

Setor de Tecnologia Coordenação de Engenharia Elétrica TE105 – Projeto de Graduação Prof. Orientador: Dr. James Alexandre Baraniuk

APLICAÇÃO DE FERRAMENTAS DE GEORREFERENCIAMENTO EM ILUMINAÇÃO PÚBLICA E UTILIZAÇÃO DE LUMINÁRIAS DE ALTO RENDIMENTO. UM ESTUDO DE CASO EM ARAUCÁRIA - PR

Diogo Ehlke Schueda GRR 20044289

ROTEIRO DA APRESENTAÇÃO

- Objetivos
- Justificativa
- × O que é IP?
- Conceitos de luminotécnica
- Componentes básicos de IP
- Georreferenciamento aplicado a IP
- Estudo de casos
 - + Simulações
 - + Medidas em campo
- * Conclusão

OBJETIVOS

- Elaboração de um roteiro para uma boa especificação de sistema de IP
- Descrição do uso de ferramentas de georreferenciamento aplicadas a IP
- Comparação de resultados luminotécnicos obtidos em medidas em campo e com simuladores

JUSTIFICATIVA

- × Pouca bibliografia relacionada
- Normas são de difícil interpretação pelos gestores de IP

- Dificuldades encontradas pelos gestores públicos para administração da IP
- Grande variedade de equipamentos disponíveis

O QUE É ILUMINAÇÃO PÚBLICA?

"Serviço que tem por objetivo exclusivo prover de claridade os logradouros públicos, de forma periódica, contínua ou eventual"

(ANEEL, 2010)

CONCEITOS DE LUMINOTÉCNICA

- Iluminância [lux]
 - + Relação entre fluxo luminoso incidente sobre superfície pela sua área

- Luminância [cd/m²]
 - + Intensidade luminosa que emana de uma superfície

CONCEITOS DE LUMINOTÉCNICA

- × Temperatura de cor
 - + Expressa a aparência de cor da luz

- × Índice de Reprodução de Cores
 - + Correspondência entre cor real de objeto e sua aparência diante uma fonte de luz

COMPONENTES BÁSICOS

- × Braço
 - + BR1 / BR2 1,80m / BR2 / BR3
- × Luminária
 - + LM1 / LM3 / Alto rendimento
- × Lâmpada
 - + Sódio / Metálica
 - + Ovóide / Tubular
- × Reator
 - + Interno / externo
- × Conector
 - + Cunha / Perfurante

ESPECIFICAÇÃO DE LUMINÁRIAS

- NBR IEC 60529 "Graus de proteção para invólucros de equipamentos elétricos"
 - + Código IP

			11.		
0	7	Sem proteção	0	4	Sem proteção
1	70	Protegido contra corpos sólidos maiores que 50mm.	1	7	Protegido contra quedas verticais d'água.
2	70	Protegido contra corpos sólidos maiores que 12mm.	2	. *	Protegido contra quedas verticais d'água com inclinação (máxima de 15°).
3	40	Protegido contra corpos sólidos maiores que 2,5mm.	3	. 7	Protegido contra quedas verticais d'água com inclinação (máxima de 60°).
4	4	Protegido contra corpos sólidos maiores que 1mm.	4	7	Protegido contra projeções de água por todas as direções.
5	4	Protegido contra pó (sem depósitos prejudiciais).	5	F	Protegido contra jatos de água por todas as direções.
6	4	Totalmente protegido contra pó.	6	7	Protegido contra jatos de água similares as ondas do mar.
			7	7	Protegido contra imersão.
			8	7	Protegido contra submersão.

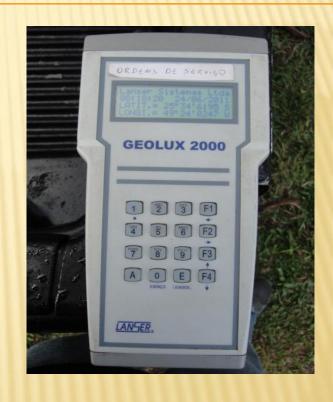
IEC 62262 – Grau de proteção contra impactos mecânicos externos

+ Código IK

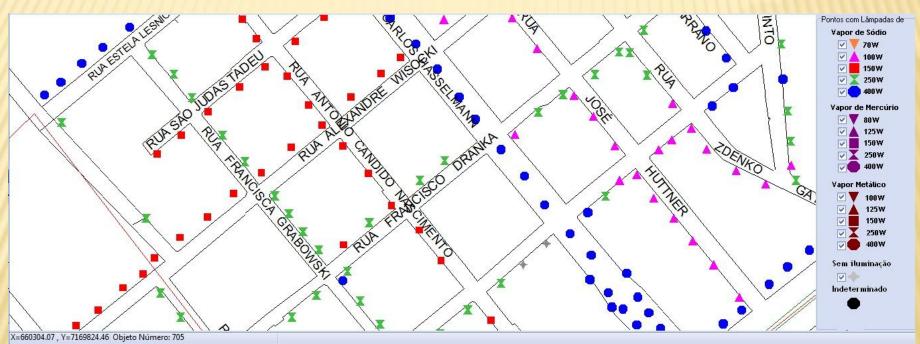
Grau de proteção IK	Energia de impacto (J)				
00	0				
01	0,15				
02	0,20				
03	0,35				
04	0,50				
05	0,70				
06	1				
07	2				
08	5				
09	10				
10	20				

REATORES INTERNOS EM LUMINÁRIAS INTEGRADAS

X Kit Removível com MATE-N-LOK


***** Reator interno danificado com $\Delta t = 90 \, ^{\circ}C$

GEORREFERENCIAMENTO


- Levantamento em campo com a utilização de GPS
- Cadastro dos dados em sistema computacional

- Geração de código alfanumérico
- Identificação dos pontos de IP

VISUALIZAÇÃO DA TELA DO GEOLUX

Descrição do Ponto Iluminado

Localização:

Número do Ponto Iluminado: ADHAXN

Endereço: RUA ALEXANDRE WISOCKI Número: 774

Bairro: FAZENDA VELHA

Data Cadastro: 08/06/2010 15:14:58

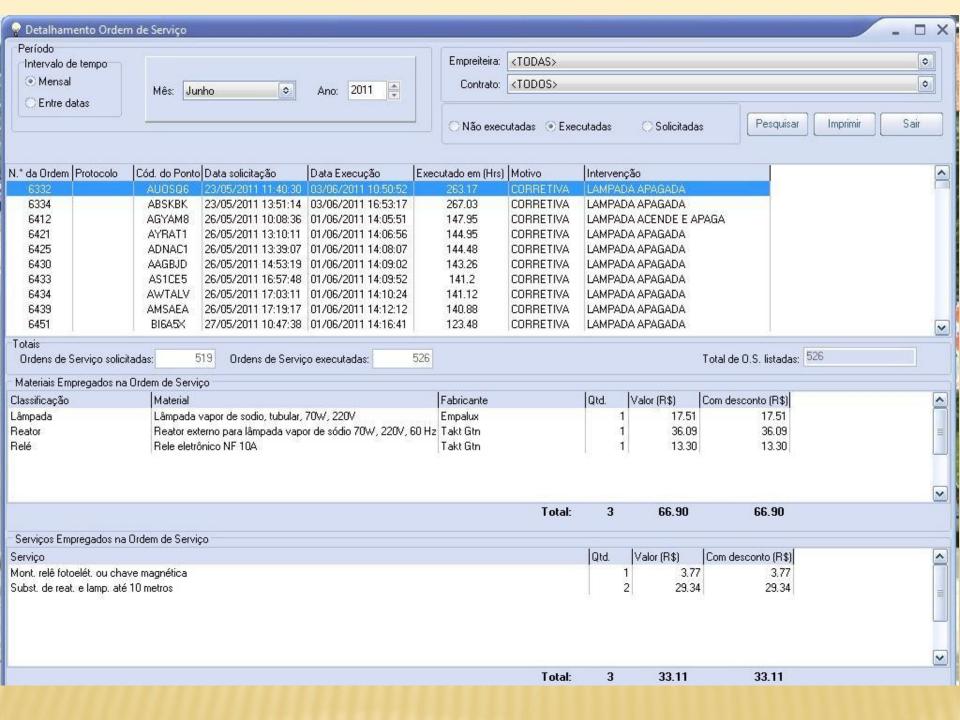
Cadastrador: Jairo Lopes

Materiais instalados:

Luminária 1

Altura Luminária: 6.50 Fab.: Genérico

Braço: Braço em aço galvanizado a fogo, D49x3000mm Fab.: Ilumatel Comando: Individual Fab.: Genérico


Conector: Conector cunha de baixa tensão tipo A Fab.: Intelli Lâmpada: Lâmpada vapor de sódio, tubular, 150W, 220V Fab.: Sylvania Luminária: Luminária Tipo LM3 com Lâmpada de 150W a 400W Braço - BR02 Fab.: Hidrowatt

Reator: Reator externo para lâmpada vapor de sódio 150W, 220V, 60 Hz Fab.: QS

Relé: Rele eletrônico NF 10A Fab.: Takt Gtn

VANTAGENS DA UTILIZAÇÃO DE SISTEMA DE GEOREFERENCIAMENTO DA IP

- Levantamento do parque de IP existente
- Facilidade na localização de pontos defeituosos
- Histórico de intervenções e vinculação de material aplicado ao ponto luminoso

ESPECIFICAÇÃO PARA CONTRATAÇÃO DE EMPRESA PARA CADASTRO E GEOREFERENCIAMENTO

- x Lei 8.666/93 Normas para licitações e contratos da administração pública
 - + Duração dos contratos limitada a 60 meses
 - + Disponibilização de software / inventário para contratante ao término da vigência do contrato

DIFICULDADES PARA REALIZAÇÃO DE PROJETO DE IP

- Distância entre postes projetada para suportar rede de distribuição de energia
- Efeito "Zebramento"

MEDIÇÕES EM CAMPO

× CASO A

- Luminária LM1 aberta
- Braço BR1
- Lâmpada Vapor de Sódio 70W
- × 5700 lm

× CASO B

- Luminária de Alto Rendimento
- Braço BR2 1,80m
- Lâmpada de Vapor de Sódio 100W
- × 9000 lm

MEDIÇÕES EM CAMPO

- × Caso C
 - + Luminárias de Alto Rendimento
 - + Pista de Rolamento com Lâmpada VM de 250W
 - + Calçadas com Lâmpadas VM de 150W

MEDIÇÕES EM CAMPO

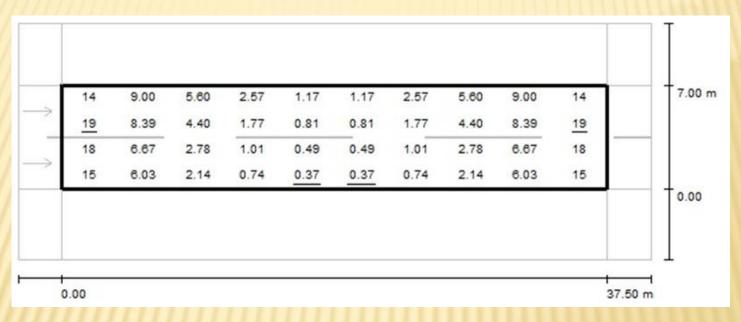
- * Medidas ao nível do solo
- × 4 medidas perpendicularmente à via
- × 10 pontos entre postes

SOFTWARES DE CÁLCULOS LUMINOTÉCNICOS

- Softwares de Simulação de Iluminação
 - + Dialux
 - + LuxIEP
 - + Relux
 - + Calculux
- Parâmetros a serem inseridos
 - + Tipo de revestimento
 - + Distância entre pontos de medida
 - + Modelo de luminária
 - + lâmpada utilizadas
 - + Posição da luminária (Altura/Ângulo de instalação/Avanço)

COMPARATIVO - CASO A: MEDIDO

Distância	Distância Longitudinal									
Transversal	0 m	3,75m	7,5m	11,25m	15,0m	18,75m	22,5m	26,25m	30,0m	33,75m
1,4m	12,8	8,7	4,7	2,6	1,6	1,3	1,6	2,9	6,2	9,6
2,8m	12,0	8,1	5,2	3,3	1,8	1,5	1,5	3,5	6,3	9,5
4,2m	9,4	7,3	4,7	3,2	1,9	1,5	1,6	3,5	5,8	7,6
5,6m	6,5	5,6	3,9	2,9	2,0	1,5	1,6	3,5	4,0	5,4

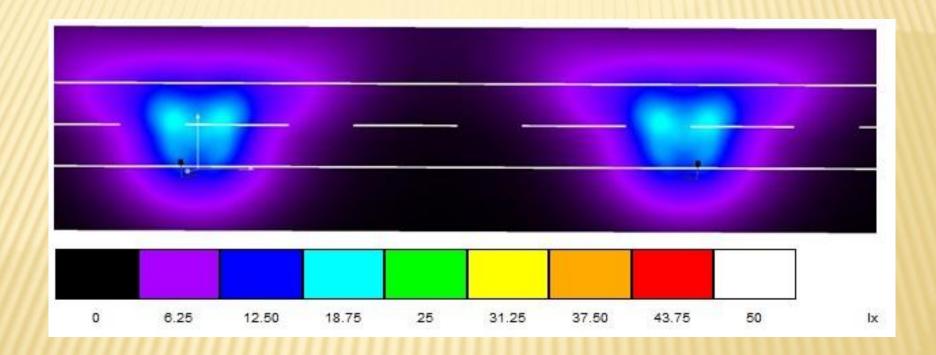

Emin = 1,3 lux

Emax = 12,8 lux

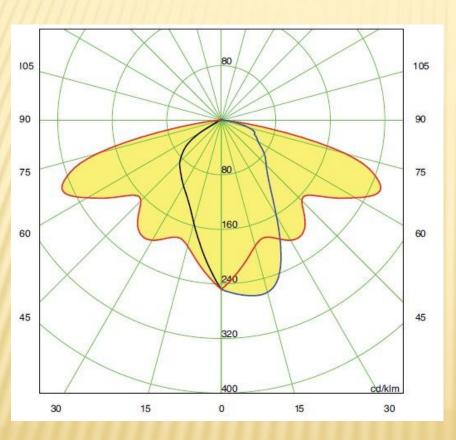
Emed = 4.7 lux

Emin / Emed = 0.28

COMPARATIVO - CASO A: SIMULADO


Emin = 0.37 lux

Emax = 19 lux


Emed = 5,97 lux

Emin / Emed = 0.06

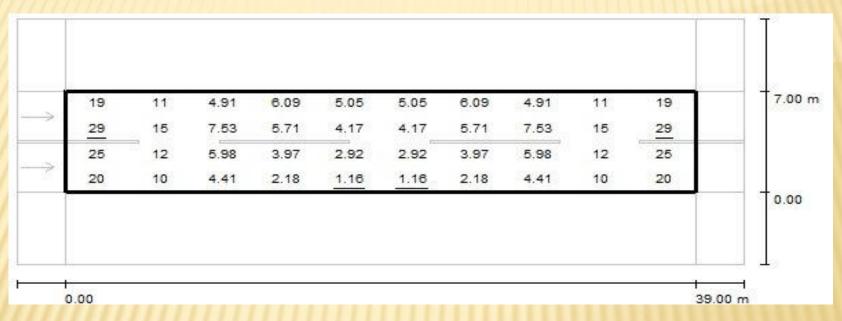
CORES FALSAS - DIALUX: CASO A

CASO B: CURVA DE DISTRIBUIÇÃO LUMINOSA

- * Lâmpada 100W 9000Lm
 - + A 45 graus
 - \times 160 x 9 = 1440 cd

COMPARATIVO - CASO B: MEDIDO

Distância	Distância Longitudinal									
Transversal	0 m	3,9m	7,8m	11,7m	15,6m	19,5m	23,4m	27,3m	31,2m	35,1m
1,4m	28,2	23,5	11,2	8,3	4,1	3,1	3,6	4,7	9,7	17,1
2,8m	25,8	23,7	9,0	7,3	4,4	3,5	4,4	5,5	11,7	21,4
4,2m	19,6	13,9	6,9	6,5	4,1	4,0	4,5	5,2	11,7	17,7
5,6m	11,7	9,6	5,7	4,7	3,6	3,5	3,7	4,1	7,4	11,6

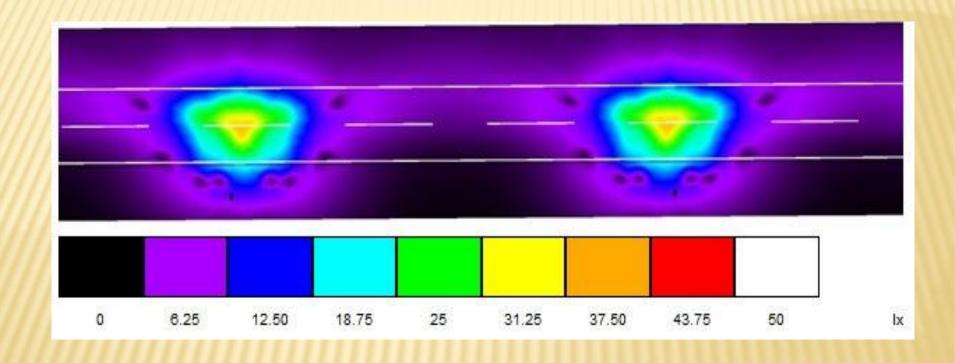

Emin = 3.1 lux

Emax = 28,2 lux

Emed = 9,75 lux

Emin / Emed = 0.32

COMPARATIVO - CASO B: SIMULADO


Emin = 1,16 lux

Emax = 29 lux

Emed = 9,77 lux

Emin / Emed = 0,12

CORES FALSAS - DIALUX: CASO B

AUMENTO DE POTÊNCIA X MELHORIA - MEDIDO

- × Aumento de 42,9% da potência
- Substituição de luminárias
- × Resultou em:
 - + Melhora de 138,5% na Iluminância mínima
 - + Melhora de 120,3% na Iluminância máxima
 - + melhora de 107,4% na Iluminância média

SUGESTÕES DE TRABALHOS FUTUROS

- * Plano diretor de IP
- Desenvolvimento de sistema para operar em aparelhos GPS convencionais
- Utilização de luminárias LED
- × Iluminação de calçadas

CONCLUSÃO

- Foi possível auxiliar na especificação de sistemas de IP
- Georreferenciamento é uma ferramenta poderosa que facilita os trabalhos e a gestão de sistemas de IP
- Utilização de ferramentas de cálculos luminotécnicos auxilia no projeto se bem parametrizada

Obrigado!

diogoes@gmail.com (41)9941-6321