattering decreases, resulting in a mobility 
increase with temperature. To first order, the mobility due to impurity scattering is proportional to T 3/2/NI, where NI is the 

density of charged impurities.

2.7.1.2 Lattice scattering

Scattering by lattice waves includes the absorption or emission of either acoustical or optical phonons. Since the density of 
phonons in a solid increases with temperature, the scattering time due to this mechanism will decrease with temperature as 
will the mobility. Theoretical calculations reveal that the mobility in non-polar semiconductors, such as silicon and 
germanium, is dominated by acoustic phonon interaction. The resulting mobility is expected to be proportional to T -3/2, 
while the mobility due to optical phonon scattering only is expected to be proportional to T -1/2. Experimental values of the 
temperature dependence of the mobility in germanium, silicon and gallium arsenide are provided in Table 2.7.1. 

Table 2.7.1 : Temperature dependence of the mobility in germanium, silicon and gallium arsenide due to phonon 
scattering

2.7.1.3 Surface scattering

The surface and interface mobility of carriers is affected by the nature of the adjacent layer or surface. Even if the carrier 
does not transfer into the adjacent region, its wavefunction does extend over 1 to 10 nanometer, so that there is a non-zero 
probability for the particle to be in the adjacent region. The net mobility is then a combination of the mobility in both 
layers. For carriers in the inversion layer of a MOSFET, one finds that the mobility can be up to three times lower than the 
bulk value. This is due to the distinctly lower mobility of electrons in the amorphous silicon. The presence of charged 
surface states further reduces the mobility just as ionized impurities would. 

2.7.2. Carrier Mobility  

2.7.2.1 Doping dependence
2.7.2.2 Conductivity and Resistivity

2.7.2.1 Doping dependence
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The mobility of electrons and holes in silicon at room temperature is shown in Figure2.7.3. 

Figure 2.7.3 : Electron and hole mobility versus doping density for silicon 

The electron mobility and hole mobility have a similar doping dependence: For low doping concentrations, the mobility is 
almost constant and is primarily limited by phonon scattering. At higher doping concentrations, the mobility decreases due 
to ionized impurity scattering with the ionized doping atoms. The actual mobility also depends on the type of dopant. 
Figure 2.7.3 is for phosphorous and boron doped silicon. 

Note that the mobility is linked to the total number of ionized impurities or the sum of the donor and acceptor densities. 
The free carrier density, as described in section 2.6.4.1 is to first order related to the difference between the donor and 
acceptor concentration.

The minority carrier mobility also depends on the total impurity density. The minority-carrier mobility can be 
approximated by the majority-carrier mobility in a material with the same number of impurities. The mobility at a 
particular doping density is obtained from the following empiric expression: 

(2.7.9)

Table 2.7.2 : Parameters for calculation of the mobility as a function of the doping density

The resulting mobilities in units of cm2/V-s are listed for different doping densities in Table 2.7.3.
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Table 2.7.3 : Mobility in silicon for different doping densities

2.7.2.2 Conductivity and Resistivity

The conductivity of a material is defined as the current density divided by the applied electric field. Since the current 
density equals the product of the charge of the mobile carriers, their density and velocity, it can be expressed as a function 
of the electric field using the mobility. To include the contribution of electrons as well as holes to the conductivity, we add 
the current density due to holes to that of the electrons, or: 

(2.7.10)

The conductivity due to electrons and holes is then obtained from: 

(2.7.11)

The resistivity is defined as the inverse of the conductivity, namely: 

(2.7.12)

The resulting resistivity as calculated with equation (2.7.12) is shown in Figure 2.7.4. 

Figure 2.7.4 : Resistivity of n-type and p-type silicon versus doping density 
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The sheet resistance concept is used to characterize both wafers and thin doped layers, since it is typically easier to measure 
the sheet resistance rather than the resistivity of the material. The sheet resistance of a uniformly-doped layer with 
resistivity, r, and thickness, t, is given by their ratio: 

(2.7.13)

While the unit of the sheet resistance is Ohms, one refers to it as Ohms per square. This nomenclature comes in handy 
when the resistance of a rectangular piece of material with length, L, and width W must be obtained. It equals the product 
of the sheet resistance and the number of squares or: 

(2.7.14)

where the number of squares equals the length divided by the width. Figure 2.7.5 provides, as an example, the sheet 
resistance of a 14 mil thick silicon wafer which is n-type or p-type. 

Figure 2.7.5 : Sheet resistance of a 14 mil thick n-type and p-type silicon wafer versus doping density. 

Example 2.9 A piece of silicon doped with arsenic (Nd = 1017 cm-3) is 100 µm long, 10 µm wide and 1 µm thick. 

Calculate the resistance of this sample when contacted one each end. 

Solution The resistivity of the silicon equals: 

where the mobility was obtained from Table 2.7.3.

The resistance then equals:
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An alternate approach is to first calculate the sheet resistance, Rs:

From which one then obtains the resistance: 

2.7.3. Velocity saturation  

The linear relationship between the average carrier velocity and the applied field breaks down when high fields are applied. 
As the electric field is increased, the average carrier velocity and the average carrier energy increases as well. When the 
carrier energy increases beyond the optical phonon energy, the probability of emitting an optical phonon increases abruptly. 
This mechanism causes the carrier velocity to saturate with increasing electric field. For carriers in silicon and other 
materials, which do not contain accessible higher bands, the velocity versus field relation can be described by: 

(2.7.15)

The maximum obtainable velocity, vsat, is referred to as the saturation velocity. 

2.7.4. Carrier diffusion  

2.7.4.1 Diffusion current 
2.7.4.2 Total current

Carrier diffusion is due to the thermal energy, kT, which causes the carriers to move at random even when no field is 
applied. This random motion does not yield a net motion of carriers nor does it yield a net current in material with a 
uniform carrier density as any carrier which leaves a specific location is on average replace by another one. However if a 
carrier gradient is present, the diffusion process will attempt to make the carrier density uniform: carriers diffuse from 
regions where the density is high to regions where the density is low. The diffusion process is not unlike the motion of sand 
on a vibrating table; hills as well as valleys are smoothed out over time. 

In this section we will first derive the expression for the current due to diffusion and then combine it with the drift current 
to obtain the total drift-diffusion current. 

2.7.4.1 Diffusion current 

http://ece-www.colorado.edu/~bart/book/book/chapter2/ch2_7.htm (8 of 11) [2/28/2002 5:29:04 PM]



Carrier Transport

The derivation is based on the basic notion that carriers at non-zero temperature (Kelvin) have an additional thermal 
energy, which equals kT/2 per degree of freedom. It is the thermal energy, which drives the diffusion process. At T = 0 K 
there is no diffusion. 

While one should recognize that the random nature of the thermal energy would normally require a statistical treatment of 
the carriers, we instead will use average values to describe the process. Such approach is justified on the basis that a more 
elaborate statistical approach yields the same results. To further simplify the derivation, we will derive the diffusion current 
for a one-dimensional semiconductor in which carriers can only move along one direction.

We now introduce the average values of the variables of interest, namely the thermal velocity, vth, the collision time, τc, 

and the mean free path, l. The thermal velocity is the average velocity of the carriers going in the positive or negative 
direction. The collision time is the time during which carriers will move with the same velocity before a collision occurs 
with an atom or with another carrier. The mean free path is the average length a carrier will travel between collisions. 
These three averages are related by:

(2.7.16)

Consider now the situation illustrated with Figure 2.7.6. 

Figure 2.7.6 : Carrier density profile used to derive the diffusion current expression

Shown is a variable carrier density, n(x). Of interest are the carrier densities which are one mean free path away from x = 0, 
since the carriers which will arrive at x = 0 originate either at x = -l or x = l. The flux at x = 0 due to carriers which originate 
at x = -l and move from left to right equals: 

(2.7.17)

where the factor 1/2 is due to the fact that only half of the carriers move to the left while the other half moves to the right. 
The flux at x = 0 due to carriers, which originate at x = +l and move from right to left, equals: 

(2.7.18)

The total flux of carriers moving from left to right at x = 0 therefore equals: 
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(2.7.19)

Where the flux due to carriers moving from right to left is subtracted from the flux due to carriers moving from left to right. 
Given that the mean free path is small we can write the difference in densities divided by the distance between x = -l and x 
= l as the derivative of the carrier density: 

(2.7.20)

The electron diffusion current equals this flux times the charge of an electron, or: 

(2.7.21)

Typically, we will replace the product of the thermal velocity and the mean free path by a single parameter, namely the 
diffusion constant, Dn. 

(2.7.22)

Repeating the same derivation for holes yields: 

(2.7.23)

We now further explore the relation between the diffusion constant and the mobility. At first, it seems that there should be 
no relation between the two since the driving force is distinctly different: diffusion is caused by thermal energy while an 
externally applied field causes drift. However one essential parameter in the analysis, namely the collision time, τc, should 

be independent of what causes the carrier motion. 

We now combine the relation between the velocity, mean free path and collision time, 

(2.7.24)

with the result from thermodynamics, stating that electrons carry a thermal energy which equals kT/2 for each degree of 
freedom. Applied to a one-dimensional situation, this leads to: 

(2.7.25)

We now use these relations to rewrite the product of the thermal velocity and the mean free path as a function of the carrier 
mobility: 

(2.7.26)

Using the definition of the diffusion constant we then obtain the following expressions which are often referred to as the 
Einstein relations: 

(2.7.27)

(2.7.28)

Example 2.10 The hole density in an n-type silicon wafer (Nd = 1017 cm-3) decreases linearly from 1014 cm-3 to 1013 

cm-3 between x = 0 and x = 1 µm. Calculate the hole diffusion current density.
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Solution The hole diffusion current density equals: 

where the diffusion constant was calculated using the Einstein relation:

and the hole mobility in the n-type wafer was obtained from Table 2.7.3 as the hole mobility in a p-type 
material with the same doping density.

2.7.4.2 Total current

The total electron current is obtained by adding the current due to diffusion to the drift current, yielding: 

(2.7.29)

and similarly for holes: 

(2.7.30)

The total current is the sum of the electron and hole current densities multiplied with the area, A, perpendicular to the 
direction of the carrier flow: 

(2.7.31)
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Chapter 2: Semiconductor Fundamentals

2.6. Carrier densities

2.6.1. General discussion
2.6.2. Calculation of the Fermi integral
2.6.3. Intrinsic semiconductors
2.6.4. Doped semiconductors
2.6.5. Non-equilibrium carrier densities

Now that we have discussed the density of states and the distribution functions, we have all the necessary tools to calculate 
the carrier density in a semiconductor.

2.6.1 General discussion  

The density of electrons in a semiconductor is related to the density of available states and the probability that each of these 
states is occupied. The density of occupied states per unit volume and energy, n(E), is simply the product of the density of 
states in the conduction band, gc(E) and the Fermi-Dirac probability function, f(E), (also called the Fermi function): 

(2.6.1)

Since holes correspond to empty states in the valence band, the probability of having a hole equals the probability that a 
particular state is not filled, so that the hole density per unit energy, p(E), equals: 

(2.6.2)

Where gv(E) is the density of states in the valence band. The density of carriers is then obtained by integrating the density 

of carriers per unit energy over all possible energies within a band. A general expression is derived as well as an 
approximate analytic solution, which is valid for non-degenerate semiconductors. In addition, we also present the Joyce-
Dixon approximation, an approximate solution useful when describing degenerate semiconductors. 

The density of states in a semiconductor was obtained by solving the Schrödinger equation for the particles in the 
semiconductor. Rather than using the actual and very complex potential in the semiconductor, we use the simple particle-in-
a box model, where one assumes that the particle is free to move within the material. 

For an electron which behaves as a free particle with effective mass, m*, the density of states was derived in section 2.4, 
yielding: 

(2.6.3)

where Ec is the bottom of the conduction band below which the density of states is zero. The density of states for holes in 

the valence band is given by: 

(2.6.4)
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2.6.2. Calculation of the Fermi integral  

2.6.2.1 Carrier density at zero Kelvin
2.6.2.2 Non-degenerate semiconductors
2.6.2.3 Degenerate semiconductors

The carrier density in a semiconductor, is obtained by integrating the product of the density of states and the probability 
density function over all possible states. For electrons in the conduction band the integral is taken from the bottom of the 
conduction band, labeled, Ec, to the top of the conduction band: 

(2.6.5)

Where gc(E) is the density of states in the conduction band and f(E) is the Fermi function.

This general expression is illustrated with Figure 2.6.1 for a parabolic density of states function with Ec = 0. The figure 

shows the density of states function, gc(E), the Fermi function, f(E), as well as the product of both, which is the density of 

electrons per unit volume and per unit energy, n(E). The integral corresponds to the crosshatched area. 

Figure 2.6.1 : The carrier density integral. Shown are the density of states, gc(E), the density per unit energy, n(E), and 

the probability of occupancy, f(E). The carrier density, no, equals the crosshatched area. 

The actual location of the top of the conduction band does not need to be known as the Fermi function goes to zero at 
higher energies. The upper limit can therefore be replaced by infinity. We also relabeled the carrier density as no to indicate 
that the carrier density is the carrier density in thermal equilibrium.

(2.6.6)

Using equations (2.6.3) and (2.5.1) this integral becomes: 
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(2.6.7)

While this integral can not be solved analytically at non-zero temperatures, we can obtain either a numeric solution or an 
approximate analytical solution. Similarly for holes one obtains: 

(2.6.8)

and 

(2.6.9)

The calculation of the electron and hole density in a semiconductor is further illustrated by Figure 2.6.2. 

Figure 2.6.2 : The density of states and carrier densities in the conduction and valence band. Shown are the electron 
and hole density per unit energy, n(E) and p(E), the density of states in the conduction and valence band, 
gc(E) and gv(E) and the probability of occupancy, f(E). The crosshatched area indicates the electron and 

hole densities. 

Indicated on the figure are the density of states in the conduction and valence band, the Fermi distribution function and the 
electron and hole densities per unit energy. The crosshatched areas indicate the thermal-equilibrium carrier densities. From 
the figure, one can easily see that the electron density will increase as the Fermi energy is increased. The hole density 
decreases with increasing Fermi energy. As the Fermi energy is decreased, the electron density decreases and the hole 
density increases.

2.6.2.1 Carrier density at zero Kelvin
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Equation (2.6.7) can be solved analytically at T = 0 K, since the Fermi function at T = 0 K equals one for all energies below 
the Fermi energy and 0 for all energies larger than the Fermi energy. Equation (2.6.7) can therefore be simplified to:

(2.6.10)

and integration yields:

(2.6.11)

This expression can be used to approximate the carrier density in heavily degenerate semiconductors provided kT << (EF - 

Ec) > 0

2.6.2.2 Non-degenerate semiconductors

Non-degenerate semiconductors are defined as semiconductors for which the Fermi energy is at least 3kT away from either 
band edge. The reason we restrict ourselves to non-degenerate semiconductors is that this definition allows the Fermi 
function to be replaced by a simple exponential function, i.e. the Maxwell-Boltzmann distribution function. The carrier 
density integral can then be solved analytically yielding: 

(2.6.12)

with 

(2.6.13)

where Nc is the effective density of states in the conduction band. Similarly for holes, one can approximate the hole density 

integral as: 

(2.6.14)

with 

(2.6.15)

where Nv is the effective density of states in the valence band.

Example 2.4 Calculate the effective densities of states in the conduction and valence bands of germanium, silicon and 
gallium arsenide at 300 K.
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Solution The effective density of states in the conduction band of germanium equals: where the effective mass for 
density of states was used (Appendix 3). Similarly one finds the effective densities for silicon and 
gallium arsenide and those of the valence band:

Calculate the effective densities of states in the conduction and valence bands of germanium, silicon and 
gallium arsenide at 300 K.

Note that the effective density of states is temperature dependent and can be obtain from:

where Nc(300 K) is the effective density of states at 300 K.

2.6.2.3 Degenerate semiconductors

A useful approximate expression applicable to degenerate semiconductors was obtained by Joyce and Dixon and is given 
by: 

(2.6.16)

for electrons and by: 

(2.6.17)

for holes. 

2.6.3. Intrinsic semiconductors  
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2.6.3.1 Intrinsic carrier density
2.6.3.2 Mass action law
2.6.3.3 Intrinsic Fermi energy
2.6.3.4 Intrinsic material as reference

Intrinsic semiconductors are semiconductors, which do not contain impurities. They do contain electrons as well as holes. 
The electron density equals the hole density since the thermal activation of an electron from the valence band to the 
conduction band yields a free electron in the conduction band as well as a free hole in the valence band. We will identify 
the intrinsic hole and electron density using the symbol ni, and refer to it as the intrinsic carrier density. 

2.6.3.1 Intrinsic carrier density

Intrinsic semiconductors are usually non-degenerate, so that the expressions for the electron (2.6.12) and hole (2.6.14) 
densities in non-degenerate semiconductors apply. Labeling the Fermi energy of intrinsic material as Ei, we can then write 

two relations between the intrinsic carrier density and the intrinsic Fermi energy, namely: 

(2.6.18)

It is possible to eliminate the intrinsic Fermi energy from both equations, simply by multiplying both equations and taking 
the square root. This provides an expression for the intrinsic carrier density as a function of the effective density of states in 
the conduction and valence band, and the bandgap energy Eg = Ec - Ev. 

(2.6.19)

The temperature dependence of the intrinsic carrier density is dominated by the exponential dependence on the energy 
bandgap. In addition, one has to consider the temperature dependence of the effective densities of states and that of the 
energy bandgap. A plot of the intrinsic carrier density versus temperature is shown in Figure 2.6.3. The temperature 
dependence of the effective masses was ignored. 

Figure 2.6.3 : Intrinsic carrier density versus temperature in gallium arsenide (GaAs), silicon (Si) and germanium (Ge). 
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Example 2.4b Calculate the intrinsic carrier density in germanium, silicon and gallium arsenide at 300, 400, 500 and 
600 K.

Solution The intrinsic carrier density in silicon at 300 K equals:

Similarly one finds the intrinsic carrier density for germanium and gallium arsenide at different 
temperatures, yielding:

Note that the values at 300 K as calculated in example 2.4 are not identical to those listed in Appendix 3. This is due to an 
accumulation of assumptions in the derivation. The numbers in Appendix 3 are obtained from careful measurements and 
should therefore be used instead of those calculated in example 2.4.

2.6.3.2 Mass action law

Using the same approach as in section 2.6.3.1, one can prove that the product of the electron and hole density equals the 
square of the intrinsic carrier density for any non-degenerate semiconductor. By multiplying the expressions for the 
electron and hole densities in a non-degenerate semiconductor, as in equations (2.6.12) and (2.6.14), one obtains: 

(2.6.20)

This property is referred to as the mass action law. It is a powerful relation, which enables to quickly find the hole density 
if the electron density is known or vice versa. This relation is only valid for non-degenerate semiconductors in thermal 
equilibrium

2.6.3.3 Intrinsic Fermi energy

The above equations for the intrinsic electron and hole density can be solved for the intrinsic Fermi energy, yielding: 

(2.6.21)
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The intrinsic Fermi energy is typically close to the midgap energy, half way between the conduction and valence band 
edge. The intrinsic Fermi energy can also be expressed as a function of the effective masses of the electrons and holes in 
the semiconductor. For this we use equations (2.6.13) and (2.6.15) for the effective density of states in the conduction and 
valence band, yielding: 

(2.6.22)

2.6.3.4 Intrinsic material as reference

Dividing the expressions for the carrier densities (2.6.12) and (2.6.14), by the one for the intrinsic density (2.6.18) allows to 
write the carrier densities as a function of the intrinsic density, ni, and the intrinsic Fermi energy, Ei, or: 

(2.6.23)

and 

(2.6.24)

We will use primarily these two equations to find the electron and hole density in a semiconductor in thermal equilibrium. 
The same relations can also be rewritten to obtain the Fermi energy from either carrier density, namely: 

(2.6.25)

and 

(2.6.26)

2.6.4. Doped semiconductors  

2.6.4.1 Dopants and impurities
2.6.4.2 Ionization energy model
2.6.4.3 Analysis of non-degenerately doped semiconductors
2.6.4.4 General analysis

Doped semiconductors are semiconductors, which contain impurities, foreign atoms incorporated into the crystal structure 
of the semiconductor. Either these impurities can be unintentional, due to lack of control during the growth of the 
semiconductor, or they can be added on purpose to provide free carriers in the semiconductor. 
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The generation of free carriers requires not only that impurities are present, but also that the impurities give off electrons to 
the conduction band in which case they are called donors. If they give off holes to the valence band, they are called 
acceptors (since they effectively accept an electron from the filled valence band). The ionization of shallow donors and 
acceptors are illustrated by Figure 2.6.4. Indicated are the donor and acceptor energies, Ed and Ea. The donor energy level 

is filled prior to ionization. Ionization causes the donor to be emptied, yielding an electron in the conduction band and a 
positively charged donor ion. The acceptor energy is empty prior to ionization. Ionization of the acceptor corresponds to 
the empty acceptor level being filled by an electron from the filled valence band. This is equivalent to a hole given off by 
the acceptor atom to the valence band.

Figure 2.6.4 : Ionization of a) a shallow donor and b) a shallow acceptor

A semiconductor doped with impurities, which are ionized (meaning that the impurity atoms either have donated or 
accepted an electron), will therefore contain free carriers. Shallow impurities are impurities, which require little energy - 
typically around the thermal energy, kT, or less - to ionize. Deep impurities require energies much larger than the thermal 
energy to ionize so that only a fraction of the impurities present in the semiconductor contribute to free carriers. Deep 
impurities, which are more than five times the thermal energy away from either band edge, are very unlikely to ionize. 
Such impurities can be effective recombination centers, in which electrons and holes fall and annihilate each other. Such 
deep impurities are also called traps. 

Ionized donors provide free electrons in a semiconductor, which is then called n-type, while ionized acceptors provide free 
holes in a semiconductor, which we refer to as being a p-type semiconductor. 

2.6.4.1 Dopants and impurities

The ionization of the impurities is dependent on the thermal energy and the position of the impurity level within the energy 
band gap as described by the impurity distribution functions discussed in section 2.5.3. 

Shallow impurities readily ionize so that the free carrier density equals the impurity concentration. For shallow donors this 
implies that the electron density equals the donor concentration, or: 

(2.6.27)

While for shallow acceptors the hole density equals the acceptor concentration, or: 

(2.6.28)
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If a semiconductor contains both shallow donors and shallow acceptors it is called compensated since equal amounts of 
donor and acceptor atoms compensate each other, yielding no free carriers. The presence of shallow donors and shallow 
acceptors in a semiconductor cause the electrons given off by the donor atoms to fall into the acceptor state, which ionizes 
the acceptor atoms without yielding a free electron or hole. The resulting carrier density in compensated material, which 
contains both shallow donors and shallow acceptors, is approximately equal to the difference between the donor and 
acceptor concentration if the donor concentration is larger, yielding n-type material, or: 

(2.6.29)

If the acceptor concentration is larger than the donor concentration, the hole density of the resulting p-type material equals 
the difference between the acceptor and donor concentration, or: 

(2.6.30)

2.6.4.2 Ionization energy model

The energy required to remove an electron from a donor atom can be approximated using a hydrogen-like model. After all, 
the donor atom consists of a positively charged ion and an electron just like the proton and electron of the hydrogen atom. 
The difference however is that the average distance, r, between the electron and the donor ion is much larger since the 
electron occupies one of the outer orbitals. This is illustrated by Figure 2.6.5.

Figure 2.6.5: Trajectory of an electron bound to a donor ion within a semiconductor crystal. 
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For shallow donors, this distance, r, is much larger than the inter-atomic spacing of the semiconductor crystal. The 
ionization energy, Ed, can be estimated by modifying equation (1.2.10), which describes the electron energy in a Hydrogen 

atom, yielding:

(2.6.31)

where m*
cond is the effective mass for conductivity calculations and er is the relative dielectric constant of the 

semiconductor. The ionization energy is calculated as the difference between the energy of a free electron and that of an 
electron occupying the lowest energy level, E1.

Example 2.5 Calculate the ionization energy for shallow donors and acceptors in germanium and silicon using the 
hydrogen-like model.

Solution Using the effective mass for conductivity calculations (Appendix 3) one finds the ionization energy for 
shallow donors in germanium to be:

The calculated ionization energies for donors and acceptors in germanium and silicon are provided 
below.

Note that the actual ionization energies differ from these values and depend on th actual donor atom.

2.6.4.3 Analysis of non-degenerately doped semiconductors

The calculation of the electron density starts by assuming that the semiconductor is neutral, so that there is a zero charge 
density in the material. This is a reasonable assumption since a net charge density would result in an electric field. This 
electric field would move any mobile charge so that it eliminates any charge imbalance. 

The charge density in a semiconductor depends on the free electron and hole density and on the ionized impurity densities. 
Ionized donors, which have given off an electron, are positively charged. Ionized acceptors, which have accepted an 
electron, are negatively charged. The total charge density is therefore given by:

(2.6.32)

The hole concentration in thermal equilibrium can be written as a function of the electron density by using the mass action 
law (2.6.20). This yields the following relation between the electron density and the ionized impurity densities: 

(2.6.33)
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Note that the use of the mass action law restricts the validity of this derivation to non-degenerate semiconductors as defined 
in section 2.6.2.2. Solving this quadratic equation yields a solution for the electron density, namely: 

(2.6.34)

The same derivation can be repeated for holes, yielding: 

(2.6.35)

The above expressions provide the free carrier densities for compensated semiconductors assuming that all donors and 
acceptors are ionized.

From the carrier densities, one then obtains the Fermi energies using equations (2.6.25) and (2.6.26) which are repeated 
below:

(2.6.25)

or 

(2.6.26)

The Fermi energies in n-type and p-type silicon as a function of doping density is shown in Figure 2.6.6 for different 
temperatures:

Figure 2.6.6 : Fermi energy of n-type and p-type silicon, EF,n and EF,p, as a function of doping density at 100, 200, 

300, 400 and 500 K. Shown are the conduction and valence band edges, Ec and Ev. The midgap energy 

is set to zero. 
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Figure 2.6.6 illustrates how the Fermi energies vary with doping density. The Fermi energy varies linearly, when plotting 

the density on a logarithmic scale, up to a doping density of 1018 cm-3. This simple dependence requires that the 
semiconductor is neither intrinsic nor degenerate and that all the dopants are ionized. For compensated material, containing 
only shallow dopants, one uses the net doping density, |Nd - Na|. 

Example 2.6a A germanium wafer is doped with a shallow donor density of 3ni/2. Calculate the electron and hole 

density.

Solution The electron density is obtained from equation (2.6.34) and the hole density is obtained using the mass 
action law: 

Example 2.6b A silicon wafer is doped with a shallow acceptor doping of 1016 cm-3. Calculate the electron and hole 
density.

Solution Since the acceptor doping is much larger than the intrinsic density and much smaller than the effective 
density of states, the hole density equals: The electron density is then obtained using the mass action law 
The approach described in example 2.6a yields the same result.

2.6.4.4 General analysis

A more general analysis takes also into account the fact that the ionization of the impurities is not 100%, but instead is 
given by the impurity distribution functions provided in section 2.5.3.

The analysis again assumes that there is no net charge in the semiconductor (charge neutrality). This also means that the 
total density of positively charged particles (holes and ionized donors) must equals the total density of negatively charged 
particles (electrons and ionized acceptors) yielding: 

(2.6.36)

The electron and hole densities are then written as a function of the Fermi energy. For non-degenerate semiconductors one 
uses equations (2.6.12) and (2.6.14), while the ionized impurity densities equal the impurity density multiplied with the 
probability of occupancy for the acceptors and one minus the probability of occupancy for the donors. The Joyce-Dixon 
approximation, described in section 2.6.2.3 is used to calculate the degenerate carrier densities.

A graphical solution to equation (2.6.36) above can be obtained by plotting both sides of the equation as a function of the 
Fermi energy as illustrated in Figure 2.6.7. 

http://ece-www.colorado.edu/~bart/book/book/chapter2/ch2_6.htm (13 of 16) [2/28/2002 5:29:14 PM]



Carrier densities

Figure 2.6.7 : Graphical solution of the Fermi energy based on the general analysis. The value of the Fermi energy and 
the free carrier density is obtained at the intersection of the two curves, which represent the total positive 

and total negative charge in the semiconductor. Na equals 1016 cm-3 and Nd equals 1014 cm-3. 

Figure 2.6.7 shows the positive and negative charge densities as well as the electron and hole densities as a function of the 
Fermi energy. The dotted lines indicate the position of the acceptor and donor energies. The Fermi energy is obtained at the 
intersection of both curves as indicated by the arrow.

This graphical solution is a very useful tool to explore the Fermi energy as a function of the doping densities, ionization 
energies and temperature.

Operation of devices over a wide temperature range requires a detailed knowledge of the carrier density as a function of 
temperature. At intermediate temperatures the carrier density approximately equals the net doping, |Na - Nd|. 

Semiconductors, which satisfy this condition, are also called extrinsic semiconductors. The free carrier density increases at 
high temperatures for which the intrinsic density approaches the net doping density and decreases at low temperatures due 
to incomplete ionization of the dopants. The carrier density and Fermi energy are shown in Figure 2.6.8 for silicon doped 
with 1016 cm-3 donors and 1015 cm-3 acceptors: 
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Figure 2.6.8 : Electron density and Fermi energy as a function of temperature in silicon with Nd = 1016 cm-3, Na = 1014 

cm-3 and Ec - Ed = Ea - Ev = 50 meV. The activation energy at 70 K equals 27.4 meV. 

At high temperatures, the carrier density equals the intrinsic carrier concentration, while at low temperatures the carrier 
density is dominated by the ionization of the donors. 

The temperature dependence is related to an activation energy by fitting the carrier density versus 1/T on a semi-
logarithmic scale to a straight line of the form no(T) = C exp(-EA/kT), where C is a constant. At high temperatures this 

activation energy equals half the bandgap energy or EA = Eg/2. 

The temperature dependence at low temperatures is somewhat more complex as it depends on whether or not the material 
is compensated. Figure 2.6.8 was calculated for silicon containing both donors and acceptors. At 70 K the electron density 
is below the donor density but still larger than the acceptor density. Under such conditions the activation energy, EA, equals 

half of the ionization energy of the donors or (Ec - Ed)/2. At lower temperatures where the electron density is lower than the 

acceptor density, the activation energy equals the ionization energy or Ec - Ed. This behavior is explained by the fact that 

the Fermi energy in compensated material is fixed at the donor energy. The donors levels are always partially empty as 
electrons are removed from the donor atoms to fill the acceptor energy levels. If the acceptor density is smaller than the 
electron density - as is true for uncompensated material - the Fermi energy does change with temperature and the activation 
energy approaches half of the ionization energy. 

Lightly doped semiconductors suffer from freeze-out at relatively high temperature. Higher-doped semiconductors freeze-
out at lower temperatures. Highly-doped semiconductors do not contain a single donor energy, but rather an impurity band 
which overlaps with the conduction or valence band. The overlap of the two bands results in free carriers even at zero 
Kelvin. Degenerately doping a semiconductor therefore eliminates freeze-out effects. 

2.6.5. Non-equilibrium carrier densities  
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Up until now, we have only considered the thermal equilibrium carrier densities, no and po. However most devices of 

interest are not in thermal equilibrium. Keep in mind that a constant ambient constant temperature is not a sufficient 
condition for thermal equilibrium. In fact, applying a non-zero voltage to a device or illuminating it with light will cause a 
non-equilibrium condition, even if the temperature is constant.

To describe a system that is not in thermal equilibrium we assume that each of the carrier distributions is still in 
equilibrium with itself. Such assumption is justified on the basis that electrons readily interact with each other and interact 
with holes only on a much longer time scale. As a result the electron density can still be calculated using the Fermi-Dirac 
distribution function, but with a different value for the Fermi energy. The total carrier density for a non-degenerate 
semiconductor is then described by:

(2.6.37)

Where δn is the excess electron density and Fn is the quasi-Fermi energy for the electrons. Similarly, the hole density can 

be expressed as:

(2.6.38)

Where δp is the excess hole density and Fp is the quasi-Fermi energy for the holes.

Example 2.7 A piece of germanium doped with 1016 cm-3 shallow donors is illuminated with light generating 1015 cm-

3 excess electrons and holes. Calculate the quasi-Fermi energies relative to the intrinsic energy and 
compare it to the Fermi energy in the absence of illumination.

Solution The carrier densities when illuminating the semiconductor are:

and the quasi-Fermi energies are:

In comparison, the Fermi energy in the absence of light equals

which is very close to the quasi-Fermi energy of the majority carriers.
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Example 1.4 Consider an infinitely long cylinder with charge density ρ, 
dielectric constant ε0 and radius r0. What is the electric field in 
and around the cylinder? 

Solution Because of the cylinder symmetry one expects the electric field 
to be only dependent on the radius, r. Applying Gauss's law one 
finds: 

0
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and  
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where a cylinder with length L was chosen to define the surface 
A, and edge effects were ignored. The electric field then equals: 
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The electric field increases within the cylinder with increasing 
radius. The electric field decreases outside the cylinder with 
increasing radius. 
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Chapter 7: MOS Field-Effect-Transistors

Equations  

(7.3.1)

(7.3.2)

(7.3.3)

(7.3.4)

(7.3.5)

(7.3.6)

(7.3.7)

(7.3.8)

(7.3.9)

http://ece-www.colorado.edu/~bart/book/book/chapter7/ch7_eq.htm (1 of 6) [2/28/2002 5:29:27 PM]

http://ece-www.colorado.edu/~bart/book/book/chapter7/pdf/ch5_eq.pdf


Chapter 7 Equations

(7.3.10)

(7.3.11)

(7.3.12)

(7.3.13)

(7.3.14)

(7.3.15)

(7.3.16)

(7.3.17)

(7.3.18)

(7.3.19)

http://ece-www.colorado.edu/~bart/book/book/chapter7/ch7_eq.htm (2 of 6) [2/28/2002 5:29:27 PM]



Chapter 7 Equations

(7.3.20)

(7.3.21)

(7.3.22)

(7.3.23)

(7.3.24)

(7.3.25)

(7.3.26)

(7.3.27)

(7.4.1)

http://ece-www.colorado.edu/~bart/book/book/chapter7/ch7_eq.htm (3 of 6) [2/28/2002 5:29:27 PM]



Chapter 7 Equations

(7.4.2)

(7.4.3)

(7.4.4)

(7.4.5)

(7.4.6)

(7.4.7)

(7.4.8)

(7.4.9)

(7.4.10)

(7.4.11)

http://ece-www.colorado.edu/~bart/book/book/chapter7/ch7_eq.htm (4 of 6) [2/28/2002 5:29:27 PM]



Chapter 7 Equations

(7.5.1)

(7.5.2)

(7.5.3)

(7.5.4)

(7.5.5)

(7.5.6)

(7.5.7)

(7.5.8)

(7.5.9)

(7.7.1)

http://ece-www.colorado.edu/~bart/book/book/chapter7/ch7_eq.htm (5 of 6) [2/28/2002 5:29:27 PM]



Chapter 7 Equations

(7.7.2)

(7.7.3)

(7.7.4)

(7.7.5)

(7.7.6)

(7.7.7)

http://ece-www.colorado.edu/~bart/book/book/chapter7/ch7_eq.htm (6 of 6) [2/28/2002 5:29:27 PM]



Chapter 1 Bibliography

Chapter 1: Review of Modern Physics

Bibliography  

1.  Quantum Mechanics, H. Kroemer, Prentice Hall, 1994. 

2.  Electrons in Solids, Third edition, R.H. Bube, Academic Press, 1992. 

3.  Solid State Electronic Devices, Fifth edition, B. G. Streetman, Prentice Hall, 2000. 

4.  Quantum Mechanics, Second edition, E. Merzbacher, Wiley, 1970. 

5.  Quantum Physics of Electronics, S.N. Levine, The Macmillan company, 1965. 

6.  Thermal Physics, Second edition, C. Kittel and H. Kroemer, Freeman, 1980. 

http://ece-www.colorado.edu/~bart/book/book/chapter1/ch1_b.htm [2/28/2002 5:29:27 PM]



Chapter 1: Review of Modern Physics 
1.2. Quantum mechanics 
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1.3. Electromagnetic theory 
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1.4. Statistical Thermodynamics 
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Chapter 1: Review of Modern Physics

Problems  

1.  Calculate the wavelength of a photon with a photon energy of 2 eV. Also, calculate the wavelength of an electron 

with a kinetic energy of 2 eV. 

2.  Consider a beam of light with a power of 1 Watt and a wavelength of 800 nm. Calculate a) the photon energy of the 
photons in the beam, b) the frequency of the light wave and c) the number of photons provided by the beam in one 

second. 

3.  Show that the spectral density, uω (equation 1.2.4) peaks at Eph = 2.82 kT. Note that a numeric iteration is required. 

4.  Calculate the peak wavelength of blackbody radiation emitted from a human body at a temperature of 37°C. 

5.  Derive equations (1.2.9) and (1.2.10). 

6.  What is the width of an infinite quantum well if the second lowest energy of a free electron confined to the well 

equals 100 meV. 

7.  Calculate the lowest three possible energies of an electron in a hydrogen atom in units of electron volt. 

8.  Derive the electric field of a proton with charge q as a function of the distance from the proton using Gauss's law. 
Integrated the electric field to find the potential φ(r):

Treat the proton as a point charge and assume the potential to be zero far away from the proton. 

9.  Prove that the probability of occupying an energy level below the Fermi energy equals the probability that an energy 

level above the Fermi energy and equally far away from the Fermi energy is not occupied. 
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Chapter 1: Review of Modern Physics

Review Questions  

1.  List three experiments, which can only be explained using quantum mechanics. 

2.  What is a Rydberg? 

3.  Name the two primary assumptions of the Bohr model. 

4.  How do we know that the energy levels in a hydrogen atom are quantized? 

5.  What two parameters are linked by Gauss's law? 

6.  What two parameters are linked by Poisson's equation? 

7.  What is the definition of thermal equilibrium? 

8.  List the three laws of thermodynamics. 

9.  Explain in words the meaning of the thermodynamic identity. 

10.  What is the Fermi function?
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Chapter 6: MOS Capacitors 
6.3. MOS analysis 
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Chapter 6 Review questions

Chapter 6: MOS Capacitors

Review Questions  

1.  Draw an MOS flatband diagram. Indicate the workfunction of the metal and the semiconductor as well as the 
flatband voltage. Draw it approximately to scale using ΦM = 4.1 V, χ = 4.05 V, Eg = 1.12 eV (silicon) and Na = 

1016 cm-3. 

2.  Derive the metal-semiconductor workfunction for n-type and p-type poly-silicon gate structures. (equation 6.3.2) 

3.  Explain why the flatband voltage depends on the charge in the oxide or at the oxide-semiconductor interface. 

4.  Name the three bias regimes of an MOS capacitor and explain what happens in the semiconductor in each of these 
bias modes. 

5.  What is the basic assumption regarding the charge in the inversion layer? 

6.  What are the assumptions of the MOS capacitor analysis? 

7.  What is the difference between the high frequency and quasi-static capacitance? 

8.  Why is the high frequency capacitance constant in inversion? 

9.  Why does the flatband capacitance not equal the oxide capacitance? 

10.  What is deep depletion? 

11.  Why does light illumination affect the capacitance of an MOS structure? 

12.  Name the non-ideal effects in MOS capacitors. What causes them and how do they affect the MOS characteristics?
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Review Questions 
1. Describe the motion of electrons and holes in a pnp bipolar transistor biased in the forward 

active mode with VBC = 0.  

2. What is the definition of the emitter efficiency? Explain in words and provide the 
corresponding equation.  

3. What is the definition of the base transport factor? Explain in words and provide the 
corresponding equation.  

4. Derive the relation between the current gain and the transport factor.  

5. How does recombination in the quasi-neutral base region affect the emitter, base and 
collector current?  

6. How does recombination in the base-emitter depletion region affect the emitter, base and 
collector current?  

7. Explain the four different bias modes of a bipolar transistor.  

8. Explain why a transistor can have a current gain larger than one in the common emitter 
mode. Provide the necessary and sufficient conditions needed to obtain a current gain larger 
than one.  

9. What is the Early effect and how does it affect the transistor characteristics? 



Chapter 7 Review questions

Chapter 7: MOS Field-Effect-Transistors

Review Questions  

1.  What is the difference between a source and a drain of a MOSFET? 

2.  What is the difference between an n-type and a p-type MOSFET? 

3.  What is the difference between an enhancement and a depletion MOSFET? 

4.  Which device has most positive threshold voltage a depletion mode p-type MOSFET or an enhancement mode p-
type MOSFET? 

5.  Which device has the highest drain current in saturation at zero gate voltage, a p-type enhancement MOSFET or an 
n-type depletion MOSFET? 

6.  Why is the electron layer of an n-MOSFET called an inversion layer? 

7.  Why is there no current in a MOSFET when the device is biased in accumulation? 

8.  What is the difference between the linear and the quadratic MOSFET model? 

9.  Does the body effect affect CMOS circuits? Explain. 

10.  How does the oxide thickness and substrate doping affect the threshold voltage of a MOSFET. Plot the threshold 
voltage as a function of the oxide thickness for different doping densities. 

11.  What is the advantage of a poly-silicon gate technology? 

12.  What is channel length modulation? 

13.  What is punchthrough? 

14.  Explain the effect of scaling on the different MOSFET parameters as listed in Table 7.7.1 
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Review Questions 
1. Draw an MOS flatband diagram. Indicate the workfunction of the metal and the 

semiconductor as well as the flatband voltage. Draw it approximately to scale using ΦM = 4.1 
V, χ = 4.05 V, Eg = 1.12 eV (silicon) and Na = 1016 cm-3.  

2. Derive the metal-semiconductor workfunction for n-type and p-type poly-silicon gate 
structures. (equation 6.3.2)  

3. Explain why the flatband voltage depends on the charge in the oxide or at the oxide-
semiconductor interface.  

4. Name the three bias regimes of an MOS capacitor and explain what happens in the 
semiconductor in each of these bias modes.  

5. What is the basic assumption regarding the charge in the inversion layer?  

6. What are the assumptions of the MOS capacitor analysis?  

7. What is the difference between the high frequency and quasi-static capacitance?  

8. Why is the high frequency capacitance constant in inversion?  

9. Why does the flatband capacitance not equal the oxide capacitance?  

10. What is deep depletion?  

11. Why does light illumination affect the capacitance of an MOS structure?  

12. Name the non-ideal effects in MOS capacitors. What causes them and how do they affect the 
MOS characteristics? 
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Chapter 7: MOS Field-Effect-Transistors

Problems  

1.  Consider an n-type MOSFET, which consists of a 10 nm thick oxide (εr = 3.9) and has a gate length of 1 micron, a 

gate width of 20 micron and a threshold voltage of 1.5 Volt. Calculate the resistance of the MOSFET in the linear 
region as measured between source and drain when applying a gate-source voltage of 3 Volt. What should the gate-
source voltage be to double the resistance? The surface mobility of the electrons is 300 cm2/V-sec.

2.  Consider an n-type MOSFET with an oxide thickness tox = 20 nm (εr = 3.9) and a gate length, L = 1 micron, a gate 

width, W = 10 micron and a threshold voltage, VT = 1 Volt. Calculate the capacitance per unit area of the oxide, 

COX, and from it the capacitance of the gate, CG. Calculate the drain current, ID, at a gate-source voltage, VGS = 3 

Volt and a drain-source voltage, VDS = 0.05 Volt. The surface mobility of the electrons µn = 300 cm2/V-sec. Use the 

linear model of the MOSFET.

3.  A MOSFET (L = 1 µm, tox = 15 nm, VT = 1 V and µn = 300 cm2/V-sec) must provide a current of 20 mA at a drain-

source voltage of 0.5 Volt and a gate-source voltage of 5 Volt. How wide should the gate be?

4.  A MOSFET (L = 1 µm, tox = 10 nm, VT = 1 V and µn = 300 cm2/V-sec) is to be used as 50 W terminating resistor 

when applying a gate-source voltage, VGS = 5 Volt. How wide should the gate be?

5.  The capacitance of an n-type silicon MOSFET is 1 pF. Provided that the oxide thickness is 50 nm and the gatelength 
is 1 micron, what is the resistance of the MOSFET in the linear regime when biased at a gate voltage which is 5 
Volt larger than the threshold voltage? Use a reasonable value for the surface mobility knowing that the bulk 
mobility equals 1400 cm2/V-sec.

6.  Consider a p-channel silicon MOSFET with an aluminum gate.
a.  Draw the energy band diagram of the MOS structure for VG = VFB. Indicate the workfunction of the metal 

and the semiconductor, as well as the electron affinity.
b.  Draw the field distribution for VG = VT (onset of inversion).

c.  Calculate the depletion layer width and the field in the oxide at the onset of inversion. (Nd = 1016 cm-3, tox = 

100 nm, VFB = -0.5V)

7.  Calculate the depletion region width within a p-type bulk silicon MOS capacitor with Nd = 1017 cm-3, at the onset of 

inversion.

8.  A silicon p-substrate (Na = 1016 cm-3) MOSFET with tox = 0.1 µm, εox/ε0 = 3.9 and a negative interface charge per 

unit area of -10-8 C/cm2, has a threshold voltage which is 1 Volt smaller than desired. By what value should one 
change the oxide thickness to obtain the desired threshold voltage? Should one increase or decrease the oxide 
thickness?

9.  A silicon MOSFET (nI = 1010 cm-3, εs/e0 = 11.9 and εox/ε0 = 3.9) is scaled by reducing all dimensions by a factor of 

2 and by increasing the doping density of the substrate by a factor of 4.
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Calculate the ratio of the following parameters of the scaled device relative to that of the original device: (make 
approximations if necessary)

❍     The transconductance at VGS - VT = 1 V.

❍     The gate capacitance
❍     The transit frequency at 
❍     V

GS- VT= 1 V. (Assume that CDS= 0)

10.  The threshold shift when increasing the reverse bias of the source-bulk diode from 1 Volt to 3 Volt.
11.  The breakdown voltage of the oxide assuming the breakdown field to be constant.
12.  The breakdown voltage of the drain-to-bulk p-n diode assuming the breakdown field to be constant.

13.  A silicon p-substrate (Na = 1016 cm-3) MOSFET with tox = 0.1 µm, εox/ε0 = 3.9 and VFB = -0.2 V, has a threshold 

voltage which is 1 Volt smaller than desired. By what value should one change the oxide thickness, tox, to obtain the 

desired threshold voltage? Should one increase or decrease the oxide thickness?
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Problems 

1. Consider an n-type MOSFET, which consists of a 10 nm thick oxide (εr = 3.9) and has a gate 
length of 1 micron, a gate width of 20 micron and a threshold voltage of 1.5 Volt. Calculate 
the resistance of the MOSFET in the linear region as measured between source and drain 
when applying a gate-source voltage of 3 Volt. What should the gate-source voltage be to 
double the resistance? The surface mobility of the electrons is 300 cm2/V-sec. 

2. Consider an n-type MOSFET with an oxide thickness tox = 20 nm (εr = 3.9) and a gate length, 
L = 1 micron, a gate width, W = 10 micron and a threshold voltage, VT  = 1 Volt. Calculate the 
capacitance per unit area of the oxide, COX, and from it the capacitance of the gate, CG. 
Calculate the drain current, ID, at a gate-source voltage, VGS = 3 Volt and a drain-source 
voltage, VDS = 0.05 Volt. The surface mobility of the electrons µn = 300 cm2/V-sec. Use the 
linear model of the MOSFET. 

3. A MOSFET (L = 1 µm, tox = 15 nm, VT = 1 V and µn = 300 cm2/V-sec) must provide a 
current of 20 mA at a drain-source voltage of 0.5 Volt and a gate-source voltage of 5 Volt. 
How wide should the gate be? 

4. A MOSFET (L = 1 µm, tox = 10 nm, VT = 1 V and µn = 300 cm2/V-sec) is to be used as 50 Ω 
terminating resistor when applying a gate-source voltage, VGS = 5 Volt. How wide should the 
gate be? 

5. The capacitance of an n-type silicon MOSFET is 1 pF. Provided that the oxide thickness is 
50 nm and the gatelength is 1 micron, what is the resistance of the MOSFET in the linear 
regime when biased at a gate voltage which is 5 Volt larger than the threshold voltage? Use a 
reasonable value for the surface mobility knowing that the bulk mobility equals 1400 cm2/V-
sec. 

6. Consider a p-channel silicon MOSFET with an aluminum gate. 

a) Draw the energy band diagram of the MOS structure for VG = VFB. Indicate the 
workfunction of the metal and the semiconductor, as well as the electron affinity.  

b) Draw the field distribution for VG = VT (onset of inversion).  

c) Calculate the depletion layer width and the field in the oxide at the onset of inversion. (Nd 
= 1016 cm-3, tox = 100 nm, VFB = -0.5V) 

7. Calculate the depletion region width within a p-type bulk silicon MOS- capacitor with Nd = 
1017 cm-3, at the onset of inversion. 

8. A silicon p-substrate (p ≅ Na = 1016 cm-3) MOSFET with tox = 0.1 µm, εox/ε0 = 3.9 and a 
negative interface charge per unit area of -10-8 C/cm2, has a threshold voltage which is 1 
Volt smaller than desired. By what value should one change the oxide thickness to obtain the 
desired threshold voltage? Should one increase or decrease the oxide thickness? 

9. A silicon MOSFET (ni = 1010 cm-3, εs/ε0 = 11.9 and εox/ε0 = 3.9) is scaled by reducing all 
dimensions by a factor of 2 and by increasing the doping density of the substrate by a factor 
of 4. 



 

     

Calculate the ratio of the following parameters of the scaled device relative to that of the 
original device: (make approximations if necessary) 

• The transconductance at VGS - VT = 1 V.  

• The gate capacitance 

• The transit frequency at VGS - VT = 1 V.  (Assume that CDS = 0) 

• The threshold shift when increasing the reverse bias of the source-bulk diode from 1 
Volt to 3 Volt. 

• The breakdown voltage of the oxide assuming the breakdown field to be constant. 

• The breakdown voltage of the drain-to-bulk p-n diode assuming the breakdown field 
to be constant.  

10. A silicon p-substrate (p ≅ Na = 1016 cm-3) MOSFET with tox = 0.1 µm, εox/ε0 = 3.9 and VFB = 
-0.2 V, has a threshold voltage which is 1 Volt smaller than desired. By what value should 
one change the oxide thickness, tox, to obtain the desired threshold voltage? Should one 
increase or decrease the oxide thickness? 



Problems 

1. Consider an aluminum-SiO2-silicon MOS capacitor (ΦM = 4.1 V, εox/ε0 = 3.9, χ = 4.05 V and 
Na = 1017 cm-3) MOS capacitor with tox = 5 nm. 

a) Calculate the flatband voltage and threshold voltage.  

b) Repeat for an n-type silicon substrate with Nd = 1016 cm-3.  

c) Repeat with a surface charge of 10-7 C/cm2  

d) Repeat with a charge density in the oxide of 10-1 C/cm3  

2. A high-frequency capacitance voltage measurement of a silicon MOS structure was fitted by 
the following expression:  

C(VG) = 6 pF + 12 pF/(1 + exp(VG)) 

a) Calculate the oxide capacitance per unit area and the oxide thickness. The area of the 
capacitor is 100 x 100 micron and the relative dielectric constant equals 3.9.  

b) From the minimum capacitance, calculate the maximum depletion layer width and the 
substrate doping density.  

c) Calculate the bulk potential.  

d) Calculate the flatband capacitance and the flatband voltage.  

e) Calculate the threshold voltage. 

3. An MOS capacitor with an oxide thickness of 20 nm has an oxide capacitance, which is three 
times larger than the minimum high-frequency capacitance in inversion. Find the substrate 
doping density.  

4. A CMOS gate requires n-type and p-type MOS capacitors with a threshold voltage of 2 and -
2 Volt respectively. If the gate oxide is 50 nm what are the required substrate doping 
densities? Assume the gate electrode is aluminum. Repeat for a p+ poly-silicon gate.  

5. Consider a p-MOS capacitor (with an n-type substrate) and with an aluminum gate. Find the 
doping density for which the threshold voltage is 3 times larger than the flat band voltage. tox 
= 25 nm. Repeat for a capacitor with 1011 cm-2 electronic charges at the oxide-semiconductor 
interface. 

6. A silicon p-MOS capacitor . (Nd = 4 x 1016 cm-3, tox = 40 nm) is biased halfway between the 
flatband and threshold voltage. Calculate the applied voltage and the corresponding 
capacitance  

 



Example 7.1 Calculate the drain current of a silicon nMOSFET with VT = 1 V, 
W = 10 µm, L = 1 µm and tox = 20 nm. The device is biased with 
VGS = 3 V and VDS = 5 V. Use the quadratic model, a surface 
mobility of 300 cm2/V-s and set VBS = 0 V. 
Also calculate the transconductance at VGS = 3 V and VDS = 5 V 
and compare it to the output conductance at VGS = 3 V and VDS = 
0 V. 

Solution The MOSFET is biased in saturation since VDS > VGS - VT. 
Therefore the drain current equals: 
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The transconductance equals: 
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and the output conductance equals: 
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Example 7.2 Repeat example 7.1 using the variable depletion layer model. 
Use VFB = -0.807 V and Na = 1017 cm-3. 

Solution To find out whether the MOSFET is biased in saturation, one 
first calculates the saturation voltage, VD,sat: 
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The drain current is then obtained from: 
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The transconductance equals: 
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corresponding to a modified mobility µn
* = 149 cm2/V-s. 

The output conductance at VDS = 0 V equals: 
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Which is the same as that of example 7.1 since the depletion 
layer width is constant for VDS = 0. 

 



Example 7.3 Calculate the threshold voltage of a silicon nMOSFET when 
applying a substrate voltage, VBS = 0, -2.5, -5,  -7.5 and -10 V. 
The capacitor has a substrate doping Na = 1017 cm-3, a 20 nm 
thick oxide (εox = 3.9 ε0) and an aluminum gate (ΦM = 4.1 V). 
Assume there is no fixed charge in the oxide or at the oxide-
silicon interface. 

Solution The threshold voltage at VBS = -2.5 V equals: 
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Where the flatband voltage without substrate bias, VT0, was 
already calculated in example 6.2. The body effect parameter 
was obtained from: 
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The threshold voltages for the different substrate voltages are 
listed in the table below. 
 VBS = -2.5 V -5 V -7.5 V -10 V  
VT 0.73 V 1.26 V 1.68 V 2.04 V 

 



Bipolar Junction Transistors

Chapter 5: Bipolar Junction Transistors

5.2. Structure and principle of operation

A bipolar junction transistor consists of two back-to-back p-n junctions, who share a thin common region with width, wB. 

Contacts are made to all three regions, the two outer regions called the emitter and collector and the middle region called 
the base. The structure of an NPN bipolar transistor is shown in Figure 5.2.1 (a). The device is called "bipolar" since its 
operation involves both types of mobile carriers, electrons and holes.

Figure 5.2.1.: (a) Structure and sign convention of a NPN bipolar junction transistor. (b) Electron and hole flow under 
forward active bias, VBE > 0 and VBC = 0.

Since the device consists of two back-to-back diodes, there are depletion regions between the quasi-neutral regions. The 
width of the quasi neutral regions in the emitter, base and collector are indicated with the symbols wE

', wB
' and wC

' and are 

calculated from
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(5.2.1)

(5.2.2)

(5.2.3)

where the depletion region widths are given by:

(5.2.4)

(5.2.5)

(5.2.6)

(5.2.7)

with

(5.2.8)

(5.2.9)

The sign convention of the currents and voltage is indicated on Figure 5.2.1(a). The base and collector current are positive 
if a positive current goes into the base or collector contact. The emitter current is positive for a current coming out of the 
emitter contact. This also implies the emitter current, IE, equals the sum of the base current, IB, and the collector current, 

IC:

(5.2.10)

The base-emitter voltage and the base-collector voltage are positive if a positive voltage is applied to the base contact 
relative to the emitter and collector respectively. 

The operation of the device is illustrated with Figure 5.2.1 (b). We consider here only the forward active bias mode of 
operation, obtained by forward biasing the base-emitter junction and reverse biasing the base-collector junction. To 
simplify the discussion further, we also set VCE = 0. The corresponding energy band diagram is shown in Figure 5.2.2. 

Electrons diffuse from the emitter into the base and holes diffuse from the base into the emitter. This carrier diffusion is 
identical to that in a p-n junction. However, what is different is that the electrons can diffuse as minority carriers through 
the quasi-neutral region in the base. Once the electrons arrive at the base-collector depletion region, they are swept through 
the depletion layer due to the electric field. These electrons contribute to the collector current. In addition, there are two 
more currents, the base recombination current, indicated on Figure 5.2.2 by the vertical arrow, and the base-emitter 
depletion layer recombination current (not shown). 
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Figure 5.2.2. : Energy band diagram of a bipolar transistor biased in the forward active mode.

The total emitter current is the sum of the electron diffusion current, IE,n, the hole diffusion current, IE,p and the base-

emitter depletion layer recombination current, Ir,d.

(5.2.11)

The total collector current is the electron diffusion current, IE,n, minus the base recombination current, Ir,B.

(5.2.12)

The base current is the sum of the hole diffusion current, IE,p, the base recombination current, Ir,B and the base-emitter 

depletion layer recombination current, Ir,d.

(5.2.13)

The transport factor, α, is defined as the ratio of the collector and emitter current:

(5.2.14)

Using Kirchoff's current law and the sign convention shown in Figure 5.2.1(a), we find that the base current equals the 

difference between the emitter and collector current. The current gain, β, is defined as the ratio of the collector and base 
current and equals:

(5.2.15)

This explains how a bipolar junction transistor can provide current amplification. If the collector current is almost equal to 
the emitter current, the transport factor, α, approaches one. The current gain, β, can therefore become much larger than one. 
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To facilitate further analysis, we now rewrite the transport factor, α, as the product of the emitter efficiency, γE, the base 

transport factor, αT, and the depletion layer recombination factor, δr.

(5.2.16)

The emitter efficiency, γE, is defined as the ratio of the electron current in the emitter, IE,n, to the sum of the electron and 

hole current diffusing across the base-emitter junction, IE,n + IE,p.

(5.2.17)

The base transport factor, αT, equals the ratio of the current due to electrons injected in the collector, to the current due to 

electrons injected in the base.

(5.2.18)

Recombination in the depletion-region of the base-emitter junction further reduces the current gain, as it increases the 
emitter current without increasing the collector current. The depletion layer recombination factor, δr, equals the ratio of the 

current due to electron and hole diffusion across the base-emitter junction to the total emitter current:

(5.2.19)

Example 5.1 A bipolar transistor with an emitter current of 1 mA has an emitter efficiency of 0.99, a base transport 
factor of 0.995 and a depletion layer recombination factor of 0.998. Calculate the base current, the 
collector current, the transport factor and the current gain of the transistor. 

Solution The transport factor and current gain are:

and

The collector current then equals

And the base current is obtained from:
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Chapter 5: Bipolar Junction Transistors

5.3. Ideal transistor model

5.3.1. Forward active mode of operation
5.3.2. General bias modes of a bipolar transistor
5.3.3. The Ebers-Moll model
5.3.4. Saturation.

The ideal transistor model is based on the ideal p-n diode model and provides a first-order calculation of the dc parameters 
of a bipolar junction transistor. To further simplify this model, we will assume that all quasi-neutral regions in the device 
are much smaller than the minority-carrier diffusion lengths in these regions, so that the "short" diode expressions apply. 
The use of the ideal p-n diode model implies that no recombination within the depletion regions is taken into account. Such 
recombination current will be discussed in section 5.4.3. 

The discussion of the ideal transistor starts with a discussion of the forward active mode of operation, followed by a 
general description of the four different bias modes, the corresponding Ebers-Moll model and a calculation of the collector-
emitter voltage when the device is biased in saturation.

5.3.1. Forward active mode of operation  

The forward active mode is obtained by forward-biasing the base-emitter junction. In addition we eliminate the base-
collector junction current by setting VBC = 0. The minority-carrier distribution in the quasi-neutral regions of the bipolar 

transistor, as shown in Figure 5.3.1, is used to analyze this situation in more detail.
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Figure 5.3.1. : Minority-carrier distribution in the quasi-neutral regions of a bipolar transistor (a) Forward active bias 
mode. (b) Saturation mode.

The values of the minority carrier densities at the edges of the depletion regions are indicated on the Figure 5.3.1. The 
carrier densities vary linearly between the boundary values as expected when using the assumption that no significant 
recombination takes place in the quasi-neutral regions. The minority carrier densities on both sides of the base-collector 
depletion region equal the thermal equilibrium values since VBC was set to zero. While this boundary condition is 

mathematically equivalent to that of an ideal contact, there is an important difference. The minority carriers arriving at x = 
wB - xp,C do not recombine. Instead, they drift through the base-collector depletion region and end up as majority carriers in 

the collector region.

The emitter current due to electrons and holes are obtained using the "short" diode expressions derived in section 4.4.2.5, 
yielding:

(5.3.1)

and

(5.3.2)

It is convenient to rewrite the emitter current due to electrons, IE,n, as a function of the total excess minority charge in the 

base, ∆Qn,B. This charge is proportional to the triangular area in the quasi-neutral base as shown in Figure 5.3.1 a) and is 

calculated from:

(5.3.3)

which for a "short" diode becomes:

(5.3.4)

And the emitter current due to electrons, IE,n, simplifies to:

(5.3.5)

where tr is the average time the minority carriers spend in the base layer, i.e. the transit time. The emitter current therefore 

equals the excess minority carrier charge present in the base region, divided by the time this charge spends in the base. This 
and other similar relations will be used to construct the charge control model of the bipolar junction transistor in section 
5.5.2. 

A combination of equations (5.3.1), (5.3.4) and (5.3.5) yields the transit time as a function of the quasi-neutral layer width, 

wB
', and the electron diffusion constant in the base, Dn,B.
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(5.3.6)

We now turn our attention to the recombination current in the quasi-neutral base and obtain it from the continuity equation:

(5.3.7)

In steady state and applied to the quasi-neutral region in the base, the continuity equation yields the base recombination 
current, Ir,B:

(5.3.8)

which in turn can be written as a function of the excess minority carrier charge, ∆Qn,B, using equation (5.3.3). 

(5.3.9)

Next, we need to find the emitter efficiency and base transport factor. The emitter efficiency defined by equation (5.2.17), 
becomes:

(5.3.10)

It is typically the emitter efficiency, which limits the current gain in transistors made of silicon or germanium. The long 
minority-carrier lifetime and the long diffusion lengths in those materials justify the exclusion of recombination in the base 
or the depletion layer. The resulting current gain, under such conditions, is:

(5.3.11)

From this equation, we conclude that the current gain can be larger than one if the emitter doping is much larger than the 
base doping. A typical current gain for a silicon bipolar transistor is 50 - 150.

The base transport factor, as defined in equation (5.2.18), equals:

(5.3.12)

This expression is only valid if the base transport factor is very close to one, since it was derived using the "short-diode" 
carrier distribution. This base transport factor can also be expressed in function of the diffusion length in the base:
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(5.3.13)

Example 5.2 Consider a pnp bipolar transistor with emitter doping of 1018 cm-3 and base doping of 1017 cm-3. The 
quasi-neutral region width in the emitter is 1 µm and 0.2 µm in the base. Use µn = 1000 cm2/V-s and µp 

= 300 cm2/V-s . The minority carrier lifetime in the base is 10 ns.Calculate the emitter efficiency, the 
base transport factor, and the current gain of the transistor biased in the forward active mode. Assume 
there is no recombination in the depletion region.

Solution The emitter efficiency is obtained from:

The base transport factor equals:

The current gain then becomes:

where the transport factor, α, was calculated as the product of the emitter efficiency and the base 
transport factor:

5.3.2. General bias modes of a bipolar transistor  

While the forward active mode of operation is the most useful bias mode when using a bipolar junction transistor as an 
amplifier, one cannot ignore the other bias modes especially when using the device as a digital switch. All possible bias 
modes are illustrated with Figure 5.3.2. They are the forward active mode of operation, the reverse active mode of 
operation, the saturation mode and the cut-off mode. 
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Figure 5.3.2.: Possible bias modes of operation of a bipolar junction transistor.

The forward active mode is the one where we forward bias the base-emitter junction, VBE > 0 and reverse bias the base-

collector junction, VBC < 0. This mode, as discussed in section 5.3.1, is the one used in bipolar transistor amplifiers. In 

bipolar transistor logic circuits, one frequently switches the transistor from the "off" state to the low resistance "on" state. 
This "off" state is the cut-off mode and the "on" state is the saturation mode. In the cut-off mode, both junctions are 
reversed biased, VBE < 0 and VBC < 0, so that very little current goes through the device. This corresponds to the "off" state 

of the device. In the saturation mode, both junctions are forward biased, VBE > 0 and VCB > 0. This corresponds to the low 

resistance "on" state of the transistor.

Finally, there is the reverse active mode of operation. In the reverse active mode, we reverse the function of the emitter and 
the collector. We reverse bias the base-emitter junction and forward bias the base-collector junction, or VBE < 0 and VBC > 

0. In this mode, the transistor has an emitter efficiency and base transport factor as described by equations ((5.3.10) and 
(5.3.12), where we replace the emitter parameters by the collector parameters. Most transistors, however, have poor emitter 
efficiency under reverse active bias since the collector doping density is typically much less than the base doping density to 
ensure high base-collector breakdown voltages. In addition, the collector-base area is typically larger than the emitter-base 
area, so that even fewer electrons make it from the collector into the emitter.

Having described the forward active mode of operation, there remains the saturation mode, which needs further discussion. 
Cut-off requires little further analysis, while the reverse active mode of operation is analogous to the forward active mode 
with the added complication that the areas of the base-emitter and base-collector junction, AE and AC, differ. The Ebers-

Moll model describes all of these bias modes.

5.3.3. The Ebers-Moll model  

The Ebers-Moll model is an ideal model for a bipolar transistor, which can be used, in the forward active mode of 
operation, in the reverse active mode, in saturation and in cut-off. This model is the predecessor of today's computer 
simulation models and contains only the "ideal" diode currents.
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The model contains two diodes and two current sources as shown in Figure 5.3.3. The two diodes represent the base-
emitter and base-collector diodes. The current sources quantify the transport of minority carriers through the base region. 
These are current sources depend on the current through each diode. The parameters IE,s, IC,s, αF and αR are the saturation 

currents of the base-emitter and base collector diode and the forward and reverse transport factors. 

Figure 5.3.3 : Equivalent circuit for the Ebers-Moll model of an NPN bipolar junction transistor

Using the parameters identified in Figure 5.3.3, we can relate the emitter, base and collector current to the forward and 
reverse currents and transport factors, yielding:

(5.3.14)

(5.3.15)

(5.3.16)

The Ebers-Moll parameters are related by the following equation:

(5.3.17)

This relation ship is also referred as the reciprocity relation and can be derived by examining the minority carrier current 
through the base. For the specific case where the base-emitter and base-collector voltage are the same and the base doping 
is uniform, there can be no minority carrier diffusion in the base so that:

(5.3.18)

from which the reciprocity relation is obtained.

The forward- and reverse-bias transport factors are obtained by measuring the current gain in the forward active and 
reverse active mode of operation. The saturation currents IE,s and IC,s are obtained by measuring the base-emitter (base-

collector) diode saturation current while shorting the base-collector (base-emitter) diode. 
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5.3.4. Saturation.  

In the low resistance "on" state of a bipolar transistor, one finds that the voltage between the collector and emitter is less 
than the forward bias voltage of the base-emitter junction. Typically the "on" state voltage of a silicon BJT is 100 mV and 
the forward bias voltage is 700 mV. Therefore, the base-collector junction is forward biased. Using the Ebers-Moll model, 
we can calculate the "on" voltage from:

(5.3.19)

and using equations (5.3.15), (5.3.16) and the reciprocity relation (5.3.17), one obtains:

(5.3.20)

Saturation also implies that a large amount of minority carrier charge is accumulated in the base region. As a transistor is 
switched from saturation to cut-off, this charge initially remains in the base and a collector current will remain until this 
charge is removed by recombination. This causes an additional delay before the transistor is turned off. Since the carrier 
lifetime can be significantly longer than the base transit time, the turn-off delay causes a large and undesirable asymmetry 
between turn-on and turn-off time. Saturation is therefore avoided in high-speed bipolar logic circuits. Two techniques are 
used to reduce the turn-off delay: 1) adding a Schottky diode in parallel to the base-collector junction and 2) using an 
emitter-coupled circuit configuration. Both approaches avoid biasing the transistor in the saturation mode. The Schottky 
diode clamps the base-collector voltage at a value, which is slightly lower than the turn-on voltage of the base-collector 
diode. An emitter-coupled circuit is biased with a current source, which can be designed so that the collector voltage cannot 
be less than the base voltage.

Example 5.3 Calculate the saturation voltage of a bipolar transistor biased with a base current of 1 mA and a collector 
current of 10 mA. Use αR = 0.993 and αF = 0.2.

Solution The saturation voltage equals:
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Chapter 5: Bipolar Junction Transistors

5.4. Non-ideal effects

5.4.1. Base-width modulation
5.4.2. Recombination in the depletion region

A variety of effects occur in bipolar transistors, which are not included in the ideal transistor model. These include the base-
width modulation effects and the current due to recombination in the depletion layers. Both are described next.

5.4.1. Base-width modulation  

As the voltages applied to the base-emitter and base-collector junctions are changed, the depletion layer widths and the 
quasi-neutral regions vary as well. This causes the collector current to vary with the collector-emitter voltage as illustrated 
in Figure 5.4.1.

Figure 5.4.1. : Variation of the minority-carrier distribution in the base quasi-neutral region due to a variation of the 
base-collector voltage.

A variation of the base-collector voltage results in a variation of the quasi-neutral width in the base. The gradient of the 
minority-carrier density in the base therefore changes, yielding an increased collector current as the collector-base current 
is increased. This effect is referred to as the Early effect. The Early effect is observed as an increase in the collector current 
with increasing collector-emitter voltage as illustrated with Figure 5.4.2. The Early voltage, VA, is obtained by drawing a 

line tangential to the transistor I-V characteristic at the point of interest. The Early voltage equals the horizontal distance 
between the point chosen on the I-V characteristics and the intersection between the tangential line and the horizontal axis. 
It is indicated on the figure by the horizontal arrow.
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Bipolar Junction Transistors

Figure 5.4.2. : Collector current increase with an increase of the collector-emitter voltage due to the Early effect. The 

Early voltage, VA, is also indicated on the figure.

The change of the collector current when changing the collector-emitter voltage is primarily due to the variation of the base-
collector voltage, since the base-emitter junction is forward biased and a constant base current is applied. The collector 
current depends on the base-collector voltage since the base-collector depletion layer width varies, which also causes the 
quasi-neutral width, wB

', in the base to vary. This variation can be calculated for a piece-wise uniformly-doped transistor 

using the ideal transistor mode as described by equations (5.2.10) and (5.3.1):

(5.4.1)

This variation can be expressed by the Early voltage, VA, which quantifies what voltage variation would result in zero 

collector current. 

(5.4.2)

It can be shown that the Early voltage also equals the majority carrier charge in the base, QB, divided by the base-collector 

junction capacitance, Cj,BC:
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Bipolar Junction Transistors

(5.4.3)

In addition to the Early effect, there is a less pronounced effect due to the variation of the base-emitter voltage, which 
changes the ideality factor of the collector current. However, the effect at the base-emitter junction is much smaller since 
the base-emitter junction capacitance is larger and the base-emitter voltage variation is very limited since the junction in 
forward biased. The effect does lead to a variation of the ideality factor, n, given by:

(5.4.4)

Example 5.4 Consider a bipolar transistor with a base doping of 1017 cm-3 and a quasi-neutral base width of 0.2 µm. 
Calculate the Early voltage and collector current ideality factor given that the base-emitter capacitance 
and the base-collector capacitance are 0.2 nF and 0.2 pF. The collector area equals 10-4 cm-2.

Solution The Early voltage equals:

The saturation voltage equals:

An extreme case of base-width modulation is punchthrough. As the collector-emitter voltage is increased, the quasi-neutral 
width of the base decreases, so that eventually it becomes zero. The collector current becomes very large and no longer 
depends on the voltage applied to the base. This mode of operation is undesirable since most performance characteristics 
degrade as one approaches punchthrough. The rapid increase of the collector current at the punchthrough voltage can cause 
the destruction of the transistor due to excessive power dissipation. Punchthrough is therefore one of the possible 
breakdown modes of a bipolar transistor.

5.4.2. Recombination in the depletion region  

So far, we have ignored the recombination in the depletion region. As in a p-n diode, the recombination in the depletion 
region causes an additional diode current. We can identify this contribution to the current because of the different voltage 
dependence as described in section 4.4.4. An example is shown in Figure 5.4.3. Shown are the collector and base current of 
a silicon bipolar transistor, biased in the forward active mode of operation with VBC = -12 V, as a function of the base-

emitter voltage. This type of plot is also called a Gummel plot.
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Bipolar Junction Transistors

Figure 5.4.3 : Gummel plot: Collector current (top curve) and base current (bottom curve) of a silicon bipolar transistor 

versus the base-emitter voltage.

The current due to recombination in the depletion region can be observed as an additional base current between VBE = 0.2 

and 0.4 V. The collector current does not include this additional current, since recombination in the depletion region does 
not affect the flow of electrons through the base.

http://ece-www.colorado.edu/~bart/book/book/chapter5/ch5_4.htm (4 of 4) [2/28/2002 5:29:47 PM]

http://ece-www.colorado.edu/~bart/book/book/chapter5/xls/fig5_4_3.xls


http://ece-www.colorado.edu/~bart/book/book/chapter2/ch2_r.htm

Chapter 2: Semiconductor Fundamentals

Review Questions  

1.  Why do solids occur in the form of a crystal? 

2.  How do we classify the different crystals? 

3.  How many Bravais lattices are there in two dimensions? How many in three dimensions? 

4.  List the three cubic bravais lattices. 

5.  How do you explain that the allowed energies for electrons in solids are restricted to energy bands? Why are these 
bands separated energy band gaps? Why are the energies not discreet as in an atom. Why are they not continuous, as 
is the case for a free electron? 

6.  How does the conductivity of a solid depend on whether the energy bands are completely filled, partially filled or 
empty? How does the existence of overlapping bandgaps affect the conductivity? 

7.  Why does a completely filled band not contribute the conductivity of a solid? 

8.  Explain physically why the bandgap of a semiconductor decreases with temperature. 

9.  What are holes? Carefully justify your definition. 

10.  What is a state? 

11.  How many states are there in 1 micron sized cube for which an electron has a kinetic energy less than 1 eV? Treat 
the electron as a free electron confined to a box with infinite potential walls. 

12.  What is the physical meaning of the Fermi energy? 

13.  What is the value of the Fermi function at an energy, which is 3kT larger/lower than the Fermi energy? 

14.  What is the basic assumption used in statistical thermodynamics when calculating the probability distribution 
functions? 

15.  What are the two boundary conditions used to find the possible ways to fill energy levels with electrons. 

16.  How does a boson differ from a Fermion? Name two bosons. 

17.  List the assumptions made to obtain equations (2.6.12). 

18.  What is an intrinsic semiconductors? What is the hole density in an intrinsic semiconductor? 
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19.  Why is the product of the electron and hole density in a non-degenerate semiconductor constant rather than for 
instance the sum? This relationship is also referred to as the mass-action law. Why? 

20.  Define a non-degenerate semiconductor. Why do we need this concept? 

21.  What is the difference between a doped semiconductor and an extrinsic semiconductor? 

22.  What assumptions are made when deriving equations (2.6.29) and (2.6.30)? 

23.  Describe the temperature dependence of the carrier density in a semiconductor. Identify the three regions and 
explain what happens by indicating the filled and empty states on an energy band diagram. Do this for n-type, p-
type and compensated material. 

24.  Name the two transport mechanisms in semiconductors. 

25.  Describe the microscopic behavior of electrons and holes in a semiconductor. 

26.  Define the mobility. 

27.  Explain why the mobility in a semiconductor depends on the doping density. 

28.  Define the resistivity and conductivity of a semiconductor. 

29.  Explain why the velocity in a semiconductor is limited. 

30.  What is the driving force, which causes diffusion? 

31.  Explain the relation between the mean free path, the scattering time and the thermal velocity. 

32.  List three recombination-generation mechanisms. 

33.  Explain why the net recombination rate as described by the simple model depends on the excess carrier density. 

34.  Describe the continuity equation in words. 

35.  What assumptions are made to obtain the diffusion equations (2.9.9) and (2.9.10) from the continuity equations 
(2.9.3) and (2.9.4)? 

36.  What is the diffusion length and how does it relate to the diffusion constant and the minority carrier lifetime? 

37.  What is the drift-diffusion model?
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Review Questions 
1. Why do solids occur in the form of a crystal?  

2. How do we classify the different crystals?  

3. How many Bravais lattices are there in two dimensions? How many in three dimensions?  

4. List the three cubic bravais lattices.  

5. How do you explain that the allowed energies for electrons in solids are restricted to energy 
bands? Why are these bands separated energy band gaps? Why are the energies not discreet 
as in an atom. Why are they not continuous, as is the case for a free electron?  

6. How does the conductivity of a solid depend on whether the energy bands are completely 
filled, partially filled or empty? How does the existence of overlapping bandgaps affect the 
conductivity?  

7. Why does a completely filled band not contribute the conductivity of a solid?  

8. Explain physically why the bandgap of a semiconductor decreases with temperature.  

9. What are holes? Carefully justify your definition.  

10. What is a state?  

11. How many states are there in 1 micron sized cube for which an electron has a kinetic energy 
less than 1 eV? Treat the electron as a free electron confined to a box with infinite potential 
walls.  

12. What is the physical meaning of the Fermi energy?  

13. What is the value of the Fermi function at an energy, which is 3kT larger/lower than the 
Fermi energy?  

14. What is the basic assumption used in statistical thermodynamics when calculating the 
probability distribution functions?  

15. What are the two boundary conditions used to find the possible ways to fill energy levels 
with electrons.  

16. How does a boson differ from a Fermion? Name two bosons.  

17. List the assumptions made to obtain equations (2.6.12).  

18. What is an intrinsic semiconductors? What is the hole density in an intrinsic semiconductor?  

19. Why is the product of the electron and hole density in a non-degenerate semiconductor 
constant rather than for instance the sum? This relationship is also referred to as the mass-
action law. Why?  

20. Define a non-degenerate semiconductor. Why do we need this concept?  

21. What is the difference between a doped semiconductor and an extrinsic semiconductor?  



 

     

22. What assumptions are made when deriving equations (2.6.29) and (2.6.30)?  

23. Describe the temperature dependence of the carrier density in a semiconductor. Identify the 
three regions and explain what happens by indicating the filled and empty states on an energy 
band diagram. Do this for n-type, p-type and compensated material.  

24. Name the two transport mechanisms in semiconductors.  

25. Describe the microscopic behavior of electrons and holes in a semiconductor.  

26. Define the mobility.  

27. Explain why the mobility in a semiconductor depends on the doping density.  

28. Define the resistivity and conductivity of a semiconductor.  

29. Explain why the velocity in a semiconductor is limited.  

30. What is the driving force, which causes diffusion?  

31. Explain the relation between the mean free path, the scattering time and the thermal velocity.  

32. List three recombination-generation mechanisms.  

33. Explain why the net recombination rate as described by the simple model depends on the 
excess carrier density.  

34. Describe the continuity equation in words.  

35. What assumptions are made to obtain the diffusion equations (2.9.9) and (2.9.10) from the 
continuity equations (2.9.3) and (2.9.4)?  

36. What is the diffusion length and how does it relate to the diffusion constant and the minority 
carrier lifetime?  

37. What is the drift-diffusion model? 



Problems 
1. Calculate the packing density of the body centered cubic, the face centered cubic and the 

diamond lattice, listed in example 2.1 p 28. 

2. At what temperature does the energy bandgap of silicon equal exactly 1 eV? 

3. Prove that the probability of occupying an energy level below the Fermi energy equals the 
probability that an energy level above the Fermi energy and equally far away from the Fermi 
energy is not occupied. 

4. At what energy (in units of kT) is the Fermi function within 1 % of the Maxwell-Boltzmann 
distribution function? What is the corresponding probability of occupancy? 

5. Calculate the Fermi function at 6.5 eV if EF = 6.25 eV and T = 300 K. Repeat at T = 950 K 
assuming that the Fermi energy does not change. At what temperature does the probability 
that an energy level at E = 5.95 eV is empty equal 1 %. 

6. Calculate the effective density of states for electrons and holes in germanium, silicon and 
gallium arsenide at room temperature and at 100 °C. Use the effective masses for density of 
states calculations. 

7. Calculate the intrinsic carrier density in germanium, silicon and gallium arsenide at room 
temperature (300 K). Repeat at 100 °C. Assume that the energy bandgap is independent of 
temperature and use the room temperature values. 

8. Calculate the position of the intrinsic energy level relative to the midgap energy  

Emidgap = (Ec + Ev)/2 

in germanium, silicon and gallium arsenide at 300 K. Repeat at T = 100 °C.  

9. Calculate the electron and hole density in germanium, silicon and gallium arsenide if the 
Fermi energy is 0.3 eV above the intrinsic energy level. Repeat if the Fermi energy is 0.3 eV 
below the conduction band edge. Assume that T = 300 K. 

10. The equations (2.6.34) and (2.6.35) derived in section 2.6 are only valid for non-degenerate 
semiconductors (i.e. Ev + 3kT < EF < Ec - 3kT). Where exactly in the derivation was the 
assumption made that the semiconductor is non-degenerate?  

11. A silicon wafer contains 1016 cm-3 electrons. Calculate the hole density and the position of 
the intrinsic energy and the Fermi energy at 300 K. Draw the corresponding band diagram to 
scale, indicating the conduction and valence band edge, the intrinsic energy level and the 
Fermi energy level. Use ni = 1010 cm-3. 

12. A silicon wafer is doped with 1013 cm-3 shallow donors and 9 x 1012 cm-3 shallow acceptors. 
Calculate the electron and hole density at 300 K. Use ni = 1010 cm-3. 

13. The resistivity of a silicon wafer at room temperature is 5 Ωcm. What is the doping density? 
Find all possible solutions. 

14. How many phosphorus atoms must be added to decrease the resistivity of n-type silicon at 
room temperature from 1 Ωcm to 0.1 Ωcm. Make sure you include the doping dependence of 



    

the mobility. State your assumptions. 

15. A piece of n-type silicon (Nd = 1017 cm-3) is uniformly illuminated with green light (λ = 550 
nm) so that the power density in the material equals 1 mW/cm2. a) Calculate the generation 
rate of electron-hole pairs using an absorption coefficient of 104 cm-1. b) Calculate the excess 
electron and hole density using the generation rate obtained in (a) and a minority carrier 
lifetime due to Shockley-Read-Hall recombination of 0.1 ms. c) Calculate the electron and 
hole quasi-Fermi energies (relative to Ei) based on the excess densities obtained in (b).  

16. A piece of intrinsic silicon is instantaneously heated from 0 K to room temperature (300 K). 
The minority carrier lifetime due to Shockley-Read-Hall recombination in the material is 1 
ms. Calculate the generation rate of electron-hole pairs immediately after reaching room 
temperature. (Et = Ei). If the generation rate is constant, how long does it take to reach 
thermal equilibrium? 

17. Calculate the conductivity and resistivity of intrinsic silicon. Use ni = 1010 cm-3, µn = 1400 
cm2/V-sec and µp = 450 cm2/V-sec.  

18. Consider the problem of finding the doping density which results the maximum possible 
resistivity of silicon at room temperature. (ni = 1010 cm-3, µn = 1400 cm2/V-sec and µp = 450 
cm2/V-sec.)  

Should the silicon be doped at all or do you expect the maximum resistivity when dopants are 
added?  

If the silicon should be doped, should it be doped with acceptors or donors (assume that all 
dopant are shallow).  

Calculate the maximum resistivity, the corresponding electron and hole density and the 
doping density.  

19. The electron density in silicon at room temperature is twice the intrinsic density. Calculate 
the hole density, the donor density and the Fermi energy relative to the intrinsic energy. 
Repeat for n = 5 ni and n = 10 ni. Also repeat for p = 2 ni, p = 5 ni and p = 10 ni, calculating 
the electron and acceptor density as well as the Fermi energy relative to the intrinsic energy 
level.  

20. What photon energy (in electron volt) corresponds to a wavelength of 1 micron? What 
wavelength corresponds to a photon energy of 1 eV?  

21. 1 billion photons with a wavelength of 0.3 micron hit a detector every second. How large is 
the incident power?  

22. The expression for the Bohr radius can also be applied to the hydrogen-like atom consisting 
of an ionized donor and the electron provided by the donor. Modify the expression for the 
Bohr radius so that it applies to this hydrogen-like atom. Calculate the Bohr radius of an 
electron orbiting around the ionized donor in silicon. ( εr = 11.9 and me

* = 0.26 m0) 

23. Calculate the density of electrons per unit energy (in electron volt) and per unit area (per 



 

cubic centimeter) at 1 eV above the band minimum. Assume that me
* = 1.08 m0  

24. Calculate the probability that an electron occupies an energy level which is 3kT below the 
Fermi energy. Repeat for an energy level which is 3kT above the Fermi energy.  

25. Calculate and plot as a function of energy the product of the probability that an energy level 
is occupied with the probability that that same energy level is not occupied. Assume that the 
Fermi energy is zero and that kT = 1 eV  

26. The effective mass of electrons in silicon is 0.26 m0 and the effective mass of holes is 0.36 
m0. If the scattering time is the same for both carrier types, what is the ratio of the electron 
mobility and the hole mobility.  

27. Electrons in silicon carbide have a mobility of 1000 cm2/V-sec. At what value of the electric 
field do the electrons reach a velocity of 3 x 107 cm/s? Assume that the mobility is constant 
and independent of the electric field. What voltage is required to obtain this field in a 5 
micron thick region? How much time do the electrons need to cross the 5 micron thick 
region?  

28. A piece of silicon has a resistivity which is specified by the manufacturer to be between 2 
and 5 Ohm cm. Assuming that the mobility of electrons is 1400 cm2/V-sec and that of holes 
is 450 cm2/V-sec, what is the minimum possible carrier density and what is the 
corresponding carrier type? Repeat for the maximum possible carrier density.  

29. A silicon wafer has a 2 inch diameter and contains 1014 cm-3 electrons with a mobility of 
1400 cm2/V-sec. How thick should the wafer be so that the resistance between the front and 
back surface equals 0.1 Ohm.  

30. The electron mobility is germanium is 1000 cm2/V-sec. If this mobility is due to impurity and 
lattice scattering and the mobility due to lattice scattering only is 1900 cm2/V-sec, what is the 
mobility due to impurity scattering only?  



Problem 2.1 Calculate the packing density of the body centered cubic, the face 
centered cubic and the diamond lattice, listed in example 2.1 p 28.  

Solution The packing density is calculated as in example 2.1 p 28 and 
obtained from: 

3

3

3
4

cellunit   theof Volume
atoms of Volume

a

rπ
=  

The correct radius and number of atoms per unit cell should be 
used.  
A body centered cubic lattice contains an additional atom in the 
middle and therefore contains two atoms per unit cell. The atoms 
touch along the body diagonal, which equals a3 . The radius is 
one quarter of the body diagonal. 
A face centered cubic lattice contains six additional atoms in the 
center of all six faces of the cube. Since only half of the atoms is 
within the cube the total number of atoms per unit cell equals four. 
The atoms touch along the diagonal of the faces of the cube, which 
equals a2 . The radius is one quarter of the diagonal. 
The diamond lattice contains two face centered cubic lattice so 
that the total number of atoms per unit cell equals twice that of the 
face centered lattice, namely eight. The atoms touch along the 
body diagonal, where two atoms are one quarter of the body 
diagonal apart or 4/3 a . The radius equals half the distance 
between the two atoms. 
The radius, number of atoms per unit cell and the packing density 
are summarized in the table below.  
 Radius Atoms/ 

unit cell 
Packing density 

Simple cubic 
2
a

 
1 

% 52 
6

=
π

 

Body centered cubic 
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Face centered cubic 
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Diamond 
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Problem 2.2 At what temperature does the energy bandgap of silicon equal 

exactly 1 eV? 
Solution The energy bandgap is obtained from: 
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This quadratic equation can be solved yielding: 

K 679
))()K 0((

)
2

)()K 0(
(     

2

)()K 0(

2 =
−

+
−

+

−
=

α

β

α

α
TEETEE

TEE
T

gggg

gg

 

which is consistent with Figure 2.3.5 
 



 
Problem 2.3 
(same as 1.9) 

Prove that the probability of occupying an energy level below the 
Fermi energy equals the probability that an energy level above 
the Fermi energy and equally far away from the Fermi energy is 
not occupied. 

Solution 
 

The probability that an energy level with energy ∆E below the 
Fermi energy EF is occupied can be rewritten as: 
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so that it also equals the probability that an energy level with 
energy ∆E above the Fermi energy, EF, is not occupied. 

 



 
Problem 2.4 At what energy (in units of kT) is the Fermi function within 1 % of 

the Maxwell-Boltzmann distribution function? What is the 
corresponding probability of occupancy? 

Solution The Fermi function can be approximated by the Maxwell-
Boltzmann distribution function with an approximate error of 1 % 
if: 
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using x = (E - EF)/kT, this condition can be rewritten as: 
)exp(01.1)exp(1 xx =+  

from which one finds x = ln(100) = 4.605 so that  
E = EF + 4.605 kT and fFD(EF + 4.605 kT) = 0.0099 

 



 
Problem 2.5 Calculate the Fermi function at 6.5 eV if EF = 6.25 eV and T = 300 

K. Repeat at T = 950 K assuming that the Fermi energy does not 
change. At what temperature does the probability that an energy 
level at E = 5.95 eV is empty equal 1 %. 

Solution The Fermi function at 300 K equals: 
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The Fermi function at 950 K equals: 
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The probability that the Fermi function equals 1 % implies: 
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Problem 2.6 Calculate the effective density of states for electrons and holes in 

germanium, silicon and gallium arsenide at room temperature and 
at 100 °C. Use the effective masses for density of states 
calculations. 

Solution The effective density of states in the conduction band for 
germanium equals: 
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where the effective mass for density of states was used (Appendix 
3). Similarly one finds the effective densities for silicon and 
gallium arsenide and those of the valence band, using the effective 
masses listed below: 

 Germanium Silicon Gallium 
Arsenide 

me/m0 0.55 1.08 0.067 

 

Nc (cm-3) 1.02 x 1019 2.82 x 1019 4.35 x 1017 
me/m0 0.37 0.81 0.45  

Nv (cm-3) 5.64 x 1018 1.83 x 1019 7.57 x 1018 
 The effective density of states at 100 °C (372.15 K) are obtain 

from: 
2/3)

300
()K 300()(

T
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yielding: 
T = 100°C Germanium Silicon Gallium 

Arsenide 
Nc (cm-3) 1.42 x 1019 3.91 x 1019 6.04 x 1017 

 

Nv (cm-3) 7.83 x 1018 2.54 x 1019 1.05 x 1018 
 



 
Problem 2.7 Calculate the intrinsic carrier density in germanium, silicon and 

gallium arsenide at room temperature (300 K). Repeat at 100 °C. 
Assume that the energy bandgap is independent of temperature 
and use the room temperature values. 

Solution The intrinsic carrier density is obtained from: 
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where both effective densities of states are also temperature 
dependent. Using the solution of Problem 2.6 one obtains: 
T = 300 K Germanium Silicon Gallium 

Arsenide 
 

ni (cm-3) 2.16 x 1013 8.81 x 109 1.97 x 106 
T = 100°C Germanium Silicon Gallium 

Arsenide 
 

ni (cm-3) 3.67 x 1014 8.55 x 1011 6.04 x 108 
 



 
 
Problem 2.8 Calculate the position of the intrinsic energy level relative to the 

midgap energy  
Emidgap = (Ec + Ev)/2 

in germanium, silicon and gallium arsenide at 300 K. Repeat at T 
= 100 °C. 
The intrinsic energy level relative to the midgap energy is obtained 
from: 
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where the effective masses are the effective masses for density of 
states calculations as listed in the table below. 
The corresponding values of the intrinsic level relative to the 
midgap energy are listed as well.  
 
 Germanium Silicon Gallium arsenide 
me

*/m0 0.55 1.08 0.067 
mh

*/m0 0.37 0.81 0.45 
T = 300 K -7.68 meV -5.58 meV 36.91 meV 

Solution 

T = 100 C -9.56 meV -6.94 meV 45.92 meV 
 



 
Problem 2.9 Calculate the electron and hole density in germanium, silicon and 

gallium arsenide if the Fermi energy is 0.3 eV above the intrinsic 
energy level. Repeat if the Fermi energy is 0.3 eV below the 
conduction band edge. Assume that T = 300 K. 
The electron density, n, can be calculated from the Fermi energy 
using: 
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and the corresponding hole density equals: 
p = ni

2/n 
the resulting values are listed in the table below. 
 
If the Fermi energy is 0.3 eV below the conduction band edge, one 
obtains the carrier densities using: 
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and the corresponding hole density equals: 
p = ni

2/n 
the resulting values are listed in the table below. 
  Germanium Silicon Gallium 

Arsenide 
 ni (cm-3) 2.03 x 1013 1.45 x 1010 2.03 x 106 
 Nc (cm-3) 1.02 x 1019 6.62 x 1019 4.37 x 1017 

n (cm-3) 2.24 x 1018 1.60 x 1015 2.23 x 1011 EF - Ei  
= 0.3 eV p (cm-3) 1.48 x 108 1.32 x 105 18.4 

n (cm-3) 9.27 x 1013 6.02 x 1014 3.97 x 1012 

Solution 

EF - Ei  
= - 0.3 eV p (cm-3) 4.45 x 1012 3.50 x 105 1.04 

 



 
Problem 2.10 The equations (2.6.34) and (2.6.35) derived in section 2.6 are only 

valid for non-degenerate semiconductors (i.e. Ev + 3kT < EF < Ec - 
3kT). Where exactly in the derivation was the assumption made 
that the semiconductor is non-degenerate? 

Solution Equations (2.6.34) and (2.6.35) were derived using charge 
neutrality and the mass action law. Of those two assumptions, the 
use of the mass action law implies that the semiconductor is non-
degenerate.  
 
The mass action law was derived using (2.6.12) and (2.6.13). 
These equations, representing a closed form solution for the 
thermal equilibrium carrier densities as a function of the Fermi 
energy, were in turn obtained by solving the Fermi integral and 
assuming that: 

Ev + 3kT < EF < Ec - 3kT 
i.e. that the Fermi energy must be at least 3kT away from either 
bandedge and within the bandgap. 

 



 
Problem 2.11 A silicon wafer contains 1016 cm-3 electrons. Calculate the hole 

density and the position of the intrinsic energy and the Fermi 
energy at 300 K. Draw the corresponding band diagram to scale, 
indicating the conduction and valence band edge, the intrinsic 
energy level and the Fermi energy level. Use ni = 1010 cm-3. 

Solution The hole density is obtained using the mass action law: 
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Problem 2.12 A silicon wafer is doped with 1013 cm-3 shallow donors and 9 x 

1012 cm-3 shallow acceptors. Calculate the electron and hole 
density at 300 K. Use ni = 1010 cm-3. 

Solution Since there are more donors than acceptors, the resulting material 
is n-type and the electron density equals the difference between 
the donor and acceptor density or: 

n = Nd – Na = 1013 – 9 x 1012 = 1012 cm-3 
The hole density is obtained by applying the mass action law: 
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Problem 2.13 The resistivity of a silicon wafer at room temperature is 5 Ωcm. 

What is the doping density? Find all possible solutions. 
Solution Starting with a initial guess that the conductivity is due to 

electrons with a mobility of 1400 cm2/V-s, the corresponding 
doping density equals: 

51400106.1

11
19 ×××

==≅
−ρµ n

d q
nN  = 8.9 x 1014 cm-3 

The mobility corresponding to this doping density equals 
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1366 cm2/V-s 

Since the calculated mobility is not the same as the initial guess, 
this process must be repeated until the assumed mobility is the 
same as the mobility corresponding to the calculated doping 
density, yielding: 

Nd = 9.12 x 1014 cm-3 and µn = 1365 cm2/V-s 
For p-type material one finds: 

Na = 2.56 x 1015 cm-3 and µp = 453 cm2/V-s 
 



 
 
Problem 2.14 How many phosphorus atoms must be added to decrease the 

resistivity of n-type silicon at room temperature from 1 Ω−cm to 
0.1 Ω−cm. Make sure you include the doping dependence of the 
mobility. State your assumptions. 
 

Solution Starting with a initial guess that the conductivity is due to 
electrons with a mobility of 1400 cm2/V-s, the corresponding 
doping density corresponding to the initial resistivity of 1 Ω−cm 
equals: 
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Since the calculated mobility is not the same as the initial guess, 
this process must be repeated until the assumed mobility is the 
same as the mobility corresponding to the calculated doping 
density, yielding: 

Nd,initial = 4.94 x 1015 cm-3 and µn = 1265 cm2/V-s 
Repeating this procedure for a resistivity of 0.1 Ω−cm one find the 
final doping density to be 

Nd,final = 8.08 x 1016 cm-3 and µn = 772 cm2/V-s 
The added density of phosphorous atoms therefore equals 

Nd, added = 4.94 x 1015 -  = 7.59 x 1016 cm-3 
 



 
Problem 2.18 Consider the problem of finding the doping density, which 

results in the maximum possible resistivity of silicon at room 
temperature. (ni = 1010 cm-3, µn = 1400 cm2/V-sec and µp = 450 
cm2/V-sec.) 
Should the silicon be doped at all or do you expect the maximum 
resistivity when dopants are added?  
If the silicon should be doped, should it be doped with acceptors 
or donors (assume that all dopant are shallow).  
Calculate the maximum resistivity, the corresponding electron 
and hole density and the doping density.  

Solution Since the mobility of electrons is larger than that of holes, one 
expects the resistivity to initially decrease as acceptors are added 
to intrinsic silicon. 
The maximum resistivity (or minimum conductivity) is obtained 
from: 
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which yields: 
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=  = 0.57 ni = 5.7 x 109 cm-3  

The corresponding hole density equals p = 1.76 ni = 1.76 x 109 
cm-3 and the amount of acceptors one needs to add equals Na = 
1.20 ni = 1.20 x 109 cm-3. The maximum resistivity equals: 
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Problem 2.20 The expression for the Bohr radius can also be applied to the 

hydrogen-like atom consisting of an ionized donor and the 
electron provided by the donor. Modify the expression for the 
Bohr radius so that it applies to this hydrogen-like atom. 
Calculate the resulting radius of an electron orbiting around the 
ionized donor in silicon. (εr = 11.9 and me

* = 0.26 m0) 
Solution The Bohr radius is obtained from: 
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However since the electron travel through silicon one has to 
replace the permittivity of vacuum with the dielectric constant of 
silicon and the free electron mass with the effective mass for 
conductivity calculations so that: 

a0,donor in silicon 
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Problem 2.25 Electrons in silicon carbide have a mobility of 1000 cm2/V-sec. 

At what value of the electric field do the electrons reach a 
velocity of 3 x 107 cm/s? Assume that the mobility is constant 
and independent of the electric field. What voltage is required to 
obtain this field in a 5 micron thick region? How much time do 
the electrons need to cross the 5 micron thick region? 

Solution The electric field is obtained from the mobility and the velocity: 
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Combined with the length one finds the applied voltage. 
V = E L = 30,000 x 5 x 10-4 = 15 V 

The transit time equals the length divided by the velocity: 
tr = L/v = 5 x 10-4/3 x 107 = 16.7 ps 

 
 



 
Problem 2.26 A piece of silicon has a resistivity which is specified by the 

manufacturer to be between 2 and 5 Ohm cm. Assuming that the 
mobility of electrons is 1400 cm2/V-sec and that of holes is 450 
cm2/V-sec, what is the minimum possible carrier density and 
what is the corresponding carrier type? Repeat for the maximum 
possible carrier density. 

Solution The minimum carrier density is obtained for the highest 
resistivity and the material with the highest carrier mobility, i.e. 
the n-type silicon. 
The minimum carrier density therefore equals: 
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n = 8.92 x 1014 cm-3 

The maximum carrier density is obtained for the lowest 
resistivity and the material with the lowest carrier mobility, i.e. 
the p-type silicon. 
The maximum carrier density therefore equals: 
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Problem 2.27 A silicon wafer has a 2-inch diameter and contains 1014 cm-3 

electrons with a mobility of 1400 cm2/V-sec. How thick should 
the wafer be so that the resistance between the front and back 
surface equals 0.1 Ohm? 

Solution The resistance is given by 
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Where A is the area of the wafer and L the thickness, so that the 
wafer thickness equals: 
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The resistivity, r, was obtained from: 
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Problem 2.29 A piece of n-type silicon is doped with 1017 cm-3 shallow donors. 

Calculate the density of electrons per unit energy at kT/2 above 
the conduction band edge. T = 300 K. Calculate the electron 
energy for which the density of electrons per unit energy has a 
maximum. What is the corresponding probability of occupancy 
at that maximum? 



Solution The density of electrons per unit energy at a given energy 
equals: 
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The position of the Fermi energy is calculated from the doping 
density: 
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This last equation is only valid if the semiconductor is non-
degenerate, which is a justifiable assumption since the electron 
density is much smaller than the effective density of states. The 
Fermi function then becomes: 
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And the density of electrons per unit energy can then be further 
simplified to: 
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The maximum is obtained by setting the derivative equal to zero: 
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Which can be solved to yield: 
E = Emax = Ec + kT/2 

The corresponding probability of occupancy equals the value of 
the Fermi function calculated above. 

 



 
Problem 2.30 Phosphorous donor atoms with a concentration of 1016 cm-3 are 

added to a piece of silicon. Assume that the phosphorous atoms 
are distributed homogeneously throughout the silicon. The 
atomic weight of phosphorous is 31. 

a) What is the sample resistivity at 300 K? 
b) What proportion by weight does the donor impurity 

comprise? The density of silicon is 2.33 gram/cm3. 
c) If 1017 atoms cm-3 of boron are included in addition to 

phosphorous, and distributed uniformly, what is the 
resulting resistivity and type (i.e., p- or n-type material)? 

d) Sketch the energy-band diagram under the condition of 
part c) and show the position of the Fermi energy relative 
to the valence band edge. 



Solution a) The electron mobility in the silicon equals: 
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c) The semiconductor is p-type since Na > Nd  
The hole density is obtained from: 
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and the mobility is calculated from the sum of the donor 
and acceptor densities 
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leading to the conductivity of the material: 
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Problem 2.31 Find the equilibrium electron and hole concentrations and the 

location of the Fermi energy relative to the intrinsic energy in 
silicon at 27 oC, if the silicon contains the following 
concentrations of shallow dopants. 

a) 1 x 1016 cm-3 boron atoms 
b) 3 x 1016 cm-3 arsenic atoms and 2.9 x 1016 cm-3 boron 

atoms. 
Solution a) Boron atoms are acceptors, therefore Na = 1016 cm-3 

Since these are shallow acceptors and the material is not 
compensated, degenerate or close to intrinsic, the hole 
density equals the acceptor density: 

p ≈ 1016 cm-3 
Using the mass action law we then find the electron 
density 

n = ni
2/p = 1 x 104 cm-3 

The Fermi energy is then obtained from: 
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b) Arsenic atoms are donors, therefore Na = 2.9 x 1016 cm-3 
and Nd = 3 x 1016 cm-3 
Since these are shallow acceptors and the material is not 
degenerate or close to intrinsic, the electron density 
approximately equals the difference between the donor 
and acceptor density 

n ≈ Nd – Na = 1015 cm-3 
Using the mass action law we then find the hole density 

p = ni
2/n = 1 x 105 cm-3 

The Fermi energy is then obtained from: 
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Problem 2.32 The electron concentration in a piece of lightly doped, n-type 

silicon at room temperature varies linearly from 1017 cm-3 at x = 
0 to 6 x 1016 cm-3 at x = 2 µm. Electrons are supplied to keep this 
concentration constant with time. Calculate the electron current 
density in the silicon if no electric field is present. Assume µn = 
1000 cm2/V-s and T = 300 K. 

Solution The diffusion current is obtained from: 
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where the diffusion constant Dn is obtained from: 
Dn = µn x Vt = 1000 x 0.0258 = 25.8 cm2 

 



Review Questions 
1. What is the difference between a source and a drain of a MOSFET?  

2. What is the difference between an n-type and a p-type MOSFET?  

3. What is the difference between an enhancement and a depletion MOSFET?  

4. Which device has most positive threshold voltage a depletion mode p-type MOSFET or an 
enhancement mode p-type MOSFET?  

5. Which device has the highest drain current in saturation at zero gate voltage, a p-type 
enhancement MOSFET or an n-type depletion MOSFET?  

6. Why is the electron layer of an n-MOSFET called an inversion layer?  

7. Why is there no current in a MOSFET when the device is biased in accumulation?  

8. What is the difference between the linear and the quadratic MOSFET model?  

9. Does the body effect affect CMOS circuits? Explain.  

10. How does the oxide thickness and substrate doping affect the threshold voltage of a 
MOSFET. Plot the threshold voltage as a function of the oxide thickness for different doping 
densities.  

11. What is the advantage of a poly-silicon gate technology?  

12. What is channel length modulation?  

13. What is punchthrough?  

14. Explain the effect of scaling on the different MOSFET parameters as listed in Table 7.7.1  

 



Advanced MOSFET issues

Chapter 7: MOS Field-Effect-Transistors

7.7. Advanced MOSFET issues

7.7.1. Channel length modulation
7.7.2. Drain induced barrier lowering
7.7.3. Punch through
7.7.4. Sub-threshold current
7.7.5. Field dependent mobility
7.7.6. Avalanche breakdown and parasitic bipolar action
7.7.7. Velocity saturation
7.7.8. Oxide Breakdown
7.7.9. Scaling

7.7.1. Channel length modulation  

Channel length modulation in a MOSFET is caused by the increase of the depletion layer width at the drain as the drain 
voltage is increased. This leads to a shorter channel length and an increased drain current. An example is shown in Figure 
7.7.1. The channel-length-modulation effect typically increases in small devices with low-doped substrates. An extreme 
case of channel length modulation is punch through where the channel length reduces to zero. Proper scaling can reduce 
channel length modulation, namely by increasing the doping density as the gate length is reduces.

Figure 7.7.1: Current-Voltage characteristics of a MOSFET with and without channel length modulation. (Nd = 1017 

cm-3, L = 1 µm) 

http://ece-www.colorado.edu/~bart/book/book/chapter7/ch7_7.htm (1 of 5) [2/28/2002 5:30:07 PM]
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7.7.2. Drain induced barrier lowering  

Drain induced barrier lowering (DIBL) is the effect a voltage of the drain has on the output conductance and measured 
threshold voltage. This effect occurs in devices where only the gate length is reduced without properly scaling the other 
dimensions. It is observed as a variation of the measured threshold voltage with reduced gate length. The threshold 
variation is caused by the increased current with increased drain voltage as the applied drain voltage controls the inversion 
layer charge at the drain, thereby competing with the gate voltage. This effect is due to the two-dimensional field 
distribution at the drain end and can typically be eliminated by properly scaling the drain and source depths while 
increasing the substrate doping density.

7.7.3. Punch through  

Punch through in a MOSFET is an extreme case of channel length modulation where the depletion layers around the drain 
and source regions merge into a single depletion region. The field underneath the gate then becomes strongly dependent on 
the drain-source voltage, as is the drain current. Punch through causes a rapidly increasing current with increasing drain-
source voltage. This effect is undesirable as it increases the output conductance and limits the maximum operating voltage 
of the device

7.7.4. Sub-threshold current  

The basic assumption of the MOS capacitor analysis in section 6.3.2 is that no inversion layer charge exists below the 
threshold voltage. This leads to zero current below threshold. The actual sub-threshold current is not zero but reduces 
exponentially below the threshold voltage as:

(7.7.1)

with

(7.7.2)

The sub-threshold behavior is critical for dynamic circuits since one needs to ensure that no charge leaks through 
transistors biased below threshold.

7.7.4.1. Derivation of the sub-threshold ideality factor

The charge density below threshold can be expressed as:

(7.7.3)

Where the surface potential, φs, is related to the gate voltage by:
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(7.7.4)

The gate voltage, VG, is therefore related to the surface potential, φs, by:

(7.7.5)

Where the surface potential below threshold was approximated to its value, 2 φF, at threshold. The sub-threshold current 

therefore equals: 

(7.7.6)

7.7.5. Field dependent mobility  

The mobility is the inversion layer is distinctly lower than in bulk material. This is due to the fact the electron wavefunction 
extends into the oxide and the carrier mobility is lowered due to the lower mobility in the oxide. Higher electric fields at 
the surface - as typically obtained in scaled down devices - push the electron wavefunction even more into the oxide 

yielding a field dependent mobility. The mobility at the surface, µsurface, varies with the electric field, , in the following 

way:

(7.7.7)

7.7.6. Avalanche breakdown and parasitic bipolar action  

As the electric field in the channel is increased, avalanche breakdown occurs in the channel at the drain. This avalanche 
breakdown increases the current as in a p-n diode (see section 4.5.3 and 2.8). In addition, there is parasitic bipolar action 
taking place. Holes generated by the avalanche breakdown move from drain to source underneath the inversion layer. This 
hole current forward biases the source-bulk p-n diode so that now also electrons are injected as minority carriers into the p-
type substrate underneath the inversion layer. These electrons arrive at the drain and again create more electron-hole pairs 
through avalanche multiplication. The positive feedback between the avalanche breakdown and the parasitic bipolar action 
results in breakdown at lower drain voltage.

7.7.7. Velocity saturation  

As devices are reduced in size, the electric field typically also increases and the carriers in the channel have an increased 
velocity. However at high fields there is no longer a linear relation between the electric field and the velocity as the 
velocity gradually saturates reaching the saturation velocity. This velocity saturation is caused by the increased scattering 
rate of highly energetic electrons, primarily due to optical phonon emission. This effect increases the transit time of carriers 
through the channel. In sub-micron MOSFETs one finds that the average electron velocity is larger than in bulk material so 
that velocity saturation is not quite as much of a restriction as initially thought.
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7.7.8. Oxide Breakdown  

As the gate-oxide is scaled down, breakdown of the oxide and oxide reliability becomes more of a concern. Higher fields in 
the oxide increase the tunneling of carriers from the channel into the oxide. These carriers slowly degrade the quality of the 
oxide and lead over time to failure of the oxide. This effect is referred to as time dependent destructive breakdown 
(TDDB).

A simple reduction of the power supply voltage has been used to eliminate this effect. However as gate oxides approach a 
thickness of 1.5 - 3 nm, carrier tunneling becomes less dependent on the applied electric field so that this problem will 
require more attention.

Oxides other than silicon dioxide have been considered as alternate oxides and are typically referred to as high-k 
dielectrics. These oxides have a larger dielectric constant so that the same gate capacitance can be obtained with a thicker 
oxide. The challenge is to obtain the same stability, reliability and breakdown voltage as silicon dioxide. Oxides of interest 
include Al2O3, ZrO and TiO.

7.7.9. Scaling  

The reduction of the dimensions of a MOSFET has been has dramatic during the last three decades. Starting at a minimum 
feature length of 10 µm in 1970 the gate length was gradually reduced to 0.15 µm minimum feature size in 2000, resulting 
in a 13% reduction per year. Proper scaling of MOSFET however requires not only a size reduction of the gate length and 
width. It also requires a reduction of all other dimensions including the gate/source and gate/drain alignment, the oxide 
thickness and the depletion layer widths. Scaling of the depletion layer widths also implies scaling of the substrate doping 
density.

Two types of scaling are common: constant field scaling and constant voltage scaling. Constant field scaling yields the 
largest reduction in the power delay product of a single transistor. However, it requires a reduction in the power supply 
voltage as one decreases the minimum feature size. Constant voltage scaling does not have this problem and is therefore the 
preferred scaling method since it provides voltage compatibility with older circuit technologies. The disadvantage of 
constant voltage scaling is that the electric field increases as the minimum feature length is reduced. This leads to velocity 
saturation, mobility degradation, increased leakage currents and lower breakdown voltages.

The scaling of MOSFET device parameters is illustrated by Table 7.7.1 where constant field, constant voltage and constant 
voltage scaling in the presence of velocity saturation are compared.
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Table 7.7.1 : Comparison of the effect of scaling on MOSFET device parameters. Compared are constant field 
scaling, constant voltage scaling and constant voltage scaling in the presence of velocity overshoot.
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Review Questions 
1. List three experiments, which can only be explained using quantum mechanics.  

2. What is a Rydberg?  

3. Name the two primary assumptions of the Bohr model.  

4. How do we know that the energy levels in a hydrogen atom are quantized?  

5. What two parameters are linked by Gauss's law?  

6. What two parameters are linked by Poisson's equation?  

7. What is the definition of thermal equilibrium?  

8. List the three laws of thermodynamics.  

9. Explain in words the meaning of the thermodynamic identity.  

10. What is the Fermi function? 



MOSFET Circuits and Technology

Chapter 7: MOS Field-Effect-Transistors

7.6. MOSFET Circuits and Technology

7.6.1. MOSFET fabrication process
7.6.2. Poly-silicon gate technology
7.6.3. CMOS
7.6.4. MOSFET Memory

MOSFET circuit technology has dramatically changed over the last three decades. Starting with a ten-micron pMOS 
process with an aluminum gate and a single metallization layer around 1970, the technology has evolved into a tenth-
micron self-aligned-gate CMOS process with up to five metallization levels. The transition from dopant diffusion to ion 
implantation, from thermal oxidation to oxide deposition, from a metal gate to a poly-silicon gate, from wet chemical 
etching to dry etching and more recently from aluminum (with 2% copper) wiring to copper wiring has provided vastly 
superior analog and digital CMOS circuits.

7.6.1. MOSFET fabrication process  

The MOSFET fabrication process has evolved dramatically over the years. Around 1970, pMOS circuits with aluminum 
gate metal and wiring were dominant. The corresponding steps of a typical pMOSFET fabrication process steps are listed 
in Table 7.6.1.

Table 7.6.1: pMOS process steps

The primary problem at the time was threshold voltage control. Positively charged ions in the oxide decreased the threshold 
voltage of the devices. p-type MOSFETs were therefore the device of choice despite the lower hole mobility, since they 
would still be enhancement-type devices even when charge was present. Circuits were still operational at somewhat higher 
power supply voltages.

http://ece-www.colorado.edu/~bart/book/book/chapter7/ch7_6.htm (1 of 8) [2/28/2002 5:30:12 PM]



MOSFET Circuits and Technology

Thermal oxidation of the silicon in an oxygen or water vapor atmosphere provided a quality gate oxide with easily 
controlled thickness. The same process was also used to provide a high-temperature mask for the diffusion process and a 
passivation and isolation layer. 

The oxide was easily removed in hydrofluoric acid (HF), without removing the underlying silicon.

Aluminum was evaporated over the whole wafer and then etched yielding both the gate metal and the metal wiring 
connecting the devices. A small amount of copper (~2%) was added to make the aluminum more resistant to 
electromigration. Electromigration is the movement of atoms due to the impact with the electrons carrying the current 
through the wire. This effect can cause open circuits and is therefore a well-known reliability problem. It typically occurs at 
points where the local current density is very high, in narrow wires, at corners or when crossing an oxide step. The addition 
of a small amount of copper provides a more rigid structure within the aluminum and eliminates the effect.

A metal anneal in nitrogen/hydrogen (N2/H2) ambient was used to improve the metal-semiconductor contact and to reduce 

the surface state density at the semiconductor/gate-oxide interface.

Since then the fabrication process has changed as illustrated with Table 7.6.2. Most changes were introduced to provide 
superior performance, better reliability and higher yield. The most important change has been the reduction of the gate 
length. A gate length reduction provides a shorter transit time and hence a faster device. In addition, a gate length reduction 
is typically linked to a reduction of the minimum feature size and therefore yields smaller transistors as well as a larger 
number of transistors on a chip with a given size. As the technology improved, it was also possible to make larger chips, so 
that the number of transistors per chip increased even faster. At the same time the wafer size was increased to 
accommodate the larger chips while reducing the loss due to partial chips at the wafer periphery and to reduce the cost per 
chip as more chips can be accommodated on a single wafer.

The other changes can be split into process improvements and circuit improvements. The distinction is at times artificial, as 
circuit improvements typically require new processes.

The key circuit improvement is the use of CMOS circuits, containing both nMOS and pMOS transistors. Early on, the 
pMOS devices were replaced with nMOS transistors because of the better electron mobility. Enhancement-mode loads 
were replaced for a while by resistor loads and then depletion-mode loads yielding faster logic circuits with larger 
operating margins. Analog circuits benefited in similar ways. The use of complementary circuits was first introduced by 
RCA but did not immediately catch on since the logic circuits were somewhat slower and larger than the then-dominant 
nMOS depletion logic. It was only when the number of transistors per chip became much larger that the inherent 
advantages of CMOS circuits, namely the lower power dissipation and larger operating margins became highly desirable. 
By now the CMOS technology is the dominant technology in the IC industry as the ten-fold reduction of power dissipation 
largely outweighs the 30%-50% speed reduction and size increase.

The process improvements can in turn be split into those aimed at improving the circuit performance and those improving 
the manufacturability and reliability. Again the split is somewhat artificial but it is beneficial to understand what factors 
affect the process changes. The latter group includes CVD deposition, ion implantation, RIE etching, sputtering, 
planarization and deuterium annealing. The process changes, which improve the circuit performance, are the self-aligned 
poly-silicon gate process, the silicide gate cap, LOCOS isolation, multilevel wiring and copper wiring.

The self-aligned poly-silicon gate process was introduced before CMOS and marked the beginning of modern day 
MOSFETs. The self-aligned structure, as further discussed in section 7.6.2, is obtained by using the gate as the mask for 
the source-drain implant. Since the crystal damage caused by the high-energy ions must be annealed at high temperature 
(~800 C), an aluminum gate could no longer be used. Doped poly-silicon was found to be a very convenient gate material 
as it withstands the high anneal temperature and can be oxidized just like silicon. The self-aligned process lowers the 
parasitic capacitance between gate and drain and therefore improves the high-frequency performance and switching time. 
The addition of a silicide layer on top of the gate reduces the gate resistance while still providing a quality implant mask. 
The self-aligned process also reduced the transistor size and hence increased the density. The field oxide was replaced by a 
local oxidation isolation structure (LOCOS), where a Si3N4 layer is used to prevent the oxidation in the MOSFET region. 

The oxide provides an implant mask and contact hole mask yielding an even more compact device. 
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Multilevel wiring is a necessity when one increases the number of transistors per chip since the number of wires increases 
with the square of the number of transistors and the average wire length increase linearly with the chip size. While 
multilevel wiring simply consists of a series of metal wiring levels separated by insulators, the multilevel wiring has 
increasingly become a bottleneck in the fabrication of high-performance circuits. Planarization techniques, as discussed 
below, and the introduction of copper instead of aluminum-based metals have further increased the wiring density and 
lowered the wiring resistance. 

Table 7.6.2: MOS process changes and improvements

Chemical vapor deposition (CDV) of insulating layers is now used instead of thermal oxidation since it does not consume 
the underlying silicon. Also because there is no limit to the obtainable thickness and since materials other than SiO2 (for 

instance Si3N4) can be deposited. CDV deposition is also frequently used to deposit refractory metals such as tungsten.

Ion implantation has replaced diffusion because of the superior control and uniformity. Dry etching including plasma 
etching, reactive ion etching (RIE) and ion beam etching has replaced wet chemical etching. These etch processes provide 
better etch rate uniformity and control as well as pronounced anisotropic etching. The high etch rate selectivity of wet 
chemical etching is not obtained with these dry etch techniques, but are well compensated by the better uniformity. 

Sputtering of metals has completely replaced evaporation. Sputtering typically provides better adhesion and thickness 
control. It is also better suited to deposit refractory metals and silicides. 

Planarization is the process by which the top surface of the wafer is planarized after each step. The purpose of this 
planarization process is to provide a flat surface, so that fine-line lithography can be performed at all stages of the 
fabrication process. The planarization enables high-density multi-layer wiring levels. 

Deuterium anneal is a recent modification of the standard hydrogen anneal, which passivates the surface states. The change 
to deuterium was prompted because it is a heavier isotope of hydrogen. It chemically acts the same way but is less likely to 
be knocked out of place by the energetic carriers in the inversion layer. The use of deuterium therefore reduces the increase 
of the surface state density due to hot-electron impact. 

http://ece-www.colorado.edu/~bart/book/book/chapter7/ch7_6.htm (3 of 8) [2/28/2002 5:30:12 PM]



MOSFET Circuits and Technology

7.6.2. Poly-silicon gate technology  

An early improvement of the technology was obtained by using a poly-silicon gate, yielding a self-aligned structure which 
is both compact and has better performance. The poly-silicon gate is used as a mask during the implantation so that the 
source and drain regions are self-aligned with respect to the gate. This self-alignment structure reduces the device size. In 
addition, it eliminates the large overlap capacitance between gate and drain, while maintaining a continuous inversion layer 
between source and drain.

A further improvement of this technique is the use of a low-doped drain (LDD) structure. As an example we consider the 
structure shown in Figure 7.6.1. Here a first shallow implant is used to contact the inversion layer underneath the gate. The 
shallow implant causes only a small overlap between the gate and source/drain regions. After adding a sidewall to the gate 
a second deep implant is added to the first one. This deep implant has a low sheet resistance and adds a minimal series 
resistance. The combination of the two implants therefore yields a minimal overlap capacitance and low access resistance.

Figure 7.6.1: Cross-sectional view of a self-aligned poly-silicon gate transistor with LOCOS isolation

Shown is also the local oxidation isolation (LOCOS). Typically, there would also be an additional field and channel 
implant. The field implant increases the doping density under the oxide and thereby increases the threshold voltage of the 
parasitic transistor formed by the metal wiring on top of the isolation oxide. The channel implant provides an adjustment of 
the threshold voltage of the transistors. The use of a poly-silicon gate has the disadvantage that the sheet resistance of the 
gate is much larger than that of a metal gate. This leads to high RC time-constants of long poly-silicon lines. These long 
RC time-constants are reduced by using silicides (WSi, TaSi, CoSi etc.) instead or on top of poly-silicon. Also by using the 
poly-silicon only as gate material and not as a wiring level one can further eliminated such RC time delays.
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7.6.3. CMOS  

Complementary Metal-Oxide-Silicon circuits require an nMOS and pMOS transistor technology on the same substrate. To 
this end, an n-type well is provided in the p-type substrate. Alternatively one can use a p-well or both an n-type and p-type 
well in a low-doped substrate. The gate oxide, poly-silicon gate and source-drain contact metal are typically shared 
between the pMOS and nMOS technology, while the source-drain implants must be done separately. Since CMOS circuits 
contain pMOS devices, which are affected by the lower hole mobility, CMOS circuits are not faster than their all-nMOS 
counter parts. Even when scaling the size of the pMOS devices so that they provide the same current, the larger pMOS 
device has a higher capacitance.

The CMOS advantage is that the output of a CMOS inverter can be as high as the power supply voltage and as low as 
ground. This large voltage swing and the steep transition between logic high and low yield large operation margins and 
therefore also a high circuit yield. In addition, there is no power dissipation in either logic state. Instead the power 
dissipation occurs only when a transition is made between logic states. CMOS circuits are therefore not faster than nMOS 
circuits but are more suited for very/ultra large-scale integration (VLSI/ULSI).

CMOS circuits have one property, which is very undesirable, namely latchup. Latchup occurs when four alternating p and 
n-type regions are brought in close proximity. Together they form two bipolar transitors, one npn and one pnp transistor. 
The base of each transistor is connected to the collector of the other, forming a cross-coupled thyristor-like combination. 
As a current is applied to the base of one transistor, the current is amplified by the transistor and provided as the base 
current of the other one. If the product of the current gain of both transistors is larger than unity, the current through both 
devices increases until the series resistances of the circuit limits the current. Latchup therefore results in excessive power 
dissipation and faulty logic levels in the gates affected. In principle, this effect can be eliminated by separating n-type and p-
type device. A more effective and less space-consuming solution is the use of trenches, which block the minority carrier 
flow. A deep and narrow trench is etched between all n-type and p-type wells, passivated and refilled with an insulating 
layer.

7.6.4. MOSFET Memory  

MOSFET memory is an important application of MOSFETs. Memory chips contain the largest number of devices per unit 
area since the transistors are arranged in a very dense regular structure. The generic structure of a memory chip is shown in 
Figure 7.6.2.
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Figure 7.6.2: Arrangement of memory cells into an array

A two dimensional array of memory cells, which store a single bit, are connected through a series of word lines and bit 
lines. One row of cells is activated by changing the voltage on the corresponding word line. The information is then stored 
in the cell by applying voltages to the bit lines. During a read operation, the information is retrieved by sensing the voltage 
on the bit lines with a sense amplifier. A possible implementation of a static random access memory (SRAM) is shown in 
Figure 7.6.3. 

Figure 7.6.3: Static random access memory (SRAM) using a six-transistor cell.

The memory cell consists of a flip-flop and the cells are accessed through two pass transistors connected to the bit lines and 
controlled by the word line. Depletion mode transistors are shown here as load devices. A common alternate load is an 
amorphous silicon resistor.

A simpler cell leading to denser memory chips is the dynamic random access memory shown in Figure 7.6.4.
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Figure 7.6.4: Dynamic random access memory (DRAM) using a one-transistor cell.

The dynamic cell contains only a single transistor and capacitor. The cell is called dynamic since the information is stored 
as charge on the capacitor. This charge slowly leaks away so that the cell needs to be refreshed periodically. The reading 
process is also destructive since the storage capacitor is discharged as a voltage is applied to the word line. Therefore, one 
has to rewrite the information into all the cells of a given row after reading a single cell from that row. Despite these 
restrictions, dynamic memory chips represent the largest section of the memory market. The advantage of a higher storage 
density outweighs all other considerations. Process advances such as the use of a vertical trench, have further increased the 
density of dynamic memory chips.

As an example we now consider the dynamic memory cell shown in Figure 7.6.5. Shown are the top view and cross-
sectional view. The figure illustrates how compact the cell can be by using the gate as the word line of the array and by 
using a trench capacitor. Also note that the drain of the transistor and one side of the capacitor are merged into one n-type 
region. The bit lines shown in the top view are placed next to the transistor for clarity. Actual memory cells have the bit 
lines on top of the transistors as shown in the cross-sectional view. More recent memory cells even have the transistor 
buried in the trench together with the capacitor.
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Figure 7.6.5: Dynamic random access memory (DRAM) using a one-transistor cell. (a) top view of four cells and (b) 
cross-sectional view of one cell.

A critical issue when scaling dynamic memory circuits is the capacitance of the storage capacitor. Scaling of all dimensions 
would yield a smaller value of the capacitor. However, larger arrays, made possible by scaling the device size, require a 
larger capacitance. After all, the critical operation in a dynamic memory is the read-out. During read-out, the memory 
capacitor is connected to the bit line and the charge is now distributed between the memory cell capacitance, the bit line 
capacitance and the parasitic capacitance of all the devices connected to the bit line. The remaining voltage on the bit line 
therefore depends on the ratio of the cell capacitance to that of the bit line and connected elements. In large memory chips 
the voltage would become unacceptably low if the memory capacitance would be scaled down with all other device 
dimensions. Instead the capacitance of the memory capacitor is kept almost constant from one generation to the next at a 
value around 1 fF. This value corresponds to the storage of 25,000 electrons at a voltage of 5 V and results in a bit line 
voltage of a few millivolts.
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Chapter 6: MOS Capacitors

6.3. MOS analysis

6.3.1. Flatband voltage calculation
6.3.2. Inversion layer charge
6.3.3. Full depletion analysis
6.3.4. MOS Capacitance

6.3.1. Flatband voltage calculation  

If there is no charge present in the oxide or at the oxide-semiconductor interface, the flat band voltage simply equals the 
difference between the gate metal workfunction, ΦM, and the semiconductor workfunction, ΦS. 

(6.3.1)

The workfunction is the voltage required to extract an electron from the Fermi energy to the vacuum level. This voltage is 
between three and five Volt for most metals. It should be noted that the actual value of the workfunction of a metal 
deposited onto silicon dioxide is not exactly the same as that of the metal in vacuum. Figure 6.3.1 provides experimental 
values for the workfunction of different metals as obtained from a measurement of a MOS capacitor as a function of the 
measured workfunction in vacuum. The same data is also listed in Table 6.3.1.

Figure 6.3.1.: Workfunction of Magnesium (Mg), Aluminum (Al), Copper (Cu), Silver (Ag), Nickel (Ni) and Gold 
(Au) obtained from I-V and C-V measurements on MOS structures as a function of the workfunction of 
those metals measured in vacuum.
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Table 6.3.1: Workfunction of selected metals as measured in vacuum and as obtained from a C-V measurement on an 
MOS structure.

The workfunction of a semiconductor, ΦS, requires some more thought since the Fermi energy varies with the doping type 

as well as with the doping concentration. This workfunction equals the sum of the electron affinity in the semiconductor, χ, 
the difference between the conduction band energy and the intrinsic energy divided by the electronic charge and the bulk 
potential as expressed by the following equation: 

(6.3.2)

For MOS structures with a highly doped poly-silicon gate one must also calculate the workfunction of the gate based on the 
bulk potential of the poly-silicon. 

(6.3.3)

Where Na,poly and Nd,poly are the acceptor and donor density of the p-type and n-type poly-silicon gate respectively. 

The flatband voltage of real MOS structures is further affected by the presence of charge in the oxide or at the oxide-
semiconductor interface. The flatband voltage still corresponds to the voltage, which, when applied to the gate electrode, 
yields a flat energy band in the semiconductor. The charge in the oxide or at the interface changes this flatband voltage. For 
a charge, Qi, located at the interface between the oxide and the semiconductor, and a charge density, ρox, distributed within 

the oxide, the flatband voltage is given by: 

(6.3.4)

where the second term is the voltage across the oxide due to the charge at the oxide-semiconductor interface and the third 
term is due to the charge density in the oxide. 

The actual calculation of the flatband voltage is further complicated by the fact that charge can move within the oxide. The 
charge at the oxide-semiconductor interface due to surface states also depends on the position of the Fermi energy. 

Since any additional charge affects the flatband voltage and thereby the threshold voltage, great care has to be taken during 
fabrication to avoid the incorporation of charged ions as well as creation of surface states. 

Example 6.1 Calculate the flatband voltage of a silicon nMOS capacitor with a substrate doping Na = 1017 cm-3 and 

an aluminum gate (ΦM = 4.1 V). Assume there is no fixed charge in the oxide or at the oxide-silicon 

interface.
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Solution The flatband voltage equals the work function difference since there is no charge in the oxide or at the 
oxide-semiconductor interface.

The flatband voltages for nMOS and pMOS capacitors with an aluminum or a poly-silicon gate are listed 
in the table below.

6.3.2. Inversion layer charge  

The basis assumption as needed for the derivation of the MOSFET models is that the inversion layer charge is proportional 
with the applied voltage. In addition, the inversion layer charge is zero at and below the threshold voltage as described by:

(6.3.5)

The linear proportionality can be explained by the fact that a gate voltage variation causes a charge variation in the 
inversion layer. The proportionality constant between the charge and the applied voltage is therefore expected to be the 
gate oxide capacitance. This assumption also implies that the inversion layer charge is located exactly at the oxide-
semiconductor interface.

Because of the energy band gap of the semiconductor separating the electrons from the holes, the electrons can only exist if 
the p-type semiconductor is first depleted. The voltage at which the electron inversion-layer forms is referred to as the 
threshold voltage. 

To justify this assumption we now examine a comparison of a numeric solution with equation (6.3.4) as shown in Figure 
6.3.2. 
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Figure 6.3.2.: Charge density due to electrons in the inversion layer of an MOS capacitor. Compared are the analytic 

solution (solid line) and equation (6.3.5) (dotted line) for Na = 1017 cm-3 and tox = 20 nm. 

While there is a clear difference between the curves, the difference is small. We will therefore use our basic assumption 
when deriving the different MOSFET models since it dramatically simplifies the derivation, be it while losing some 
accuracy.

6.3.3. Full depletion analysis  

We now derive the MOS parameters at threshold with the aid of Figure 6.3.3. To simplify the analysis we make the 
following assumptions: 1) we assume that we can use the full depletion approximation and 2) we assume that the inversion 
layer charge is zero below the threshold voltage. Beyond the threshold voltage we assume that the inversion layer charge 
changes linearly with the applied gate voltage. 

The derivation starts by examining the charge per unit area in the depletion layer, Qd. As can be seen in Figure 6.3.3 (a), 

this charge is given by: 

(6.3.6)

Where xd is the depletion layer width and Na is the acceptor density in the substrate. Integration of the charge density then 

yields the electric field distribution shown in Figure 6.3.3 (b). The electric field in the semiconductor at the interface, s, 

and the field in the oxide equal, ox:

(6.3.7)
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The electric field changes abruptly at the oxide-semiconductor interface due to the difference in the dielectric constant. At a 
silicon/SiO2 interface the field in the oxide is about three times larger since the dielectric constant of the oxide (εox = 3.9 

ε0) is about one third that of silicon (εs = 11.9 ε0). The electric field in the semiconductor changes linearly due to the 

constant doping density and is zero at the edge of the depletion region.

The potential shown in Figure 6.3.3 (c) is obtained by integrating the electric field. The potential at the surface, φs, equals:

(6.3.8)

Figure 6.3.3: Electrostatic analysis of an MOS structure. Shown are (a) the charge density, (b) the electric field, (c) the 
potential and (d) the energy band diagram for an n-MOS structure biased in depletion.

The calculated field and potential is only valid in depletion. In accumulation, there is no depletion region and the full 
depletion approximation does not apply. In inversion, there is an additional charge in the inversion layer, Qinv. This charge 

increases gradually as the gate voltage is increased. However, this charge is only significant once the electron density at the 
surface exceeds the hole density in the substrate, Na. We therefore define the threshold voltage as the gate voltage for 

which the electron density at the surface equals Na. This corresponds to the situation where the total potential across the 

surface equals twice the bulk potential, φF. 

(6.3.9)

The depletion layer in depletion is therefore restricted to this potential range:
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(6.3.10)

For a surface potential larger than twice the bulk potential, the inversion layer charge change increases exponentially with 
the surface potential. Consequently, an increased gate voltage yields an increased voltage across the oxide while the surface 
potential remains almost constant. We will therefore assume that the surface potential and the depletion layer width at 
threshold equal those in inversion. The corresponding expressions for the depletion layer charge at threshold, Qd,T, and the 

depletion layer width at threshold, xd,T, are: 

(6.3.11)

(6.3.12)

Beyond threshold, the total charge in the semiconductor has to balance the charge on the gate electrode, QM, or: 

(6.3.13)

where we define the charge in the inversion layer as a quantity which needs to determined but should be consistent with our 
basic assumption. This leads to the following expression for the gate voltage, VG: 

(6.3.14)

In depletion, the inversion layer charge is zero so that the gate voltage becomes: 

(6.3.15)

while in inversion this expression becomes: 

(6.3.16)

the third term in (6.3.16) states our basic assumption, namely that any change in gate voltage beyond the threshold requires 
a change of the inversion layer charge. From the second equality in equation (6.3.16), we then obtain the threshold voltage 
or: 

(6.3.17)

Example 6.2 Calculate the threshold voltage of a silicon nMOS capacitor with a substrate doping Na = 1017 cm-3, a 20 

nm thick oxide (εox = 3.9 ε0) and an aluminum gate (ΦM = 4.1 V). Assume there is no fixed charge in 

the oxide or at the oxide-silicon interface.

http://ece-www.colorado.edu/~bart/book/book/chapter6/ch6_3.htm (6 of 13) [2/28/2002 5:30:18 PM]



http://ece-www.colorado.edu/~bart/book/book/chapter6/ch6_3.htm

Solution The threshold voltage equals:

Where the flatband voltage was already calculated in example 6.1. The threshold voltage voltages for 
nMOS and pMOS capacitors with an aluminum or a poly-silicon gate are listed in the table below.

6.3.4. MOS Capacitance  

6.3.4.1. Simple capacitance model
6.3.4.2. Calculation of the flat band capacitance
6.3.4.3. Deep depletion capacitance
6.3.4.4. Experimental results and comparison with theory
6.3.4.5. Non-Ideal effects in MOS capacitors

Capacitance voltage measurements of MOS capacitors provide a wealth of information about the structure, which is of 
direct interest when one evaluates an MOS process. Since the MOS structure is simple to fabricate, the technique is widely 
used. 

To understand capacitance-voltage measurements one must first be familiar with the frequency dependence of the 
measurement. This frequency dependence occurs primarily in inversion since a certain time is needed to generate the 
minority carriers in the inversion layer. Thermal equilibrium is therefore not immediately obtained. 

The low frequency or quasi-static measurement maintains thermal equilibrium at all times. This capacitance is the ration of 
the change in charge to the change in gate voltage, measured while the capacitor is in equilibrium. A typical measurement 
is performed with an electrometer, which measured the charge added per unit time as one slowly varies the applied gate 
voltage. 

The high frequency capacitance is obtained from a small-signal capacitance measurement at high frequency. The bias 
voltage on the gate is varied slowly to obtain the capacitance versus voltage. Under such conditions, one finds that the 
charge in the inversion layer does not change from the equilibrium value corresponding to the applied DC voltage. The 
high frequency capacitance therefore reflects only the charge variation in the depletion layer and the (rather small) 
movement of the inversion layer charge. 
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In this section, we first derive the simple capacitance model, which is based on the full depletion approximation and our 
basic assumption. The comparison with the exact low frequency capacitance will reveal that the largest error occurs at the 
flatband voltage. We therefore derive the exact flatband capacitance using the linearized Poisson's equation. Then we 
discuss the full exact analysis followed by a discussion of deep depletion as well as the non-ideal effects in MOS 
capacitors. 

6.3.4.1. Simple capacitance model

The capacitance of an MOS capacitor is obtained using the same assumptions as those listed in section 6.3.3. The MOS 
structure is treated as a series connection of two capacitors: the capacitance of the oxide and the capacitance of the 
depletion layer. 

In accumulation, there is no depletion layer. The remaining capacitor is the oxide capacitance, so that the capacitance 
equals: 

(6.3.18)

In depletion, the MOS capacitance is obtained from the series connection of the oxide capacitance and the capacitance of 
the depletion layer, or: 

(6.3.19)

where xd is the variable depletion layer width which is calculated from: 

(6.3.20)

In order to find the capacitance corresponding to a specific value of the gate voltage we also need to use the relation 
between the potential across the depletion region and the gate voltage, given by: 

(6.3.15)

In inversion, the capacitance becomes independent of the gate voltage. The low frequency capacitance equals the oxide 
capacitance since charge is added to and removed from the inversion layer. The high frequency capacitance is obtained 
from the series connection of the oxide capacitance and the capacitance of the depletion layer having its maximum width, 
xd,T. The capacitances are given by: 

(6.3.21)

The capacitance of an MOS capacitor as calculated using the simple model is shown in Figure 6.3.4. The dotted lines 
represent the simple model while the solid line corresponds to the low frequency capacitance as obtained from the exact 
analysis. 
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Figure 6.3.4 : Low frequency capacitance of an nMOS capacitor. Shown are the exact solution for the low frequency 
capacitance (solid line) and the low and high frequency capacitance obtained with the simple model 

(dotted lines). Na = 1017 cm-3 and tox = 20 nm. 

6.3.4.2. Calculation of the flat band capacitance

The simple model predicts that the flatband capacitance equals the oxide capacitance. However, the comparison with the 
exact solution of the low frequency capacitance as shown in Figure 6.3.4 reveals that the error can be substantial. The 
reason for this is that we have ignored any charge variation in the semiconductor. We will therefore now derive the exact 
flatband capacitance. 

To derive the flatband capacitance including the charge variation in the semiconductor, we first linearize Poisson's 
equation. Since the potential across the semiconductor at flatband is zero, we expect the potential to be small as we vary the 
gate voltage around the flatband voltage. Poisson's equation can then be simplified to: 

(6.3.22)

Charge due to ionized donors or electrons were eliminated, since neither are present in a p-type semiconductor around 
flatband. The linearization is obtained by replacing the exponential function by the first two terms of its Taylor series 
expansion. The solution to this equation is: 

(6.3.23)

Where fs is the potential at the surface of the semiconductor and LD is called the Debye length. The solution of the potential 

enables the derivation of the capacitance of the semiconductor under flatband conditions, or: 

(6.3.24)
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The flatband capacitance of the MOS structure at flatband is obtained by calculating the series connection of the oxide 
capacitance and the capacitance of the semiconductor, yielding: 

(6.3.25)

Example 6.3 Calculate the oxide capacitance, the flatband capacitance and the high frequency capacitance in 
inversion of a silicon nMOS capacitor with a substrate doping Na = 1017 cm-3, a 20 nm thick oxide (εox 

= 3.9 ε0) and an aluminum gate (ΦM = 4.1 V). 

Solution The oxide capacitance equals:

The flatband capacitance equals:

where the Debye length is obtained from:

The high frequency capacitance in inversion equals:

and the depletion layer width at threshold equals:
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The bulk potential, φF, was already calculated in example 6.1

6.3.4.3. Deep depletion capacitance

Deep depletion occurs in an MOS capacitor when measuring the high-frequency capacitance while sweeping the gate 
voltage "quickly". Quickly means that the gate voltage must be changed fast enough so that the structure is not in thermal 
equilibrium. One then observes that, when ramping the voltage from flatband to threshold and beyond, the inversion layer 
is not or only partially formed. This occurs since the generation of minority carriers can not keep up with the amount 
needed to form the inversion layer. The depletion layer therefore keeps increasing beyond its maximum thermal 
equilibrium value, xd,T resulting in a capacitance which further decreases with voltage. 

The time required to reach thermal equilibrium can be estimated by taking the ratio of the total charge in the inversion layer 
to the thermal generation rate of minority carriers. A complete analysis should include both the surface generation rate as 
well as generation in the depletion layer and the quasi-neutral region. A good approximation is obtained by considering 
only the generation rate in the depletion region in deep depletion, xd,dd. This yields the following equation: 

(6.3.26)

where the generation in the depletion layer was assumed to be constant. The rate of change required to observe deep 
depletion is then obtained from: 

(6.3.27)

This equation predicts that deep depletion is less likely at higher ambient temperature, since the intrinsic carrier density ni 

increases exponentially with temperature. The intrinsic density also decreases exponentially with the energy bandgap. 
Therefore, MOS structures made with wide bandgap materials (for instance 6H-SiC for which Eg = 3 eV), have an 

extremely pronounced deep depletion effect. 

In silicon MOS capacitors, one finds that the occurrence of deep depletion can be linked to the minority carrier lifetime. 
Structures with a long (0.1 ms) lifetime require a few seconds to reach thermal equilibrium which results in a pronounced 
deep depletion effect at room temperature, structures with a short (1 ms) lifetime do not show this effect. 

Carrier generation due to light will increase the generation rate beyond the thermal generation rate, which we assumed 
above and reduce the time needed to reach equilibrium. Deep depletion measurements are therefore done in the dark. 

6.3.4.4. Experimental results and comparison with theory

As an example, we show below the measured low frequency (quasi-static) and high frequency capacitance-voltage curves 
of an MOS capacitor. The capacitance was measured in the presence of ambient light as well as in the dark as explained in 
Figure 6.3.5. 
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Figure 6.3.5 : Low frequency (quasi-static) and high frequency capacitance measurement of a pMOS capacitor. Shown 
are, from top to bottom, the low frequency capacitance measured in the presence of ambient light (top 
curve), the low frequency capacitance measured in the dark, the high frequency capacitance measured in 
the presence of ambient light and the high frequency capacitance measured in the dark (bottom curve). 
All curves were measured from left to right. The MOS parameters are Na - Nd = 4 x 1015 cm-3 and tox = 

80 nm. The device area is 0.0007 cm2.

Figure 6.3.5 illustrates some of the issues when measuring the capacitance of an MOS capacitance. First, one should 
measure the devices in the dark. The presence of light causes carrier generation in the semiconductor, which affects the 
measured capacitance. In addition, one must avoid the deep depletion effects such as the initial linearly varying capacitance 
of the high frequency capacitance measured in the dark on the above figure (bottom curve). The larger the carrier lifetime, 
the slower the voltage is to be changed to avoid deep depletion. 

The low frequency measured is compared to the theoretical value in Figure 6.3.6. The high frequency capacitance 
measured in the presence of light is also shown on the figure. The figure illustrates the agreement between experiment and 
theory. A comparison of the experimental low (rather than high) frequency capacitance with theory is somewhat easier to 
carry out. The low frequency capacitance is easier to calculate while the measurement tends to be less sensitive to deep 
depletion effects. 
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Figure 6.3.6: Comparison of the theoretical low frequency capacitance (solid line) and the experimental data (open 
squares) obtained in the dark. Fitting parameters are Na - Nd = 3.95 x 1015 cm-3 and tox = 80 nm.

6.3.4.5. Non-Ideal effects in MOS capacitors

Non-ideal effects in MOS capacitors include fixed charge, mobile charge and charge in surface states. All three types of 
charge can be identified by performing a capacitance-voltage measurement. 

Fixed charge in the oxide simply shifts the measured curve. A positive fixed charge at the oxide-semiconductor interface 
shifts the flatband voltage by an amount, which equals the charge divided by the oxide capacitance. The shift reduces 
linearly as one reduces the position of the charge relative to the gate electrode and becomes zero if the charge is located at 
the metal-oxide interface. A fixed charge is caused by ions, which are incorporated in the oxide during growth or 
deposition. 

The flatband voltage shift due to mobile charge is described by the same equation as that due to fixed charge. However, the 
measured curves differ since a positive gate voltage causes any negative mobile charge to move away from the gate 
electrode, while a negative voltage attracts the charge towards the gate. This causes the curve to shift towards the applied 
voltage. One can recognize mobile charge by the hysteresis in the high frequency capacitance curve when sweeping the 
gate voltage back and forth. Sodium ions incorporated in the oxide of silicon MOS capacitors are known to yield mobile 
charges. It is because of the high sensitivity of MOS structures to a variety of impurities that the industry carefully controls 
the purity of the water and the chemicals used. 

Charge due to electrons occupying surface states also yields a shift in flatband voltage. However as the applied voltage is 
varied, the Fermi energy at the oxide-semiconductor interface changes also and affects the occupancy of the surface states. 
The interface states cause the transition in the capacitance measurement to be less abrupt. The combination of the low 
frequency and high frequency capacitance allows calculating the surface state density. This method provides the surface 
state density over a limited (but highly relevant) range of energies within the bandgap. Measurements on n-type and p-type 
capacitors at different temperatures provide the surface state density throughout the bandgap.
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Problems 
1. Calculate the wavelength of a photon with a photon energy of 2 eV. Also, calculate the 

wavelength of an electron with a kinetic energy of 2 eV. 

2. Consider a beam of light with a power of 1 Watt and a wavelength of 800 nm. Calculate a) 
the photon energy of the photons in the beam, b) the frequency of the light wave and c) the 
number of photons provided by the beam in one second. 

3. Show that the spectral density, uω (equation 1.2.4) peaks at Eph = 2.82 kT. Note that a 
numeric iteration is required. 

4. Calculate the peak wavelength of blackbody radiation emitted from a human body at a 
temperature of 37°C. 

5. Derive equations (1.2.9) and (1.2.10). 

6. What is the width of an infinite quantum well if the second lowest energy of a free electron 
confined to the well equals 100 mV? 

7. Calculate the lowest three possible energies of an electron in a hydrogen atom in units of 
electron volt. Identify all possible electron energies between the lowest energy and  -2 eV. 

8. Derive the electric field of a proton with charge q as a function of the distance from the 
proton using Gauss's law. Integrated the electric field to find the potential φ(r): 

r
q

r
sεπ

φ
4

)( =  

Treat the proton as a point charge and assume the potential to be zero far away from the 
proton. 

9. Prove that the probability of occupying an energy level below the Fermi energy equals the 
probability that an energy level above the Fermi energy and equally far away from the Fermi 
energy is not occupied. 



 
 
Problem 1.1 Calculate the wavelength of a photon with a photon energy of 2 

eV. Also, calculate the wavelength of an electron with a kinetic 
energy of 2 eV. 

Solution The wavelength of a 2 eV photon equals: 

eV2C10602.1

m/s103Js10626.6
19

834

××

×××
== −

−

phE
hc

λ = 0.62 µm 

where the photon energy (2 eV) was first converted to Joules by 
multiplying with the electronic charge. 
The wavelength of an electron with a kinetic energy of 2 eV is 
obtained by calculating the deBroglie wavelength: 

m/s kg1062.7
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25

34

−
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==

p
h

λ = 0.87 nm 

Where the momentum of the particle was calculated from the 
kinetic energy: 

== mEp 2  
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Problem 1.2 Consider a beam of light with a power of 1 Watt and a wavelength 

of 800 nm. Calculate a) the photon energy of the photons in the 
beam, b) the frequency of the light wave and c) the number of 
photons provided by the beam in one second. 

Solution The photon energy is calculated from the wavelength as: 

m 10800

m/s 103Js10626.6
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834

−
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×
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λ
hc

E ph  = 2.48 x 10-19 J 

or in electron Volt: 
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×

×
=phE = 1.55 eV 

The frequency then equals: 

Js 10626.6

J1048.2
34

19

−

−

×

×
==

h

E ph
ν = 375 THz 

And the number of photons equals the ratio of the optical power 
and the energy per photon: 

J 1048.2
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Problem 1.3 Show that the spectral density, uω (equation 1.2.4) peaks at Eph = 

2.82 kT. Note that a numeric iteration is required. 
Solution 

The spectral density, uω, can be rewritten as a function of 
kT
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The maximum of this function is obtained if its derivative is zero 
or: 
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Therefore x must satisfy: 
xx =−− )exp(33  

This transcendental equation can be solved starting with an 
arbitrary positive value of x. A repeated calculation of the left 
hand side using this value and the resulting new value for x 
quickly converges to xmax = 2.82144. The maximum spectral 
density therefore occurs at: 

kT 82144.2maxmax, == kTxE ph  

 



 
Problem 1.4 Calculate the peak wavelength of blackbody radiation emitted 

from a human body at a temperature of 37°C. 
Solution The peak wavelength is obtained through the peak energy: 

kT
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E
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max ==λ  
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maxλ 1.65 x 10-5 m = 16.5 µm 

Where the temperature was first converted to units Kelvin. 
 



 
Problem 1.5 Derive equations (1.2.9) and (1.2.10). Calculate the total energy as 

the sum of the kinetic and potential energy. 
Solution The derivation starts by setting the centrifugal force equal to the 

electrostatic force: 
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where the velocity, v, is expressed as a function of the momentum, 
p. 
The momentum in turn is calculated as a function of the deBroglie 
wavelength and the wavelength must be an integer fraction of the 
length of the circular orbit 
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The corresponding radius equals the Bohr radius, a0: 

2
0

22
0

0
qm

nh
a

π

ε
=  

The corresponding energies are obtained by adding the kinetic and 
potential energy: 
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Note that the potential energy equals the potential of a proton 
multiplied with the electron charge, -q. 

 



 
Problem 1.6 What is the width of an infinite quantum well if the second lowest 

energy of a free electron confined to the well equals 100 meV? 
Solution The second lowest energy is calculated from 
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One can therefore solve for the width, Lx, of the well, yielding: 
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Problem 1.7 Calculate the lowest three possible energies of an electron in a 

hydrogen atom in units of electron volt. Identify all possible 
electron energies between the lowest energy and  -2 eV. 

Solution The three lowest electron energies in a hydrogen atom can be 
calculated from: 

2
eV 6.13

n
En −= , with n = 1, 2,  and 3 

resulting in: 
E1 = –13.6 eV, E2 = -3.4 eV and E3 = -1.51 eV 

The second lowest energy, E2, is the only one between the lowest 
energy, E1, and –2 eV. 

 



 
Problem 1.8 Derive the electric field of a proton with charge q as a function of 

the distance from the proton using Gauss's law. Integrate the 
electric field to find the potential φ(r): 
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Treat the proton as a point charge and assume the potential to be 
zero far away from the proton. 

Solution Using a sphere with radius, r, around the charged proton as a 
surface where the electric field, E, is constant, one can apply 
Gauss’s law: 
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The potential is obtained by integrating this electric field from to 
Resulting in: 
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where the potential at infinity was set to zero. 
 



 
Problem 1.9 Prove that the probability of occupying an energy level below the 

Fermi energy equals the probability that an energy level above the 
Fermi energy and equally far away from the Fermi energy is not 
occupied. 

Solution The probability that an energy level with energy ∆E below the 
Fermi energy EF is occupied can be rewritten as: 
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so that it also equals the probability that an energy level with 
energy ∆E above the Fermi energy, EF, is not occupied. 

 



MOS Capacitors

Chapter 6: MOS Capacitors

6.2. Structure and principle of operation

6.2.1. Flatband diagram 
6.2.2. Accumulation
6.2.3. Depletion
6.2.4. Inversion

The MOS capacitor consists of a Metal-Oxide-Semiconductor structure as illustrated by Figure 6.2.1. Shown is the 
semiconductor substrate with a thin oxide layer and a top metal contact, also referred to as the gate. A second metal layer 
forms an Ohmic contact to the back of the semiconductor, also referred to as the bulk. The structure shown has a p-type 
substrate. We will refer to this as an n-type MOS capacitor since the inversion layer as discussed below contains electrons 

Figure 6.2.1: MOS capacitance structure

To understand the different bias modes of an MOS capacitor we now consider three different bias voltages. One below the 
flatband voltage, VFB, a second between the flatband voltage and the threshold voltage, VT, and finally one larger than the 

threshold voltage. These bias regimes are called the accumulation, depletion and inversion mode of operation. These three 
modes as well as the charge distributions associated with each of them are shown in Figure 6.2.2. 
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MOS Capacitors

Figure 6.2.2.: Charges in a Metal-Oxide-Semiconductor structure under accumulation, depletion and inversion 
conditions 

Accumulation occurs typically for negative voltages where the negative charge on the gate attracts holes from the substrate 
to the oxide-semiconductor interface. Depletion occurs for positive voltages. The positive charge on the gate pushes the 
mobile holes into the substrate. Therefore, the semiconductor is depleted of mobile carriers at the interface and a negative 
charge, due to the ionized acceptor ions, is left in the space charge region. The voltage separating the accumulation and 
depletion regime is referred to as the flatband voltage, VFB. Inversion occurs at voltages beyond the threshold voltage. In 

inversion, there exists a negatively charged inversion layer at the oxide-semiconductor interface in addition to the depletion-
layer. This inversion layer is due to minority carriers, which are attracted to the interface by the positive gate voltage.

The energy band diagram of an n-MOS capacitor biased in inversion is shown in Figure 6.2.3. The oxide is characterized as 
a semiconductor with a very large bandgap, which blocks any flow of carriers between the semiconductor and the gate 
metal. The band-bending in the semiconductor is consistent with the presence of a depletion layer. At the semiconductor-
oxide interface, the Fermi energy is close to the conduction band edge as expected when a high density of electrons is 
present. An interesting point to note is that as the oxide behaves as an ideal insulator, the semiconductor is in thermal 
equilibrium even when a voltage is applied to the gate. The presence of an electric field does not automatically lead to a 
non-equilibrium condition, as was also the case for a p-n diode with zero bias.
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Figure 6.2.3: Energy band diagram of an MOS structure biased in inversion.

We will discuss in the next sections the four modes of operation of an MOS structure: Flatband, Depletion, Inversion and 
Accumulation. Flatband conditions exist when no charge is present in the semiconductor so that the silicon energy band is 
flat. Initially we will assume that this occurs at zero gate bias. Later we will consider the actual flat band voltage in more 
detail. Surface depletion occurs when the holes in the substrate are pushed away by a positive gate voltage. A more positive 
voltage also attracts electrons (the minority carriers) to the surface, which form the so-called inversion layer. Under 
negative gate bias, one attracts holes from the p-type substrate to the surface, yielding accumulation. 

6.2.1. Flatband diagram  

The flatband diagram is by far the easiest energy band diagram. The term flatband refers to fact that the energy band 
diagram of the semiconductor is flat, which implies that no charge exists in the semiconductor. The flatband diagram of an 
aluminum-silicon dioxide-silicon MOS structure is shown in Figure 6.2.4. Note that a voltage, VFB, must be applied to 

obtain this flat band diagram. Indicated on the figure is also the work function of the aluminum gate, ΦM, the electron 

affinity of the oxide, χoxide, and that of silicon, χ, as well as the bandgap energy of silicon, Eg. The bandgap energy of the 

oxide is quoted in the literature to be between 8 and 9 electron volt. The reader should also realize that the oxide is an 
amorphous material and the use of semiconductor parameters for such material can justifiably be questioned. 

The flat band voltage is obtained when the applied gate voltage equals the workfunction difference between the gate metal 
and the semiconductor. If there is also a fixed charge in the oxide and/or at the oxide-silicon interface, the expression for 
the flatband voltage must be modified accordingly.

Figure 6.2.4: Flatband energy diagram of a metal-oxide-semiconductor (MOS) structure consisting of an aluminum 
metal, silicon dioxide and silicon.

6.2.2. Accumulation  

Accumulation occurs when one applies a voltage, which is less than the flatband voltage. The negative charge on the gate 
attracts holes from the substrate to the oxide-semiconductor interface. Only a small amount of band bending is needed to 
build up the accumulation charge so that almost all of the potential variation is within the oxide.
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6.2.3. Depletion  

As a more positive voltage than the flatband voltage is applied, a negative charge builds up in the semiconductor. Initially 
this charge is due to the depletion of the semiconductor starting from the oxide-semiconductor interface. The depletion 
layer width further increases with increasing gate voltage. 

6.2.4. Inversion  

As the potential across the semiconductor increases beyond twice the bulk potential, another type of negative charge 
emerges at the oxide-semiconductor interface: this charge is due to minority carriers, which form a so-called inversion 
layer. As one further increases the gate voltage, the depletion layer width barely increases further since the charge in the 
inversion layer increases exponentially with the surface potential.
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Chapter 6: MOS Capacitors

6.4. MOS capacitor technology

The fabrication of the oxide of an MOS structure is one of the critical steps when fabricating MOSFETs. This is in part due 
to the need for an ideal oxide-semiconductor interface with low surface-state density but also because of the extremely thin 
oxides that are currently used for sub-micron MOSFETs. Two techniques are commonly used to form silicon dioxide. One 
involves the oxidation of the silicon yielding a thermal oxide. The other technique relies on the deposition of SiO2 using a 

chemical vapor-deposition (CVD) process.

The thermal oxidation of silicon is obtained by heating the wafer in an oxygen or water vapor ambient. Typical 
temperatures range from 800 to 1200°C. The oxidation of a silicon surface also occurs at room temperature but the 
resulting 3 nm layer of oxide limits any further oxidation. At high temperatures, oxygen or water molecules can diffuse 
through the oxide so that further oxidation takes place. The oxidation in oxygen ambient is called a dry oxidation. The one 
in water vapor is a wet oxidation. The thermal oxidation provides a high quality interface and oxide. It is used less these 
days because of the high process temperatures.

The deposition of SiO2 using a CDV process is one where two gases, silane and oxygen, react to form silicon dioxide, 

which then sublimes onto any solid surface. The wafers are heated to 200 - 400°C yielding high quality oxides. The lower 
process temperature and the quality of the deposited layers make CVD deposition the preferred method to fabricate MOS 
oxides.
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MOSFET SPICE MODEL

Chapter 7: MOS Field-Effect-Transistors

7.5. MOSFET SPICE MODEL

The SPICE model of a MOSFET includes a variety of parasitic circuit elements and some process related parameters in 
addition to the elements previously discussed in this chapter. The syntax of a MOSFET incorporates the parameters a 
circuit designer can change as shown below:

MOSFET syntax

M <name> <drain node> <gate node> <source node> <bulk/substrate node>

+     [L=][W=][AD=][AS=]

+    [PD=][PS=][NRD=][NRS=]

+    [NRG=][NRB=]

where L is the gate length, W the gate width, AD the drain area, AS the source area

PD is the drain perimeter, PS is the source perimeter

Example:

M1 3 2 1 0 NMOS L=1u W=6u

.MODEL NFET NMOS (LEVEL=2 L=1u W=1u VTO=-1.44 KP=8.64E-6

+ NSUB=1E17 TOX=20n)

where M1 is one specific transistor in the circuit, while the transistor model "NFET" uses the built-in model NFET to 
specify the process and technology related parameters of the MOSFET. A list of SPICE parameters and their relation to the 
parameters discussed in this text is provided in Table 7.5.1.

Table 7.5.1: SPICE parameters and corresponding equations

In addition there are additional parameters, which can be specified to further enhance the accuracy of the model, such as:
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MOSFET SPICE MODEL

LD , lateral diffusion (length) 

RD, drain ohmic resistance 

RG, gate ohmic resistance 

IS, bulk p-n saturation current 

CBD, bulk-drain zero-bias p-n capacitance 

CGSO/CGDO, gate-source/drain overlap capacitance/channel width

XJ, metallurgical junction depth

WD, lateral diffusion (width)

RS, source ohmic resistance

RB, bulk ohmic resistance

JS, bulk p-n saturation current/area

CBS, bulk-source zero-bias p-n capacitance

The gate-source/drain overlap capacitance per channel width is obtained from:

Where ∆L is the overlap between the gate and the source/drain region. The corresponding equivalent circuit is provided in 
Figure 7.5.1.

Figure 7.5.1 : Large signal model of a MOSFET
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Review Questions 
1. What is a flatband diagram?  

2. Define the barrier height of a metal-semiconductor junction. Can the barrier height be 
negative? Explain. 

3. Define the built-in potential. Also provide an equation and state the implicit assumption(s).  

4. Name three possible reasons why a measured barrier height can differ from the value 
calculated using equations (3.2.1) or (3.2.2). 

5. How does the energy band diagram of a metal-semiconductor junction change under forward 
and reverse bias? How does the depletion layer width change with bias? 

6. What is the full depletion approximation? Why do we need the full depletion approximation?  

7. What mechanism(s) cause(s) current in a metal-semiconductor junction?  



Threshold voltage

Chapter 7: MOS Field-Effect-Transistors

7.4. Threshold voltage

7.4.1. Threshold voltage calculation
7.4.2. The substrate bias effect

In this section we summarize the calculation of the threshold voltage and discuss the dependence of the threshold voltage 
on the bias applied to the substrate, called the substrate bias effect.

7.4.1. Threshold voltage calculation  

The threshold voltage equals the sum of the flatband voltage, twice the bulk potential and the voltage across the oxide due 
to the depletion layer charge, or: 

(7.4.1)

where the flatband voltage, VFB, is given by: 

(7.4.2)

With

(7.4.3)

and

(7.4.4)

The threshold voltage of a p-type MOSFET with an n-type substrate is obtained using the following equations:

(7.4.5)

where the flatband voltage, VFB, is given by: 

(7.4.6)

With

(7.4.7)
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and

(7.4.8)

The threshold voltage dependence on the doping density is illustrated with Figure 7.4.1 for both n-type and p-type 
MOSFETs with an aluminum gate metal. 

Figure 7.4.1 : Threshold voltage of n-type (upper curve) and p-type (lower curve) MOSFETs versus substrate doping 

density. 

The threshold of both types of devices is slightly negative at low doping densities and differs by 4 times the absolute value 
of the bulk potential. The threshold of nMOSFETs increases with doping while the threshold of pMOSFETs decreases with 
doping in the same way. A variation of the flatband voltage due to oxide charge will cause a reduction of both thresholds if 
the charge is positive and an increase if the charge is negative.

7.4.2. The substrate bias effect  

The voltage applied to the back contact affects the threshold voltage of a MOSFET. The voltage difference between the 
source and the bulk, VBS changes the width of the depletion layer and therefore also the voltage across the oxide due to the 

change of the charge in the depletion region. This results in a modified expression for the threshold voltage, as given by: 

(7.4.9)

The threshold difference due to an applied source-bulk voltage can therefore be expressed by:

(7.4.10)

Where γ is the body effect parameter given by:

(7.4.11)
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The variation of the threshold voltage with the applied bulk-to-source voltage can be observed by plotting the transfer 
curve for different bulk-to-source voltages. The expected characteristics, as calculated using the quadratic model and the 
variable depletion layer model, are shown in Figure 7.4.2. 

Figure 7.4.2 : Square root of ID versus the gate-source voltage as calculated using the quadratic model (upper curves) 

and the variable depletion layer model (lower curves). 

A first observation is that the threshold shift is the same for both models. When biasing the device at the threshold voltage, 
drain saturation is obtained at zero drain-to-source voltage so that the depletion layer width is constant along the channel. 
As the drain-source voltage at saturation is increased, there is an increasing difference between the drain current as 
calculated with each model. The difference however reduces as a more negative bulk-source voltage is applied. This is due 
to the larger depletion layer width, which reduces the relative variation of the depletion layer charge along the channel.

Example 7.3 Calculate the threshold voltage of a silicon nMOSFET when applying a substrate voltage, VBS = 0, -2.5, -

5, -7.5 and -10 V. The capacitor has a substrate doping Na = 1017 cm-3, a 20 nm thick oxide (εox = 3.9 

ε0) and an aluminum gate (ΦM = 4.1 V). Assume there is no fixed charge in the oxide or at the oxide-

silicon interface.

Solution The threshold voltage at VBS = -2.5 V equals:

Where the flatband voltage without substrate bias, VT0, was already calculated in example 6.2. The body 

effect parameter was obtained from:
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The threshold voltages for the different substrate voltages are listed in the table below.
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2.4 Density of states

2.4.1. Calculation of the density of states

Before we can calculate the density of carriers in a semiconductor, we have to find the number of available states at each 
energy. The number of electrons at each energy is then obtained by multiplying the number of states with the probability 
that a state is occupied by an electron. Since the number of energy levels is very large and dependent on the size of the 
semiconductor, we will calculate the number of states per unit energy and per unit volume.

2.4.1 Calculation of the density of states  

The density of states in a semiconductor equals the density per unit volume and energy of the number of solutions to 
Schrödinger's equation. We will assume that the semiconductor can be modeled as an infinite quantum well in which 
electrons with effective mass, m*, are free to move. The energy in the well is set to zero. The semiconductor is assumed a 
cube with side L. This assumption does not affect the result since the density of states per unit volume should not depend 
on the actual size or shape of the semiconductor.

The solutions to the wave equation (equation 1.2.14) where V(x) = 0 are sine and cosine functions:

(2.4.1)

Where A and B are to be determined. The wavefunction must be zero at the infinite barriers of the well. At x = 0 the 
wavefunction must be zero so that only sine functions can be valid solutions or B must equal zero. At x = L, the 
wavefunction must also be zero yielding the following possible values for the wavenumber, kx.

(2.4.2)

This analysis can now be repeated in the y and z direction. Each possible solution corresponds to a cube in k-space with 
size nπ/L as indicated on Figure 2.4.1.
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Figure 2.4.1: Calculation of the number of states with wavenumber less than k.

The total number of solutions with a different value for kx, ky and kz and with a magnitude of the wavevector less than k is 

obtained by calculating the volume of one eighth of a sphere with radius k and dividing it by the volume corresponding to a 

single solution, , yielding:

(2.4.3)

A factor of two is added to account for the two possible spins of each solution. The density per unit energy is then obtained 
using the chain rule:

(2.4.4)

The kinetic energy E of a particle with mass m* is related to the wavenumber, k, by:

(2.4.5)

And the density of states per unit volume and per unit energy, g(E), becomes:

(2.4.6)

The density of states is zero at the bottom of the well as well as for negative energies.

The same analysis also applies to electrons in a semiconductor. The effective mass takes into account the effect of the 
periodic potential on the electron. The minimum energy of the electron is the energy at the bottom of the conduction band, 
Ec, so that the density of states for electrons in the conduction band is given by:

(2.4.7)
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Example 2.3 Calculate the number of states per unit energy in a 100 by 100 by 10 nm piece of silicon (m* = 1.08 m0) 

100 meV above the conduction band edge. Write the result in units of eV-1.

Solution The density of states equals: 

So that the total number of states per unit energy equals: 
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2.5 Carrier distribution functions

2.5.1. Fermi-Dirac distribution function
2.5.2. Example
2.5.3. Impurity distribution functions
2.5.4. Other distribution functions and comparison

The distribution or probability density functions describe the probability with which one can expect particles to occupy the 
available energy levels in a given system. Of particular interest is the probability density function of electrons, called the 
Fermi function. The derivation of such probability density functions belongs in a statistical thermodynamics course. 
However, given the importance of the Fermi distribution function, we will carefully examine an example as well as the 
characteristics of this function. Other distribution functions such as the impurity distribution functions, the Bose-Einstein 
distribution function and the Maxwell Boltzmann distribution are also provided. 

2.5.1 Fermi-Dirac distribution function  

The Fermi-Dirac distribution function, also called Fermi function, provides the probability of occupancy of energy levels 
by Fermions. Fermions are half-integer spin particles, which obey the Pauli exclusion principle. The Pauli exclusion 
principle postulates that only one Fermion can occupy a single quantum state. Therefore, as Fermions are added to an 
energy band, they will fill the available states in an energy band just like water fills a bucket. The states with the lowest 
energy are filled first, followed by the next higher ones. At absolute zero temperature (T = 0 K), the energy levels are all 
filled up to a maximum energy, which we call the Fermi level. No states above the Fermi level are filled. At higher 
temperature, one finds that the transition between completely filled states and completely empty states is gradual rather 
than abrupt. 

Electrons are Fermions. Therefore, the Fermi function provides the probability that an energy level at energy, E, in thermal 
equilibrium with a large system, is occupied by an electron. The system is characterized by its temperature, T, and its Fermi 
energy, EF. The Fermi function is given by:

(2.5.1)

This function is plotted in Figure 2.5.1 for different temperatures. 
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Figure 2.5.1 : The Fermi function at three different temperatures. 

The Fermi function has a value of one for energies, which are more than a few times kT below the Fermi energy. It equals 
1/2 if the energy equals the Fermi energy and decreases exponentially for energies which are a few times kT larger than the 
Fermi energy. While at T = 0 K the Fermi function equals a step function, the transition is more gradual at finite 
temperatures and more so at higher temperatures. 

2.5.2 Example  

To better understand the origin of distribution functions, we now consider a specific system with equidistant energy levels 
at 0.5, 1.5, 2.5, 3.5, 4.5, 5.5, .... eV. Each energy level can contain two electrons. Since electrons are indistinguishable from 
each other, no more than two electrons (with opposite spin) can occupy a given energy level. This system contains 20 
electrons. 

The minimum energy of this system corresponds to the situation where all 20 electrons occupy the ten lowest energy levels 
without placing more than 2 in any given level. This situation occurs at T = 0 K and the total energy equals 100 eV.

Since we are interested in a situation where the temperature is not zero, we arbitrarily set the total energy at 106 eV, which 
is 6 eV more than the minimum possible energy of this system. This ensures that the thermal energy is not zero so that the 
system must be at a non-zero temperature.

There are 24 possible and different configurations, which satisfy these particular constraints. Eight of those configurations 
are shown in Figure 2.5.2, where the filled circles represent the electrons: 
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Figure 2.5.2 : Eight of the 24 possible configurations in which 20 electrons can be placed having a total energy of 106 
eV. 

We no apply the basis postulate of statistical thermodynamics, namely that all possible configurations are equally likely to 
occur. The expected configuration therefore equals the average occupancy of all possible configurations.

The average occupancy of each energy level taken over all (and equally probable) 24 configurations is compared in Figure 
2.5.3 to the Fermi-Dirac distribution function. A best fit was obtained using a Fermi energy of 9.998 eV and kT = 1.447 eV 
or T = 16,800 K. The agreement is surprisingly good considering the small size of this system. 

Figure 2.5.3 : Probability versus energy averaged over the 24 possible configurations (circles) fitted with a Fermi-

Dirac function (solid line) using kT = 1.447 eV and EF = 9.998 eV. 

Based on the construction of the distribution function in this example, one would expect the distribution function to be 
dependent on the density of states. This is the case for small systems. However, for large systems and for a single energy 
level in thermal equilibrium with a larger system, the distribution function no longer depends on the density of states. This 
is very fortunate, since it dramatically simplifies the carrier density calculations. One should also keep in mind that the 
Fermi energy for a particular system as obtained in section 2.6 does depend on the density of states.
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2.5.3 Impurity distribution functions  

The distribution function of impurities differs from the Fermi-Dirac distribution function although the particles involved 
are Fermions. The difference is due to the fact that an ionized donor energy level still contains one electron, which can 
have either spin (spin up or spin down). The donor energy level cannot be empty since this would leave a doubly positively 
charged atom, which would have an energy different from the donor energy. The distribution function for donors therefore 
differs from the Fermi function and is given by: 

(2.5.2)

The distribution function for acceptors differs also because of the different possible ways to occupy the acceptor level. The 
neutral acceptor contains no electrons. The ionized acceptor contains one electron, which can have either spin, while the 
doubly negatively charged state is not allowed since this would require a different energy. This restriction would yield a 
factor of 2 in front of the exponential term. In addition, one finds that most commonly used semiconductors have a two-
fold degenerate valence band, which causes this factor to increase to four, yielding: 

(2.5.3)

2.5.4 Other distribution functions and comparison  

Other distribution functions include the Bose-Einstein distribution and the Maxwell-Boltzmann distribution. These are 
briefly discussed below and compared to the Fermi-Dirac distribution function.

The Bose-Einstein distribution function applies to bosons. Bosons are particles with integer spin and include photons, 
phonons and a large number of atoms. Bosons do not obey the Pauli exclusion principle so that any number can occupy one 
energy level. The Bose-Einstein distribution function is given by:

(2.5.4)

This function is only defined for E > EF.

The Maxwell Boltzmann applies to non-interacting particles, which can be distinguished from each other. This distribution 
function is also called the classical distribution function since it provides the probability of occupancy for non-interacting 
particles at low densities. Atoms in an ideal gas form a typical example of such particles. The Maxwell-Boltzmann 
distribution function is given by:

(2.5.5)

A plot of the three distribution functions, the Fermi-Dirac distribution, the Maxwell-Boltzmann distribution and the Bose-
Einstein distribution is shown in Figure 2.5.4. 
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Figure 2.5.4 : Probability of occupancy versus energy of the Fermi-Dirac, the Bose-Einstein and the Maxwell-

Boltzmann distribution. The Fermi energy, EF, is assumed to be zero. 

All three functions are almost equal for large energies (more than a few kT beyond the Fermi energy). The Fermi-Dirac 
distribution reaches a maximum of 100% for energies, which are a few kT below the Fermi energy, while the Bose-Einstein 
distribution diverges at the Fermi energy and has no validity for energies below the Fermi energy.
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Chapter 7: MOS Field-Effect-Transistors

7.2. Structure and principle of operation

A top view of the same MOSFET is shown in Figure 7.2.1, where the gate length, L, and gate width, W, are identified. Note 
that the gate length does not equal the physical dimension of the gate, but rather the distance between the source and drain 
regions underneath the gate. The overlap between the gate and the source/drain region is required to ensure that the 
inversion layer forms a continuous conducting path between the source and drain region. Typically this overlap is made as 
small as possible in order to minimize its parasitic capacitance. 

Figure 7.2.1 : Top view of an n-type Metal-Oxide-Semiconductor- Field-Effect-Transistor (MOSFET)

The flow of electrons from the source to the drain is controlled by the voltage applied to the gate. A positive voltage 
applied to the gate attracts electrons to the interface between the gate dielectric and the semiconductor. These electrons 
form a conducting channel between the source and the drain called the inversion layer. No gate current is required to 
maintain the inversion layer at the interface since the gate oxide blocks any carrier flow. The net result is that the current 
between drain and source is controlled by the voltage, which is applied to the gate.

The typical current versus voltage (I-V) characteristics of a MOSFET are shown in Figure 7.2.2. 

Figure 7.2.2 : I-V characteristics of an n-type MOSFET with VG = 5 V (top curve), 4 V, 3 V and 2 V (bottom curve)

NOTE: We will primarily discuss the n-type or n-channel MOSFET in this chapter. This type of MOSFET is fabricated on 
a p-type semiconductor substrate. The complementary MOSFET is the p-type or p-channel MOSFET. It contains p-type 
source and drain regions in an n-type substrate. The inversion layer is formed when holes are attracted to the interface by a 
negative gate voltage. While the holes still flow from source to drain, they result in a negative drain current. CMOS circuits 
require both n-type and p-type devices.
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7.3. MOSFET analysis

7.3.1. The linear model
7.3.2. The quadratic model
7.3.3. The variable depletion layer model

In this section, we present three different models for the MOSFET, the linear model, the quadratic model and the variable 
depletion layer model. The linear model correctly predicts the MOSFET behavior for small drain-source voltages, where 
the MOSFET acts as a variable resistor. The quadratic model includes the voltage variation along the channel between 
source and drain. This model is most commonly used despite the fact that the variation of the depletion layer charge is 
ignored. The variable depletion layer model is more complex as it does include the variation of the depletion layer along 
the channel.

7.3.1. The linear model  

The linear model describes the behavior of a MOSFET biased with a small drain-to-source voltage. As the name suggests, 
the MOSFET, as described by the linear model, acts as a linear device, more specifically a linear resistor whose resistance 
can be modulated by changing the gate-to-source voltage. In this regime, the MOSFET can be used as a switch for analog 
signals or as an analog multiplier. 

The general expression for the drain current equals the total charge in the inversion layer divided by the time the carriers 
need to flow from the source to the drain: 

(7.3.1)

where Qinv is the inversion layer charge per unit area, W is the gate width, L is the gate length and tr is the transit time. If 

the velocity of the carriers is constant between source and drain, the transit time equals: 

(7.3.2)

where the velocity, v, equals the product of the mobility and the electric field: 

(7.3.3)

The constant velocity also implies a constant electric field so that the field equals the drain-source voltage divided by the 
gate length. This leads to the following expression for the drain current: 

(7.3.4)

We now assume that the charge density in the inversion layer is constant between source and drain. We also assume that 
the basic assumption described in section 6.3.2 applies, namely that the charge density in the inversion layer is given by the 
product of the capacitance per unit area and the gate-to-source voltage minus the threshold voltage: 
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(7.3.5)

The inversion layer charge is zero if the gate voltage is lower than the threshold voltage. Replacing the inversion layer 
charge density in the expression for the drain current yields the linear model: 

(7.3.6)

Note that the capacitance in the above equations is the gate oxide capacitance per unit area. Also note that the drain current 
is zero if the gate-to-source voltage is less than the threshold voltage. The linear model is only valid if the drain-to-source 
voltage is much smaller than the gate-to-source voltage minus the threshold voltage. This insures that the velocity, the 
electric field and the inversion layer charge density is indeed constant between the source and the drain. 

Figure 7.3.1 : Linear I-V characteristics of a MOSFET with VT = 1 V. (µn = 300 cm2/V-s, W/L = 5 and tox = 20 nm). 

The figure illustrates the behavior of the device in the linear regime: While there is no drain current if the gate voltage is 
less than the threshold voltage, the current increases with gate voltage once it is larger than the threshold voltage. The slope 
of the curves equals the conductance of the device, which increases linearly with the applied gate voltage. The figure 
clearly illustrates the use of a MOSFET as a voltage-controlled resistor. 

7.3.2. The quadratic model  

The quadratic model uses the same assumptions as the linear model except that the inversion layer charge density is 
allowed to vary in the channel between the source and the drain. 

The derivation is based on the fact that the current at each point in the channel is constant. The current can also be related 
to the local channel voltage. 

Considering a small section within the device with width dy and channel voltage VC + VS one can still use the linear model 

described by equation (7.3.6), yielding: 

(7.3.7)
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where the drain-source voltage is replaced by the change in channel voltage over a distance dy, namely dVC. Both sides of 

the equation can be integrated from the source to the drain, so that y varies from 0 to the gate length, L, and the channel 
voltage VC varies from 0 to the drain-source voltage, VDS. 

(7.3.8)

Using the fact that the DC drain current is constant throughout the device one obtains the following expression: 

(7.3.9)

The drain current first increases linearly with the applied drain-to-source voltage, but then reaches a maximum value. 
According to the above equation the current would even decrease and eventually become negative. The charge density at 
the drain end of the channel is zero at that maximum and changes sign as the drain current decreases. As explained in 
section 6.2, the change in the inversion layer does go to zero and reverses its sign as holes are accumulated at the interface. 
However, these holes cannot contribute to the drain current since the reversed-biased p-n diode between the drain and the 
substrate blocks any flow of holes into the drain. Instead the current reaches its maximum value and maintains that value 
for higher drain-to-source voltages. A depletion layer located at the drain end of the gate accommodates the additional 
drain-to-source voltage. This behavior is referred to as drain current saturation. 

Drain current saturation therefore occurs when the drain-to-source voltage equals the gate-to-source voltage minus the 
threshold voltage. The value of the drain current is then given by the following equation: 

(7.3.10)

The quadratic model explains the typical current-voltage characteristics of a MOSFET, which are normally plotted for 
different gate-to-source voltages. An example is shown in Figure 7.3.2. The saturation occurs to the right of the dotted line 

which is given by ID = µ Cox W/L VDS
2. 

Figure 7.3.2: Current-Voltage characteristics of an n-type MOSFET as obtained with the quadratic model. The dotted 

line separates the quadratic region of operation on the left from the saturation region on the right. 

The drain current is again zero if the gate voltage is less than the threshold voltage. 
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(7.3.11)

For negative drain-source voltages, the transistor is in the quadratic regime and is described by equation (7.3.9). However, 
it is possible to forward bias the drain-bulk p-n junction. A complete circuit model should therefore also include the p-n 
diodes between the source, the drain and the substrate.

The quadratic model can be used to calculate some of the small signal parameters, namely the transconductance, gm and the 

output conductance, gd. 

The transconductance quantifies the drain current variation with a gate-source voltage variation while keeping the drain-
source voltage constant, or: 

(7.3.12)

The transconductance in the quadratic region is given by: 

(7.3.13)

which is proportional to the drain-source voltage for VDS < VGS - VT. In saturation, the transconductance is constant and 

equals: 

(7.3.14)

The output conductance quantifies the drain current variation with a drain-source voltage variation while keeping the gate-
source voltage constant, or: 

(7.3.15)

The output conductance in the quadratic region decreases with increasing drain-source voltage: 

(7.3.16)

and becomes zero as the device is operated in the saturated region: 

(7.3.17)

Example 7.1 Calculate the drain current of a silicon nMOSFET with VT = 1 V, W = 10 µm, L = 1 µm and tox = 20 nm. 

The device is biased with VGS = 3 V and VDS = 5 V. Use the quadratic model, a surface mobility of 300 

cm2/V-s and set VBS = 0 V.

Also calculate the transconductance at VGS = 3 V and VDS = 5 V and compare it to the output 

conductance at VGS = 3 V and VDS = 0 V.
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Solution The MOSFET is biased in saturation since VDS > VGS - VT.

Therefore the drain current equals:

The transconductance equals:

and the output conductance equals:

The measured drain current in saturation is not constant as predicted by the quadratic model. Instead it increases with drain-
source voltage due to channel length modulation, drain induced barrier lowering or two-dimensional field distributions, as 
discussed in section 7.7.1. A simple empirical model, which considers these effects, is given by:

(7.3.18)

Where λ is a fitting parameter.

7.3.3. The variable depletion layer model  

The variable depletion layer model includes the variation of the charge in the depletion layer between the source and drain. 
This variation is caused by the voltage variation along the channel. The inversion layer charge is still given by: 

(7.3.19)

where we now include the implicit dependence of the threshold voltage on the charge in the depletion region, or: 

(7.3.20)
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The voltage VC is the difference between the voltage within the channel and the source voltage. We can now apply the 

linear model to a small section at a distance y from the source and with a thickness dy. The voltage at that point equals VC 

+ VS while the voltage across that section equals dVC. This results in the following expression for the drain current, ID:

(7.3.21)

Both sides of the equation can be integrated from the source to the drain with y varying from 0 to the gate length, L, and the 
channel voltage, VC varying from 0 to the drain-source voltage, VDS. 

(7.3.22)

Integration along the channel yields the following drain current: 

(7.3.23)

The current-voltage characteristics as obtained with the above equation are shown in Figure 7.3.3, together with those 
obtained with the quadratic model. Again, it was assumed that the drain current saturates at its maximum value, since a 
positive inversion layer charge can not exist in an n-type MOSFET. The drain voltage at which saturation occurs is given 
by: 

(7.3.24)
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Figure 7.3.3 : Comparison of the quadratic model (upper curves) and the variable depletion layer model (lower curves). 

The figure shows a clear difference between the two models: the quadratic model yields a larger drain current compared to 
the more accurate variable depletion layer charge model. The transconductance is still given by equation (7.3.13), which 
combined with the saturation voltage (equation (7.3.24)) yields:

(7.3.25)

This transconductance is almost linearly dependent on VGS, so that it can still be written in the form of equation (7.3.10) 

with a modified mobility µn
*:

(7.3.26)

Where µn
* equals:

(7.3.27)

The term under the square root depends on the ratio of the oxide capacitance to the depletion layer capacitance at the onset 
of inversion. Since this ratio is larger than one in most transistors, the modified mobility is 10% to 40% smaller than the 
actual mobility. This effective mobility can also be used with the quadratic model, yielding a simple but reasonably 
accurate model for the MOSFET.
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Example 7.2 Repeat example 7.1 using the variable depletion layer model. Use VFB = -0.807 V and Na = 1017 cm-3.

Solution To find out whether the MOSFET is biased in saturation, one first calculates the saturation voltage, 
VD,sat:

The drain current is then obtained from:

The transconductance equals:

corresponding to a modified mobility µn
* = 149 cm2/V-s.The output conductance at VDS = 0 V equals:

Which is the same as that of example 7.1 since the depletion layer width is constant for VDS = 0.
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Appendix 1: Symbol Index

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 

Description Symbol MKS Units 

- A - 
Acceptor doping density Na m-3

Acceptor energy Ea Joule

Applied voltage Va V

Area A m2

- B -

Barrier height φB V

Base doping density NB m-3

Base voltage VB V

Base width wB m

Body effect parameter γ V1/2

Boltzmann's constant k J/K 

Built-in potential of a p-n diode or Schottky diode φi V

Bulk potential φF V

- C -

Capacitance per unit area C F/m2

Charge Q C
Charge density per unit area at threshold in the depletion layer 
of an MOS structure 

Qd,T C/m2

Charge density per unit area in the depletion layer of an MOS 
structure 

Qd C/m2

Charge density per unit volume ρ C/m3

Charge density per unit volume in the oxide ρox C/m3

Collector doping density NC m-3

Collector voltage VC V
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Collector width wC m

Conduction band energy of a semiconductor Ec Joule

Conductivity σ Ω−1m-1

Current I A

Current density J A/m2

Current gain β  

- D -

Density of states in the conduction band per unit energy and per 
unit volume 

gc(E)
m-3J-1

Density of states in the valence band per unit energy and per 
unit volume 

gv(E)
m-3J-1

Depletion layer width w m

Depletion layer width in a p-type semiconductor xp m

Depletion layer width in an MOS structure xd m

Depletion layer width in an MOS structure at threshold xd,T m

Depletion layer width in an n-type semiconductor xn m

Dielectric constant of the oxide εox F/m

Dielectric constant of the semiconductor εs F/m

Distribution function (probability density function) f(E)  

Donor doping density Nd m-3

Donor energy Ed Joule

Doping density N  

Drain voltage VD V

- E -

Effective density of states in the conduction band Nc m-3

Effective density of states in the valence band Nv m-3

Effective mass of electrons me
* kg

Effective mass of holes mh
* kg

Electric field E V/m
Electron affinity of the semiconductor χ V

Electron current density Jn A/m2

Electron density n m-3
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Electron density in thermal equilibrium n0 m-3

Electron density per unit energy and per unit volume n(E) m-3

Electron diffusion constant Dn m2/s

Electron diffusion length Ln m

Electron energy in vacumm Evacuum Joule

Electron generation rate Gn m-3s-1

Electron lifetime τn s

Electron mobility µn m2/V-s

Electron recombination rate Rn m-3s-1

electronic charge q C

Emitter doping density NE m-3

Emitter efficiency γE  

Emitter voltage VE V

Emitter width wE m

Energy E Joule

Energy bandgap of a semiconductor Eg Joule

Excess electron charge density in the base ∆Qn,B C/m2

Excess electron density δ n m-3

Excess hole density δ p m-3

- F -

Fermi energy (thermal equilibrium) EF Joule

Flatband capacitance per unit area of a MOS structure CFB F/m2

Flatband voltage VFB V

Free electron mass m0 kg

- G -

Gate voltage VG V

- H -

Hole current density Jp A/m2

Hole density p m-3
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Hole density in an n-type semiconductor pn m-3

Hole density in thermal equilibrium p0 m-3

Hole density per unit energy p(E) m-3

Hole diffusion constant Dp m2/s

Hole diffusion length Lp m

Hole generation rate Gp m-3s-1

Hole lifetime τp s

Hole mobility µp m2/V-s

Hole recombination rate Rp m-3s-1

- I -

Interface charge density per unit area QI C/m2

Intrinsic carrier density nI m-3

Intrinsic carrier density nI m-3

Intrinsic Fermi energy EI Joule

Ionized acceptor density Na
- m-3

Ionized donor density Nd
+ m-3

- J -

Junction capacitance per unit area Cj F/m2

Junction depth xj m

- K -

- L -

Length L m

- M -

Mass m kg
Mean free path l m

- N -
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Net recombination rate of electrons Un m-3s-1

Net recombination rate of holes Up m-3s-1

- O -

Oxide capacitance per unit area Cox F/m2

Oxide thickness tox m

- P -

Plank's constant h Js
Position x m
Potential φ V

Potential at the semiconductor surface φs V

- Q -

Quasi-Fermi energy of electrons Fn Joule

Quasi-Fermi energy of holes Fp Joule

- R -

Reduced Plank's constant (= h /2π) Js
Resistance R Ohm
Resistivity ρ Ωm

- S -

Speed of light in vacuum c m/s

- T -

Temperature T Kelvin

Thermal velocity vth m/s

Thermal voltage Vt V

Thickness t m

Threshold voltage of an MOS structure VT V
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Transport factor α  

- U -

- V -

Valence band energy of a semiconductor Ev Joule

Velocity v m/s

- W -

Width of a p-type region wp m

Width of an n-type region wn m

Workfunction difference between the metal and the 
semiconductor

ΦMS V

Workfunction of the metal ΦM V

Workfunction of the semiconductor ΦS V

- X -

- Y -

- Z -
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Appendix: 

Appendix 1: Extended List of Symbols 

Symbol Description MKS Units 
a Acceleration m/s2

a0 Bohr radius m

A Area m2

A* Richardson constant m/s
AC Collector area m2

AE Emitter area m2

b Bimolecular recombination constant m3/s
c Speed of light in vacuum m/s
C Capacitance per unit area F/m2

CD Diffusion capacitance per unit area F/m2

CDS Drain-source capacitance F

CFB Flatband capacitance per unit area of a MOS structure F/m2

CG Gate capacitance F

CGS Gate-source capacitance F

CGD Gate-drain capacitance F

CHF High-frequency capacitance per unit area of a MOS structure F/m2

Cj Junction capacitance per unit area F/m2

CLF
Low-frequency (quasi-static) capacitance per unit area of a 
MOS structure F/m2

CM Miller capacitance F

Cox Oxide capacitance per unit area F/m2

Cs Semiconductor capacitance per unit area F/m2

Dn Electron diffusion constant m2/s
Dp Hole diffusion constant m2/s
E Energy Joule
E Electric field V/m
E0 Lowest energy in a one-dimensional quantum well Joule

Ea Acceptor energy Joule

Ebr Breakdown field V/m

Ec Conduction band energy of a semiconductor Joule

Ed Donor energy Joule

EF Fermi energy (thermal equilibrium) Joule

EF,n Fermi energy in an n-type semiconductor Joule

EF,p Fermi energy in a p-type semiconductor Joule
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Eg Energy bandgap of a semiconductor Joule

Ei Intrinsic Fermi energy Joule

En nth quantized energy Joule

Eph Photon energy Joule

Et Trap energy Joule

Ev Valence band energy of a semiconductor Joule

Evacuum Electron energy in vacumm Joule

F(E) Distribution function (probability density function)  
fBE(E) Bose-Einstein distribution function  

fFD(E) Fermi-Dirac distribution function  

fMB(E) Maxwell-Boltzmann distribution function  

F Force Newton
Fn Quasi-Fermi energy of electrons Joule

Fp Quasi-Fermi energy of holes Joule

gE) Density of states per unit energy and per unit volume m-3J-1

g(E)
Density of states in the conduction band per unit energy and 
per unit volume m-3J-1

g(E)
Density of states in the valence band per unit energy and per 
unit volume m-3J-1

gd Output conductance of a MOSFET S

gm Transconductance of a MOSFET S

G Carrier generation rate m-3s-1

Gn Electron generation rate m-3s-1

Gp Hole generation rate m-3s-1

h Plank's constant Js

Reduced Plank's (= h /2π) Js
I Current A
IB Base current of a bipolar transistor A

IC Collector current of a bipolar transistor A

ID Drain current of a MOSFET A

IE Emitter current of a bipolar transistor A

IF Forward active current of a bipolar transistor A

ID,sat Drain current of a MOSFET in saturation A

Iph Photo current A

Ir Recombination current A

IR Reverse active current of a bipolar transistor A

Is Saturation current A

Isc Short circuit current of a solar cell A

J Current density A/m2

Jn Electron current density A/m2

Jp Hole current density A/m2
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k
Boltzmann's constant 
wavenumber

J/K 
m-1

l Mean free path m
L Length m

LD Debye length m

Ln Electron diffusion length m

Lp Hole diffusion length m

Lx Hole diffusion length m

m Mass kg

m* Effective mass kg
mA Atomic mass kg

m0 Free electron mass kg

me
* Effective mass of electrons kg

mh
* Effective mass of holes kg

M
Proton mass
Multiplication factor 

kg

n

Electron density
Integer
Refractive index
Ideality factor

m-3

 
 
 

ni Intrinsic carrier density m-3

n(E) Electron density per unit energy and per unit volume m-3

n0 Electron density in thermal equilibrium m-3

ni Intrinsic carrier density m-3

nn Electron density in an n-type semiconductor m-3

nn0
Thermal equilibrium electron density in an n-type 
semiconductor m-3

np Electron density in a p-type semiconductor m-3

np0
Thermal equilibrium electron density in a p-type 
semiconductor m-3

N
Number of particles
Doping density

 

Na Acceptor doping density m-3

Na
- Ionized acceptor density m-3

NA Avogadro's number  

NB Base doping density m-3

Nc Effective density of states in the conduction band m-3

NC Collector doping density m-3

Nd Donor doping density m-3

Nd
+ Ionized donor density m-3

NE Emitter doping density m-3

Nss Surface state density m-2
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Nt Recombination trap density m-2

Nv Effective density of states in the valence band m-3

p
Hole density
Particle momentum
Pressure

m-3

kgm/s
Nm-2

p(E) Hole density per unit energy m-3

p0 Hole density in thermal equilibrium m-3

pn Hole density in an n-type semiconductor m-3

pn0 Thermal equilibrium hole density in an n-type semiconductor m-3

pp Hole density in a p-type semiconductor m-3

pp0 Thermal equilibrium hole density in a p-type semiconductor m-3

q electronic charge C

Q
Heat
Charge

Joule
C

QB Majority carrier charge density in the base C/m2

Qd
Charge density per unit area in the depletion layer of an MOS 
structure C/m2

Qd,T
Charge density per unit area at threshold in the depletion layer 
of an MOS structure C/m2

Qi Interface charge density per unit area C/m2

Qinv Inversion layer charge density per unit area C/m2

QM Charge density per unit area in a metal C/m2

Qn
Charge density per unit area in the depletion layer of an n-type 
region C/m2

Qp
Charge density per unit area in the depletion layer of a p-type 
region C/m2

Qss Surface state charge density per unit area C/m2

re Emitter resistance Ohm

rπ Base resistance Ohm

R
The Rydberg constant
Resistance

J
Ohm

Rn Electron recombination rate m-3s-1

Rp Hole recombination rate m-3s-1

Rs Sheet resistance Ohm

s Spin  
S Entropy J/K
t Thickness m

tox Oxide thickness m

T
Temperature
Kinetic energy

Kelvin
Joule

uω Spectral density Jm-3s-1

U Total energy Joule
UA Auger recombination rate m-3s-1

http://ece-www.colorado.edu/~bart/book/book/append/append1a.htm (4 of 7) [2/28/2002 5:30:53 PM]



Principles of Semiconductor Devices

Ub-b Band-to-band recombination rate m-3s-1

Un Net recombination rate of electrons m-3s-1

Up Net recombination rate of holes m-3s-1

USHR Shockley-Read-Hall recombination rate m-3s-1

v Velocity m/s
vR Richardson velocity m/s

vsat Saturation velocity m/s

vth Thermal velocity m/s

V
Potential energy
Volume

Joule
m3

Va Applied voltage V

VA Early voltage V

Vbr Breakdown voltage V

VB Base voltage V

VBE Base-emitter voltage V

VBC Base-collector voltage V

VC Collector voltage V

VCE Collector-emitter voltage V

VD Drain voltage V

VDS Drain-source voltage V

VDS,sat Drain-source saturation voltage V

VE Emitter voltage V

VFB Flatband voltage V

VG Gate voltage V

VGS Gate-source voltage V

Voc Open circuit voltage of a solar cell V

Vt Thermal voltage V

VT Threshold voltage of an MOS structure V

w Depletion layer width m
wB Base width m

wC Collector width m

wE Emitter width m

wn Width of an n-type region m

wp Width of a p-type region m

W Work Joule
x Position m
xd Depletion layer width in an MOS structure m

xd,T Depletion layer width in an MOS structure at threshold m

xj Junction depth m

xn Depletion layer width in an n-type semiconductor m
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xp Depletion layer width in a p-type semiconductor m

α
Absorption coefficient
Transport factor m-1  

αF Forward active transport factor   

αn Ionization rate coefficient for electrons m-1  

αR Reverse active transport factor   

αT Base transport factor   

β Current gain   

γ Body effect parameter V1/2  

γE Emitter efficiency   

Γn Auger coefficient for electrons m6s-1  

Γp Auger coefficient for holes m6s-1  

δ n Excess electron density m-3  

δ p Excess hole density m-3  

δ R Depletion layer recombination factor   

∆Qn,B Excess electron charge density in the base C/m2  

ε Dielectric constant F/m  

ε0 Permittivity of vacuum F/m  

εox Dielectric constant of the oxide F/m  

εs Dielectric constant of the semiconductor F/m

µ0 Permeability of vacuum H/m  

Θ Tunnel probability   

λ Wavelength m  

µ Electro-chemical potential Joule  

µn Electron mobility m2/V-s  

µp Hole mobility m2/V-s  

ν Frequency Hz  

ρ
Charge density per unit volume
Resistivity 

C/m3

Ωm
 

ρox Charge density per unit volume in the oxide C/m3  

σ Conductivity Ω−1m-1  

τ Scattering time s  

τn Electron lifetime s  

τp Hole lifetime s  

φ Potential V  

φB Barrier height V  

φF Bulk potential V  

φi Built-in potential of a p-n diode or Schottky diode V  

φs Potential at the semiconductor surface V  

Φ Flux m-2s-1  
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ΦM Workfunction of the metal V  

ΦMS
Workfunction difference between the metal and the 
semiconductor

V  

ΦS Workfunction of the semiconductor V  

χ Electron affinity of the semiconductor V  

Ψ Wavefunction   

ω Radial frequency rad/s  
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Appendix: 

Appendix 2: Physical Constants 

Avogadro's number NA 6.022 x 1023 atoms per mole

Bohr radius a0 52.9177 picometer

  0.529177 Angstrom

Boltzmann's constant k 1.38 x 10-23 Joule/Kelvin

  8.62 x 10-5 electron Volt/Kelvin

Electronic charge q 1.602 x 10-19 Coulomb

Free electron rest mass m0 9.11 x 10-31 kilogram

  5.69 x 10-16 eV s2 cm-2

Permeability of free space µ0 4π x 10-7 Henry/meter

Permittivity of free space ε0 8.854 x 10-12 Farad/meter

  8.854 x 10-14 Farad/centimeter

Planck's constant h 6.625 x 10-34 Joule second

  4.134 x 10-15 electron Volt second

Reduced Planck's constant 1.054 x 10-34 Joule second

Proton rest mass M 1.67 x 10-27 Kilogram

Rydberg constant R 2.17991 x 10-18 Joule

  13.6058 electron Volt

Speed of light in vacuum c 2.998 x 108 meter/second

  2.998 x 1010 centimeter/second

Thermal voltage (at T = 300 K) 25.86 milliVolt
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Appendix: 

Appendix 3: Material Parameters 

Name Symbol Germanium Silicon Gallium 
Arsenide

Bandgap energy at 300 K Eg (eV) 0.66 1.12 1.424

Breakdown Field Ebr (V/cm) 105 3 x 105 * 4 x 105

Density (g/cm3) 5.33 2.33 5.32

Effective density of states in the 
conduction band at 300 K

Nc (cm-3) 1.02 x 1019 2.82 x 1019 4.35 x 1017

Effective density of states in the 
valence band at 300 K

Nv (cm-3) 5.65 x 1018 1.83 x 1019 7.57 x 1018

Intrinsic concentration at 300 K ni (cm-3) 2.8 x 1013 1.0 x 1010 2.0 x 106

Effective mass for density of states 
calculations

    

Electrons me
* / m0 0.55 1.08 0.067

Holes mh
* / m0 0.37 0.81 0.45

Electron affinity χ (V) 4.0 4.05 4.07

Lattice constant a (pm) 564.613 543.095 565.33

Mobility at 300 K (undoped)     

Electrons µn (cm2/V-s) 3900 1400† 8800

Holes µp (cm2/V-s) 1900 450† 400

Relative dielectric constant εs/ ε0 16 11.9 13.1

Thermal conductivity at 300 K χ (W/cmK) 0.6 1.5 0.46
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Refractive index at 632.8 nm 
wavelength

n 5.441 

- i 0.785

3.875

- i 0.0181

3.856

- i 0.196

 

*See also section 4.5.1: Breakdown field in silicon at 300 K

†See also section 2.7.2: Mobility of doped silicon at 300 K
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Appendix: 

Appendix 4: Prefixes 

deci (d) 10-1 deka (da) 101

centi (c) 10-2 hecto (h) 102

milli (m) 10-3 kilo (k) 103

micro (µ) 10-6 mega (M) 106

nano (n) 10-9 giga (G) 109

pico (p) 10-12 tera (T) 1012

femto (f) 10-15 peta (P) 1015

atto (a) 10-18 exa (X) 1018
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Appendix:

Appendix 5: Units 

MKS Units

Unit Variable Symbol MKSA units

Ampere Current I fundamental MKSA unit

Coulomb Charge Q Ampere second

Farad Capacitance C Coulomb Volt-1 = Joule Volt-2

Henry Inductance L Weber Ampere-1 = Tesla meter2 Ampere-1

Joule Energy E Newton meter = kilogram meter2 second-2

Kelvin Temperature T fundamental MKSA unit

kilogram Mass m fundamental MKSA unit

meter Length L fundamental MKSA unit

Newton Force F kilogram meter second-2

Ohm Resistance Ω Volt Ampere-1 = Volt2 Joule-1 second-1

Pascal Pressure P Newton meter-2

second time t fundamental MKSA unit

Siemens conductance G Ampere Volt-1 = Joule second Volt-2

Tesla Magnetic field B Newton Ampere-1 meter-1 = Joule Ampere-1 meter-2 
= Volt second meter-2

Volt potential f Joule coulomb-1

Watt Power P Joule second-1

Weber Magnetic flux Φ Tesla meter2 = Volt second

non-MKS Units

Electron Volt (Unit of energy) = 1.602 x 10-19 Joule 

moles/liter (Unit of concentration) = 6.022 x 1020 cm-3

Degrees Centigrade (Unit of Temperature) = 273.16 + T(in Centigrade) Kelvin 

Inch (Unit of Length) = 2.54 cm 

mil or milli inch (Unit of Length) = 25.4 micrometer 

A or Angstrom (Unit of Length) = 0.1 nm
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Appendix: 

Appendix 6: The greek alphabeth  

α Α alpha ν Ν nu

β Β beta ξ Ξ xi

γ Γ gamma ο Ο omicron

δ ∆ delta π Π pi

ε Ε epsilon ρ Ρ rho

ζ Ζ zeta σ Σ sigma

η Η eta τ Τ tau

θ Θ theta υ Υ upsilon

ι Ι iota φ Φ phi

κ Κ kappa ξ Ξ chi

λ Λ lambda ψ Ψ psi

µ Μ mu ω Ω omega
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Appendix 7: Periodic Table   
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A-7 

Appendix 2: Physical constants 

Avogadro's number NA 6.022 x 1023 atoms per mole 
Bohr radius a0 52.9177 picometer 
  0.529177 Angstrom 
Boltzmann's constant k 1.38 x 10-23 Joule/Kelvin 
  8.62 x 10-5 electron Volt/Kelvin 
Electronic charge q 1.602 x 10-19 Coulomb 
Free electron rest mass m0 9.11 x 10-31 kilogram 
  5.69 x 10-16 eV s2 cm-2 
Permeability of vacuum µ0 4π  x 10-7 Henry/meter 
Permittivity of vacuum ε0 8.854 x 10-12 Farad/meter 
  8.854 x 10-14 Farad/centimeter 
Planck's constant h 6.625 x 10-34 Joule second 
  4.134 x 10-15 electron Volt second 
Reduced Planck's constant h  1.054 x 10-34 Joule second 
Proton rest mass M 1.67 x 10-27 Kilogram 
Rydberg constant R 2.17991 x 10-18 Joule 
  13.6058 electron Volt 
Speed of light in vacuum c 2.998 x 108 meter/second 
  2.998 x 1010 centimeter/second 

Thermal voltage (at T = 300 K) 
q

kT
VT =  25.86 milliVolt 
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Appendix 4: Prefixes

deci (d) 10-1 deka (da) 101

centi (c) 10-2 hecto (h) 102

milli (m) 10-3 kilo (k) 103

micro (µ) 10-6 mega (M) 106

nano (n) 10-9 giga (G) 109

pico (p) 10-12 tera (T) 1012

femto (f) 10-15 peta (P) 1015

atto (a) 10-18 exa (X) 1018
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Appendix 3: Material Parameters 
 

Name Symbol Germanium Silicon Gallium 
Arsenide 

Bandgap energy at 300 K Eg (eV) 0.66 1.12 1.424 

Breakdown Field Ebr (V/cm) 105 3 x 105 * 4 x 105 

Density (g/cm3) 5.33 2.33 5.32 

Effective density of states in the 
conduction band at 300 K 

Nc (cm-3) 1.02 x 1019 2.82 x 1019 4.35 x 1017 

Effective density of states in the 
valence band at 300 K 

Nv (cm-3) 5.65 x 1018 1.83 x 1019 7.57 x 1018 

Intrinsic concentration at 300 K ni (cm-3) 2.8 x 1013 1.0 x 1010 2.0 x 106 

Effective mass for density of 
states calculations 

    

Electrons me
* / m0 0.55 1.08 0.067 

Holes mh
* / m0 0.37 0.81 0.45 

Electron affinity χ (V) 4.0 4.05 4.07 

Lattice constant a (pm) 564.613 543.095 565.33 

Mobility at 300 K (undoped)     

Electrons µn (cm2/V-s) 3900 1400† 8800 

Holes µp (cm2/V-s) 1900 450† 400 

Relative dielectric constant εs/ ε0 16 11.9 13.1 

Thermal conductivity at 300 K χ (W/cmK) 0.6 1.5 0.46 

Refractive index at 632.8 nm 
wavelength 

n 5.441  

- i 0.785 

3.875 

- i 0.0181 

3.856 

- i 0.196 
 

*See also section 4.5.1: Breakdown field in silicon at 300 K 

†See also section 2.7.2: Mobility of doped silicon at 300 K 
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Symbols listed by name

- A - 
Acceptor doping density Na m-3

Acceptor energy Ea Joule

Applied voltage Va V

Area A m2

- B -

Barrier height φB V

Base doping density NB m-3

Base voltage VB V

Base width wB m

Body effect parameter γ V1/2

Boltzmann's constant k J/K 

Built-in potential of a p-n diode or Schottky diode φi V

Bulk potential φF V

- C -

Capacitance per unit area C F/m2

Charge Q C
Charge density per unit area at threshold in the depletion layer 
of an MOS structure 

Qd,T C/m2

Charge density per unit area in the depletion layer of an MOS 
structure 

Qd C/m2

Charge density per unit volume ρ C/m3

Charge density per unit volume in the oxide ρox C/m3

Collector doping density NC m-3

Collector voltage VC V

Collector width wC m

Conduction band energy of a semiconductor Ec Joule

Conductivity σ Ω−1m-1

Current I A
Current density J A/m2

Current gain β  
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Symbols listed by name

- D -

Density of states in the conduction band per unit energy and per 
unit volume 

gc(E)
m-3J-1

Density of states in the valence band per unit energy and per 
unit volume 

gv(E)
m-3J-1

Depletion layer width w m

Depletion layer width in a p-type semiconductor xp m

Depletion layer width in an MOS structure xd m

Depletion layer width in an MOS structure at threshold xd,T m

Depletion layer width in an n-type semiconductor xn m

Dielectric constant of the oxide εox F/m

Dielectric constant of the semiconductor εs F/m

Distribution function (probability density function) f(E)  

Donor doping density Nd m-3

Donor energy Ed Joule

Doping density N  

Drain voltage VD V

- E -

Effective density of states in the conduction band Nc m-3

Effective density of states in the valence band Nv m-3

Effective mass of electrons me
* kg

Effective mass of holes mh
* kg

Electric field E V/m
Electron affinity of the semiconductor χ V

Electron current density Jn A/m2

Electron density n m-3

Electron density in thermal equilibrium n0 m-3

Electron density per unit energy and per unit volume n(E) m-3

Electron diffusion constant Dn m2/s

Electron diffusion length Ln m

Electron energy in vacumm Evacuum Joule

Electron generation rate Gn m-3s-1
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Symbols listed by name

Electron lifetime τn s

Electron mobility µn m2/V-s

Electron recombination rate Rn m-3s-1

electronic charge q C

Emitter doping density NE m-3

Emitter efficiency γE  

Emitter voltage VE V

Emitter width wE m

Energy E Joule

Energy bandgap of a semiconductor Eg Joule

Excess electron charge density in the base ∆Qn,B C/m2

Excess electron density δ n m-3

Excess hole density δ p m-3

- F -

Fermi energy (thermal equilibrium) EF Joule

Flatband capacitance per unit area of a MOS structure CFB F/m2

Flatband voltage VFB V

Free electron mass m0 kg

- G -

Gate voltage VG V

- H -

Hole current density Jp A/m2

Hole density p m-3

Hole density in an n-type semiconductor pn m-3

Hole density in thermal equilibrium p0 m-3

Hole density per unit energy p(E) m-3

Hole diffusion constant Dp m2/s

Hole diffusion length Lp m

Hole generation rate Gp m-3s-1
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Symbols listed by name

Hole lifetime τp s

Hole mobility µp m2/V-s

Hole recombination rate Rp m-3s-1

- I -

Interface charge density per unit area QI C/m2

Intrinsic carrier density nI m-3

Intrinsic carrier density nI m-3

Intrinsic Fermi energy EI Joule

Ionized acceptor density Na
- m-3

Ionized donor density Nd
+ m-3

- J -

Junction capacitance per unit area Cj F/m2

Junction depth xj m

- K -

- L -

Length L m

- M -

Mass m kg
Mean free path l m

- N -

Net recombination rate of electrons Un m-3s-1

Net recombination rate of holes Up m-3s-1

- O -

Oxide capacitance per unit area Cox F/m2
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Symbols listed by name

Oxide thickness tox m

- P -

Plank's constant h Js
Position x m
Potential φ V

Potential at the semiconductor surface φs V

- Q -

Quasi-Fermi energy of electrons Fn Joule

Quasi-Fermi energy of holes Fp Joule

- R -

Reduced Plank's constant (= h /2π) Js
Resistance R Ohm
Resistivity ρ Ωm

- S -

Speed of light in vacuum c m/s

- T -

Temperature T Kelvin

Thermal velocity vth m/s

Thermal voltage Vt V

Thickness t m

Threshold voltage of an MOS structure VT V

Transport factor α  

- U -

- V -

Valence band energy of a semiconductor Ev Joule
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Symbols listed by name

Velocity v m/s

- W -

Width of a p-type region wp m

Width of an n-type region wn m

Workfunction difference between the metal and the 
semiconductor

ΦMS V

Workfunction of the metal ΦM V

Workfunction of the semiconductor ΦS V

- X -

- Y -

- Z -
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Appendix 1: List of symbols

Symbol Description
MKS
Units

a Acceleration m/s2

a0 Bohr radius m

A Area  m2

A* Richardson constant m/s

AC Collector area m2

AE Emitter area m2

b Bimolecular recombination constant m3/s

c Speed of light in vacuum m/s

C Capacitance per unit area F/m2

CD Diffusion capacitance per unit area F/m2

CDS Drain-source capacitance F

CFB Flatband capacitance per unit area of a MOS structure F/m2

CG Gate capacitance F

CGS Gate-source capacitance F

CGD Gate-drain capacitance F

CHF High-frequency capacitance per unit area of a MOS structure F/m2

Cj Junction capacitance per unit area F/m2

CLF Low-frequency (quasi-static) capacitance per unit area of a MOS structure F/m2

CM Miller capacitance F

Cox Oxide capacitance per unit area F/m2

Cs Semiconductor capacitance per unit area F/m2

Dn Electron diffusion constant m2/s

Dp Hole diffusion constant m2/s

E Energy Joule



E Electric field V/m

E0 Lowest energy in a one-dimensional quantum well Joule

Ea Acceptor energy Joule

Ebr Breakdown field V/m

Ec Conduction band energy of a semiconductor Joule

Ed Donor energy Joule

EF Fermi energy (thermal equilibrium) Joule

EF,n Fermi energy in an n-type semiconductor Joule

EF,p Fermi energy in a p-type semiconductor Joule

Eg Energy bandgap of a semiconductor Joule

Ei Intrinsic Fermi energy Joule

En nth quantized energy Joule

Eph Photon energy Joule

Et Trap energy Joule

Ev Valence band energy of a semiconductor Joule

Evacuum Electron energy in vacumm Joule

F(E) Distribution function (probability density function)

fBE(E) Bose-Einstein distribution function

fFD(E) Fermi-Dirac distribution function

fMB(E) Maxwell-Boltzmann distribution function

F Force Newton

Fn Quasi-Fermi energy of electrons Joule

Fp Quasi-Fermi energy of holes Joule

gE) Density of states per unit energy and per unit volume m-3J-1

g(E) Density of states in the conduction band per unit energy and per unit volume m-3J-1

g(E) Density of states in the valence band per unit energy and per unit volume m-3J-1

gd Output conductance of a MOSFET S



gm Transconductance of a MOSFET S

G Carrier generation rate m-3s-1

Gn Electron generation rate m-3s-1

Gp Hole generation rate m-3s-1

h Plank's constant Js

h Reduced Plank's (= h /2π) Js

I Current A

IB Base current of a bipolar transistor A

IC Collector current of a bipolar transistor A

ID Drain current of a MOSFET A

IE Emitter current of a bipolar transistor A

IF Forward active current of a bipolar transistor A

ID,sat Drain current of a MOSFET in saturation A

Iph Photo current A

Ir Recombination current A

IR Reverse active current of a bipolar transistor A

Is Saturation current A

Isc Short circuit current of a solar cell A

J Current density A/m2

Jn Electron current density A/m2

Jp Hole current density A/m2

k
Boltzmann's constant
wavenumber

J/K
m-1

l Mean free path m

L Length m

LD Debye length m

Ln Electron diffusion length m



Lp Hole diffusion length m

Lx Hole diffusion length m

m Mass kg

m* Effective mass kg

mA Atomic mass kg

m0 Free electron mass kg

me
* Effective mass of electrons kg

mh
* Effective mass of holes kg

M
Proton mass

Multiplication factor

kg

n

Electron density

Integer

Refractive index

Ideality factor

m-3

ni Intrinsic carrier density m-3

n(E) Electron density per unit energy and per unit volume m-3

n0 Electron density in thermal equilibrium m-3

ni Intrinsic carrier density m-3

nn Electron density in an n-type semiconductor m-3

nn0 Thermal equilibrium electron density in an n-type semiconductor m-3

np Electron density in a p-type semiconductor m-3

np0 Thermal equilibrium electron density in a p-type semiconductor m-3

N
Number of particles

Doping density

Na Acceptor doping density m-3

Na
- Ionized acceptor density m-3

NA Avogadro's number



NB Base doping density m-3

Nc Effective density of states in the conduction band m-3

NC Collector doping density m-3

Nd Donor doping density m-3

Nd
+ Ionized donor density m-3

NE Emitter doping density m-3

Nss Surface state density m-2

Nt Recombination trap density m-2

Nv Effective density of states in the valence band m-3

p

Hole density

Particle momentum

Pressure

m-3

kgm/s

Nm-2

p(E) Hole density per unit energy m-3

p0 Hole density in thermal equilibrium m-3

pn Hole density in an n-type semiconductor m-3

pn0 Thermal equilibrium hole density in an n-type semiconductor m-3

pp Hole density in a p-type semiconductor m-3

pp0 Thermal equilibrium hole density in a p-type semiconductor m-3

q electronic charge C

Q
Heat

Charge

Joule

C

QB Majority carrier charge density in the base C/m2

Qd Charge density per unit area in the depletion layer of an MOS structure C/m2

Qd,T
Charge density per unit area at threshold in the depletion layer of an MOS
structure

C/m2

Qi Interface charge density per unit area C/m2

Qinv Inversion layer charge density per unit area C/m2



QM Charge density per unit area in a metal C/m2

Qn Charge density per unit area in the depletion layer of an n-type region C/m2

Qp Charge density per unit area in the depletion layer of a p-type region C/m2

Qss Surface state charge density per unit area C/m2

re Emitter resistance Ohm

rπ Base resistance Ohm

R
The Rydberg constant

Resistance

J

Ohm

Rn Electron recombination rate m-3s-1

Rp Hole recombination rate m-3s-1

Rs Sheet resistance Ohm

s Spin

S Entropy J/K

t Thickness m

tox Oxide thickness m

T
Temperature

Kinetic energy

Kelvin

Joule

uω Spectral density Jm-3s-1

U Total energy Joule

UA Auger recombination rate m-3s-1

Ub-b Band-to-band recombination rate m-3s-1

Un Net recombination rate of electrons m-3s-1

Up Net recombination rate of holes m-3s-1

USHR Shockley-Read-Hall recombination rate m-3s-1

v Velocity m/s

vR Richardson velocity m/s

vsat Saturation velocity m/s



vth Thermal velocity m/s

V
Potential energy

Volume

Joule

m3

Va Applied voltage V

VA Early voltage V

Vbr Breakdown voltage V

VB Base voltage V

VBE Base-emitter voltage V

VBC Base-collector voltage V

VC Collector voltage V

VCE Collector-emitter voltage V

VD Drain voltage V

VDS Drain-source voltage V

VDS,sat Drain-source saturation voltage V

VE Emitter voltage V

VFB Flatband voltage V

VG Gate voltage V

VGS Gate-source voltage V

Voc Open circuit voltage of a solar cell V

Vt Thermal voltage V

VT Threshold voltage of an MOS structure V

w Depletion layer width m

wB Base width m

wC Collector width m

wE Emitter width m

wn Width of an n-type region m

wp Width of a p-type region m



W Work Joule

x Position m

xd Depletion layer width in an MOS structure m

xd,T Depletion layer width in an MOS structure at threshold m

xj Junction depth m

xn Depletion layer width in an n-type semiconductor m

xp Depletion layer width in a p-type semiconductor m

α
Absorption coefficient

Transport factor

m-1

αF Forward active transport factor

αn Ionization rate coefficient for electrons m-1

αR Reverse active transport factor

αT Base transport factor

β Current gain

γ Body effect parameter V1/2

γE Emitter efficiency

Γn Auger coefficient for electrons m6s-1

Γp Auger coefficient for holes m6s-1

δ n Excess electron density m-3

δ p Excess hole density m-3

δ R Depletion layer recombination factor

∆Qn,B Excess electron charge density in the base C/m2

ε Dielectric constant F/m

ε0 Permittivity of vacuum F/m

εox Dielectric constant of the oxide F/m



εs Dielectric constant of the semiconductor F/m

µ0 Permeability of vacuum H/m

Θ Tunnel probability

λ Wavelength m

µ Electro-chemical potential Joule

µn Electron mobility m2/V-s

µp Hole mobility m2/V-s

ν Frequency Hz

ρ
Charge density per unit volume

Resistivity

C/m3

Ωm

ρox Charge density per unit volume in the oxide C/m3

σ Conductivity Ω−1m-1

τ Scattering time s

τn Electron lifetime s

τp Hole lifetime s

φ Potential V

φB Barrier height V

φF Bulk potential V

φi Built-in potential of a p-n diode or Schottky diode V

φs Potential at the semiconductor surface V

Φ Flux m-2s-1

ΦM Workfunction of the metal V

ΦMS Workfunction difference between the metal and the semiconductor V

ΦS Workfunction of the semiconductor V

χ Electron affinity of the semiconductor V

Ψ Wavefunction



ω Radial frequency rad/s
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Appendix 5: Units
MKS Units

Ampere (Unit of current) = fundamental MKSA unit

Coulomb (Unit of charge) = Ampere second

Farad (Unit of capacitance) = Coulomb Volt-1 = Joule Volt-2

Henry (Unit of inductance) = Weber Ampere-1 = Tesla meter2 Ampere-1

Joule (Unit of energy) = Newton meter = kilogram meter2 second-2

Kelvin (Unit of temperature) = fundamental MKSA unit

kilogram (Unit of mass) = fundamental MKSA unit

meter (Unit of length) = fundamental MKSA unit

Newton (Unit of force) = kilogram meter second-2

Ohm (Unit of resistance) = Volt Ampere-1 = Volt2 Joule-1 second-1

Pascal (Unit of pressure) = Newton meter-2

second (Unit of time) = fundamental MKSA unit

Siemens (Unit of conductance) = Ampere Volt-1 = Joule second Volt-2

Tesla (Unit of magnetic field) = Newton Ampere-1 meter-1 = Joule Ampere-1 meter-2 =
Volt second meter-2

Volt (Unit of potential) = Joule coulomb-1

Watt (Unit of power) = Ampere Volt = Joule second-1

Weber (Unit of magnetic flux) = Tesla meter2 = Volt second

non-MKS Units
Electron Volt (Unit of energy) = 1.602 x 10-19 Joule

moles/liter (Unit of concentration) = 6.022 x 1020 cm-3
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Appendix: 

Appendix 8: Numeric answers to selected problems 

Spreadsheet with predefined physical constants and material 
parameters 

Chapter 1

1. 0.62 µm, 0.87 nm 
2. 1.55 eV, 375 THz, 4 x 1018 
4. 16.5 µm 
6. 3.88 nm 
7. -13.6 eV, -3.4 eV, -1.51 eV 

Chapter 2

1. 52.36%, 68.02%, 74.05%, 34.01% 
2. 406.3°C 
4. 0.0099 
5. 6.29 x 10-5, 0.045, 484.7°C 
6. 1.02 x 1019, 5.65 x 1018; 2.82 x 1019, 1.83 x 1019; 4.37 x 
1017, 7.57 x 1018 cm-3 
   1.42 x 1019, 7.83 x 1018; 3.91 x 1019, 2.54 x 1019; 6.04 x 
1017, 1.05 x 1018 cm-3 
7. 2.16 x 1013, 8.81 x 109, 1.97 x 106; 3.67 x 1014, 8.55 x 
1011, 6.04 x 108 cm-3 
8. -7.68 meV, -5.58 meV, 36.91 meV 
   -9.56 meV, -6.94 meV, 45.92 meV 
9. 2.24 x 1018, 1.48 x 108; 1.60 x 1015, 1.32 x 105; 2.23 x 

http://ece-www.colorado.edu/~bart/book/book/append/append8.htm (1 of 3) [2/28/2002 5:31:14 PM]

http://ece-www.colorado.edu/~bart/book/book/append/xls/worksht.xls


Appendix 8

1011, 18.4 cm-3 
   9.27 x 1013, 4.45 x 1012; 6.02 x 1014, 3.50 x 105; 3.97 x 
1012, 1.04 cm-3 
11. 104 cm-3, 0.357 eV 
12. 1012 cm-3, 108 cm-3 
13. 9.17 x 1014, 9.15 x 1014, 2.76 x 1015 cm-3 
14. 7.59 x 1016 cm-3 
15. 2.77 x 1019 cm-3s-1, 2.77 x 1015 cm-3, 2.77 x 1015 cm-3, 
417 meV, -324 meV 
16. 1013 cm-3s-1, 10-3 s 
17. 2.96 x 10-6 cm/Ohm, 337 kOhm-cm 
18. 393 kOhm-cm, 5.67 x 109, 1.76 x 1010, 1.20 x 1010 cm-3 
19. 18, 42, 60 meV 
20. 2.42 nm 
21. 2.42 x 1021 cm-3eV-1 
22. 4.74 %, 95.26 % 
24. 1.39 
25. 30 kV/cm, 15 V, 16.7 ps 
26. 8.92 x 1014 cm-3, 6.94 x 1015 cm-3 
27. 0.455 mm 
28. 2111 cm2/V-s 
29. 1.05 cm-3J-1, 9.14 x 10-4 
30. 0.53 Ω-cm, 2.1 x 10-7, 0.22 Ω-cm, 123 meV 
31. 1016 cm-3, 104 cm-3, -357 meV 
     1015 cm-3, 105 cm-3, 298 meV 
32. 828 A/cm2 

Chapter 3

http://ece-www.colorado.edu/~bart/book/book/append/append8.htm (2 of 3) [2/28/2002 5:31:14 PM]
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Chapter 4

Chapter 5

Chapter 6

1. -0.927, 0.149, -0.153, 0.632, -1.071, 0.005, -0.963, 0.113 V 
 

2. 180 nF/cm2, 19.2 nm, 176 nm, 3.3 x 1016 cm-3, 388 mV, 
13 pF, -328 mV, 965 mV 
3. 7.2 x 1016 cm-3  
4. 7.62 x 1016, 2.31 x 1016, 1.49 x 1014, 7.51 x 1014 cm-3 
5. 1.38 x 1014, 7.69 x 1014 cm-3 
6. -1.11 V, 48.4 nF/cm2 

Chapter 7

1. 322 Ohm, 2.25 V  
2. 173 nF/cm2, 17.3 fF, 51.8 µA 
3. 154 µm  
4. 48.3 µm 
5. 0.62 Ohm  
6. 0.31 µm, 46.6 kV/cm 
7. 105 nm 
8. 158 nm 
10. 170 nm 

http://ece-www.colorado.edu/~bart/book/book/append/append8.htm (3 of 3) [2/28/2002 5:31:14 PM]
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Germanium

Germanium - [Ar] 3d10 4s2 4p2

Atomic number 32
Atomic mass 72.59
Melting point 937.4° C
Boiling point 2830° C

Density 5.32 g/cm3

Electronegativity 1.8
Mohs Hardness  
Crystal structure Diamond

More parameters can be found in Appendix 3

http://ece-www.colorado.edu/~bart/book/book/append/periodic/ptge.htm [2/28/2002 5:31:33 PM]



Silicon

Silicon - [Ne] 3s2 3p2

Atomic number 14
Atomic mass 28.07
Melting point 1410° C
Boiling point 2355° C

Density 2.33 g/cm3

Electronegativity 1.8
Mohs Hardness 7.0
Crystal structure Diamond

More parameters can be found in Appendix 3

http://ece-www.colorado.edu/~bart/book/book/append/periodic/ptsi.htm [2/28/2002 5:31:37 PM]



Aluminum

Aluminum - [Ne] 3s2 3p1

Atomic number 13
Atomic mass 26.98
Melting point 660° C
Boiling point 2467° C

Density 2.70 g/cm3

Electronegativity 1.5
Mohs Hardness 2.9
Crystal structure Face centered cubic
Workfunction 4.1 V

http://ece-www.colorado.edu/~bart/book/book/append/periodic/ptal.htm [2/28/2002 5:31:38 PM]



ptc

Carbon - [He] 2s2 2p2

Atomic number 6
Atomic mass 12.01
Melting point 3727° C
Boiling point 4830° C

Density 2.26 g/cm3

Electronegativity 1.8
Mohs Hardness 7.0
Crystal structure Diamond

http://ece-www.colorado.edu/~bart/book/book/append/periodic/ptc.htm [2/28/2002 5:31:40 PM]



pthe

Helium - 1s2 
Atomic number 2
Atomic mass 4.0026
Melting point  
Boiling point @ 1 atm. - 268.94° C (4.2 K)

Density 0.179 mg/cm3

Electronegativity  
Mohs Hardness  
Crystal structure  

http://ece-www.colorado.edu/~bart/book/book/append/periodic/pthe.htm [2/28/2002 5:31:41 PM]



Hydrogen

Hydrogen - 1s1 
Atomic number 1
Atomic mass 1.008
Melting point  
Boiling point @ 1 atm. - 252.8° C (20.35 K)

Density 0.082 mg/cm3

Electronegativity  
Mohs Hardness  
Crystal structure  

http://ece-www.colorado.edu/~bart/book/book/append/periodic/pth.htm [2/28/2002 5:31:41 PM]



Contents

Principles of Semiconductor Devices

 

Chapter 1: Review of Modern Physics 

1.  Introduction
2.  Quantum Mechanics
3.  Electromagnetic theory
4.  Statistical Thermodynamics

Examples - Problems
Review Questions
Bibliography
Equation Sheet 

http://ece-www.colorado.edu/~bart/book/book/toc1.htm [2/28/2002 5:31:42 PM]



Contents

Principles of Semiconductor Devices

 

Chapter 2: Semiconductor Fundamentals 

1.  Introduction
2.  Crystals and crystal structures
3.  Energy bands
4.  Density of States
5.  Distribution Functions
6.  Carrier Densities
7.  Carrier Transport
8.  Recombination and Generation
9.  Continuity Equation

10.  Drift-Diffusion Model

Examples - Problems
Review Questions
Bibliography
Glossary
Equation sheet 

http://ece-www.colorado.edu/~bart/book/book/toc2.htm [2/28/2002 5:31:43 PM]



Contents

Principles of Semiconductor Devices

 

Chapter 3: Metal-Semiconductor Junctions 

1.  Introduction
2.  Structure and principle of operation
3.  Electrostatic analysis
4.  Schottky diode current

Examples - Problems
Review Questions
Bibliography
Equation Sheet

http://ece-www.colorado.edu/~bart/book/book/toc3.htm [2/28/2002 5:31:43 PM]



Contents

Principles of Semiconductor Devices

 

Chapter 4: p-n Junctions 

1.  Introduction
2.  Structure and principle of operation
3.  Electrostatic analysis
4.  p-n diode current
5.  Breakdown
6.  Optoelectronic devices

Examples - Problems
Review Questions
Bibliography
Equation Sheet

http://ece-www.colorado.edu/~bart/book/book/toc4.htm [2/28/2002 5:31:45 PM]



Contents

Principles of Semiconductor Devices

 

Chapter 5: Bipolar Transistors 

1.  Introduction
2.  Structure
3.  Ideal BJT model
4.  Non-ideal effects

Examples - Problems
Review Questions
Bibliography
Equation Sheet

http://ece-www.colorado.edu/~bart/book/book/toc5.htm [2/28/2002 5:31:46 PM]



Contents

Principles of Semiconductor Devices

 

Chapter 6: MOS Capacitors 

1.  Introduction
2.  Structure
3.  Analysis
4.  Technology

Examples - Problems
Review Questions
Bibliography
Equation Sheet

http://ece-www.colorado.edu/~bart/book/book/toc6.htm [2/28/2002 5:31:46 PM]



Contents

Principles of Semiconductor Devices

 

Chapter 7: MOS Field-Effect-Transistors 

1.  Introduction
2.  Structure and principle of operation
3.  MOSFET analysis
4.  Threshold voltage
5.  MOSFET SPICE model
6.  MOSFET circuits and technology
7.  Advance MOSFET issues

Examples - Problems
Review Questions
Bibliography
Equation Sheet

http://ece-www.colorado.edu/~bart/book/book/toc7.htm [2/28/2002 5:31:47 PM]



Contents

Principles of Semiconductor Devices

 

Appendix 

1.  List of symbols
By symbol
By name

Extended List of symbols
2.  Physical Constants
3.  Material Parameters
4.  Prefixes
5.  Units
6.  Greek Alphabet
7.  Periodic Table
8.  Solutions to Selected Problems

Quick access

http://ece-www.colorado.edu/~bart/book/book/toca.htm [2/28/2002 5:31:48 PM]



Problem 6.1 Consider an aluminum-SiO2-silicon MOS capacitor (ΦM = 4.1 
V, εox/ε0 = 3.9, χ = 4.05 V and Na = 1017 cm-3) MOS capacitor 
with tox = 5 nm. 
a) Calculate the flatband voltage and threshold voltage.  
b) Repeat for an n-type silicon substrate with Nd = 1016 cm-3. 
c) Repeat with a surface charge of 10-7 C/cm2

. 
d) Repeat with a charge density in the oxide of 10-1 C/cm3 . 
 



Solution The work function difference of the nMOS capacitor equals 

)ln(
2 i

a
t

g
MSM n

N
V

q

E
−−−Φ=Φ−Φ χ  

= 4.1 - 4.05 - 0.56 - 0.42 = -0.93 = VFB 
Since no charge is present in the oxide or at the interface, the flat 
band voltage equals the work function difference. 
The threshold voltage equals: 

V 15.0        
105/1085.89.3

42.010106.11085.89.114
           

42.0293.0        

4
2

714

171914

=
×××

×××××××
+

×+−=

++=

−−

−−

ox

Fas
FFBT C

qN
VV

φε
φ

 

For the pMOS capacitor one finds similarly: 

)ln(
2 i

d
t

g
MSM n

N
V

q

E
+−−Φ=Φ−Φ χ  

= 4.1 - 4.05 -0.56 + 0.36 = - 0.15 = VFB 
and 
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In the presence of 10-7 C/cm2 interface charge the flat band 
voltage of the nMOS capacitor becomes: 

ox

i
MSFB C

Q
V −Φ= = - 0.93 - 0.145 = - 1.07 

The threshold voltage shift by the same amount yielding: 
VT =  0.15 - 0.145 = - 0.005 

In the presence of 10-1 C/cm3 throughout the oxide the flat band 
voltage of the nMOS capacitor becomes: 

∫−Φ=
oxt

ox
ox

MSFB dxxxV
0

)(
1

ρ
ε

= - 0.93 - 0.03 = - 0.96 

The threshold voltage shift by the same amount yielding: 
VT = 0.149 - 0.036 = 0.113 V 

 



 
Problem 6.3 An MOS capacitor with an oxide thickness of 20 nm has an 

oxide capacitance which is three times larger than the minimum 
high-frequency capacitance in inversion. Find the substrate 
doping density.  

Solution The high frequency capacitance in inversion equals: 

s

Td

ox

invHFox x
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ε
,

, 1
3

3
+

==  

from which one finds xd,T = 2 εs/Cox  
so that: 

2
ox

s

F
a C

q
N

ε
φ

=  

where the bulk potential, φF, also depends on the doping density, 
Na 

Iterating, starting with φF = 0.4, yields the following values for 
the doping density: 

Na = 7.06 x 1016, 7.20 x 1016 and 7.21 x 1016 cm-3 
 



Problem 7.1 Consider an n-type MOSFET which consists of a 10 nm thick 
oxide (εr = 3.9) and has a gate length of 1 micron, a gate width 
of 20 micron and a threshold voltage of 1.5 Volt. Calculate the 
resistance of the MOSFET in the linear region as measured 
between source and drain when applying a gate-source voltage 
of 3 Volt. What should the gate-source voltage be to double the 
resistance? The surface mobility of the electrons is 300 cm2/V-
sec. 

Solution The resistance of a MOSFET in the linear region equals 
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To double the resistance one has to half VGS – VT so that VGS = 
2.25 V 

 



 
Problem 7.3 A n-type MOSFET (L = 1 µm, tox = 15 nm, VT = 1 V and µn = 

300 cm2/V-sec) must provide a current of 20 mA at a drain-
source voltage of 0.5 Volt and a gate-source voltage of 5 Volt. 
How wide should the gate be? 
 

Solution The MOSFET is not in saturation so that the gate width can be 
obtained from: 
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Problem 7.5 The capacitance of an n-type silicon MOSFET is 1 pF. Provided 

that the oxide thickness is 50 nm and the gatelength is 1 micron, 
what is the resistance of the MOSFET in the linear regime when 
biased at a gate voltage, which is 5 Volt larger than the threshold 
voltage? Use a reasonable value for the surface mobility 
knowing that the bulk mobility equals 1400 cm2/V-sec. 

Solution The width of the gate is obtained from WLCC oxG =  
So that the width equals:  
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The resistance of the MOSFET then equals: 
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The mobility was chosen to be 400 cm2/V-s, which is about half 
the mobility in bulk material doped with 1017 cm-3 acceptors. 
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Appendix 1: List of Symbols

Symbol Description
MKS
Units

A Area  m2

c Speed of light in vacuum m/s

C Capacitance per unit area F/m2

CFB Flatband capacitance per unit area of a MOS structure F/m2

Cj Junction capacitance per unit area F/m2

Cox Oxide capacitance per unit area F/m2

Dn Electron diffusion constant m2/s

Dp Hole diffusion constant m2/s

E Energy Joule

( Electric field V/m

Ea Acceptor energy Joule

Ec Conduction band energy of a semiconductor Joule

Ed Donor energy Joule

EF Fermi energy (thermal equilibrium) Joule

Eg Energy bandgap of a semiconductor Joule

Ei Intrinsic Fermi energy Joule

Ev Valence band energy of a semiconductor Joule

Evacuum Electron energy in vacuum Joule

f(E) Distribution function (probability density function)

Fn Quasi-Fermi energy of electrons Joule

Fp Quasi-Fermi energy of holes Joule

gc(E) Density of states in the conduction band per unit energy and per unit volume m-3J-1

gv(E) Density of states in the valence band per unit energy and per unit volume m-3J-1

Gn Electron generation rate m-3s-1

Gp Hole generation rate m-3s-1

h Plank's constant Js

! Reduced Plank's (= h /2π) Js

I Current A
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J Current density A/m2

Jn Electron current density A/m2

Jp Hole current density A/m2

k Boltzmann's constant J/K

l Mean free path m

L Length m

Ln Electron diffusion length m

Lp Hole diffusion length m

m Mass kg

m0 Free electron mass kg

me
* Effective mass of electrons kg

mh
* Effective mass of holes kg

n Electron density m-3

ni Intrinsic carrier density m-3

n(E) Electron density per unit energy and per unit volume m-3

n0 Electron density in thermal equilibrium m-3

ni Intrinsic carrier density m-3

N Doping density

Na Acceptor doping density m-3

Na
- Ionized acceptor density m-3

NB Base doping density m-3

Nc Effective density of states in the conduction band m-3

NC Collector doping density m-3

Nd Donor doping density m-3

Nd
+ Ionized donor density m-3

NE Emitter doping density m-3

Nv Effective density of states in the valence band m-3

p Hole density m-3

p(E) Hole density per unit energy m-3

p0 Hole density in thermal equilibrium m-3

pn Hole density in an n-type semiconductor m-3

q electronic charge C
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Q Charge C

Qd Charge density per unit area in the depletion layer of an MOS structure C/m2

Qd,T
Charge density per unit area at threshold in the depletion layer of an MOS
structure

C/m2

Qi Interface charge density per unit area C/m2

R Resistance Ohm

Rn Electron recombination rate m-3s-1

Rp Hole recombination rate m-3s-1

t Thickness m

tox Oxide thickness m

T Temperature Kelvin

Un Net recombination rate of electrons m-3s-1

Up Net recombination rate of holes m-3s-1

v Velocity m/s

vth Thermal velocity m/s

Va Applied voltage V

VB Base voltage V

VC Collector voltage V

VD Drain voltage V

VE Emitter voltage V

VFB Flatband voltage V

VG Gate voltage V

Vt Thermal voltage V

VT Threshold voltage of an MOS structure V

w Depletion layer width m

wB Base width m

wC Collector width m

wE Emitter width m

wn Width of an n-type region m

wp Width of a p-type region m

x Position m

xd Depletion layer width in an MOS structure m

xd,T Depletion layer width in an MOS structure at threshold m
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xj Junction depth m

xn Depletion layer width in an n-type semiconductor m

xp Depletion layer width in a p-type semiconductor m

α Transport factor

β Current gain

γ Body effect parameter V1/2

γE Emitter efficiency

δ n Excess electron density m-3

δ p Excess hole density m-3

∆Qn,B Excess electron charge density in the base C/m2

εox Dielectric constant of the oxide F/m

εs Dielectric constant of the semiconductor F/m

µn Electron mobility m2/V-s

µp Hole mobility m2/V-s

ρ
Charge density per unit volume

Resistivity

C/m3

Ωm

ρox Charge density per unit volume in the oxide C/m3

σ Conductivity Ω−1m-1

τn Electron lifetime s

τp Hole lifetime s

φ Potential V

φB Barrier height V

φF Bulk potential V

φi Built-in potential of a p-n diode or Schottky diode V

φs Potential at the semiconductor surface V

ΦM Workfunction of the metal V

ΦMS Workfunction difference between the metal and the semiconductor V

ΦS Workfunction of the semiconductor V

χ Electron affinity of the semiconductor V



Chapter 7: MOS Field Effect Transistors 
7.3. MOSFET analysis 
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7.4. Threshold voltage 
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7.5. MOSFET SPICE MODEL 

7.6. MOSFET Circuits and Technology 

7.7. Advanced MOSFET issues 
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glossary 2

Acceptor An atom which is likely to take on one or more electrons when placed in a crystal 

Bandgap The range of energies between existing energy bands where no energy levels exist 

Compensation The process of adding donors and acceptor to a crystal 

Conduction band Lowest empty or partially filled band in a semiconductor 

Conductivity The ratio of the current density to the applied electric field 

Continuity equation Equation which states that the rate of change of a density of particles equals the net flux of particles coming in. 

Crystal A solid which consists of atoms placed in a periodic arrangment 

Crystalline Made of one or multiple crystals

Density of states The density of electronic states per unit energy and per unit volume 

Diffusion Motion of carriers caused by thermal energy 

Donor An atom which is likely to give off one or more electrons when placed in a crystal 

Drift Motion of carriers caused by an electric field 

http://ece-www.colorado.edu/~bart/book/book/chapter2/ch2_g.htm (1 of 3) [2/28/2002 5:31:54 PM]



glossary 2

Energy band A collection of closely spaced energy levels 

Epitaxial layer Thin layer of a single crystalline semiconductor grown on a substrate 

Generation Process by which electron-hole pairs are generated 

Hole Particle associated with an empty electron level in an almost filled band 

Impurity A foreign atom in a crystal 

Intrinsic carrier 
density

The density of electrons and holes in an intrinsic semiconductor 

Intrinsic 
semiconductor

A semiconductors free of defects or impurities 

Ionization The process of adding or removing an electron to/from an atom thereby creating a charged atom (ion) 

Majority Carrier 
Density

The larger density of the two carrier types (electrons and holes). The majority carrier density is frequently - but not 
always - equal to the doping density. 

Mass action law The law which describes the relation between the densities of species involved in a chemical reaction 

Minority Carrier 
Density

The lower density of the two carrier types (electrons and holes). The minority carrier density is typically orders of 
magnitude lower than the majority carrier density, yet plays an important role in p-n diodes and bipolar transistors. 

Mobility The ratio of the carrier velocity to the applied electric field 

http://ece-www.colorado.edu/~bart/book/book/chapter2/ch2_g.htm (2 of 3) [2/28/2002 5:31:54 PM]



glossary 2

n- semiconductor n-type semiconductor with low donor density (< 1016 cm-3) 

n+ semiconductor n-type semiconductor with high donor density (< 1018 cm-3) 

p- semiconductor p-type semiconductor with low donor density (< 1016 cm-3) 

p+ semiconductor p-type semiconductor with high donor density (< 1018 cm-3) 

Poly-silicon Poly-crystalline silicon. Sometimes referred to as poly.

Recombination Process by which electron-hole pairs are removed 

Resistivity The ratio of the applied voltage to the current 

Saturation Velocity Maximum velocity which can be obtained in a specific semiconductor 

Valence band Highest filled or almost filled band in a semiconductor 

Valence electrons Electrons in the outer shell of an atom 

http://ece-www.colorado.edu/~bart/book/book/chapter2/ch2_g.htm (3 of 3) [2/28/2002 5:31:54 PM]



Chapter 2: Semiconductor Fundamentals 
2.2. Crystals and crystal structures 
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2.4. Density of states 
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2.5. Carrier distribution functions 
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2.6. Carrier densities 
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2.7. Carrier Transport 
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2.8. Carrier recombination and generation 
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2.9. Continuity equation 
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2.10. The drift-diffusion model 
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