Processamento Digital de Sinais
TE072 e TE810 - versão 1.0.4

Prof. Dr. Marcelo de Oliveira Rosa

19 de março de 2007
Resumo

Este documento é uma apostila do curso de processamento digital de sinais ministrado em graduação e pós-graduação. De acordo com as qualificações da turma, capítulos poderão ser supridos, assim como algumas demonstrações ao longo do documento.

Este é um trabalho inicial, e sofrerá muitas revisões ao longo dos anos. Qualquer comentário, dúvida, críticas e correções, favor contacte-me pelo email.

Prof. Marcelo de Oliveira Rosa
Sumário

1 Introdução  

2 Seqüências e Sistemas  
2.1 Seqüências discretas  
2.2 Seqüências e operações básicas  
2.2.1 Reflexão  
2.2.2 Deslocamento (em avanço ou atraso)  
2.2.3 Soma e produto de duas seqüências  
2.2.4 Produto de valor por seqüência  
2.2.5 Seqüências par e ímpar  
2.2.6 Seqüência impulso unitário  
2.2.7 Seqüência degrau unitário  
2.2.8 Seqüência exponencial  
2.3 Sistemas discretos  
2.3.1 Sistemas lineares  
2.3.2 Sistemas invariantes no tempo  
2.3.3 Causalidade  
2.3.4 Estabilidade  
2.3.5 Sistemas lineares invariantes no tempo  
2.3.6 Propriedades de sistemas lineares invariantes no tempo  
2.3.7 Equações de diferenças lineares com coeficientes constantes  

3 Seqüências no Domínio da Frequência  
3.1 Preliminares  
3.2 Autofunção  
3.3 Transformada de Fourier Discreta no Tempo  
3.3.1 Existência da DFT  
3.3.2 Propriedades da DFT  

4 Teoria da Amostragem  

ii
<table>
<thead>
<tr>
<th>Capítulo</th>
<th>Título</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td><strong>Transformada Z</strong></td>
<td>79</td>
</tr>
<tr>
<td>5.1</td>
<td>Preliminares</td>
<td>79</td>
</tr>
<tr>
<td>5.2</td>
<td>Definição</td>
<td>81</td>
</tr>
<tr>
<td>5.3</td>
<td>Existência da Transformada Z</td>
<td>83</td>
</tr>
<tr>
<td>5.4</td>
<td>Causalidade e Estabilidade</td>
<td>90</td>
</tr>
<tr>
<td>5.5</td>
<td>Transformada Inversa de Z</td>
<td>91</td>
</tr>
<tr>
<td>5.5.1</td>
<td>Teoria de Resíduos</td>
<td>93</td>
</tr>
<tr>
<td>5.5.2</td>
<td>Frações Parciais</td>
<td>97</td>
</tr>
<tr>
<td>5.5.3</td>
<td>Expansão em Série de Potências</td>
<td>100</td>
</tr>
<tr>
<td>5.6</td>
<td>Propriedades da Transformada Z</td>
<td>102</td>
</tr>
<tr>
<td>6</td>
<td><strong>Análise de Sistemas Lineares Invariantes no Tempo</strong></td>
<td>111</td>
</tr>
<tr>
<td>6.1</td>
<td>Magnitude e Fase</td>
<td>111</td>
</tr>
<tr>
<td>6.2</td>
<td>Estabilidade e Causalidade</td>
<td>114</td>
</tr>
<tr>
<td>6.3</td>
<td>Sistemas Inversos</td>
<td>116</td>
</tr>
<tr>
<td>6.4</td>
<td>Resposta em Freqüência para Sistemas baseados em Funções Racionais</td>
<td>119</td>
</tr>
<tr>
<td>6.5</td>
<td>Sistemas Passa-Tudo</td>
<td>122</td>
</tr>
<tr>
<td>6.6</td>
<td>Sistemas de Mínima Fase</td>
<td>125</td>
</tr>
<tr>
<td>6.6.1</td>
<td>Propriedade de fase mínima</td>
<td>127</td>
</tr>
<tr>
<td>6.6.2</td>
<td>Propriedade de energia mínima</td>
<td>128</td>
</tr>
<tr>
<td>6.7</td>
<td>Sistemas de Fase Linear</td>
<td>130</td>
</tr>
<tr>
<td>6.7.1</td>
<td>Fase linear generalizada</td>
<td>131</td>
</tr>
<tr>
<td>7</td>
<td><strong>Transformada Discreta de Fourier (incompleto)</strong></td>
<td>134</td>
</tr>
<tr>
<td>8</td>
<td><strong>Filtros Digitais (incompleto)</strong></td>
<td>135</td>
</tr>
</tbody>
</table>
Capítulo 1

Introdução

Introdução
Capítulo 2

Seqüências e Sistemas

Primeiramente vamos definir o que é um sinal e um sistema. Intuitivamente, um sistema é o elemento que recebe e produz sinais, e sinais são simplesmente seqüências de números que guardam alguma relação entre si.

Definição de SINAL: É uma função que “carrega” informações sobre o estado ou comportamento do SISTEMA.

Definição de SISTEMA: Conjunto de elementos interconectados que relacionam-se entre si.

Os sistemas podem ser classificados em:

- **CONTÍNUOS**: entrada e saída são CONTÍNUOS no tempo.

- **DISCRETOS**: entrada e saída são DISCRETOS no tempo.

Também podem ser classificados em:

- **ANALÓGICOS**: entrada e saída são ANALÓGICOS.

- **DIGITAIS**: entrada e saída são DIGITAIS.

Qual a diferença entre DISCRETOS e DIGITAIS? A diferença está na forma pelo qual as amostras (variável dependente) são consideradas.
Figura 2.1: Exemplo de sinal contínuo, e sequências discreta e digital

- Sinal **CONTÍNUO**: contínuo no **TEMAPO** e na **AMPLITUDE**.
- Seqüência **DISCRETA**: contínua na **AMPLITUDE** e discreta no **TEMAPO**.
- Seqüência **DIGITAL**: discreta na **AMPLITUDE** e no **TEMAPO**.

Os sistemas são classificados de maneira análoga aos sinais/seqüências.

### 2.1 Seqüências discretas

Matematicamente, uma seqüência discreta corresponde a uma conjunto de números, independente do domínio a qual cada número pertence. Também podemos relacionar seqüência discreta com uma série de números.

Representamos uma seqüência \( x \) por:

\[
x = \{x[n]\}, \quad \forall n | n \in \mathbb{Z}, \text{ ou } -\infty < n < +\infty
\]

(2.1)

**Exemplo:**
Segue a representação gráfica das sequências. É importante frisar que entre dois instantes \( n_1 \) e \( n_2 \), quaisquer, não existe definição matemática para a sequência.

\[
x_0 = \left\{ 1, 3, \frac{1}{3}, \sqrt{2}, 7, \ldots \right\}
\]

\[
x_1 = \{ \ldots, -3, 4, -3, 4, -3, 4, \ldots \}
\]

\[
x_2 = \left\{ -j, 3 + \sqrt{2}j, \sqrt{2} - 3j, 0 \right\}
\]

Figura 2.2: Representação gráfica de uma sequência discreta qualquer

Lembre-se sempre:

\( n \) é o índice da sequência \( \implies \text{NÃO É TEMPO.} \)

\( n \) é um valor inteiro.
Figura 2.3: Verificação de inexistência de amostras entre amostras sucessivas

Em situações práticas, as sequências são obtidas a partir de sinais analógicos que são AMOSTRADOS em intervalos fixos de tempo (chamados períodos de T segundos).
Assim temos:

\[ y[n] = x_a(nT) \]  \hspace{1cm} (2.2)

onde \( x_a \) é o sinal analógico e \( T \) é o período de AMOSTRAGEM.

Note que usamos \([\cdot]\) para sequências e \((\cdot)\) para sinais ou funções contínuas.

2.2 Seqüências e operações básicas

Descreveremos nesta seção as principais sequências usadas em processamento digital de sinais, bem como as operações básicas realizadas entre diferentes sequências.

2.2.1 Reflexão
Assumindo \( x[n] \) qualquer, o seu “reflexo” é definido:

\[ x[n] = x[-n], \quad \forall n \in \mathbb{Z} \]  \hspace{1cm} (2.3)
Representação gráfica:

![Diagrama 1](image1)

![Diagrama 2](image2)

Figura 2.4: Seqüência original  Figura 2.5: Seqüência refletida

Imagine a música de um LP ou de uma fita cassette sendo reproduzido de trás para frente.

2.2.2 Deslocamento (em avanço ou atraso)

Assumindo $x[n]$ qualquer, sua versão atrasada é definido por:

$$y[n] = x[n - n_d], \quad n_d \in \mathbb{Z} \quad \forall n | n \in \mathbb{Z}$$

(2.4)

Representação gráfica:

![Diagrama 3](image3)

![Diagrama 4](image4)

Figura 2.6: Seqüência original  Figura 2.7: Seqüência deslocada

Este é a seqüência que pode ser usado para representar eco. O eco é um som semelhante ao som original que aparece alguns segundos após a emissão do
som original. Este “alguns” segundos representam o deslocamento (atraço) no tempo.

Se \( n_d > 0 \), ocorre o atraso, e se \( n_d < 0 \), ocorre o avanço, ambos no TEMPO discreto. É sempre importante lembrar que o tempo discreto é na verdade um índice numérico (inteiro) que referencia uma determinada amostra da sequência.

### 2.2.3 Soma e produto de duas sequências

Assumindo \( x[n] \) e \( y[n] \) quaisquer, a soma e o produto dessas sequências é definida, respectivamente, por:

\[
\begin{align*}
  s[n] &= x[n] + y[n], \quad \forall n \in \mathbb{Z} \\
  s[n] &= x[n] \cdot y[n], \quad \forall n \in \mathbb{Z}
\end{align*}
\]

(2.5) (2.6)

Note que as operações soma e produto são feitas AMOSTRA A AMOSTRA.

### 2.2.4 Produto de valor por sequência

Assumindo \( x[n] \) e \( \alpha \), quaisquer, o produto de \( \alpha \) pela sequência é definida por:

\[
y[n] = \alpha \cdot x[n]
\]

(2.7)

Note que TODAS as amostras da sequência são multiplicadas por \( \alpha \).

### 2.2.5 Sequências par e ímpar

Assumindo \( x[n] \) qualquer, é dito que \( x[n] \) é par se, e somente se:

\[
x[n] = x[-n]
\]

(2.8)

e ímpar se, e somente se:

\[
x[n] = -x[-n]
\]

(2.9)
Representação gráfica:

Figura 2.8: Sequência par
Figura 2.9: Sequência ímpar

Propriedade:
Assuma $x[n]$ qualquer, com $x[n] \in \mathbb{C}$. Podemos decompor qualquer sequência em uma parte par e outra parte ímpar através da relação:

$$
x[n] = x_p[n] + x_i[n]
$$

$$
x_p[n] = \frac{1}{2} \{ x[n] + x^*[−n] \}
$$

$$
x_i[n] = \frac{1}{2} \{ x[n] - x^*[−n] \}
$$

(2.10)

Exemplo:
Figura 2.10: Seqüências qualquer a ser decomposta

Figura 2.11: Porções par e ímpar, respectivamente, de uma dada sequência

**Lembrete:** Em funções contínuas, a função **PAR** é definida por $f(x) = f(-x)$ e a função **ÍMPAR** é definida por $f(x) = -f(-x)$.

- $f(x) = x^2$ e $f(x) = \cos(x)$ são funções **PARES**
- $f(x) = x^3$ e $f(x) = \sin(x)$ são funções **ÍMPARES**
2.2.6 Seqüência impulso unitário

A seqüência impulso unitário é definida por:

\[ \delta[n] = \begin{cases} 0, & n \neq 0 \\ 1, & n = 0 \end{cases} \]  \hspace{1cm} (2.11)

A seqüência impulso unitário tem função análoga no domínio discreto àquela que o Delta de Dirac tem para o domínio contínuo, sem as mesmas restrições matemáticas.

Definição do delta de Dirac:

\[ \delta(x) = \begin{cases} \infty, & t = 0 \\ 0, & t \neq 0 \end{cases} \]

\[ \int_{-\infty}^{+\infty} \delta(x) \, dx = 1 \]  \hspace{1cm} (2.12)

\[ \int_{-\infty}^{+\infty} \delta(x) f(x) \, dx = f(0) \]

Representação gráfica:

Figura 2.12: Seqüência impulso unitário
Propriedades:

Podemos decompor qualquer sequência em um somatório ponderada de
sequências impulsos unitários deslocados no tempo

Exemplo:

Seja

\[ x[n] = \{3, 2, 0, 5, 2, 3, 3\} \]

indexado por

\[ n = \{-2, -1, 0, 1, 2, 3, 4\}, \]

então

\[ x[n] = 3 \delta[n + 2] + 2 \delta[n + 1] + 0 \delta[n] + 5 \delta[n - 1] + \\
+ 2 \delta[n - 2] + 3 \delta[n - 3] + 2 \delta[n - 4]. \]

Genericamente podemos definir a decomposição de uma sequência \( x[n] \)
qualquer através do seguinte somatório:

\[ x[n] = \sum_{k=-\infty}^{+\infty} x[k] \delta[n - k] \quad (2.13) \]

Esta decomposição será útil quando tratarmos de resposta ao impulso de
um dado sistema.

2.2.7 Seqüência degrau unitário

A sequência degrau unitário é definida por:

\[ u[n] = \begin{cases} 
1, & n \geq 0 \\
0, & n < 0 
\end{cases} \quad (2.14) \]

A sequência degrau é equivalente a uma chave que é subitamente ligada
no instante \( n = 0 \).
Representação gráfica:

![Graph](image)

Figura 2.13: Sequência impulso unitário

Como já sabemos, podemos definir qualquer sequência usando uma somatória ponderada de sequências impulsos deslocados no tempo. Assim, a sequência impulso é descrito por:

\[
u[n] = \delta[n] + \delta[n - 1] + \delta[n - 2] + \cdots
\]

\[
u[n] = \sum_{k=0}^{+\infty} \delta[n - k]
\]  

(2.15)

Se considerarmos

\[
u[n] - u[n - 1] = \delta[n] + \delta[n - 1] + \delta[n - 2] + \cdots
\]

\[ - \delta[n - 1] - \delta[n - 2] - \cdots
\]

\[= \delta[n]
\]  

(2.16)

Ou seja, a “derivada” (diferença à trás) de \( u[n] \) (degrau unitário) é \( \delta[n] \) (impulso unitário).

Mas,

\[
u[n] = \sum_{k=-\infty}^{n} \delta[k]
\]  

(2.17)
**Exemplo:**

\[ u[-2] = \cdots + \delta[-4] + \delta[-3] + \delta[-2] = 0 \]
\[ u[0] = \cdots + \delta[-3] + \delta[-2] + \delta[-1] + \delta[0] = 1 \]
\[ u[3] = \cdots + \delta[-1] + \delta[0] + \delta[1] + \delta[2] + \delta[3] = 1 \]

*Ou seja, \( u[n] \) é a soma acumulada de impulsos em \( n \).*

### 2.2.8 Seqüência exponencial

Possui a forma:

\[ x[n] = A \cdot \alpha^n \]  \hspace{1cm} (2.18)

Se \( A, \alpha \in \mathbb{R} \) então \( x[n] \in \mathbb{R} \).

**Representação gráfica:**

Figura 2.14: Seqüências exponenciais monotonicamente decrescentes e crescentes \( x[n] = 0,5^n \) e \( x[n] = 1,5^n \)
Figura 2.15: Sequência decrescente e crescente alternada \( x[n] = (-0,5)^n \) e \( x[n] = (-1,5)^n \)

Figura 2.16: Sequência contínua ou alternada \( x[n] = 1^n \) e \( x[n] = (-1)^n \)

E o que acontece se \( A \) e \( \alpha \) forem complexos? Decompondo \( A \) e \( \alpha \) em coordenadas polares, temos:

\[
A = |A| \ e^{j\phi} \quad \alpha = |\alpha| \ e^{j\omega_0}
\]

Então

\[
x[n] = A \cdot \alpha^n = |A| \ |\alpha|^n \ e^{j(w_0 n + \phi)}
\]

Da relação de Euler, temos:

\[
e^{j\theta} = \cos \theta + j \sin \theta \\
e^{-j\theta} = \cos \theta - j \sin \theta
\]  (2.19)

Aplicando tal relação, reescrevemos \( x[n] \) e obtemos:

\[
x[n] = |A| \ |\alpha|^n \ \cos(w_0 n + \phi) + j |A| |\alpha|^n \ \sin(w_0 n + \phi)
\]
onde:

\[ w_0 \rightarrow \text{frequência da exponencial complexa} \]
\[ \phi \rightarrow \text{fase da exponencial complexa} \]

**Propriedades importantes:**

Se tivermos um sinal contínuo \( x(t) \) de onde extraímos \( x[n] \) (posteriormente trataremos de teoria da amostragem onde será determinada a melhor maneira de definir uma sequência a partir de um sinal contínuo).

\[
x(t) = |A| |\alpha|^t \cos(w_0 t + \phi) + j |A| |\alpha|^t \sin(w_0 t + \phi)
\]

Assim, para qualquer sinal exponencial complexo contínuo, temos:

1. aumentando \( w_0 \), aumentamos a frequência de oscilação de \( x(t) \).
2. \( x(t) \) é periódico para todo \( w_0 \).

Para sinais discretos temos podemos verificar o efeito do aumento da frequência complexa em \( 2\pi \) radianos:

\[
x[n] = |A| |\alpha|^n e^{j(w_0+2\pi)n+\phi}
\]
\[
= |A| |\alpha|^n e^{jw_0n+\phi} e^{j2\pi n}
\]
\[
= |A| |\alpha|^n e^{jw_0n+\phi}
\]

pois

\[ e^{j2\pi n} = \cos(2\pi n) + j \sin(2\pi n) = 1 + j0 = 1 \]

Genericamente,

\[
x[n] = |A| |\alpha|^n e^{j(w_0+2\pi r)n+\phi}
\]
\[
= |A| |\alpha|^n e^{jw_0n+\phi} e^{j2\pi n}
\]
\[
= |A| |\alpha|^n e^{jw_0n+\phi}
\]

para \( r \in \mathbb{Z} \).

**Exemplo:**

Considerre a função contínua \( x(t) = \cos(w_0 t) \) e sua “versão” discreta \( x[n] = \cos(w_0 n) \). Ambas serão representadas gráficamente com diversas frequências \( w_0 \) para avaliarmos seu comportamento oscilatório.
Figura 2.17: Seqüências e funções contínuas exponenciais reais para $w_0 = 0$ e $w_0 = \pi/4$

Figura 2.18: Seqüências e funções contínuas exponenciais reais para $w_0 = \pi/2$ e $w_0 = \pi$

Figura 2.19: Seqüências e funções contínuas exponenciais reais para $w_0 = 3\pi/2$ e $w_0 = 7\pi/4$
Figura 2.20: Seqüência e função contínua exponenciais reais para \( w_0 = 2\pi \)

Analisando o comportamento da seqüência discreta em função da frequência \( w_0 \) (conforme fizemos para o sinal contínuo), observamos que quando \( w_0 \rightarrow 2\pi r \), a seqüência discreta possui baixa frequência de oscilação, e quando \( w_0 \rightarrow \pi r \), a seqüência discreta possui com alta frequência de oscilação (curva em azul). Note que na função contínua, o aumento de \( w_0 \) sempre provoca aumento da oscilação (curva em vermelho).

Pelo fato de que a cada período de \( 2\pi \) radianos encontramos uma repetição do padrão da curva discreta contida no período \([0, 2\pi]\), podemos avaliar a oscilação da curva apenas nesse intervalo, extrapolando os valores fora deste intervalo.

Quanto a periodicidade, sabemos que um sinal exponencial complexo contínuo tem período igual a \( 2\pi / f \). Em sinais discretos, trabalhamos com instantes \( n \) inteiros \((n \in \mathbb{Z})\), definimos que uma seqüência discreto é periódico se:

\[
x[n] = x[n + N]
\]

ou seja, existe uma quantidade \( N (N \in \mathbb{Z}) \) de amostras da seqüência \( x[n] \) que se repete indefinidamente. Assim \( N \) é o período da seqüência \( x[n] \).

Considerando uma seqüência exponencial complexa qualquer:

\[
x_1[n] = B \cos(w_0 n + \phi)
\]

E aplicando o critério de periodicidade de seqüências discretas, temos:

\[
x_1[n] = x_1[n + N] \\
B \cos(w_0 n + \phi) = B \cos(w_0 n + w_0 N + \phi)
\]
Como já vimos, a periodicidade de um sinal exponencial complexo é igual a $2\pi$. Assim, exige-se que $w_0N = 2\pi r$, ou seja:

$$\frac{w_0}{2\pi} = \frac{r}{N}$$

Logo, dependendo da frequência $w_0$ escolhida para a componente exponencial complexo da sequência discreta $x[n]$, este pode nunca ser periódico. Isto significa que existem:

$$w_r = \frac{2\pi r}{N}, \quad r = 0, 1, \ldots, N - 1$$

freqüências cujas sequências são periódicas com período $N$, pois $w_0$ e $w_0 + 2\pi r$ são não-distintas e produzem as mesmas sequências exponenciais complexas.

**Exemplo:**

Seja:

$$x[n] = \cos \left( \frac{\pi}{6} n \right)$$

Como

$$w_0 = \frac{\pi}{6} \implies w_0 = \frac{\pi/6}{2\pi} = \frac{1}{12} = \frac{r}{N}$$

Então são necessárias $N = 12$ amostras para representar $r = 1$ ciclos completos de $x[n]$.

Figura 2.21: Sequências discreta periódica com $N = 12$ e $r = 1$
Seja:

\[ x[n] = \cos \left( \frac{4\pi}{7} n \right) \]

Como

\[ w_0 = \frac{4\pi}{7} \implies w_0 = \frac{4\pi/7}{2\pi} = \frac{2}{7} = \frac{r}{N} \]

Então são necessárias \( N = 7 \) amostras para representar \( r = 2 \) ciclos completos de \( x[n] \).

Figura 2.22: Sequências discreta periódica com \( N = 7 \) e \( r = 2 \)

Seja:

\[ x[n] = \cos \left( \frac{n}{2} \right) \]

Como

\[ w_0 = \frac{1}{2} \implies w_0 = \frac{1}{4\pi} = \frac{r}{N} \]

Então \( r/N \notin \mathbb{Q} \) e \( x[n] \) não é periódico.
Podemos considerar que o período fundamental de uma sequência exponencial complexa é definida por:

\[ N = r \frac{2\pi}{w_0} \]

### 2.3 Sistemas discretos

Definido matematicamente como a transformação (ou mapeamento) de uma sequência de entrada \( x[n] \) em uma sequência de saída \( y[n] \).

\[ y[n] = T \{ x[n] \} \quad (2.20) \]

---

**Exemplo:**

**Sistema em atraso ideal**

\[ y[n] = x[n - n_d], \quad n_d \in \mathbb{Z} \]

**Sistema média móvel**

\[ y[n] = \frac{1}{M_1 + M_2 + 1} \sum_{k=-M_1}^{M_2} x[n - k] \]
Sistema sem memória (depende apenas da n-ésima amostra)

\[ y[n] = (x[n])^2, \quad \forall n | n \in \mathbb{Z} \]

\section*{2.3.1 Sistemas lineares}

São sistemas que obedecem ao \textbf{PRINCÍPIO DE SUPERPOSIÇÃO}. Tal princípio é baseado em outros dois princípios, a saber:

- Princípio da aditividade (ou soma): Seja \( x_1[n] \) e \( x_2[n] \) duas sequências quaisquer, com \( y_1[n] = T \{ x_1[n] \} \) e \( y_2[n] = T \{ x_2[n] \} \). Logo,

\[ T \{ x_1[n] + x_2[n] \} = T \{ x_1[n] \} + T \{ x_2[n] \} = y_1[n] + y_2[n] \]

- Princípio da homogeneidade (ou escala): Seja \( x[n] \) uma sequência qualquer, com \( y[n] = T \{ x[n] \} \) e a um valor qualquer, tal que \( a \in \mathbb{C} \). Logo,

\[ T \{ a \cdot x[n] \} = a \cdot T \{ x[n] \} = a \cdot y[n] \]

Combinando os dois princípios, temos:

\[ T \{ a \cdot x_1[n] + b \cdot x_2[n] \} = a \cdot T \{ x_1[n] \} + b \cdot T \{ x_2[n] \} = a \cdot y_1[n] + b \cdot y_2[n] \]

O princípio da superposição, que define um sistema linear, pode ser generalizado para múltiplas sequências de entrada \( x_k[n] \) e de saída \( y_k[n] \) através de:

\[ x[n] = \sum_k a_k \cdot x_k[n] \implies y[n] = \sum_k a_k \cdot y_k[n] \quad (2.21) \]

\textit{Exemplo:}

Seja o sistema acumulador definido por:

\[ y[n] = \sum_{k=-\infty}^{n} x[k] \]

Efetivamente somamos todas as amostras até a amostra atual \( n \). Para testar se ele é ou não linear, consideramos duas respostas ao acumulador.
definidas por:

\[
y_1[n] = \sum_{k=-\infty}^{n} x_1[k]
\]

\[
y_2[n] = \sum_{k=-\infty}^{n} x_2[k]
\]

Vamos considerar agora uma nova entrada pela combinação linear das entradas \(x_1[n]\) e \(x_2[n]\), definida por:

\[
x_3[n] = ax_1[n] + bx_2[n]
\]

Então,

\[
y_3[n] = \sum_{k=-\infty}^{n} x_3[n] = \sum_{k=-\infty}^{n} \{ax_1[n] + bx_2[n]\} = a \left\{ \sum_{k=-\infty}^{n} x_1[n] \right\} + b \left\{ \sum_{k=-\infty}^{n} x_2[n] \right\} = ay_1[n] + by_2[n]
\]

Logo o sistema acumulador é linear.

Agora, seja um sistema sem memória definido por:

\[
y[n] = \{x[n]\}^2
\]

Assim, as saídas para duas sequências quaisquer, \(x_1[n]\) e \(x_2[n]\) são, respectivamente, definidas por:

\[
y_1[n] = \{x_1[n]\}^2
\]

\[
y_2[n] = \{x_2[n]\}^2
\]

Novamente vamos considerar agora uma nova entrada pela combinação linear das entradas \(x_1[n]\) e \(x_2[n]\), definida por:

\[
x_3[n] = ax_1[n] + bx_2[n]
\]

Então,

\[
y_3[n] = \{x[n]\}^2 = \{ax_1[n] + bx_2[n]\}^2 = a^2 \{x_1[n]\}^2 + 2ab x_1[n] x_2[n] + b^2 \{x_2[n]\}^2 = a^2 y_1[n] + 2ab x_1[n] x_2[n] + b^2 y_2[n]
\]
Logo, este sistema sem memória **não é linear**, pois esperava-se que:

\[ y_3[n] = a \, y_1[n] + b \, y_2[n] \]

Finalmente, seja um sistema sem memória definido por:

\[ y[n] = \log_{10}(|x[n]|) \]

Usando como entrada duas sequências distintas (e constantes), ou seja:

\[ \begin{align*}
  x_1[n] & = 1 \\
  x_2[n] & = 10
\end{align*} \]

Obtemos:

\[ \begin{align*}
  y_1[n] & = 0 \\
  y_2[n] & = 1
\end{align*} \]

Se tal sistema fosse linear, sendo \( x_2[n] = 10 \cdot x_1[n] \), deveríamos obter \( y_2[n] = 10 \cdot y_1[n] \), pela propriedade da homogeneidade. Como isso não ocorreu, tal sistema **não é linear**.

---

### 2.3.2 Sistemas invariantes no tempo

É o sistema para o qual um deslocamento na sequência de entrada em \( n_0 \) amostras provoca um deslocamento equivalente na sequência de saída de \( n_0 \) amostras. Ou seja:

\[ \begin{align*}
  & \text{Se } x_1[n] = x_0[n - n_0] \\
  \text{Então } & y_1[n] = T \{ x[n] \} = y_0[n - n_0], \quad \forall n | n \in \mathbb{Z} \quad (2.22)
\end{align*} \]

**Exemplo:**

Seja o sistema acumulador definido por:

\[ y[n] = \sum_{k=-\infty}^{n} x[k] \]

Assumindo uma sequência de entrada \( x_0[n] = x[n - n_0] \), para \( n_0 \in \mathbb{Z} \), temos:

\[ \begin{align*}
  y_0[n] & = \sum_{k=-\infty}^{n} x_0[k] \\
  & = \sum_{k=-\infty}^{n} x[k - n_0]
\end{align*} \]
Truncando variáveis \((k_0 = k - n_0)\) e atualizando os intervalos do somatório (para \(k = \infty\) temos \(k_0 = \infty - n_0 = \infty\), e para \(k = n\) temos \(k_0 = n - n_0\)), obtemos:

\[
y_0[n] = \sum_{k_0=-\infty}^{n-n_0} x[k_0]
= y[n - n_0]
\]

Logo, o **sistema acumulador é invariante no tempo**.

Agora, seja o sistema acumulador definido por:

\[
y[n] = x[M \cdot n], \quad m \in \mathbb{Z}_+
\]

Tal sistema basicamente desarma \(M-1\) amostras a cada \(M\) amostras da sequência de entrada. Para uma entrada \(x_0[n]\) tal que:

\[
x_0[n] = x[n - n_0]
\]

Obtemos com resposta do sistema a sequência \(y_0[n]\) tal que:

\[
y_0[n] = x_0[M \cdot n] = x[M \cdot n - n_0]
\]

Entretanto, se atrasarmos a saída do sistema em \(n_0\) amostras, obtemos:

\[
y[n - n_0] = x[M \cdot (n - n_0)] \neq y_0[n]
\]

Logo, o **sistema compressor não é invariante no tempo**.

---

### 2.3.3 Causalidade

Um sistema é ditó **causal** se sua saída para um instante \(n_0\), \(\forall n_0|n_0 \in \mathbb{Z}\), depende somente das amostras \(n\), tal que \(n \leq n_0\), da sequência de entrada. Tal sistema também é conhecido por ser não antecipativo.

Um sistema causal é um sistema que pode ser implementado em problemas de tempo real, pois o cálculo da amostra no instante \(n_0\), jamais dependerá de alguma informação da(s) sequência(s) de entrada em algum instante \(n_1 > n_0\).

**Exemplo:**

O sistema diferença à frente (forward difference), definido por:

\[
y[n] = x[n + 1] - x[n]
\]
não é causal, pois depende de informação de \( x[n] \) no instante \( n + 1 \).

 Já o sistema diferença a trás (backward difference), definido por:

\[
y[n] = x[n] - x[n - 1]
\]

é causal.

Para o sistema compressor, definido por:

\[
y[n] = x[M \cdot n]
\]

não é causal se \( M > 1 \). Note que a causalidade, neste caso, é condicional a algum parâmetro do sistema (no caso, \( M \)).

---

2.3.4 Estabilidade

Um sistema é dito **estável** se para qualquer sequência de entrada “limitada” (ou seja, nenhuma amostra é infinita), a sequência de saída também será “limitada”. É o conceito chamado BIBO (bounded in, bounded out).

\[
\text{Se } |x[n]| \leq B_x < \infty \\
\text{Então } |y[n]| \leq B_y < \infty, \quad \forall n | n \in \mathbb{Z} \tag{2.23}
\]

onde \( y[n] = T \{x[n]\} \), e \( B_x \) e \( B_y \) são limites superiores diferentes de \( \infty \).

**Exemplo:**

Seja o sistema definido por:

\[
y[n] = \{x[n]\}^2
\]

Assumindo uma sequência qualquer \( x_0[n] \) tal que \( |x_0[n]| \leq B_{x_0} < \infty \) e aplicando o critério de estabilidade, temos:

\[
|y_0[n]| = |\{x_0[n]\}^2| = |x_0[n]|^2 = B_{x_0}^2 = B_{y_0}
\]

Logo este sistema é **estável**.

Seja o sistema definido por:

\[
y[n] = \log_{10}(|x[n]|)
\]
Usando a sequência de entrada \( x_0[n] = 0 \), que é “limitada”, pois \(|x_0[n]| \leq B_{x_0} = 0\). Mas \( y_0[n] = \log_{10}(|x_0[n]|) = \log_{10}(0) = \infty \). Isto implica em \( B_{y_0} \not\leq \infty \).

Logo este sistema \textbf{não é estável}.

Seja o sistema acumulador definido por:

\[
y[n] = \sum_{k=-\infty}^{n} x[k]
\]

Usando a sequência de entrada \( x_0[n] = u[n] \), que é “limitada”, pois \(|x_0[n]| \leq B_{x_0} = 1\). Assim,

\[
y_0[n] = \begin{cases} 
0, & n \neq 0 \\
(n + 1), & n \geq 0
\end{cases}
\]

Assim, para \( n \to \infty \), temos \( y_0[n] \to \infty \) e \( B_{y_0} \not\leq \infty \). Logo o sistema acumulador \textbf{não é estável}.

---

2.3.5 Sistemas lineares invariantes no tempo

A ideia básica é lembrar que um sistema linear implica no conhecimento de que qualquer sequência é a combinação linear de impulsos deslocados no tempo (conforme a Equação 2.13), ou seja:

\[
x[n] = \sum_{k=-\infty}^{+\infty} x[k] \delta[n - k]
\]

Admitindo um sistema linear \( T \{\cdot\} \) qualquer e calculando a resposta desse sistema para a sequência de entrada \( x[n] \), temos:

\[
y[n] = T \{x[n]\} = T \left\{ \sum_{k=-\infty}^{+\infty} x[k] \delta[n - k] \right\}
\]

Pelo princípio da sobreposição (considerando que \( x[k] \) é uma constante em relação à variável \( n \)), temos:

\[
y[n] = \sum_{k=-\infty}^{+\infty} x[k] T \{\delta[n - k]\}
\]
Podemos definir \( h_k[n] = T \{ \delta[n - k] \} \) como a resposta do sistema \( T \{ \cdot \} \) ao impulso deslocado \( \delta[n - k] \). Assim, reescrevemos \( y[n] \) por:

\[
y[n] = \sum_{k=-\infty}^{+\infty} x[k] \ h_k[n]
\]

Note que \( h_k[n] \) depende de \( n \) e de \( k \). Ou seja, a resposta do sistema depende do deslocamento adotado para cada sinal impulso.

Assumindo agora que \( T \{ \cdot \} \) é invariante no tempo, ou seja:

\[
\begin{align*}
    h[n] & = T \{ \delta[n] \} \\
    h[n - k] & = T \{ \delta[n - k] \}
\end{align*}
\]

Então,

\[
y[n] = \sum_{k=-\infty}^{+\infty} x[k] \ T \{ \delta[n - k] \} = \\
= \sum_{k=-\infty}^{+\infty} x[k] \ h[n - k]
\]

Isto significa que um sistema linear e invariante no tempo é completamente representado por sua resposta ao impulso \( h[n] \), ou seja:

\[
y[n] = \sum_{k=-\infty}^{+\infty} x[k] \ h[n - k] \quad (2.24)
\]

é a Convolução Soma entre duas sequências, podendo ser representada por:

\[
y[n] = x[n] * h[n] \quad (2.25)
\]

Lembrete:

A convolução para funções contínuas é definida por:

\[
y(t) = \int_{-\infty}^{+\infty} x(\tau) \ h(t - \tau) \ d\tau
\]

Exemplo:

Neste exemplo, consideramos duas sequências distintas, \( x[n] \) e \( h[n] \), que serão convoluidas através do procedimento de cálculo apresentado anteriormente. Para cada iteração de \( k \) na convolução soma, uma sequência \( y_k[n] \) será produzida. Ao final, todas essas sequências \( y_k[n] \) serão somadas para que obtenhamos \( y[n] \).
Pelo exemplo, notamos que a convolução soma é resultado direto da linearidade e da invariancia no tempo, pois o resultado final é a sobreposição de diversos termos $x[k] h[n - k]$. Para tornar eficiente este cálculo, podemos calcular o resultado para cada $y[n]$ refletindo a sequência $h[n]$ e a deslocando de acordo com o índice $n$ de tempo.
Exemplo:

Neste exemplo, a sequência \( h[n] \) será refletida \((h[-n])\) e deslocada \((h[-(n-k)])\) para que possamos obter o valor de \( y[n] \) para cada \( n \) distinto. Isso evita que tenhamos de obter várias sequências antes de calcular tal amostra, como ocorre no exemplo anterior.

Figura 2.26: Procedimento de cálculo de \( y[n] \) para instantes \( n \) distintos

Finalmente, podemos obter \( y[n] \) através de um método inteiramente ana-
lítico. Tal método é dependente do modo como representamos matematicamente \( x[n] \) e \( h[n] \). Muitas vezes não é possível obter uma representação dita fechada de \( y[h] \), pois é possível que não exista uma expressão algébrica para o somatório envolvido na convolução soma.

\[
\text{Exemplo:}
\]

Seja uma sequência \( x[n] \) e uma resposta linear invariante no tempo \( h[n] \) descritos por:

\[
x[n] = a^n u[n], \quad 0 < a < 1
\]
\[
h[n] = u[n] - u[n - N] = \begin{cases} 1, & 0 \leq n < N, \quad N \in \mathbb{Z} \\ 0, & \text{caso contrário} \end{cases}
\]

Observamos primeiramente que \( y[n] = 0 \) para \( n < 0 \).
Para o intervalo \( 0 \leq n \leq N - 1 \), temos que:

\[
x[k] \cdot h[n - k] = a^k
\]

Logo,

\[
y[n] = \sum_{k=0}^{n} a^k
\]

Mas, pela fórmula do somatório de uma P.G. (progressão geométrica) com razão \( a \), temos que:

\[
\sum_{k=N_1}^{N_2} a^k = \frac{a^{N_1} - a^{N_2+1}}{1 - a}, \quad N_2 \geq N_1
\]

Assim,

\[
y[n] = \frac{1 - a^{n+1}}{1 - a}
\]

Para o intervalo \( n > N - 1 \), temos que:

\[
x[k] \cdot h[n - k] = a^k
\]

Ou seja,

\[
y[n] = \sum_{k=n-N+1}^{n} a^k = \frac{a^{n-N+1} - a^{n+1}}{1 - a} = a^{n-N+1} \left( \frac{1 - a^N}{1 - a} \right)
\]
Assim,

\[
y[n] = \begin{cases} 
0, & n < 0 \\
\frac{a^{n+1}}{1-a}, & 0 \leq n \leq N - 1 \\
a^{n-N+1}\left(\frac{1-a^N}{1-a}\right), & n > N - 1
\end{cases}
\]

### 2.3.6 Propriedades de sistemas lineares invariantes no tempo

Considerando que a resposta ao impulso **COMPLETAMENTE** caracteriza um sistema linear invariante no tempo, podemos obter uma série de propriedades envolvendo convolução entre vários destes sistema com sinais.

**Propriedade comutativa**

A propriedade comutativa indica que a convolução de uma sequência de entrada em relação a um sistema linear e invariante no tempo é igual a convolução desse sistema pelo sinal de entrada. Isto significa que na implementação, podemos refletir e deslocar uma das sequências sobre a outra, independente de quem sejam (sequência ou sistema).

Seja

\[ y[n] = x[n] * h[n] \]

Logo

\[
x[n] * h[n] = \sum_{k=-\infty}^{+\infty} x[k] \cdot h[n - k] = \\
\sum_{m=-\infty}^{+\infty} x[n - m] \cdot h[m] = h[n] * x[n]
\]

que é obtido por troca de variáveis \((m = n - k)\).

Isso implica em:

\[ x[n] * h[n] = h[n] * x[n] \]

**Propriedade distributiva em relação a soma**

Na propriedade distributiva, a sequência convolvida sobre a soma de dois sistemas é exatamente igual a soma do resultado da convolução dessa sequência por cada dos sistemas individualmente. Ou seja:

\[ x[n] * (h_1[n] + h_2[n]) = x[n] * h_1[n] + x[n] * h_2[n] \]
Propriedade de cascateamento

O cascateamento é aplicado quando aplicamos uma sequência de entrada em um sistema, e o resultado dessa convolução é aplicado sobre um segundo sistema. Considerando que os sistemas são lineares e invariantes no tempo, podemos convoluir ambos os sistemas e obter um sistema que reflete a operação desses dois sistemas.

Isso significa que podemos aplicar a sequência de entrada sobre o resultado da convolução desses dois sistemas em cascata. Ou seja:

\[ y_1[n] = x[n] * h_1[n] \]
\[ y[n] = y_1[n] * h_2[n] \]

Reescrevendo, temos:

\[ y[n] = y_1[n] * h_2[n] = (x[n] * h_1[n]) * h_2[n] \]

Propriedade de paralelismo

A propriedade de paralelismo permite que dois sistemas que estejam em paralelo sejam somados para produzir um sistema linear invariante no tempo equivalente. O paralelismo se dá porque podemos aplicar a convolução de uma sequência de entrada em paralelo a dois sistemas distintos e somar o seu resultado.

Isso é equivalente a somar ambos os sistemas e aplicar a convolução da sequência de entrada sobre o sistema resultante. Ou seja:

\[ x[n] * (h_1[n] + h_2[n]) = x[n] * h_1[n] + x[n] * h_2[n] \]

Estabilidade

Como vimos anteriormente, pelo critério BIBO, se a sequência de entrada é limitada, a sequência de saída também deve ser limitada para que o sistema seja considerado estável. Matematicamente isso significa que:

\[ |y[n]| = \left| \sum_{k=-\infty}^{+\infty} h[k] \ x[n - k] \right| \leq \sum_{k=-\infty}^{+\infty} |h[k]| \ |x[n - k]| \leq \sum_{k=-\infty}^{+\infty} |h[k]| \ |x[n - k]| \]
conforme a inequação de Cauchy-Schwarz, onde:

$$|\vec{a} \cdot \vec{b}| \leq |\vec{a}||\vec{b}|$$  \hspace{1cm} (2.27)

Assumindo que a sequência de entrada é limitada, ou seja:

$$|x[n]| \leq B_x < \infty, \quad \forall n \in \mathbb{Z}$$

Isso implica que:

$$|y[n]| \leq B_x \sum_{k=-\infty}^{+\infty} |h[k]|$$

Assim, para que a sequência de saída também seja limitada, é necessário e suficiente que:

$$\sum_{k=-\infty}^{+\infty} |h[k]| \leq B_h < \infty \quad \cdashash (2.28)$$

Para que um sistema linear e invariante no tempo seja limitado, pois:

$$|y[n]| \leq B_x B_h \leq B_y < \infty$$

Assim, para que um sistema linear e invariante no tempo seja estável, a soma de todas as amostras da sequência que define sua resposta ao impulso \((h[n])\) deve ser absolutamente somável.

**Causalidade**

Sabemos que um sistema qualquer é causal se \(y[n_0]\), para \(n_0\) qualquer, depende somente de amostras \(x[n]\) para \(n \leq n_0\).

Pela definição, em um sistema linear e invariante no tempo temos:

$$y[n] = \sum_{k=-\infty}^{+\infty} x[k] h[n - k]$$

Como \(y[n]\) deve depender apenas de \(x[k]\) para \(-\infty \leq k \leq n\), podemos alterar o intervalo da convolução soma para:

$$y[n] = \sum_{k=-\infty}^{n} x[k] h[n - k]$$

Esse somatório não depende dos valores de \(h[n - k]\) para \(k > n\). Isso implica matematicamente em termos de:

$$h[n - k] = 0, \quad k > n$$

$$n - k < 0$$

$$h[m] = 0, \quad m < 0$$  \hspace{1cm} (2.29)
Ou seja, para que um sistema linear e invariante no tempo seja causal, sua resposta ao impulso deve ser nula ($h[n] = 0$) para todo $n < 0$, independentemente das características das sequências de entrada.

**Exemplo de sistemas:**

Seguem alguns exemplos de sistemas (já apresentados anteriormente), que são lineares e invariantes no tempo, e dessa forma, podem ser representados completamente pela suas respectivas respostas ao impulso $h[n]$.

- **Atrasador ideal** $\longrightarrow h[n] = \delta[n - n_d], \ n_d \in \mathbb{Z}$
- **Média móvel** $\longrightarrow h[n] = \frac{1}{M_1 + M_2 + 1} \sum_{k=-M_1}^{M_2} \delta[n - k]$
- **Acumulador** $\longrightarrow h[n] = \sum_{k=-\infty}^{+\infty} \delta[k] = u[n]$
- **Diferença à frente** $\longrightarrow h[n] = \delta[n + 1] - \delta[n]$
- **Diferença à trás** $\longrightarrow h[n] = \delta[n] - \delta[n - 1]$

Considerando a propriedade de cascataamento de sistemas lineares e invariantes no tempo, podemos construir outros sistemas a partir de sistemas mais básicos, como:

- \[ h[n] = \text{diferença à frente} \ast \text{atraso ideal de 1 amostra} \]
  \[ = (\delta[n + 1] - \delta[n]) \ast \delta[n - 1] \]
  \[ = \delta[n] - \delta[n - 1] \]
  \[ = \text{diferença à trás} \]

Com esse mesmo argumento, temos:

- \[ h[n] = \text{acumulador} \ast \text{diferença à trás} \]
  \[ = u[n] \ast (\delta[n] - \delta[n - 1]) \]
  \[ = u[n] - u[n - 1] \]
  \[ = \delta[n] \]
  \[ = \text{impulso} \]

Como o resultado é um sistema impulso, definimos que o sistema acumulador é um **sistema inverso** do sistema diferença à trás, e vice-versa.
2.3.7 Equações de diferenças lineares com coeficientes constantes

No domínio das variáveis contínuas, tínhamos que um sistema qualquer poderia ser descrito pela sua equação diferencial. Assumindo que tal equação fosse linear e com coeficientes constantes, tínhamos que:

\[
\sum_{k=0}^{N} a'_k \frac{d^k y(t)}{dt^k} = \sum_{k=0}^{M} b'_k \frac{d^k x(t)}{dt^k}
\]

onde \( a'_k \) e \( b'_k \) são coeficientes constantes.

Analogamente (sem qualquer relação com a equação diferencial apresentada) podemos definir no domínio discreto uma equação dita equação de diferenças linear com coeficientes constantes para representar um sistema discreto. Ou seja:

\[
\sum_{k=0}^{N} a_k y[n - k] = \sum_{k=0}^{M} b_k x[n - k]
\]

onde \( a_k \) e \( b_k \) são coeficientes constantes.

A importância das equações de diferenças lineares com coeficientes constantes é que qualquer sistema pode ser representado a partir de ponderações de amostras atrasadas das saídas \( y[n] \) e entradas \( x[n] \) de um dado sistema. Algumas vezes tal representação pode usar menor quantidade de memória de um dispositivo eletrônico na sua implementação do que uma representação usando a resposta ao impulso \( h[n] \).

---

**Exemplo de sistemas:**

Um sistema **acumulador** pode ser escrito por:

\[
y[n] = \sum_{k=-\infty}^{n} x[k]
\]

ou

\[
y[n - 1] = \sum_{k=-\infty}^{n-1} x[k]
\]

Isso implica em:

\[
y[n] = x[n] + \sum_{k=-\infty}^{n-1} x[k] = x[n] + y[n - 1]
\]
Logo, outra forma de representar um sistema acumulador é:

\[ y[n] - y[n-1] = x[n] \]

Assim, um sistema acumulador implica em \( N = 1, a_0 = 1, a_1 = -1 \), \( M = 0 \) e \( b_0 = 1 \) quando nos referenciamos à Equação 2.30.

Um sistema média móvel (assumindo que seja causal, ou seja, \( M_1 = 0 \)) é descrito por:

\[ y[n] = \frac{1}{M_2 + 1} \sum_{k=0}^{M_2} x[n-k] \]

Note que quando comparamos essa equação com a Equação 2.30, percebemos que o sistema média móvel implica em \( N = 0, a_0 = 1, M = M_2 \) e \( b_k = \frac{1}{M_2+1} \) para \( 0 \leq k \leq M_2 \).

Sua resposta ao impulso pode ser reescrita tem termos de sequências de graus \( u[n] \), ou seja:

\[ h[n] = \frac{1}{M_2 + 1} (u[n] - u[n-M_2-1]) \]

ou, em termos de convolução, por:

\[ h[n] = \frac{1}{M_2 + 1} \left( \underbrace{\delta[n] - \delta[n-M_2-1]}_{\text{amost. atrasador}} \right) * \underbrace{u[n]}_{\text{integrador}} \]

Sabemos da propriedade de asementeamento que podemos alterar a ordem das sequências de entrada e dos sistemas sem alterar o resultado final. Assim, assumindo uma sequência \( x[n] \) que alimenta o sistema \( h_1[n] \), obtemos:

\[ y_1[n] = h_1[n] * x[n] \]

\[ = \frac{1}{M_2 + 1} (x[n] - x[n-M_2-1]) \]

Mas sabemos qual é a equação a diferenças lineares com coeficientes constantes de um sistema acumulador \((h[n] = u[n])\). Assim, temos:

\[ y[n] - y[n-1] = x_1[n] \]

Então, uma outra equação a diferenças lineares com coeficientes constantes para um sistema média móvel causal é:

\[ y[n] - y[n-1] = \frac{1}{M_2 + 1} (x[n] - x[n-M_2-1]) \]
Agora, em comparação com a Equação 2.30, temos $N = 1$, $a_0 = 1$, $a_1 = -1$, $M = M_2 - 1$, $b_0 = \frac{1}{M_2+1}$, $b_{M_2-1} = \frac{1}{M_2+1}$ e $b_k = 0$ para $1 \leq k \leq M_2 - 2$.

Os exemplos mostram que um mesmo sistema pode assumir diferentes equações de diferenças lineares com coeficientes constantes; a escolha é totalmente dependente da aplicação.

Para obter a solução \textbf{total} das equações de diferenças lineares com coeficientes constantes devemos considerar a suas soluções \textbf{particular e homogênea}, de modo análogo ao usado em equações diferenciais lineares com coeficientes constantes, ou seja:

\begin{equation}
 y[n] = y_p[n] + y_h[n]
\end{equation}

onde $y_p[n]$ e $y_h[n]$ são, respectivamente, as soluções particular e homogênea da Equação 2.30.

A solução homogênea corresponde à resposta do sistema às suas condições iniciais assumindo que a entrada $x[n] = 0$. A solução particular corresponde à resposta do sistema à entrada $x[n]$ assumindo que as condições iniciais do problema são nulas.

A solução homogênea é obtida então através de:

\begin{equation}
 \sum_{k=0}^{N} a_k y_h[n-k] = 0
\end{equation}

\begin{equation}
y_h[n] + \sum_{k=1}^{N} \frac{a_k}{a_0} y_h[n-k] = 0
\end{equation}

Assumindo que a solução é da forma:

\begin{equation}
y_h[n] = z^n
\end{equation}

Então:

\begin{equation}
z^n + \sum_{k=1}^{N} \frac{a_k}{a_0} z^{n-k} = 0
\end{equation}

\begin{equation}
z^{n-N} \left( z^N + \sum_{k=1}^{N} \frac{a_k}{a_0} z^{N-k} \right) = 0
\end{equation}

ou

\begin{equation}
z^{n-N} \left( z^N + \frac{a_1}{a_0} z^{N-1} + \frac{a_2}{a_0} z^{N-2} + \ldots + \frac{a_{N-1}}{a_0} z + \frac{a_N}{a_0} \right) = 0
\end{equation}
O polinómio entre parénteses possui ordem \( N \) e é chamado de **polinómio característico**. Sempre possuirá \( N \) raízes (reais ou complexas). Com isso, a solução homogênea da Equação 2.30 para o caso de raízes distintas \( z_k \) (ou seja, \( z_k \neq z_l, \forall k \neq l \)) é:

\[
y_h[n] = \sum_{k=1}^{N} A_k z_k^n
\]  

(2.32)

onde \( A_k \) são coeficientes definidos com base nas condições iniciais do problema.

Caso alguma raiz \( z_i \) tenha multiplicidade \( m \) (repita-se \( m \) vezes) e as demais \( N - m \) raízes sejam distintas, então a solução homogênea da Equação 2.30 é:

\[
y_h[n] = (A_1 + A_2n + \ldots + A_m n^{m-1}) z_i^n + \sum_{k=m+1}^{N} A_k z_k^n
\]  

(2.33)

Como \( y_h[n] \) possui \( N \) coeficientes \( A_k \), precisamos de \( N \) condições iniciais para sua determinação. Isso é feito a partir do conhecimento de que \( y[n] = y_h[n] + y_p[n] = B_n \) é conhecido para instantes \( n \) específicos. Ou seja, precisamos encontrar \( y[n] \).

É importante verificar se a sequência resultante é absolutamente convergente (estável). Isso implica em definir para quais instante \( n \) a solução é válida. A forma de avaliar isso é através da análise das raízes. Se \( |z_k| < 1 \), então \( n \geq 0 \), e se \( |z_k| > 1 \), então \( n \leq 0 \). Posteriormente serão feitas considerações sobre esse fato quando tratarmos de transformada Z no capítulo 5.

A determinação da solução particular \( y_p[n] \) depende do formato de \( x[n] \). Geralmente recorremos a tabelas (como a tabela 2.1) para determinação do formato da solução \( y_p[n] \) em função do formato de \( x[n] \).

<table>
<thead>
<tr>
<th>( x[n] )</th>
<th>( y_p[n] )</th>
</tr>
</thead>
<tbody>
<tr>
<td>( C )</td>
<td>( C )</td>
</tr>
<tr>
<td>( Cn )</td>
<td>( C_1 n + C_2 )</td>
</tr>
<tr>
<td>( C a^n )</td>
<td>( C_1 a^n )</td>
</tr>
<tr>
<td>( C \cos(n\omega_0) )</td>
<td>( C_1 \cos(n\omega_0) + C_2 \cos(n\omega_0) )</td>
</tr>
<tr>
<td>( C \sin(n\omega_0) )</td>
<td>( C_1 \sin(n\omega_0) + C_2 \sin(n\omega_0) )</td>
</tr>
<tr>
<td>( C a^n \cos(n\omega_0) )</td>
<td>( C_1 a^n \cos(n\omega_0) + C_2 a^n \sin(n\omega_0) )</td>
</tr>
<tr>
<td>( C\delta[n] )</td>
<td>0 (zero)</td>
</tr>
</tbody>
</table>

Tabela 2.1: Solução particular \( y_p[n] \) para diversas entradas \( x[n] \)
Note que na tabela 2.1, aparecem novas constantes ($C_1$ e $C_2$) a serem determinadas. Estas constantes são determinadas substituindo $y_p[n]$ na equação de diferenças lineares com coeficientes constantes. Isso produzirá uma equação em termos de $C_1$ e $C_2$.

**Resolução por indução matemática:**

Uma das formas de obter a solução de uma equação de diferenças lineares com coeficientes constantes é por indução matemática.

Seja:

$$y[n] = ay[n - 1] + x[n]$$

cujas condições de excitação e inicial são:

$$x[n] = K\delta[n], \quad K \in \mathbb{R}$$

$$y[-1] = C$$

Logo, para $n \geq 0$, temos:

$$y[0] = ay[-1] + 1 = aC + K$$

$$y[1] = ay[0] + 0 = a^2C + aK$$

$$y[2] = ay[1] + 0 = a^3C + a^2K$$


$$\vdots$$

$$y[n] = ay[n - 1] + 0 = a^{n+1}C + a^nK$$

Reescrevendo a equação de diferenças para análise de $y[n]$ para $n < 0$ temos:

$$y[n - 1] = a^{-1} (y[n] - x[n])$$

$$y[n] = a^{-1} (y[n + 1] - x[n + 1])$$

Logo, para $n < 0$, temos:

$$y[-2] = a^{-1} (y[-1] + 0) = a^{-1}C$$

$$y[-3] = a^{-1} (y[-2] + 0) = a^{-2}C$$

$$y[-4] = a^{-1} (y[-3] + 0) = a^{-3}C$$

$$\vdots$$

$$y[n] = a^{-1} (y[n + 1] + 0) = a^{n+1}C$$

 Ou seja, a solução para a equação de diferenças lineares com coeficientes constantes, obtida por inferência matemática, é:

$$y[n] = a^{n+1}C + Ka^n u[n], \quad \forall n \in \mathbb{Z}$$
Note que com $K = 0$, temos $x[n] = 0$ mas $y[n] = a^{n+1}C$. Isto significa que o sistema apresentado NÃO É LINEAR, pois todo o sistema linear produz $y[n] = 0$ para $x[n] = 0$.

Se deslocarmos a entrada $x[n]$ em $n_0$ amostras, tal que:

$$x_1[n] = x[n - n_0] = K\delta[n - n_0]$$

obtemos

$$y_1[n] = a^{n+1}C + Ka^{n-n_0}u[n - n_0]$$

que NÃO É CAUSAL.

Logo, as condições iniciais do sistema afetam as propriedades do sistema.

Se as condições iniciais forem tais que o sistema esteja em DESCANSO, então o sistema é LINEAR, INVARIANTE NO TEMPO e CAUSAL.

Resolução por soluções homogênea e particular:

Considere agora um sistema tal que:

$$y[n] - 0,25 \cdot y[n - 2] = x[n]$$

cujas condições de excitação e inicial são:

$$x[n] = u[n]$$
$$y[-1] = 1$$
$$y[-2] = 0$$

Primeiramente determinamos o polinômio característico para calcular suas raízes. Ou seja:

$$z^2 - 0,25 = 0$$

Suas raízes são $z_1 = -0,5$ e $z_2 = 0,5$. Como elas são distintas, a solução homogênea para esse sistema é:

$$y_h[n] = A_1(0,5)^n + A_2(-0,5)^n, \quad n \geq 0$$

Note que essa equação é válida apenas para $n \geq 0$ porque as raízes $|z_k| < 1$. Isso se deve a manutenção de convergência (estabilidade) da sequência $y_h[n]$.

A solução particular depende do formato de $x[n]$. Pela tabela 2.1, verificamos que:

$$y_p[n] = C_1$$
Substituindo \( y_p[n] \) na equação de diferenças do problema, obtemos:

\[
C_1 - 0.25 C_1 = 1
\]

\[
C_1 = \frac{1}{1 - 0.25} = \frac{4}{3}
\]

Assim, a solução total para esse problema é:

\[
y[n] = \frac{4}{3} + A_1(0.5)^n + A_2(-0.5)^n, \quad n \geq 0
\]

Para determinar os coeficientes \( A_1 \) e \( A_2 \), usamos as condições iniciais. Considerando que a solução total é válida para \( n \geq 0 \), devemos obter condições auxiliares. No caso \( y[0] \) e \( y[1] \) são definidos pela solução total e pela equação de diferenças do sistema. Assim, podemos obter um sistema de equações lineares em função dos coeficientes \( A_1 \) e \( A_2 \):

\[
y[0] = 0.25 y[-2] + x[0] = 1 = \frac{4}{3} + A_1 + A_2
\]

\[
y[1] = 0.25 y[-1] + x[1] = 1 = \frac{4}{3} + A_1(0.5)^1 + A_2(-0.5)^1
\]

Logo, \( A_1 = -\frac{1}{2} \) e \( A_2 = \frac{1}{6} \). A solução total para esse problema é:

\[
y[n] = \frac{4}{3} - \frac{1}{2}(0.5)^n + \frac{1}{6}(-0.5)^n, \quad n \geq 0
\]

Note que a exposição sobre equações de diferenças lineares com coeficientes constantes é bastante simplificada. Dada a analogia com equações diferenciais lineares com coeficientes constantes, podemos buscar informação nesse campo da matemática para obter as soluções para as equações de diferenças.
Capítulo 3

Seqüências no Domínio da Freqüência

Até aqui analisamos qual o comportamento de uma seqüência ou um sistema em relação às suas propriedades temporais (causalidade, estabilidade, invariância no tempo). Nesse momento usaremos uma ferramenta matemática para avaliar qual o comportamento das seqüências em relação às suas componentes espectrais (ou de freqüência).

Análogo às Séries de Fourier e Transformada de Fourier usadas para análise espectral de funções contínuas, construiremos uma expressão que permite decompor seqüências em componentes espectrais e vice-versa.

3.1 Preliminares

Relembrando, a SÉRIE DE FOURIER é decompor uma função contínua em componentes de freqüência (senóides e cossenóides) e vice-versa. Rigorosamente falando, dada uma função $f(t)$ tal que $f : \mathbb{R} \to \mathbb{C}$ seja contínua, diferenciável, PERIÓDICA (com período $T = t_2 - t_1$) e com energia finita, ou seja:

$$\int_{t_1}^{t_2} |f(t)|^2 \, dt < +\infty$$

Então, tal função pode ser decomposta em uma série de senos (ou cossenos) da forma:

$$f(t) = \frac{1}{2}a_0 + \sum_{n=1}^{+\infty} \left[a_n \cos (\Omega_n t) + b_n \sin (\Omega_n t)\right]$$
onde:

\[ \Omega_n = \frac{2\pi n}{T} \rightarrow \text{n-ésima frequência harmônica de } f(t) \text{ (em radianos)} \]

\[ a_n = \frac{2}{T} \int_{t_1}^{t_2} f(t) \cos(\Omega_n t) \, dt \rightarrow \text{n-ésimo coeficiente par} \]

\[ b_n = \frac{2}{T} \int_{t_1}^{t_2} f(t) \sin(\Omega_n t) \, dt \rightarrow \text{n-ésimo coeficiente ímpar} \]

ou, em termos de variáveis complexas, para simplificar a expressão:

\[ f(t) = \sum_{n=-\infty}^{+\infty} c_n e^{j\Omega_n t} \]

onde:

\[ c_n = \frac{1}{T} \int_{t_1}^{t_2} f(t) e^{-j\Omega_n t} \, dt \]

Note que os coeficientes \(a_n\), \(b_n\) e \(c_n\) podem ser entendidos como sequências, pois só existem para \(n \in \mathbb{Z}\). Logo, podemos entender que a **Série de Fourier** (ou **Integral de Fourier**) decompoem **funções contínuas**, em **sequências**, e vice-versa.

Para láidar com funções não periódicas, usamos a Transformada de Fourier, cuja derivação implica em \(T \rightarrow +\infty\). Matematicamente significa que dada uma função \(f(t)\) tal que \(f : \mathbb{R} \rightarrow \mathbb{C}\) seja contínua e diferenciável, seu par Transformada de Fourier é:

\[ F(\Omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f(t) e^{-j\Omega t} \, dt \]

\[ f(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} F(\Omega) e^{+j\Omega t} \, dt \] \hspace{1cm} (3.1)

Note que o par **Transformada de Fourier** decompoem **funções contínuas**, no domínio do tempo, em **funções contínuas**, no domínio da frequência (e vice-versa), pois intuitivamente são necessárias infinitas componentes espectrais para representar uma função temporal não periódica.

### 3.2 Autofunção

Definidas as transformações de funções contínuas para o domínio espectral, vamos definir uma propriedade importante que serve como base para a definição das transformações de sequências para o domínio espectral.
Quando excitamos um sistema discreto linear com um sequência de entrada senoidal, a sequência de saída será senoidal, com a mesma freqüência da sequência de entrada.

Assim, um sistema linear altera apenas a magnitude e a fase da sequência senoidal, mas nunca sua freqüência. Tal propriedade é chamada de autofunção.

Assuma a seguinte sequência exponencial complexa para uma única freqüência \( \omega \) (esta freqüência não tem relação com a freqüência contínua \( \Omega \) da seção anterior, onde tratamos de funções contínuas no domínio do tempo):

\[
x[n] = e^{j\omega n}, \quad n \in \mathbb{Z}, \omega \in \mathbb{R}
\]

Note que a freqüência \( \omega \) é dita freqüência normalizada e é expressa em radianos. É uma grandeza diferente da que estamos acostumados na vida prática (dada em Hz). Posteriormente relacionaremos tais freqüências quando falarmos de teoria da amostragem no capítulo 4.

Considere \( h[n] \) como sendo a resposta ao impulso de um sistema linear e invariante no tempo. A saída \( y[n] \) desse sistema quando convolvido com a sequência \( x[n] \), obtida por convolução, é:

\[
y[n] = \sum_{k=-\infty}^{+\infty} h[k] e^{j\omega (n-k)}
\]

\[
y[n] = e^{j\omega n} \left[ \sum_{k=-\infty}^{+\infty} h[k] e^{-j\omega k} \right] H(e^{j\omega})
\]

Ou seja:

\[
y[n] = H(e^{j\omega}) e^{j\omega n}
\]

\[
H(e^{j\omega}) = \sum_{k=-\infty}^{+\infty} h[k] e^{-j\omega k}
\]

(3.2)

Note que \( e^{j\omega n} \) é a autofunção do sistema, pois ao excitarmos o sistema \( h[n] \) com uma sequência formada a partir dessa função, podemos isolá-la na sequência de saída. Assim, o termo \( H(e^{j\omega}) \) é o autovalor associado à autofunção. É importante salientar que \( H(e^{j\omega}) \) é uma função contínua em \( \omega \).

Matematicamente, a autofunção de um operador linear \( A \) (no caso, \( h[n] \)) qualquer definido em algum espaço de funções (conjunto de funções de um dado tipo, que mapeia um conjunto \( X \) e um conjunto \( Y \), sendo \( X \) e \( Y \)
quaisquer) é qualquer função \( f \), não nula, do espaço de funções, que ao ser aplicada ao operador \( A \) retorna \textit{Intacta}, multiplicada por um fator de escala denominado autovalor.

Como \( H(e^{j\omega}) \) é complexo, esse pode ser decomposto em termos de componentes real e complexa (representação cartesiana) ou em componentes de magnitude e fase (representação polar), ou seja:

\[
H(e^{j\omega}) = \Re\{H(e^{j\omega})\} + j\Im\{H(e^{j\omega})\}
\]

\[
= |H(e^{j\omega})| \ e^{j\phi_H(e^{j\omega})}
\]

\[(3.3) \quad \text{e} \quad (3.4)\]

\[
\text{Exemplo:}
\]

Considere o sistema em atraso ideal descrito pela seguinte equação de diferenças lineares e invariante no tempo:

\[
y[n] = x[n - n_d], \quad n_d \in \mathbb{Z}
\]

Sua resposta ao impulso é:

\[
h[n] = \delta[n - n_d]
\]

Assumindo um sinal senoidal em uma frequência \( \omega \) qualquer tal que:

\[
x[n] = e^{j\omega n}
\]

Então, a saída desse sistema será:

\[
y[n] = e^{j\omega (n - n_d)} = e^{-j\omega n_d} \cdot e^{j\omega n}
\]

Assim, a resposta em frequência de um sistema do tipo atraso ideal (que é definido pelo seu autovalor) é:

\[
H(e^{j\omega}) = e^{-j\omega n_d}
\]

Decompondo em componentes cartesionas e polares (levando em conta a relação de Euler dada pela equação 2.19), temos:

\[
H(e^{j\omega}) = \cos(\omega n_d) - j \sen(\omega n_d)
\]

\[
= 1 \ e^{-j\omega n_d}
\]

Como a magnitude desse sistema é constante (\(|H(e^{j\omega})| = 1\) em toda a faixa de frequência normalizada, e como a fase é proporcional ao seu atraso
\( \angle H(e^{j\omega}) = -\omega n_d \), esse sistema é ao mesmo tempo um atenuador ideal e um deslocador de fase (phase shift, em inglês), pois sua função restringe-se a deslocar uma dada frequência \( \omega \) em \(-\omega n_d\) graus (em radiano).

Considere agora a seguinte sequência, que é uma cossenoide:

\[
x[n] = A \cos(\omega_0 n + \phi)
= \frac{A}{2} e^{j\phi} e^{j\omega_0 n} + \frac{A}{2} e^{-j\phi} e^{-j\omega_0 n}
\]

onde A(\( \in \mathbb{C} \)), \( w_0 \) e \( \phi \) independentes de n.

Convoluindo tal sequência com um sistema \( h[n] \), que é linear e invariante no tempo (para facilitar considere que \( x[n] \) é a soma de suas sequências em termos de \( e^{j\omega n} \)), temos:

\[
y[n] = \frac{A}{2} \left( H(e^{j\omega_0}) e^{j\phi} e^{j\omega_0 n} + H(e^{-j\omega_0}) e^{-j\phi} e^{-j\omega_0 n} \right)
\]

onde \( H(e^{j\omega_0}) \) é definido pela equação 3.2.

Se \( h[n] \) é real (\( h[n] \in \mathbb{R} \)), então \( H(e^{-j\omega_0}) = H^*(e^{j\omega_0}) \) (tal demonstração será vista posteriormente). Assim:

\[
y[n] = \frac{A}{2} \left( |H(e^{j\omega_0})| e^{j\theta} e^{j\omega_0 n} + |H(e^{j\omega_0})| e^{-j\theta} e^{-j\omega_0 n} \right)
\]

pois usamos a representação polar de \( H(e^{j\omega_0}) \) e \( \theta = \angle H(e^{j\omega_0}) \).

Finalmente, empregando a relação de Euler, temos:

\[
y[n] = A \left| H(e^{j\omega_0}) \right| \cos(\omega_0 n + \theta + \phi)
\]

Assim, quando excitamos um sistema linear e invariante no tempo \( h[n] \) qualquer com uma sequência senoidal (ou cossenoidal) qualquer, obtemos a mesma sequência com suas componentes em frequência alteradas em magnitude e em fase.

Este será um resultado importante, e que corroborará a propriedade de autofunção descrita anteriormente.

Para avaliar o comportamento da frequência \( \omega \) (que é dada em radianos), calcularemos o valor da resposta em frequência caso adicionassemos 2\( \pi \) graus a ela. Assim:

\[
H(e^{j(\omega+2\pi)}) = \sum_{k=-\infty}^{+\infty} h[n] e^{-j(\omega+2\pi)k}
\]
Mas como \( e^{\pm j2\pi k} = 1 \), \( \forall n \in \mathbb{Z} \), então:

\[
H(e^{j(\omega + 2\pi)}) = \sum_{k=-\infty}^{+\infty} h[n]e^{-j\omega k} = H(e^{j\omega})
\]

ou, de maneira mais geral:

\[
H(e^{j(\omega + 2\pi)}) = H(e^{j\omega}) \quad (3.5)
\]

Isso significa que a resposta em frequência \( H(e^{j\omega}) \) é **periódica**, com período igual a \( 2\pi \), sendo que os seus valores são indistinguiáveis para frequências \( \omega \) e \( \omega + 2\pi \).

**Resposta em frequência para sistema de média móvel**

Considere um sistema de média móvel descrito por:

\[
h[n] = \begin{cases} 
\frac{1}{M_1 + M_2 + 1} , & -M_1 \leq n \leq M_2 \\
0 , & c.c.
\end{cases}
\]

Calculando a resposta em frequência conforme a equação 3.2, obtemos:

\[
H(e^{j\omega}) = \frac{1}{M_1 + M_2 + 1} \sum_{n=-M_1}^{M_2} e^{-j\omega n}
\]

Como o somatório envolve uma sequência geométrica cuja razão é \( e^{-j\omega} \), podemos aplicar a equação 2.26 para obter sua soma, ou seja:

\[
H(e^{j\omega}) = \frac{1}{M_1 + M_2 + 1} \frac{e^{j\omega M_1} - e^{-j\omega(M_2+1)}}{1 - e^{-j\omega}} = \frac{1}{M_1 + M_2 + 1} \frac{e^{j\omega\left(\frac{M_1+M_2+1}{2}\right)} - e^{-j\omega\left(\frac{M_1+M_2+1}{2}\right)}}{1 - e^{-j\omega\left(\frac{1}{2}\right)}} e^{-j\omega\left(\frac{M_2-M_1}{2}\right)} = \frac{1}{M_1 + M_2 + 1} \frac{\operatorname{sen}(\omega\left(\frac{M_1+M_2+1}{2}\right))}{\operatorname{sen}\left(\frac{\omega}{2}\right)} e^{-j\omega\left(\frac{M_2-M_1}{2}\right)}
\]

Para melhor avaliar sua resposta em frequência, decomponhamos \( H(e^{j\omega}) \) em sua representação polar e obtemos os seguintes gráficos:
Figura 3.1: Resposta em frequência de sistemas média móvel (magnitude e fase)

Note particularmente que a magnitude da resposta em frequência é nula exatamente quando a frequência normalizada ω é igual a \( \frac{2\pi}{M_1 + M_2 + 1} \). Nesse mesmo ponto ocorre uma “quebra” no ângulo da resposta em frequência. Essa quebra é na realidade fruto da função arctan que é indefinida para magnitudes nulas.

Para obter a curva correta da fase, é necessário “desdobrar” (unwrap) a curva obtida através de arctan somando-se (ou subtraindo-se) \( \pi \) radianos dos segmentos particionados. Fazendo isso, verificaremos que a fase de um sistema de média móvel é linear.

Notamos em nossas análises sobre a sequência exponencial complexa \( x[n] = e^{j\omega n} \) que seu intervalo para \( n \) extende-se de \(-\infty\) até \( +\infty\). Entretanto, situações práticas exigem que o mesmo seja aplicado repentinamente em um instante específico \( n_0 \) (geralmente \( n_0 = 0 \)), e assim, tenha amostras \( x[n] = 0 \) para instantes anteriores a \( n_0 \).

Assim, vamos considerar agora a seguinte sequência que representa uma entrada exponencial complexa aplicada repentinamente, e analisar os efeitos dessa excitação súbita:

\[
x[n] = e^{j\omega n} u[n]
\]

Convolvindo tal sequência com um sistema cuja resposta ao impulso é \( h[n] \) temos:

\[
y[n] = \sum_{k=-\infty}^{+\infty} h[k] e^{j\omega(n-k)} u[n-k]
\]

Como \( u[n-k] = 0 \) para \( n - k < 0 \) (ou \( n < k \)), então o somatório pode
ser reavaliado como:
\[ y[n] = \sum_{k=-\infty}^{n} h[k] e^{jn(n-k)} \]

Assumindo que o sistema \( h[n] \) seja causal (o que implica em uma saída causal em função da entrada também ser causal), temos:

\[ y[n] = \begin{cases} 
\left( \sum_{k=0}^{n} h[k] e^{-j\omega k} \right) e^{jn}, & n \geq 0 \\
0, & n < 0 
\end{cases} \]

Se analisarmos a saída \( y[n] \) apenas para \( n \geq 0 \), reescrevemos \( y[n] \) como:

\[ y[n] = \left( \sum_{k=0}^{+\infty} h[k] e^{-j\omega k} \right) e^{jn} - \left( \sum_{k=n+1}^{+\infty} h[k] e^{-j\omega k} \right) e^{jn} \]

\[ = H(e^{j\omega})e^{jn} - \left( \sum_{k=n+1}^{+\infty} h[k] e^{-j\omega k} \right) e^{jn} \]

\[ = y_{estacionário}[n] + y_{transiente}[n] \]

Note que foi possível, por manipulação algébrica, extrair duas componentes da sequência de saída \( y[n] \): a componente estacionária \( y_{estacionário}[n] \), que é numericamente igual ao comportamento que o sistema produziria caso uma entrada exponencial complexa de duração infinita fosse empregada.

Cabe então analisar o comportamento da componente transiente \( y_{transiente}[n] \). Usando o critério de estabilidade (equação 2.23) e as inequações de Cauchy-Schwarz (equação 2.27) aplicados a tal componente, obtemos:

\[ |y_{transiente}[n]| = \left| \sum_{k=n+1}^{+\infty} h[k] e^{j\omega(n-k)} \right| \leq \sum_{k=n+1}^{+\infty} |h[k]| \]

Note que o comportamento desse transiente depende exclusivamente do comportamento do somatório absoluto (ou estabilidade) de \( h[n] \) (lembrando que assumiu-se que o mesmo é causal).

Caso \( h[n] \) tenha duração finita \( M + 1 \) (ou seja, \( h[n] = 0 \) para \( n \not\in \{0 \leq n \leq M\} \)), isso implica em \( y_{transiente}[n] = 0 \) para \( n+1 > M \) ou para \( n > M - 1 \). Logo:

\[ y[n] = y_{estacionário}[n] = H(e^{j\omega})e^{jn}, \quad n > M - 1 \]
Note que $y[n]$, a partir do instante $M$ (inclusive), exibe comportamento estacionário indicando que a partir desse instante todos os efeitos transitórios provocados pelo degrau de excitação são eliminados. A figura 3.2 evidencia esse fato justamente quando, na convolução, $h[n]$ sobrepõe unicamente as amostras de $x[n]$.

Figura 3.2: Exemplo de passo de convolução de sistema de duração finita $h[n]$ com sequência $x[n] = \Re \{ e^{j\omega n} u[n] \}$

Caso $h[n]$ tenha duração infinita, podemos reescrever a equação de estabilidade da componente transitória como:

$$|y_{\text{transiente}}[n]| \leq \sum_{k=n+1}^{+\infty} |h[k]| \leq \sum_{k=0}^{+\infty} |h[k]|$$

Note que acrescentamos as amostras $h[k]$ para $0 \leq k \leq n$ para dentro do somatório de modo a obter exatamente o critério de estabilidade desse sistema linear e invariante no tempo (equação 2.28), que é causal como admitimos anteriormente. Neste caso,

$$y[n] \to y_{\text{estacionário}}[n] \quad \text{e} \quad h[n] \to 0, \quad n \to +\infty$$

Ou seja, caso o sistema $h[n]$ seja estável (condição suficiente), os efeitos do transitório se dissipam à medida que avançamos no índice $n$. Isso fica evidente na figura 3.3, na qual percebemos que os efeitos do transitório quando parte de $h[n]$ convolui-se com as amostras “faltantes” de $e^{j\omega n}$ que existiram caso não ocorre o chaveamento abrupto de $u[n]$. 
Figura 3.3: Exemplo de passo de convolução de sistema de duração infinita \( h[n] \) com sequência \( x[n] = \mathbb{R}\{e^{j\omega n} \ u[n]\} \)

Um resultado interessante, que deriva da análise de estabilidade de um sistema linear e invariante no tempo, é:

\[
|H(e^{j\omega})| = \left| \sum_{k=-\infty}^{+\infty} h[k] \ e^{-j\omega k} \right| \\
\leq \sum_{k=-\infty}^{+\infty} |h[k] \ e^{-j\omega k}| \\
\leq \sum_{k=-\infty}^{+\infty} |h[k]|
\]

Sabendo que para um sistema linear e invariante no tempo ser estável exige-se que a inequação 2.23 seja válida, logo a estabilidade de um sistema garante a existência de \( H(e^{j\omega}) \) (propriedade de autofunção), pois:

\[
|H(e^{j\omega})| \leq \sum_{k=-\infty}^{+\infty} |h[k]| \leq +\infty \Rightarrow \exists H(e^{j\omega})
\]  \hspace{1cm} (3.6)

que é a mesma condição para que os efeitos transitórios produzidos por um sistema de resposta impulso com duração infinita se dissipem quando \( n \to +\infty \).

Este resultado será extremamente útil para caracterizar a existência da transformada discreta de Fourier, na seção 3.3.
3.3 Transformada de Fourier Discreta no Tempo

Até agora apresentamos \( H(e^{j\omega}) \) como sendo o autovalor obtida a partir da convolução entre a resposta ao impulso de um sistema linear e invariante no tempo \( h[n] \) com uma sequência de entrada \( x[n] \) do tipo exponencial complexa para uma \textbf{única} frequência \( \omega \). Nesse caso, definimos que esse autovalor é equivalente a resposta em frequência do sistema.

No início deste capítulo, relembramos a Integral de Fourier que compõe uma função contínua em uma série contendo as componentes complexas (senoides e cossenoides) que descrevem espectralmente tal função contínua.

Definimos a representação de Fourier de uma sequência \( x[n] \), ou par \textbf{Transformada de Fourier Discreta no Tempo} às seguintes equações:

\[
\mathcal{F}_{DT}\{x[n]\} = X(e^{j\omega}) = \sum_{n=-\infty}^{+\infty} x[n] e^{-j\omega n}, \quad \omega \in \mathbb{R} \quad (3.7)
\]

A primeira equação é denominada Transformada de Fourier Discreta no Tempo (ou, simplesmente, \textbf{DTFT}), enquanto a segunda equação é denominada Transformada \textbf{Inversa} de Fourier Discreta no tempo (ou, simplesmente, \textbf{IDTFT}).

Demonstração. Demonstração da reversibilidade entre \( x[n] \) e \( X(e^{j\omega}) \).

Considere a \( DTFT \) da sequência \( x[m] \) como sendo:

\[
X(e^{j\omega}) = \sum_{m=-\infty}^{+\infty} x[m] e^{-j\omega m}
\]

Também considere que a \textbf{IDTFT} de \( X(e^{j\omega}) \) seja:

\[
\hat{x}[n] = \frac{1}{2\pi} \int_{-\pi}^{+\pi} X(e^{j\omega}) e^{j\omega n} d\omega
\]

Queremos provar que \( x[n] = \hat{x}[n] \). Para isso, substituímos \( X(e^{j\omega}) \) na equação que define \( \hat{x}[n] \), ou seja:

\[
\hat{x}[n] = \frac{1}{2\pi} \int_{-\pi}^{+\pi} \sum_{m=-\infty}^{+\infty} x[m] e^{-j\omega m} e^{j\omega n} d\omega
\]
Assumindo que:
\[\sum_{m=-\infty}^{+\infty} x[m] \, e^{-jm\omega} < \infty\]
que é a condição da série ser absolutamente somável, garantindo a existência da integral. Assim, por manipulação algébrica, temos que:
\[\hat{x}[n] = \sum_{m=-\infty}^{+\infty} x[m] \left( \frac{1}{2\pi} \int_{-\pi}^{+\pi} e^{j\omega(m-n)} \, d\omega \right)\]
Mas, a integral definida pode ser resolvida, e seu resultado é:
\[\frac{1}{2\pi} \int_{-\pi}^{+\pi} e^{j\omega(m-n)} \, d\omega = \frac{\text{sen}(\pi(n-m))}{\pi(n-m)} = \begin{cases} 1, & m = n \\ 0, & m \neq n \end{cases}\]
Tal resultado corresponde exatamente a seqüência \(\delta[n-m]\). Assim:
\[\hat{x}[n] = \sum_{m=-\infty}^{+\infty} x[m] \delta[n-m] = x[n]\]

Se comparamos essas expressões com aquelas da Transformada de Fourier (equação 3.1) notamos que \(X(e^{j\omega})\) é periódico (conforme a equação 3.5, tem período igual a \(2\pi\)), e desta forma, a integral da equação 3.7 ocorrem em qualquer trecho de comprimento \(2\pi\) (convenciona-se usar os intervalos 0 e \(2\pi\), ou \(-\pi\) e \(+\pi\), nessa integral).

### 3.3.1 Existência da DTFT

Precisamos agora definir para que classe de seqüências a DTFT existe. Analogamente à análise da existência da autofunção, temos:
\[|X(e^{j\omega})| < \infty, \quad \forall \omega \in \mathbb{R}\]

Pela definição da DTFT para uma determinada seqüência \(x[n]\), temos:
\[|X(e^{j\omega})| = \left| \sum_{n=-\infty}^{+\infty} x[n] \, e^{-jm\omega} \right| = \left| \sum_{n=-\infty}^{+\infty} |x[n]| \, |e^{-jm\omega}| \right| \leq \sum_{n=-\infty}^{+\infty} |x[n]| < \infty\]
ou seja:

$$|X(e^{j\omega})| < \infty \Rightarrow \sum_{n=-\infty}^{+\infty} |x[n]| < \infty \quad (3.8)$$

Isso significa que a condição suficiente para existência de $X(e^{j\omega})$ é que a sequência seja absolutamente somável. Consequentemente a sequência (ou série) convergirá assintoticamente para qualquer valor de $\omega$. Se tratarmos de sistemas, a resposta ao impulso de um sistema linear e invariante no tempo deve ser estável (ver equação 2.28), o que implica na sequência que descreve tal resposta ao impulso ser absolutamente somável. Logo a resposta em frequência do sistema existe, e é obtida pela DTFT.

**DTFT de exponencial aplicada repentamente:**

Seja $x[n]$ uma sequência exponencial aplicada repentamente e definida por:

$$x[n] = a^n u[n],$$

A DTFT dessa sequência é:

$$X(e^{j\omega}) = \sum_{n=-\infty}^{+\infty} a^n u[n] e^{-j\omega n} = \sum_{n=0}^{+\infty} a^n e^{-j\omega n} = \sum_{n=0}^{+\infty} (ae^{-j\omega})^n$$

Este resultado é uma soma de termos de uma série em progressão geométrica com razão $(ae^{-j\omega})$. Tal soma existe se, e somente se:

$$|ae^{-j\omega}| < 1 \text{ ou } |a| < 1$$

Logo, usando a equação 2.26 para obter o somatório da progressão geométrica, temos:

$$X(e^{j\omega}) = \frac{1}{1 - (ae^{-j\omega})}$$

Pela condição de existência da DTFT, temos que:

$$\sum_{n=0}^{+\infty} |a^n| < \sum_{n=0}^{+\infty} |a|^n = \frac{1}{1 - |a|} < +\infty, \text{ se } |a| < 1$$

Note que as condições para existência da DTFT para uma dada sequência (sequência absolutamente somável) concorda com as condições para obtenção do somatório da progressão geométrica que leva a uma forma fechada para $X(e^{j\omega})$. Entretanto, do ponto de vista estritamente matemático, devemos
sempre verificar se a sequência é absolutamente somável antes de obter sua DTFT.

Existem sequências que não são absolutamente somáveis mas que são quadratically somáveis, ou seja:

\[
\sum_{n=-\infty}^{+\infty} |x[n]|^2 , \forall n \in \mathbb{Z}
\]

Para obter sua DTFT precisamos relaxar os requisitos de convergência assintótica (pois elas não são absolutamente somáveis). Para fazer isso, construiremos uma aproximação com convergência média quadrática. Se \( \mathcal{F}_{DT}\{x[n]\} \) é definida por:

\[
X(e^{j\omega}) = \sum_{n=-\infty}^{+\infty} x[n] e^{-j\omega n}
\]

Então, sua versão aproximada (em função de um parâmetro \( M \)) é:

\[
X_M(e^{j\omega}) = \sum_{n=-M}^{+M} x[n] e^{-j\omega n}
\]

Logo, a aproximação média quadrática (em função de \( M \)) é tal que:

\[
\lim_{M \to +\infty} \int_{-\pi}^{+\pi} |X(e^{j\omega}) - X_M(e^{j\omega})|^2 d\omega = 0 \tag{3.9}
\]

Ou seja, truncamos o somatório que define a DTFT, e definimos um intervalo de comprimento \( 2M \) de tal forma a reduzir o erro de aproximação média quadrática (conceitualmente chamada de minimização de “energia”) para todas as frequências \( \omega \), representado na equação 3.9.

**DTFT para um sistema passa-baixa ideal:**

Um sistema (ou filtro) passa-baixa ideal é definido, no domínio da frequência, pela seguinte equação:

\[
H_{lp}(e^{j\omega}) = \begin{cases} 
1, & |\omega| < \omega_c \\
0, & \omega_c < |\omega| \leq \pi 
\end{cases} \tag{3.10}
\]
Pela definição, obtemos sua IDTFT, que é:

\[
h_p[n] = \frac{1}{2\pi} \int_{-\omega_c}^{+\omega_c} e^{j\omega n} \, d\omega = \frac{1}{j2\pi n} \left[ e^{j\omega n} \right]_{-\omega_c}^{+\omega_c} = \frac{1}{j2\pi n} \left( e^{j\omega_c n} - e^{-j\omega_c n} \right) \\
= \frac{\sin(\omega_c n)}{\pi n}, \quad \forall n|n \in \mathbb{Z}
\]

A sequência que descreve o sistema passa-baixa ideal, \( h_p[n] \), além de não ser causal, não é absolutamente somável, pois oscila indefinidamente. Logo, não existe DTFT (estritamente falando) para o sistema passa-baixa ideal. Entretanto, podemos aproximar a DTFT pela truncagem da sequência \( h_p[n] \) obtida. Ou seja:

\[
H_M(e^{j\omega}) = \sum_{n=-M}^{+M} \frac{\sin(\omega_c n)}{\pi n} e^{-j\omega n}
\]

\[
= \frac{1}{2\pi} \int_{-\omega_c}^{+\omega_c} \frac{\sin\left(\frac{(2M+1)(\omega-\theta)}{2}\right)}{\sin\left(\frac{\omega-\theta}{2}\right)} \, d\theta
\]

Para avaliar o comportamento da aproximação, determinamos as curvas \( H_M(e^{j\omega}) \) para diversos valores de \( M \).

Figura 3.4: Aproximações \( H_M(e^{j\omega}) \) com \( M = 1, M = 3, M = 7 \) e \( M = 19 \)
Para um determinado $M$, a amplitude das oscilações de $H_M(e^{j\omega})$ na descontinuidade $\omega = \omega_c$ é maior do que em outras regiões. A medida que $M$ aumenta ($M \to +\infty$), o número de oscilações aumenta, sem que $H_M(e^{j\omega})$ convirja para $H(e^{j\omega})$. A amplitude máxima das oscilações jamais torna-se nula. Tal comportamento é definido como fenômeno de Gibbs, e advém de efeitos de truncagem e operação com sequências que são quadratimamente somáveis. É um fenômeno comumente encontrado em dispositivos eletrônicos como osciloscópios e geradores de funções.

Existem entretanto algumas sequências especiais que não são nem absolutamente e nem quadraticamente somáveis. Tais sequências são de interesse especial para processamento digital de sinais. Uma análise mais precisa será feita no capítulo 5.

**DTFT de sequência constante:**

Considere a seguinte sequência constante, com amplitude unitária:

$$x[n] = 1, \quad \forall n \in \mathbb{Z}$$

Note que tal sequência não é absolutamente nem quadraticamente somável. Entretanto, podemos definir $\mathcal{F}_{DT\{x[n]\}}$ como sendo:

$$X(e^{j\omega}) = \sum_{r=\infty}^{\infty} \delta(\omega + 2\pi r)$$

onde $\delta(t)$ é a função impulso ou função Delta de Dirac (definida pela equação 2.2.6).

Note que a DTFT da sequência constante é um trem de impulso periódicos, o que mantém a propriedade de periodicidade (com período igual a $2\pi$) de $X(e^{j\omega})$ conforme visto anteriormente. Esta DTFT só existe porque formalmente podemos obtê-la quando calculamos a sua IDTFT para obter a sequência constante.

### 3.3.2 Propriedades da DTFT

A seguir serão listadas várias propriedades da DTFT. O intuito é mostrar que podemos encontrar rapidamente a DTFT de sequência com características

Assuma inicialmente as seguintes sequências (que são as equações 2.10):

\[ x[n] = x_p[n] + x_i[n] \]
\[ x_p[n] = \frac{1}{2} (x[n] + x^*[−n]) = x_p^*[−n] \]
\[ x_i[n] = \frac{1}{2} (x[n] − x^*[−n]) = −x_i^*[−n] \]

onde \( x_p[n] \) é chamada de sequência conjugada simétrica de \( x[n] \), e \( x_i[n] \) é chamada de sequência conjugada anti-simétrica de \( x[n] \).

Um caso particular dessa definição é que se \( x[n] \in \mathbb{R} \), então \( x_p[n] = x_p[n] \) e \( x_i[n] = −x_i[−n] \). Nesse caso particular, \( x_p[n] \) é uma sequência par e \( x_i[n] \) é uma sequência ímpar (maiores detalhes, veja a seção 2.2.5).

A DTFT dessas sequências é:

\[ X(e^{j\omega}) = X_p(e^{j\omega}) + X_i(e^{j\omega}) \]
\[ X_p(e^{j\omega}) = \frac{1}{2} [X(e^{j\omega}) + X^*(e^{-j\omega})] \]
\[ X_i(e^{j\omega}) = \frac{1}{2} [X(e^{j\omega}) − X^*(e^{-j\omega})] \]  \( \text{(3.11)} \)

Da equação 3.11, podemos obter (trocando \( \omega \) por \( −\omega \)) as seguintes relações:

\[ X_p(e^{j\omega}) = X_p^*(e^{-j\omega}) \]
\[ X_i(e^{j\omega}) = −X_i^*(e^{-j\omega}) \]  \( \text{(3.12)} \)

Essas propriedades (ditas de simetria) são úteis na simplificação de operações matemáticas. Posteriormente servirão como peça-chave na definição de algoritmos rápidos para obtenção de componentes espectrais de sequências.

As propriedades a seguir assumem que se conhecemos \( X(e^{j\omega}) \) para uma dada sequência \( x[n] \), então podemos obter rapidamente sua \( \mathcal{F}_{DT}\{x[n]\} \) de uma dada sequência que apresente alguma características específica em relação \( x[n] \) (o mesmo é válido para obter a sequência cuja DTFT possui alguma relação com \( X(e^{j\omega}) \)).

**DTFT de sequência conjugada**

\[ x[n] \xrightarrow{\mathcal{F}_{DT}} X(e^{j\omega}) \iff x^*[n] \xrightarrow{\mathcal{F}_{DT}} X(e^{-j\omega}) \]  \( \text{(3.13)} \)
Demonstração. A partir de $\mathcal{F}_{DT}\{x[n]\}$, temos:

$$X(e^{j\omega}) = \sum_{n=-\infty}^{+\infty} x[n] e^{-j\omega n}$$

Apliçando o conjugado em ambos os termos, temos:

$$\left[X(e^{j\omega})\right]^* = \left[\sum_{n=-\infty}^{+\infty} x[n] e^{-j\omega n}\right]^* = \sum_{n=-\infty}^{+\infty} x^*[n] e^{j\omega n}$$

Substituindo $\omega = -\omega'$ temos finalmente:

$$X^*(e^{-j\omega'}) = \sum_{n=-\infty}^{+\infty} x^*[n] e^{-j\omega' n}$$

\[\square\]

DTFT de sequência conjugada refletida

$$x[n] \xrightarrow{\mathcal{F}_{DT}} X(e^{j\omega}) \iff x^*[\neg n] \xrightarrow{\mathcal{F}_{DT}} X^*(e^{j\omega}) \quad (3.14)$$

DTFT da parte real de uma sequência

$$x[n] \xrightarrow{\mathcal{F}_{DT}} X(e^{j\omega}) \iff \Re\{x^*[n]\} \xrightarrow{\mathcal{F}_{DT}} X_p(e^{j\omega}) \quad (3.15)$$

Demonstração. A partir da equação 3.11 temos:

$$X_p(e^{j\omega}) = \frac{1}{2} \left\{ X(e^{j\omega}) + X^*(e^{-j\omega}) \right\}$$

$$= \frac{1}{2} \left\{ \sum_{n=-\infty}^{+\infty} x[n] e^{-j\omega n} + \left[\sum_{n=-\infty}^{+\infty} x[n] e^{j\omega n}\right]^* \right\}$$

$$= \frac{1}{2} \left\{ \sum_{n=-\infty}^{+\infty} x[n] e^{-j\omega n} + \sum_{n=-\infty}^{+\infty} x^*[n] e^{-j\omega n} \right\}$$

$$= \sum_{n=-\infty}^{+\infty} \left\{ \frac{x[n] + x^*[n]}{2} \right\} e^{-j\omega n} = \sum_{n=-\infty}^{+\infty} \Re\{x[n]\} e^{-j\omega n}$$

\[\square\]
DTFT da parte imaginária de uma sequência

\[ x[n] \xrightarrow{\mathcal{F}_{DT}} X(e^{j\omega}) \iff j\Im\{x^*[n]\} \xrightarrow{\mathcal{F}_{DT}} X_i(e^{j\omega}) \] (3.16)

DTFT da parte par de uma sequência

\[ x[n] \xrightarrow{\mathcal{F}_{DT}} X(e^{j\omega}) \iff x_p[n] \xrightarrow{\mathcal{F}_{DT}} X_R(e^{j\omega}) = \Re\{X(e^{j\omega})\} \] (3.17)

Demonstração. A partir da equação 2.10 temos:

\[
X_p(e^{j\omega}) = \sum_{n=-\infty}^{+\infty} \left\{ \frac{1}{2} (x[n] + x^*[-n]) \right\} e^{-j\omega n} \\
= \frac{1}{2} \sum_{n=-\infty}^{+\infty} x[n] e^{-j\omega n} + \frac{1}{2} \sum_{n=-\infty}^{+\infty} x^*[-n] e^{-j\omega n} \\
= \frac{1}{2} X(e^{j\omega}) + \frac{1}{2} \sum_{k=-\infty}^{+\infty} x^*[k] e^{j\omega k} \\
= \frac{1}{2} X(e^{j\omega}) + \frac{1}{2} \left\{ \sum_{k=-\infty}^{+\infty} x[k] e^{-j\omega k} \right\}^* \\
= \frac{1}{2} X(e^{j\omega}) + \frac{1}{2} X^*(e^{j\omega}) = \Re\{X(e^{j\omega})\}
\]

\[\Box\]

DTFT da parte ímpar de uma sequência

\[ x[n] \xrightarrow{\mathcal{F}_{DT}} X(e^{j\omega}) \iff x_i[n] \xrightarrow{\mathcal{F}_{DT}} X_\Im(e^{j\omega}) = j\Im\{X(e^{j\omega})\} \] (3.18)

DTFT de uma sequência real

Se \(x[n] \in \mathbb{R}\):

\[ x[n] \xrightarrow{\mathcal{F}_{DT}} X(e^{j\omega}) \iff X(e^{j\omega}) = X^*(e^{-j\omega}) \] (3.19)

\[ \iff X_R(e^{j\omega}) = X_R(e^{-j\omega}) \] (3.20)

\[ \iff X_\Im(e^{j\omega}) = -X_\Im(e^{-j\omega}) \] (3.21)

\[ \iff |X(e^{j\omega})| = |X(e^{-j\omega})| \] (3.22)

\[ \iff \angle X(e^{j\omega}) = -\angle X(e^{-j\omega}) \] (3.23)
Note que para uma sequência real, a DTFT é conjugada simétrica, sua parte real é par, sua parte imaginária é ímpar, sua magnitude é par e sua fase é ímpar, **SEMPRE**.

**Linearidade**

Seja uma sequência qualquer \( x[n] \) que pode ser decomposta linearmente na soma ponderada de duas outras sequências \( (x_1[n] \text{ e } x_2[n]) \), com \( a, b \in \mathbb{C} \). Sua DTFT é linear, pois:

\[
x[n] = a \ x_1[n] + b \ x_2[n] \quad \mathcal{F}_{DT} X(e^{j\omega}) = aX_1(e^{j\omega}) + bX_2(e^{j\omega})
\]

**Demonstração.** Calculando \( \mathcal{F}_{DT} \{x[n]\} \), obtemos:

\[
X(e^{j\omega}) = \sum_{n=-\infty}^{+\infty} x[n] e^{-j\omega n}
= \sum_{n=-\infty}^{+\infty} \{a \ x_1[n] + b \ x_2[n]\} \ e^{-j\omega n}
= a \ \left\{\sum_{n=-\infty}^{+\infty} x_1[n] \ e^{-j\omega n}\right\} + b \ \left\{\sum_{n=-\infty}^{+\infty} x_2[n] \ e^{-j\omega n}\right\}
= aX_1(e^{j\omega}) + bX_2(e^{j\omega})
\]

**Deslocamento no tempo**

Seja uma sequência qualquer \( x[n] \), com DTFT conhecida. Se deslocarmos suas amostras em \( n_d \) amostras \( (n_d \in \mathbb{Z}) \), \( \mathcal{F}_{DT} \{x[n - n_d]\} \) é:

\[
x[n] \xrightarrow{\mathcal{F}_{DT}} X(e^{j\omega}) \iff x[n - n_d] \xrightarrow{\mathcal{F}_{DT}} e^{-j\omega n_d}X(e^{j\omega})
\]

**Demonstração.** Calculando a DTFT de \( x'[n] = x[n - n_d] \), temos:

\[
x'(e^{j\omega}) = \sum_{n=-\infty}^{+\infty} x[n - n_d] e^{-j\omega n}
\]

Trocando de variáveis \( (m = n - n_d, \text{ ou seja, } n = m + n_d) \), temos:

\[
x'(e^{j\omega}) = \sum_{(m+n_d)=-\infty}^{+\infty} x[m] e^{-j\omega (m+n_d)}
= e^{-j\omega n_d} \sum_{m=-\infty}^{+\infty} x[m] e^{-j\omega m} = e^{-j\omega n_d}X(e^{j\omega})
\]
Deslocamento em frequência

Seja uma sequência qualquer \( x[n] \), com DTFT conhecida. Se a modularmos por uma sequência exponencial complexa, com frequência \( \omega_0 \), \((\omega_0 \in \mathbb{R})\), sua DTFT é:

\[
x[n] \xrightarrow{\mathcal{F}_{DT}} X(e^{j\omega}) \iff e^{j\omega_0 n} x[n] \xrightarrow{\mathcal{F}_{DT}} X(e^{j(\omega-\omega_0)})
\]

Demonstração. Calculando a DTFT da sequência modulada, temos:

\[
X'(e^{j\omega}) = \sum_{n=-\infty}^{+\infty} e^{j\omega_0 n} x[n] e^{-j\omega n} = \sum_{n=-\infty}^{+\infty} x[n] e^{-j(\omega-\omega_0)n} = X(e^{j\omega-\omega_0})
\]

Reversão temporal

Seja uma sequência qualquer \( x[n] \), com DTFT conhecida. Se revertermos tal sequência, sua DTFT é:

\[
x[n] \xrightarrow{\mathcal{F}_{DT}} X(e^{j\omega}) \iff x[-n] \xrightarrow{\mathcal{F}_{DT}} X(e^{-j\omega}) \\
\iff x[-n] \xrightarrow{\mathcal{F}_{DT}} X^*(e^{j\omega}), \quad x[n] \in \mathbb{R}
\]

Diferenciação em frequência

Seja uma sequência qualquer \( x[n] \), com DTFT conhecida. Se a modularmos por uma sequência linearmente crescente, sua DTFT é:

\[
x[n] \xrightarrow{\mathcal{F}_{DT}} X(e^{j\omega}) \iff n x[n] \xrightarrow{\mathcal{F}_{DT}} j \frac{dX(e^{j\omega})}{d\omega}
\]

Demonstração. Considere DTFT de \( x[n] \):

\[
X(e^{j\omega}) = \sum_{n=-\infty}^{+\infty} x[n] e^{-j\omega n}
\]
Diferenciando ambos os termos da igualdade em relação a \( \omega \), temos:

\[
\frac{dX(e^{j\omega})}{d\omega} = \sum_{n=-\infty}^{+\infty} x[n] \{ -jn \} e^{-jwn} \\
\frac{j dX(e^{j\omega})}{d\omega} = j \sum_{n=-\infty}^{+\infty} \{ -jn x[n] \} e^{-jwn} \\
= \sum_{n=-\infty}^{+\infty} \{ n x[n] \} e^{-jwn}
\]

onde \( n x[n] \) é a sequência modulada.

**Teorema da convolução**

O teorema da convolução diz que a convolução de duas sequências no domínio do tempo é equivalente a modulação das DTFT’s dessas duas sequências no domínio da frequência.

Ou seja, se:

\[
x_1[n] \xrightarrow{\mathcal{F}_{DT}} X_1(e^{j\omega}) \\
x_2[n] \xrightarrow{\mathcal{F}_{DT}} X_2(e^{j\omega})
\]

Então:

\[
x[n] = x_1[n] * x_2[n] \xrightarrow{\mathcal{F}_{DT}} X(e^{j\omega}) = X_1(e^{-j\omega})X_2(e^{j\omega}) \tag{3.29}
\]

**Demonstração.** Considere \( \mathcal{F}_{DT}\{x[n]\} \):  

\[
X(e^{j\omega}) = \sum_{n=-\infty}^{+\infty} x[n] e^{-jwn} \\
= \sum_{n=-\infty}^{+\infty} \left\{ \sum_{k=-\infty}^{+\infty} x_1[k] x_2[n-k] \right\} e^{-jwn} \\
= \sum_{k=-\infty}^{+\infty} x_1[k] \left\{ \sum_{n=-\infty}^{+\infty} x_2[n-k] e^{-jwn} \right\}
\]

Por troca de variáveis \((n - k = m, \text{ ou seja, } n = k + m)\), temos:

\[
X(e^{j\omega}) = \sum_{k=-\infty}^{+\infty} x_1[k] \left\{ \sum_{m=-\infty}^{+\infty} x_2[n] e^{-jwm} \right\} e^{-jwk} \\
= X_2(e^{j\omega}) \sum_{k=-\infty}^{+\infty} x_1[k] e^{-jwk} \\
= X_2(e^{j\omega})X_1(e^{j\omega})
\]
Teorema da modulação

Analogamente ao teorema da convolução, temos que a modulação de duas sequências no domínio do tempo é equivalente a convolução (periódica) de suas DTFTs no domínio da frequência.

Ou seja, se:

\[ x_1[n] \xrightarrow{\mathcal{F}_{DT}} X_1(e^{j\omega}) \]
\[ x_2[n] \xrightarrow{\mathcal{F}_{DT}} X_2(e^{j\omega}) \]

Então:

\[ x[n] = x_1[n]x_2[n] \xrightarrow{\mathcal{F}_{DT}} X(e^{j\omega}) = \frac{1}{2\pi} \int_{-\pi}^{+\pi} X(e^{j\theta})X(e^{j(\omega-\theta)})d\theta \quad (3.30) \]

Teorema de Parseval

O teorema de Parseval define que a energia total de um sistema é a soma das contribuições das energias distribuídas em cada uma das frequências normalizadas \( \omega \). É esse teorema que permite definirmos a densidade de potência espectral de uma dada sequência ou sistema.

\[ \sum_{n=-\infty}^{+\infty} |x[n]|^2 = \frac{1}{2\pi} \int_{-\pi}^{+\pi} |X(e^{j\omega})|^2 d\omega \quad (3.31) \]

A importância é atribuída a sua relação com estimação espectral, uma área de processamento digital de sinais ligada a tentativa de determinar as características espectrais de uma sequência com base em avaliações probabilísticas do fenômeno físico representado pela sequência.

Demonstração. Inicialmente provaremos a forma geral do Teorema de Parseval, considerando duas sequências distintas cujas DTFT’s são moduladas.

Seja \( x_1[n] \) e \( x_2[n] \) tal que:

\[ x_1[n] \xrightarrow{\mathcal{F}_{DT}} X_1(e^{j\omega}) \]
\[ x_2[n] \xrightarrow{\mathcal{F}_{DT}} X_2(e^{j\omega}) \]
Então:

\[ X(e^{j\omega}) = X_1(e^{j\omega})X_2(e^{j\omega}) \]

\[ = \left\{ \sum_{m=-\infty}^{+\infty} x_1[m] e^{-j\omega m} \right\} \left\{ \sum_{n=-\infty}^{+\infty} x_2^*[n] e^{j\omega n} \right\} \]

\[ = \sum_{m=-\infty}^{+\infty} \sum_{n=-\infty}^{+\infty} x_1[m]x_2^*[n]e^{-j\omega(m-n)} \]

Fazendo troca de variáveis \((k = m - n)\), temos:

\[ X(e^{j\omega}) = \sum_{k=-\infty}^{+\infty} \sum_{n=-\infty}^{+\infty} x_1[n+k]x_2^*[n] e^{-j\omega k} \]

onde \(x[k]\) corresponde a função de correlação cruzada entre duas sequências, com atraso de \(k\) amostras.

Ou seja:

\[ x[k] = \sum_{n=-\infty}^{+\infty} x_1[n+k]x_2^*[n] \xrightarrow{F_{DT}} X(e^{j\omega}) = X_1(e^{j\omega})X_2^*(e^{j\omega}) \quad (3.32) \]

Se \(x_1[n] = x_2[n] = y[n]\) e \(x[k] = z[k]\), temos:

\[ z[k] = \sum_{n=-\infty}^{+\infty} y[n+k]y^*[n] \xrightarrow{F_{DT}} Z(e^{j\omega}) = Y(e^{j\omega})Y^*(e^{j\omega}) \]

Calculando \(z[0]\), temos:

\[ z[0] = \sum_{n=-\infty}^{+\infty} y[n]y^*[n] = \sum_{n=-\infty}^{+\infty} |y[n]|^2 \]

Mas \(F_{DT}^{-1}\{Z(e^{j\omega})\}\), com \(n = 0\), é:

\[ z[0] = \frac{1}{2\pi} \int_{-\pi}^{+\pi} Y(e^{j\omega})Y^*(e^{j\omega})e^{-j\omega(0)}d\omega \]

\[ = \frac{1}{2\pi} \int_{-\pi}^{+\pi} |Y(e^{j\omega})|^2 d\omega \]

\[ \square \]
Pares de transformadas

Segue agora uma relação de diversas transformadas de Fourier de tempo discreto, cuja prova pode ser obtida diretamente das equações 3.7.

$$\delta[n] \overset{\mathcal{F}_{DT}}{\rightarrow} 1$$

$$\delta[n - n_d] \overset{\mathcal{F}_{DT}}{\rightarrow} e^{-j\omega n_d}$$

$$1, n|n \in \mathbb{Z} \overset{\mathcal{F}_{DT}}{\rightarrow} +\infty \sum_{k=-\infty}^{+\infty} 2\pi \delta(\omega + 2\pi k)$$

$$a^n u[n], |a| < 1 \overset{\mathcal{F}_{DT}}{\rightarrow} \frac{1}{1 - ae^{-j\omega}}$$

$$u[n] \overset{\mathcal{F}_{DT}}{\rightarrow} \frac{1}{1 - e^{-j\omega}} + \sum_{k=-\infty}^{+\infty} \pi \delta(\omega + 2\pi k)$$

$$(n + 1)a^n u[n] \overset{\mathcal{F}_{DT}}{\rightarrow} \frac{1}{(1 - ae^{-j\omega})^2}$$

$$\frac{\text{sen}(\omega_n n)}{\pi n} \overset{\mathcal{F}_{DT}}{\rightarrow} X(e^{j\omega}) = \begin{cases} 1, & |\omega| < \omega_c \\ 0, & \omega_c < |\omega| \leq \pi \end{cases}$$

$$x[n] = \begin{cases} 1, & 0 \leq n \leq M \\ 0, & \text{c.c.} \end{cases} \overset{\mathcal{F}_{DT}}{\rightarrow} \frac{\text{sen}(\omega(M + 1)/2)}{\text{sen}(\omega/2)} e^{-j\omega M/2}$$

$$e^{j\omega n} \overset{\mathcal{F}_{DT}}{\rightarrow} +\infty \sum_{k=-\infty}^{+\infty} 2\pi \delta(\omega - \omega_0 + 2\pi k)$$

$$\cos(\omega_0 n + \phi) \overset{\mathcal{F}_{DT}}{\rightarrow} +\infty \sum_{k=-\infty}^{+\infty} \left[ \pi e^{j\phi} \delta(\omega - \omega_0 + 2\pi k) + \pi e^{-j\phi} \delta(\omega + \omega_0 + 2\pi k) \right]$$
Capítulo 4

Teoria da Amostragem

Até agora tratamos de sequências discretas, onde não existe qualquer informação sobre o intervalo de tempo físico existente entre a i-ésima amostra e suas vizinhas imediatas \( i - 1 \) e \( i + 2 \).

Para relacionarmos um sinal contínuo (ou analógico) com uma sequência discreta, introduzimos agora o conceito de período (ou frequência) de amostragem. Ou seja, a cada intervalo fixo de tempo coletaremos o valor do sinal instantâneo. Matematicamente temos:

\[
x[n] = x_c(nT), \quad -\infty < n < +\infty \tag{4.1}
\]

onde \( T \) é o período de amostragem, e \( f_s = \frac{1}{T} \) é a frequência de amostragem.

![Diagrama de Amostragem](image)

Figura 4.1: Representação gráfica do conversor A/D

Esta é uma operação irreversível, ou seja, pois uma vez realizada, não é possível obter o exatamente sinal contínuo \( x_c(t) \) a partir das amostras \( x[n] \). Isso significa que a operação NÃO É INVERSÍVEL.

Matematicamente, tratamos a amostragem (ou discretização) em dois estágios:

1. Um gerador de trem de impulsos (delta de Dirac)
2. Um conversor de impulsos para sequências
Tais estágios são apresentados na figura 4.2, onde fica claro a modulação entre o sinal contínuo \( x_c(t) \) e o trem de impulsos \( s(t) \). O conversor na verdade é um dispositivo eletrônico do tipo "sample-and-hold".

![Diagrama de amostragem A/D](image)

Figura 4.2: Estágios de uma amostragem (A/D)

A figura 4.3 mostra o que acontece quando usamos um conversor A/D com período de amostragem muito pequeno em relação as características espe-ctrais do sinal contínuo. Podemos notar que quando o freqüência de amostra-
agem é pequeno, perdemos informação do sinal contínuo, e dessa forma, temos uma sequência que pouca relação com esse sinal.
Figura 4.3: Exemplo de um mesmo sinal amostrado através de trens de pulsos com períodos de amostragem distintos.

O trem de pulsos é definido matematicamente por:

\[ s(t) = \sum_{n=-\infty}^{+\infty} \delta(t - nT) \]

Modulando o sinal contínuo \( x_c(t) \) com o trem de pulsos \( s(t) \), temos um sinal “amostrado” no domínio contínuo:

\[ x_s(t) = x_c(t) \cdot s(t) = x_c(t) \sum_{n=-\infty}^{+\infty} \delta(t - nT) \]

\[ = \sum_{n=-\infty}^{+\infty} x_c(nT) \delta(t - nT) \]

Agora analisaremos os efeitos dessa modulação (primeiro passo da amostragem) nas componentes espectrais do sinal \( x_s(t) \). Aplicando a Transformada de Fourier (Equação 3.1) sobre a função trem de pulsos \( s(t) \), temos:

\[ S(\Omega) = \frac{2\pi}{T} \sum_{k=-\infty}^{+\infty} \delta(\Omega - k\Omega_s), \quad \Omega_s = \frac{2\pi}{T} \]
Como modulamos no domínio do tempo, implicitamente convoluímos na frequência, ou seja:

\[
X_s(\Omega) = \frac{1}{2\pi} X_c(\Omega) * S(\Omega) = \frac{1}{T} \sum_{k=\infty}^{+\infty} X_c(\Omega - k\Omega_s)
\]

levando em conta que a função delta de Dirac \(\delta(t)\) possui propriedades especiais (Equação 2.2.6).

Figura 4.4: Relação entre \(X_c(\Omega)\), \(X_s(\Omega)\) e \(S(\Omega)\), para diferentes frequências de amostragem

Note que \(X_s(\Omega)\) é uma função contínua (em \(\Omega\)) composta de uma soma
de infinitas réplicas de $X_c(\Omega)$, deslocadas $k\Omega_s$ radianos entre si.

Para que as réplicas não se sobreponham, é necessário que:

$$\Omega_s - \Omega_N > \Omega_N$$
$$\Omega_s > 2\Omega_N$$

Dessa forma, podemos recuperar $x_c(t)$ a partir de $x_s(t)$ usando um filtro passa-baixas ideal com uma frequência de corte $\Omega_c$ ($\Omega_N < \Omega_c < \Omega_s - \Omega_N$) que elimine as réplicas de $X_s(\Omega)$. Essa eliminação pode ser impossível devido a sobreposições das réplicas oriunda de uma amostragem incorreta do sinal contínuo $x_c(t)$. Quando tais sobreposições ocorrem, temos o fenômeno conhecido por espalhamento espectral ou **aliasing**.

Figura 4.5: Recuperação de sinal original (no domínio da frequência) a partir de $X_s(\Omega)$ usando filtro passa-baixas

A frequência $\Omega_N$, que é a componente espectral de maior valor (em radianos) é chamada de **frequência de Nyquist**. Ela define qual o limite de frequência de amostragem $\Omega_s$.

**Teorema 4.1** (Teorema de Nyquist). Seja $x_c(t)$ um sinal de banda limitada com $X_c(\Omega) = 0$ para $|\Omega| \geq \Omega_N$. Então $x_c(t)$ é unicamente determinado por
\(x[n] = x_c(nT)\) para \(n \in \mathbb{Z}\) se e somente se:

\[
\Omega_s = \frac{2\pi}{T} \geq 2\Omega_N
\] (4.2)

Podemos relacionar a Transformada de Fourier Discreta no Tempo (DTFT) com as Transformadas de Fourier (contínuas) dos sinais contínuos \(x_c(t)\) e \(x_s(t)\), ou seja \(X(e^{j\omega})\) com \(X_s(\Omega)\) e \(X_c(\Omega)\).

Pela definição,

\[x_s(t) = \sum_{n=-\infty}^{+\infty} x_c(nT)\delta(t - nT)\]

Então

\[X_s(\Omega) = \int_{-\infty}^{+\infty} x_s(t)e^{-j\Omega t}dt = \sum_{n=-\infty}^{+\infty} x_c(nT)e^{-j\Omega T n}\]

Pela definição de amostragem de uma sinal, temos \(x[n] = x_c(nT)\) e:

\[X(e^{j\omega}) = \sum_{n=-\infty}^{+\infty} x[n] e^{-j\omega n}\]

Por comparação, temos:

\[X_s(\Omega) = X(e^{j\omega})|_{\omega = \Omega T} = X(e^{j\Omega T})\]

Logo,

\[X(e^{j\Omega T}) = \frac{1}{T} \sum_{k=-\infty}^{+\infty} X_c(\Omega - k\Omega_s)\]

\[X(e^{j\omega}) = \frac{1}{T} \sum_{k=-\infty}^{+\infty} X_c\left(\frac{\omega}{T} - \frac{2\pi k}{T}\right)\]

Ou seja, \(X(e^{j\omega})\) é uma versão “escalada” em frequência de \(X_s(\Omega)\) (escala definida por \(\omega = \Omega T\). Apenas reforçando, quando discretizamos o sinal \(x_c(t)\) em \(x_s(t)\) (e consequentemente \(x[n]\)), a sua DTFT corresponde a soma de réplicas da Transformada de Fourier do sinal contínuo original \(x_c(t)\), espaçadas a cada \(2\pi\) radianos, o que mantém a periodicidade implícita da DTFT.

Exemplo:

Considere sinal contínuo \(x_c(t) = \cos(\Omega_0 t) = \cos(4000\pi t)\) amostrado a
6000 Hz. Isso implica em \( T = \frac{1}{6000} \) \( (\Omega_s = \frac{2\pi}{T} = 12000\pi) \). Discretizando-o, temos:

\[
x[n] = x_c(nT) = \cos(4000\pi T n) = \cos(\omega_0 n) = \cos(2\pi n/3)
\]

Aplicando a Transformada de Fourier em \( x_c(t) \), obtemos:

\[
X_c(\Omega) = \pi\delta(\Omega - 4000\pi) + \pi\delta(\Omega + 4000\pi)
\]

Graficamente, quando amostramos um sinal contínuo, sabemos que são produzidas réplicas ao redor das frequências múltiplas da frequência de amostragem \( (\Omega_s) \), como vemos na figura a seguir.

Figura 4.6: Componentes espectrais do sinal \( x_c(t) = \cos(16000\pi t) \), quando amostrado a \( T = 1/6000 \) Hz.

Considerando agora o sinal contínuo \( x_c(t) = \cos(\Omega_1 t) = \cos(16000\pi t) \) amostrado a 6000 Hz \( (\Omega_s = \frac{2\pi}{T} = 12000\pi) \). Discretizando-o, temos:

\[
x[n] = x_c(nT) = \cos(16000\pi T n) = \cos(2\pi n + \omega_1 n) = \cos(2\pi n/3)
\]

Quando consideramos a Transformada de Fourier de \( x_c(t) \) e a DTFT de \( x[n] \), notaremos que os resultados são idênticos àqueles obtidos para um sinal
cuja maior componente espectral é 4 vezes menor do que a do sinal agora analisado. Isso também fica evidente quando calculamos \(x[n]\).

Finalmente, considere o sinal contínuo \(x_c(t) = \cos(\Omega_2 t) = \cos(4000\pi t)\) amostrado a 1500 Hz \((\Omega_s = \frac{2\pi}{T} = 3000\pi)\). Discretizando-o, temos:

\[
x[n] = x_c(nT) = \cos(4000\pi T n) = \cos(2\pi n + \omega_1 n) = \cos(2\pi n/3)
\]

Em comparação ao primeiro sinal desse exemplo, suas Transformada de Fourier de \(x_s(t)\) (versão “amostrada” de \(x_c(t)\), no domínio contínuo) possuem componentes espectrais bastante distintas. Entretanto, ambas as DTFT das respectivas sequências são idênticas, como vemos na figura a seguir.

Figura 4.7: Componentes espectrais do sinal \(x_c(t) = \cos(4000\pi t)\), quando amostrado a \(T = 1/1500\) Hz.

*Note que em todos os casos, \(\mathcal{F}_{DT}\{x[n]\}\) produz os mesmos resultados, pois a combinação entre \(\Omega_0\), \(\Omega_1\) e \(\Omega_2\) com relação a \(\Omega_s\) ainda gerando a mesma sequência \(x[n]\).*

Também fica evidente que a manipulação da frequência de amostragem \(\Omega_s\) e da frequência da maior alta componente espectral pode produzir as mesmas sequências (e DTFT’s).
Até agora, analisamos os aspectos matemáticos da discretização de um sinal contínuo para uma sequência, a partir de um período fixo de amostragem $T$. Nesse instante definiremos os aspectos relativos à conversão de uma sequência em um sinal contínuo, com base no seu período de amostragem.

Sabemos que a modulação de um sinal contínuo $x_c(t)$ por um trem de impulso $s(t)$ (definido a partir de $T$) produz um sinal $x_s(t)$ cujas componentes espectrais correspondem a uma soma de infinidades réplicas de $X_c(\Omega)$. Se não ocorrer aliasing, podemos isolar exatamente $X_c(\Omega)$ a partir de $X_s(\Omega)$ a partir de um filtro passa-baixas com frequência de corte $(\Omega_c)$ igual a $\pi/T$.

Pela definição, podemos gerar um sinal $x_s(t)$ contínuo a partir de suas sequências $x[n]$, ou seja:

$$x_s(t) = \sum_{n=-\infty}^{+\infty} x[n] \delta(t - nT)$$

Chamaremos de $h_r(t)$ ao filtro passa-baixas. Quando aplicamos tal filtro, por convolução, obtemos o sinal reconstruído $x_r(t)$ (que é uma aproximação de $x_s(t)$):

$$x_r(t) = x_s(t) * h_r(t)$$

$$= \sum_{n=-\infty}^{+\infty} x[n] h_r(t - nT)$$

Pela definição apresentada para o filtro passa-baixas (ideal), a Transformada de Fourier de $h_r(t)$ é:

$$H_r(\Omega) = \begin{cases} T, & -\frac{\pi}{T} < \Omega < \frac{\pi}{T} \\ 0, & |\Omega| > \frac{\pi}{T} \end{cases} \quad (4.3)$$

Calculando sua Transformada Inversa de Fourier, temos:

$$h_r(t) = \frac{\text{sen}(\pi t/T)}{\pi t/T} \quad (4.4)$$

 Assim, o sinal reconstruído pode ser escrito como:

$$x_r(t) = \sum_{n=-\infty}^{+\infty} x[n] \frac{\text{sen}(\pi(t - nT)/T)}{\pi(t - nT)/T}$$

$$= \sum_{n=-\infty}^{+\infty} x[n] \text{sinc}(t - nT)$$
Precisamos verificar se \( x_r(nT) = x_s(nT) \), pois não conhecemos os valores para instantes \( t \neq nT \). Assim,

\[
\begin{align*}
    h_r(0) &= 1 \\
    h_r(nT) &= 0, \quad n = \pm 1, \pm 2, \ldots
\end{align*}
\]

Isso implica em \( x_r(nT) = x_c(nT) = x[n] \). Graficamente, o filtro passa-baixa \( h_r(t) \) (ou \( H_r(\Omega) \)) é apresentado na figura 4.8.

Figura 4.8: Filtro passa-baixas reconstrutor (resposta temporal e espectral)

Tal filtro \textbf{interpol}a valores entre \( x_s(t) \) (definido a partir de \( x[n] \) e do período de amostragem \( T \)) para formar \( x_r(t) \), que é uma aproximação de \( x_c(t) \). Esse filtro também é chamado de filtro \textbf{reconstrutor}. Simbolicamente essa operação é descrita pela figura 4.9.

Figura 4.9: Estágios de reconstrução de sinal a partir de sequência (D/A)
Considerando agora que temos um modo para discretizar e reconstruir um sinal contínuo, podemos considerar o uso de sistemas discretos para processar sinais contínuos usando computadores digitais, por exemplo, ao invés de operar exclusivamente com sistemas contínuos.

Matematicamente tal operação significa:

\[ x[n] = x_c(nT) \]

\[ X(e^{j\omega}) = \frac{1}{T} \sum_{k=-\infty}^{+\infty} X_c \left( \frac{\omega}{T} - \frac{2\pi k}{T} \right) \]

A sequência \( x[n] \) é então convolvida por um sistema qualquer produzindo como saída \( y[n] \), que é então reconstruído por um filtro passa-baixa ideal \( h_r(t) \) através das expressões:

\[ y_r(t) = \sum_{n=-\infty}^{+\infty} y[n] \cdot \frac{\text{sen}(\pi(t - nT)/T)}{\pi(t - nT)/T} \]

\[ Y_r(\Omega) = X(e^{j\Omega T}) \cdot H_r(\Omega) = \begin{cases} 
TY(e^{j\Omega T}), & |\Omega| < \frac{\pi}{T} \\
0, & |\Omega| > \frac{\pi}{T}
\end{cases} \]

Figura 4.10: Representação gráfica da aplicação de um sistema discreto sobre um sinal contínuo, usando discretização e reconstrução de sinais e sequências.

Graficamente esse processo é apresentado na figura 4.10. Caso o sistema seja linear e invariante no tempo, podemos incorporar na expressão anterior a resposta em frequência do sistema \( H(e^{j\omega}) \), ou seja:

\[ X(e^{j\omega}) = H(e^{j\omega}) \cdot X(e^{j\omega}) \]
Mas:

\[ Y_r(\Omega) = X(e^{j\Omega T}) \cdot H_r(\Omega) \]

\[ = \left\{ X(e^{j\Omega T}) \cdot H(e^{j\Omega T}) \right\} \cdot H_r(\Omega) \]

\[ = H_r(\Omega) \cdot H(e^{j\Omega T}) \frac{1}{T} \sum_{k=-\infty}^{+\infty} X_c \left( \Omega - \frac{2\pi k}{T} \right) \]

Como \( X_c(\Omega) = 0 \) para \( |\Omega| \geq \frac{\pi}{T} \) e \( H_r(\Omega) = T \) para \( |\Omega| < \frac{\pi}{T} \), então:

\[ Y_r(\Omega) = \begin{cases} 
H(e^{j\Omega T}) \cdot X_c(\Omega), & |\Omega| < \frac{\pi}{T} \\
0, & |\Omega| > \frac{\pi}{T} \end{cases} \]

Caso \( X_c(\Omega) \) obedeça o Teorema de Nyquist (teorema 4.1), podemos calcular a resposta em frequência analógica do sistema em termos da resposta em frequência do sistema digital, ou seja:

\[ Y_r(\Omega) = H_{\text{eff}}(\Omega) \cdot X_c(\Omega) \]

onde:

\[ H_{\text{eff}}(\Omega) = \begin{cases} 
H(e^{j\Omega T}), & |\Omega| < \frac{\pi}{T} \\
0, & |\Omega| > \frac{\pi}{T} \end{cases} \]

Dessa forma, definimos qual é o sistema “analógico” efetivo que está sendo realizado com a operações de discretização, aplicação do filtro e reconstrução das sequências e sinais contínuos envolvidos.
Capítulo 5

Transformada Z

A Transformada Z é baseada na teoria de funções analíticas, que são funções localmente definidas por séries de potências convergentes. Em termos de engenharia, equivale à Transformada de Laplace para sequências.

A Transformada Z foi desenvolvida para lidar com sequências que, do ponto de vista estritamente matemático, não são absolutamente somáveis e, desta forma, não possuem Transformada de Fourier Discreta no Tempo (DTFT).

5.1 Preliminares

Nas teorias de circuitos elétricos e de controle, tivemos contato com a Transformada de Laplace, que permite o mapeamento entre os domínios do tempo e s, ambos contínuos. Tal transformada é definida pelo seguinte par de equações:

\[
F(s) = \int_{0}^{+\infty} f(t) e^{-st}dt \\
\]

\[
f(t) = \frac{1}{2\pi j} \int_{\sigma-j\infty}^{\sigma+j\infty} F(s)e^{st}ds \\
(5.1)
\]

Onde s é uma variável complexa definida por \(s = \sigma + j\omega\). Se considerarmos apenas a parte imaginária de s na Equação 5.1, temos a Transformada de Fourier (Equação 3.1. Note aqui que estamos tratando da versão unilateral da Transformada de Laplace. A sua versão bilateral exige que a integral de \(F(s)\) seja calculada no intervalo aberto \(-\infty, +\infty[\).

Cálculo de Transformada de Laplace
Vamos primeiramente calcular a Transformada de Fourier e depois traçar um paralelo entre tal transformada e a Transformada de Laplace. Seja

\[ x(t) = e^{-at}u(t) \]

onde \( u(t) \) é uma função deu ou função de Heaviside.

Sua Transformada de Fourier é:

\[
X(j\omega) = \int_{-\infty}^{+\infty} e^{-at}u(t)e^{-j\omega t} dt = \int_{0}^{+\infty} e^{-at}e^{-j\omega t} dt
\]

\[
= \frac{-1}{a + j\omega} \left[ e^{-(a+j\omega)t} \right]_{0}^{+\infty} = \frac{-1}{a + j\omega} \left[ e^{-a\infty}e^{-j\omega\infty} - 1 \right]
\]

Se \( a > 0 \), então \( X(j\omega) = -1 \). Entretanto, se \( a \leq 0 \), a integral não converge, e \( X(j\omega) \) não existe.

Analogamente, sua Transformada de Laplace é:

\[
X(s) = \int_{0}^{+\infty} e^{-at}u(t)e^{-st} dt = \int_{0}^{+\infty} e^{-at}e^{-st} dt
\]

\[
= \frac{-1}{s + a} \left[ e^{-(a+s)t} \right]_{0}^{+\infty} = \frac{-1}{s + a} \left[ e^{-(a+s)\infty} - 1 \right]
\]

Tal integral somente converge (e, consequentemente, existe) se:

\[(s + a) > 0 \implies (\sigma + j\omega + a) > 0 \implies \sigma > -a \implies \Re(s) > -a\]

Nesse caso, a região de convergência de \( X(s) \) são todos os valores \( s \) no plano complexo cuja parte real seja maior do que \( -a \).

Outra consideração importante, baseada nas operações apresentadas, é que se \( a < 0 \), não existe Transformada de Fourier de \( x(t) \), mas existe Transformada de Laplace de \( x(t) \). Essa relação de existência será verificada quando tratarmos de Transformada \( Z \).

Note que associado a Transformada de Laplace de uma dada função (contínua e diferenciável), existe uma região de convergência para o qual os valores de \( s \) garantem a existência da transformada.

Para calcular a Transformada Inversa de Laplace, podemos usar a integração direta (Equação 5.1, ou técnicas baseadas em frações parciais ou soluções tabeladas.)
5.2 Definição

Da mesma maneira que a Transformada de Laplace está para a Transformada de Fourier, a Transformada Z está para a Transformada de Fourier Discreta no Tempo. Posteriormente veremos como relacionar as Transformadas Z e Laplace.

Uma das diferenças que existem entre elas (para facilitar a compreensão, sem entrar no rigor matemático) é que enquanto a Transformada de Laplace opera sobre um domínio temporal contínuo, a Transformada Z opera sobre sequências no domínio do tempo.

A Transformada Z de uma sequência $x[n]$ é definida por:

$$X(z) = \mathcal{Z}\{x[n]\} = \sum_{n=-\infty}^{+\infty} x[n] \; z^{-n}$$  \hspace{1cm} (5.2)

Tal transformada é dita Transformada Z **bilateral** pelo fato dos limites do somatório envolver a grandeza $\infty$. Um caso particular é a Transformada Z **unilateral**, que é definida por:

$$X(z) = \sum_{n=0}^{+\infty} x[n] \; z^{-n}, \quad z \in \mathbb{C}$$

Neste trabalho focaremos unicamente no caso bilateral. Entretanto, veremos que em muitas situações práticas, as manipulações algébricas envolvendo as sequências levarão ao caso unilateral.

Pela definição de $\mathcal{Z}_{DT}\{x[n]\}$ (assumindo que $x[n]$ é absolutamente somável), temos:

$$X(e^{j\omega}) = \sum_{n=-\infty}^{+\infty} x[n] \; e^{-j\omega n}$$

Comparando $X(e^{j\omega})$ com $X(z)$, temos que $z = e^{j\omega}$. Isso significa que se uma sequência $x[n]$ possui DTFT, pois isso implica na sequência ser absolutamente somável; então tal sequência possuirá Transformada Z. Ou seja:

$$X(e^{j\omega}) = X(z)|_{z = e^{j\omega}}$$  \hspace{1cm} (5.3)

Note que, quando mantemos a relação $z = e^{j\omega}$, estamos restringindo valores válidos para $z$ de tal forma que todos eles localizam-se sobre um círculo de raio unitário. Isso pode ser melhor compreendido pela figura 5.1.
Figura 5.1: Representação de $z = e^{j\omega}$, ou $|z| = 1$.

Além disso, o cálculo da DTFT envolve a variação de $\omega$ no intervalo $]-\infty, +\infty[$ sobre um eixo linear. Como $X(e^{j\omega})$ é uma função periódica (com período igual a $2\pi$), podemos restringir a análise para qualquer intervalo de comprimento igual a $2\pi$ (como $[-\pi, +\pi]$ ou $[0, +2\pi]$).

Com a Transformada Z para $z = e^{j\omega}$ - que é $X(e^{j\omega})$ - seus valores são obtidos sobre pontos do círculo de raio unitário ($|z| = 1$) variando o ângulo $\omega$ em qualquer intervalo de comprimento igual a $2\pi$ (como $[-\pi, +\pi]$ ou $[0, +2\pi]$). Mesmo que calculássemos $X(z)$ para qualquer outro ângulo fora desses intervalos, evidenciariamos a periodicidade implícita de $X(z)$ para $z = e^{j\omega}$.

Assim, uma das propriedades importantes para $X(e^{j\omega})$ é facilmente compreendida quando pensamos em $X(z)$ para pontos sobre o círculo de raio unitário. É como se a DTFT fosse “doblada” (warped) sobre o círculo de raio unitário, no plano complexo.

Entretanto, como $z \in \mathbb{C}$, podemos generalizá-la para:

$$z = re^{j\omega}, \quad r \in \mathbb{R}$$

Assim, através do parâmetro $r$ (raio), podemos descrever todos os valores
complexos. Assim, podemos reescrever \( X(z) \) como:

\[
X(z) = X(re^{j\omega}) = \sum_{n=-\infty}^{+\infty} x[n] (re^{j\omega})^{-n}
\]

\[
= \sum_{n=-\infty}^{+\infty} (x[n]r^{-n}) e^{-jn}
\]

ou seja, \( X(z) \) é a DTFT de uma sequência \( (x[n]r^{-n}) \).

### 5.3 Existência da Transformada Z

Precisamos avaliar quais as condições para que uma sequência \( x[n] \) admita Transformada Z. Usando o critério existência da DTFT, que exige que a sequência seja absolutamente somável (o que implica na sequência converger assintoticamente para \( n \rightarrow \pm\infty \)), para a nova sequência \( x'[n] = (x[n]r^{-n}) \) temos que:

\[
|x'[n]| < \infty \\
|x[n]r^{-n}| < \infty
\]

**Exemplo:**

A sequência degrau unitário, \( x[n] = u[n] \), não é absolutamente somável. Entretanto, \( x'[n] = x[n]r^{-n} = u[n]r^{-n} \) é absolutamente somável se, e somente se, \( r > 1 \).

Ou seja,

\[
\exists \mathcal{Z}\{u[n]\} \quad \forall |z| > 1
\]

Este critério apenas indica que caso a taxa de crescimento assintótico de \( x[n] \) seja inferior a taxa de crescimento assintótico de \( r^n \), então, \( (x[n]r^{-n}) \) decrescerá assintoticamente, garantindo que tal sequência seja absolutamente somável e que sua DTFT exista.

Avaliaremos agora se a Transformada Z existe. Seja:

\[
|X(z)| < \infty \\
\left| \sum_{n=-\infty}^{+\infty} x[n] z^{-n} \right| < \infty \\
\sum_{n=-\infty}^{+\infty} |x[n] z^{-n}| < \infty
\]
Usando a inequação de Cauchy-Schwarz (2.27), temos:

\[ \sum_{n=-\infty}^{+\infty} |x[n]| |z^{-n}| < \infty \]

\[ \sum_{n=-\infty}^{+\infty} |x[n]| |z|^{-n} < \infty \quad (5.4) \]

Ou seja, a existência da Transformada Z depende de valores de \( z \) (ou mais precisamente, \(|z|\) (além dos valores de \(x[n]\)). Assim, somos obrigados a definir a região no plano complexo onde os valores \( z = z_i \) daquela região validam a inequação 5.4. Tal região é definida como região de convergência da Transformada Z, ou ROC.

Como a existência da Transformada Z depende de \(|z|\), se um determinado \( z = z_i \in \text{ROC} \), então qualquer ponto no círculo descrito por \( z_i \) pertencerá à região de convergência (ou seja \( z = z_i \Rightarrow |z| = |z_i| \), \( z_i \in \text{ROC} \)).

**Transformada Z para diferentes sequências:**

A primeira sequência avaliada aqui será a sequência dita à direita (right-sided sequence), que é uma sequência causal. Considere a seguinte sequência à direita:

\[ x[n] = a^n u[n] \]

Sua Transformada Z é:

\[ X(z) = \sum_{n=-\infty}^{+\infty} a^n u[n] z^{-n} = \sum_{n=0}^{+\infty} a^n z^{-n} \]

Para que \( X(z) \) exista, é necessário que:

\[ \sum_{n=0}^{+\infty} |a|^n |z^{-1}|^n < \infty \]

Isso implica em:

\[ |a| |z^{-1}| < 1 \Rightarrow |z| > |a| \]

Logo, usando a Equação 2.26 para cálculo da soma de uma progressão geométrica, temos:

\[ X(z) = \frac{1}{1 - az^{-1}} = \frac{z}{z - a}, \quad |z| > |a| \]

Graficamente a ROC é:
Figura 5.2: ROC (área hachurada) para sequência à direita, com $a = 0.8$.

Note que o **pólo** da equação $X(z)$ define o muro do círculo concêntrico e limitrofe da ROC. Um pólo de uma equação é o valor que zera o seu denominador.

A próxima sequência que analisaremos é a sequência dita à esquerda (left-sided sequence), que é uma sequência não-causal. Considere a seguinte **sequência à direita**:

$$x[n] = -a^n u[-n - 1]$$

**Sua Transformada Z é:**

$$X(z) = \sum_{n=-\infty}^{+\infty} -a^n u[-n - 1] z^{-n} = -\sum_{n=-\infty}^{-1} a^n z^{-n} = -\sum_{n=1}^{\infty} a^{-n} z^{n}$$

$$= 1 - \sum_{n=0}^{+\infty} a^n z^{-n}$$

Para que $X(z)$ exista, é necessário que:

$$\sum_{n=0}^{+\infty} |a^{-1}|^n |z|^n < \infty$$

Isso implica em:

$$|a^{-1}| |z| < 1 \Rightarrow |z| < |a|$$
Logo, usando a Equação 2.26 para cálculo da soma de uma progressão geométrica, temos:

\[ X(z) = \frac{1}{1 - az^{-1}} = \frac{z}{z - a}, \quad |z| < |a| \]

Graficamente a ROC é:

![Diagrama da ROC](image)

Figura 5.3: ROC (área hachurada) para sequência à direita, com \( a = 1.2 \).

Note que tanto uma sequência causal como uma não-causal podem produzir a mesma Transformada Z. A única diferença entre elas é a região de convergência (ROC). Assim, a Transformada Z depende da ROC para caracterizá-la completamente.

Combinando as duas sequências anteriores, obtemos a sequência de dois lados (two-sided sequence) ou sequência mista. Considere a seguinte sequência mista:

\[ x[n] = (-0.5)^n u[n] + (0.75)^n u[n] \]

Sua Transformada Z é:

\[
X(z) = \sum_{n=-\infty}^{+\infty} (-0.5)^n u[n] z^{-n} + \sum_{n=-\infty}^{+\infty} 0.75^n u[n] z^{-n} \\
= \sum_{n=0}^{+\infty} (-0.5)^n z^{-n} + \sum_{n=0}^{+\infty} 0.75^n z^{-n} \\
= \frac{1}{1 + 0.5 z^{-1}} + \frac{1}{1 - 0.75 z^{-1}} = \frac{2z(z - 0.375)}{(z + 0.5)(z - 0.75)}
\]
Para que $X(z)$ exista, é necessário que:

$$\sum_{n=0}^{+\infty} |(-0.5)^n |z^{-1}|^n + \sum_{n=0}^{+\infty} |0.75|^n |z^{-1}|^n < \infty$$

Isso implica em, simultaneamente:

$$|(-0.5)| |z^{-1}| < 1 \Rightarrow |z| > 0.5$$

$$|0.75| |z^{-1}| < 1 \Rightarrow |z| > 0.75$$

Graficamente a ROC é:

![ROC diagram](image)

Figura 5.4: ROC (área hachurada) para sequência mista.

Novamente os pólos da equação $X(z)$ definem vuos de círculos concêntricos no plano complexo. Entretanto, sua região de convergência exige que as restrições impostas por duas inequações sejam simultaneamente validas. Assim, a ROC para essa sequência corresponde a **INTERSECÇÃO** de duas ROC individuais.

Considere agora outra sequência mista:

$$x[n] = (-0.5)^n u[n] + -(0.75)^n u[-n-1]$$

Sua Transformada Z é:

$$X(z) = \frac{2z(z - 0.375)}{(z + 0.5)(z - 0.75)}$$
Para que $X(z)$ exista, é necessário que:

$$
\sum_{n=0}^{+\infty} \left| (-0.5)^n \right| |z|^{-n} + \sum_{n=0}^{+\infty} \left| 0.75^{-1} \right| |z|^n < \infty
$$

Isso implica em, simultaneamente:

$$
\left| (-0.5)^n \right| |z|^{-1} < 1 \Rightarrow |z| > 0.5 \\
\left| 0.75^{-1} \right| |z| < 1 \Rightarrow |z| < 0.75
$$

Graficamente a ROC é:

Figura 5.5: ROC (área hachurada) para sequência mista.

Como em exemplos anteriores, diferentes sequências produzem $X(z)$ iguais, com diferentes ROC. E novamente, a ROC dessa sequência mista pode ser obtido pela interseção de duas ROC distintas.

Finalmente, considere a seguinte sequência finita:

$$
x[n] = \begin{cases} 
a^n, & 0 \leq n \leq N - 1 \\
0, & \text{c.c.}
\end{cases}
$$

Sua Transformada Z é:

$$
X(z) = \sum_{n=0}^{N-1} a^n z^{-n} = \sum_{n=0}^{N-1} (az^{-1})^n = \frac{1 - aN z^{-N}}{1 - a z^{-1}} = \frac{1}{z^N} \frac{z^N - a^N}{z - a}
$$
Para que $X(z)$ exista, é necessário que:

$$\sum_{n=0}^{N-1} |a|^n |z^{-1}|^n < \infty$$

Como o número de termos é finito, isso significa que:

$$|a| |z^{n-1}| < \infty \Rightarrow |a| < \infty$$

$$z \neq 0$$

Graficamente a ROC é:

Figura 5.6: ROC para sequência finita.

Note que a única restrição imposta aqui é $z \neq 0$, que configura um polo exatamente em $z = 0$. Existe também um polo em $z = a$, que é cancelado por um dos zeros de $z_k = ae^{j2\pi k/N}$, que são raízes de $z^N = a^N$.

Existe uma segunda restrição ($z \neq \infty$), que origina-se quando a sequência finita é não-causal. Isso pode ser determinado analiticamente a partir da definição da Transformada Z.

Sumarizando, podemos determinar algumas relações envolvendo a ROC de $\mathcal{Z}\{x[n]\}$ (ou $X(z)$):

1. A ROC sempre será um anel ou disco com centro na origem. A equação descritiva do anel é $0 \leq r_{direita} < |z| < r_{esquerda} \leq +\infty$, e a equação descritiva do disco é $|z| < r_{esquerda} \leq +\infty$. 

2. A DTFT de \( x[n] \) convergirá absolutamente se, e somente se, a ROC de \( \mathcal{Z}\{x[n]\} \) incluir o círculo unitário.

3. A ROC NUNCA inclui qualquer pólo em seu domínio de definição.

4. Se \( x[n] \) tem duração finita, então a ROC de \( \mathcal{Z}\{x[n]\} \) é todo plano complexo EXCETO \( z = 0 \) ou \( z = \infty \).

5. Se \( x[n] \) é uma sequência à direita (causal), então a ROC de \( \mathcal{Z}\{x[n]\} \) é externo ao círculo definido pelo pólo mais externo de \( X(z) \).

6. Se \( x[n] \) é uma sequência à esquerda (não-causal), então a ROC de \( \mathcal{Z}\{x[n]\} \) é interna ao círculo definido pelo pólo mais interno de \( X(z) \).

7. Se \( x[n] \) é uma sequência mista, então a ROC de \( \mathcal{Z}\{x[n]\} \) é um anel delimitado por círculos definidos por um único par de seus pólos, sem que haja qualquer pólo interno ao anel.

8. A ROC de \( \mathcal{Z}\{x[n]\} \) é uma região conectada.

A figura 5.7 mostra um conjunto de possíveis ROC para três pólos de um \( X(z) \) qualquer (no caso, reais) definidos no plano complexo. Todos eles obedecem as relações apresentadas.

Note que em todos os casos, os ZEROS de \( X(z) \) não afetam a sua existência (ou convergência da sequência). Posteriormente avaliaremos situações nas quais tais zeros serão restringidos de forma a atender uma propriedade específica.

### 5.4 Causalidade e Estabilidade

Considerando \( h[n] \) como um sistema linear e invariante no tempo, podemos calcular a \( \mathcal{Z}\{h[n]\} \) e determinar características como causalidade e estabilidade no domínio \( z \).

Das seções 2.3.3 e 2.3.6, \( h[n] \) é causal se \( h[n] = 0 \) para \( n < 0 \). Pelos exemplos apresentados na seção anterior, \( H(z) \) será causal se sua ROC for \( |z| > |a|, \forall a \in \mathbb{C} \). Caso contrário, o sistema será não-causal.

A estabilidade de um sistema está ligado a inclusão do círculo de raio unitário (\( |z| = 1 \)) dentro do domínio de definição da ROC de \( H(z) \), independentemente da ROC ser um anel ou um círculo. Como o círculo de raio unitário representa os pontos no plano complexo onde \( H(e^{j\omega}) \) é obtido, isso significa...
Figura 5.7: Exemplo de ROC para um mesmo \( X(z) \).

que se um sistema \( H(z) \) é estável, ele possui DTFT, pois da Equação 2.28 temos:

\[
\sum_{n=-\infty}^{+\infty} |h[n]| < \infty
\]

Combinando essas duas propriedades, um sistema \( h[n] \) será causal e estável se, e somente se, sua ROC for \( |z| > |a| \), com \( |a| < 1 \).

5.5 Transformada Inversa de Z

Diferente das definições da Transformada de Fourier Discreta no Tempo (cuja simetria na transformação de domínios entre \( x[n] \) e \( X(e^{j\omega}) \) facilita as manipulações algébricas), a Transformada Inversa de Z é mais complexa por envolver a ROC (como vimos, diferentes sequências geram \( X(z) \) iguais, diferindo apenas na região de convergência.

A Transformada Inversa de Z de \( X(z) \) (com ROC \( R \) é:

\[
x[n] = \frac{1}{2\pi j} \oint_{C} X(z)z^{n-1}dz \tag{5.5}
\]
onde \( C \) é um caminho fechado que circunda a origem \((z_0 = 0 \in C)\) e está contido em \( R \) \((C \subset \mathbb{R})\), percorrido no sentido **antihorário**.

**Demonstração.** Pelo teorema de Cauchy (ou Integral de Cauchy), temos:

\[
\frac{1}{2\pi j} \oint_C z^{k-1} \, dz = \begin{cases} 
1, & k = 0 \\
0, & k \neq 0
\end{cases} \tag{5.6}
\]

Pela definição de Transformada Z (Equação 5.2), sabemos que:

\[
X(z) = \sum_{n=-\infty}^{+\infty} x[n] z^{-n}
\]

Multiplicando ambos os lados dessa equação por \( z^{k-1} \frac{1}{2\pi j} \) e calculando a integral de linha em um caminho fechado \( C \) percorrido em sentido antihorário, temos:

\[
\frac{1}{2\pi j} \oint_C X(z)z^{k-1} \, dz = \frac{1}{2\pi j} \oint_C \sum_{n=-\infty}^{+\infty} x[n]z^{-n+k-1} \, dz
\]

\[
= \sum_{n=-\infty}^{+\infty} x[n] \frac{1}{2\pi j} \oint_C z^{-n+k-1} \, dz
\]

Pela Equação 5.6, temos que quando \(-n + k = 0\), ou \( n = k \), a integral de linha é não-nula. Ou seja:

\[
\frac{1}{2\pi j} \oint_C X(z)z^{k-1} \, dz = x[k]
\]

\(\Box\)

**Demonstração.** Outra forma de demonstrar a Transformada Inversa de Z consiste em analisar a relação entre Transformadas Z e de Fourier Discreta no Tempo. Ou seja:

\[
X(z) = \mathcal{F}_{DT} \{ x[n]r^{-n} \}
\]

\[
X(re^{j\omega}) = \mathcal{F}_{DT} \{ x[n]r^{-n} \}
\]

Isso implica em:

\[
x[n]r^{-n} = \mathcal{F}_{DT}^{-1} \{ X(re^{j\omega}) \}
\]

\[
x[n] = r^n \frac{1}{2\pi} \int_{-\pi}^{+\pi} X(re^{j\omega})e^{j\omega n} \, d\omega
\]

\[
= \frac{1}{2\pi} \int_{-\pi}^{+\pi} X(re^{j\omega}) (re^{j\omega})^n \, d\omega
\]
Sabemos que:

\[ z = re^{j\omega} \]
\[ dz = jre^{j\omega}d\omega \]
\[ d\omega = \frac{1}{jre^{j\omega}}dz \]

Note que uma variação de \(-\pi\) até \(+\pi\), na integral da IDTFT significa variar ao redor do círculo de raio \( r \) (em sentido anti-horário) no plano \( z \), pois agora estamos substituindo as variáveis \( \omega \) pela variável complexa \( z \). Ou seja:

\[
x[n] = \frac{1}{2\pi j} \oint_C X(z)\frac{z^n}{z}dz \\
= \frac{1}{2\pi j} \oint_C X(z)z^{n-1}dz
\]

onde \( C \) é o caminho fechado descrito pelo círculo de raio \( r \), cujos pontos \( z \in \text{ROC} \), para que exista a integral.

\[ \square \]

5.5.1 Teoria de Resíduos

Para calcular a Transformada Inversa de \( Z \), nos valemos da Teoria de Resíduos de Funções Analíticas. Isso significa que:

\[
x[n] = \frac{1}{2\pi j} \oint_C X(z)z^{n-1}dz \\
= \sum_i [\text{resíduos de } X(z)z^{n-1} \text{ para pólos } z_i \text{ internos a } C] \quad (5.7)
\]

Os resíduos são calculados através de:

\[
\text{Res}[X(z)z^{n-1} \text{ para } z = z_i] = \frac{1}{(s-1)!} \left[ \frac{d^{s-1}\Psi(z)}{dz^{s-1}} \right]_{z=z_i} \quad (5.8)
\]

onde \( s \) é a multiplicidade do \( i \)-ésimo pólo \( z_i \) onde o resíduo é calculado, e:

\[
\Psi(z) \big|_{z=z_i} = X(z)z^{n-1} \quad \Rightarrow \quad \Psi(z) \big|_{z=z_i} = [X(z)z^{n-1}] (z-z_i)^s
\]

Exemplo de cálculo da Transformada Inversa de \( Z \):

Seja:

\[
X(z) = \frac{1}{1-az^{-1}}, \quad |z| > |a|
\]
Pela Equação 5.5, temos:

\[ x[n] = \frac{1}{2\pi j} \oint_{C} \frac{z^{n-1}}{1-az^{-1}} dz = \frac{1}{2\pi j} \oint_{C} \frac{z^n}{z-a} dz \]

Vamos agora determinar \( C \). Como a ROC de \( X(z) \) é \( |z| > |a| \), então o caminho fechado de integração \( C \) deve ser, no mínimo, um círculo de raio maior do que \( a \).

Primeiramente calcularemos \( x[n] \) (pela Equação 5.5) para \( n \geq 0 \). Nessas condições teremos apenas um pólo interno ao caminho \( C \), em \( z_0 = a \). Assim:

\[ x[n] = \text{Res} \{ \Psi(z) \}_{z=z_0} = \text{Res} \left\{ \left[ \frac{z^n}{z-a} \right] \right\}_{z_0=a} = \frac{1}{0!} [z^n]_{z_0=a} = a^n \]

Para \( n > 0 \), entretanto, além do pólo em \( z_0 = a \), temos pólos em \( z_1 = 0 \) cuja multiplicidade varia de acordo com \( n \). Assim, temos que calcular \( x[n] \) para cada \( n \) nesse intervalo. Para \( n = -1 \), temos:

\[ x[n] = \text{Res} \left\{ \left[ \frac{1}{z(z-a)} \right] \right\}_{z_0=a} + \text{Res} \left\{ \left[ \frac{1}{z(z-a)} \right] \right\}_{z_1=0} = a^{-1} - a^{-1} = 0 \]

Para \( n = -2 \), temos novamente 2 pólos. Entretanto, o pólo \( z_1 = 0 \) agora possui multiplicidade 2. Assim, temos:

\[ x[n] = \text{Res} \left\{ \left[ \frac{1}{z^2(z-a)} \right] \right\}_{z_0=a} + \text{Res} \left\{ \left[ \frac{1}{z^2(z-a)} \right] \right\}_{z_1=0} = a^{-2} - a^{-2} = 0 \]

Por indução, \( x[n] = 0 \) para \( n < 0 \). Como resultado final temos \( x[n] = a^n u[n] \).

Uma maneira fácil de lidar com valores de \( x[n] \) para \( n < 0 \) é alterar a relação entre \( x[n] \) e \( X(z) \) no cálculo da Transformada Inversa de Z. Fazendo...
$z = \frac{1}{p}$, onde $p$ também é uma variável complexa, temos $p = e^{-j\omega r}$ e:

$$x[n] = \frac{1}{2\pi j} \oint_{z=e^{j\omega r}} X\left(\frac{1}{p}\right) p^{-n+1} (-1)p^{-2}dp$$

Note que a integral de linha agora é no sentido HOrário. Reorganizando tal equação, temos:

$$x[n] = \frac{1}{2\pi j} \oint_{C'} X\left(\frac{1}{p}\right) p^{-n-1}dp \quad (5.9)$$

Com a troca de variáveis ($p$ por $z$), os pólos que eram internos ao círculo de raio $r$ (caminho fechado $C$) passam a ser externos ao círculo de raio $\frac{1}{r}$ (caminho fechado $C'$) e vice-versa. O cálculo dos resíduos, então, restringe-se aos pólos internos ao caminho fechado $C'$ através de:

$$\text{Res} \left[ X\left(\frac{1}{p}\right) p^{-n-1} \right. \text{ para } p = p_i] = \frac{1}{(s-1)!} \left[ \frac{d^{s-1}\Psi'(p)}{dp^{s-1}} \right]_{p=p_i} \quad (5.10)$$

com:

$$\frac{\Psi'(p)|_{p=p_i}}{(p-p_i)^s} = X\left(\frac{1}{p}\right) p^{-n-1} \Rightarrow \Psi'(p)|_{p=p_i} = \left[ X\left(\frac{1}{p}\right) p^{-n-1}\right] (p-p_i)^s$$

Na prática, a Equação 5.9 só é empregada para $n < 0$, enquanto que a Equação 5.5 para $n \geq 0$.

continuação do exemplo anterior:

Calculando novamente $x[n]$ para $n < 0$, usando 5.5 temos:

$$x[n] = \frac{1}{2\pi j} \oint_{C'} \frac{p^{-n-1}}{1-ap} dz$$

Para $n < 0$, não existem pólos internos a $C'$. Logo $x[n] = 0$ para $n < 0$, confirmando os resultados usando a força-bruta.

Como vimos, o processo consiste em determinar a equação final $X(z)z^{n-1}$ e determinar seus pólos. Com base nesses pólos e sua localização em relação ao caminho fechado $C$ (obtido a partir da ROC de $X(z)$), podemos calcular os resíduos, que diretamente fornecem as componentes para $x[n]$. 
Exemplos de cálculo de Transformada Inversa de Z:

Neste primeiro exemplo, seja:

\[
X(z) = \frac{3z^2 - \frac{5}{6}z}{(z - \frac{1}{4})(z - \frac{1}{3})}, \quad |z| > \frac{1}{3}
\]

Para \(n \geq 0\) encontramos 2 pólos internos de \(X(z)z^{n-1}\) em \(C\) (ou seja, \(z = \frac{1}{4}\) e \(z = \frac{1}{3}\)). Logo:

\[
x[n] = \text{Res} \left\{ \left\{ \frac{(3z - \frac{5}{6})z^n}{(z - \frac{1}{4})(z - \frac{1}{3})} \right\} \left( z - \frac{1}{3} \right) \right\}_{z_0 = \frac{1}{3}}
\]

\[
+ \text{Res} \left\{ \left\{ \frac{(3z - \frac{5}{6})z^n}{(z - \frac{1}{4})(z - \frac{1}{3})} \right\} \left( z - \frac{1}{4} \right) \right\}_{z_0 = \frac{1}{4}}
\]

\[
= \frac{1}{0!} \left[ \frac{(3z - \frac{5}{6})z^n}{(z - \frac{1}{4})} \right]_{z_0 = \frac{1}{4}} + \frac{1}{0!} \left[ \frac{(3z - \frac{5}{6})z^n}{(z - \frac{1}{3})} \right]_{z_0 = \frac{1}{4}}
\]

\[
= 2 \left( \frac{1}{3} \right)^n - \left( \frac{1}{4} \right)^n
\]

Para \(n < 0\), não há pólos externos de \(X(z)z^{n-1}\) em \(C\). Logo, a solução final é:

\[x[n] = \left[ 2 \left( \frac{1}{3} \right)^n - \left( \frac{1}{4} \right)^n \right] u[n]\]

Agora considere:

\[
X(z) = \frac{(z - \frac{1}{2})}{(z - \frac{1}{4})(z - \frac{1}{3})}, \quad |z| > \frac{1}{3}
\]

Para \(n < 0\), não há pólos externos de \(X(z)z^{n-1}\) em \(C\). Entretanto, para \(n \geq 0\), temos 3 pólos internos de \(X(z)z^{n-1}\) em \(C\) (ou seja, \(z = \frac{1}{4}\), \(z = \frac{1}{3}\) e \(z = 0\)). Logo:
\[ x[n] = \text{Res} \left\{ \left[ \frac{(z - \frac{1}{2}) z^n}{(z - \frac{1}{4}) (z - \frac{1}{3})} \right] \left( z - \frac{1}{4} \right) \right\}_{z_0 = \frac{1}{4}} \\
+ \text{Res} \left\{ \left[ \frac{(z - \frac{1}{2}) z^n}{(z - \frac{1}{4}) (z - \frac{1}{3})} \right] \left( z - \frac{1}{4} \right) \right\}_{z_0 = \frac{1}{4}} \\
+ \text{Res} \left\{ \left[ \frac{(z - \frac{1}{2}) z^n}{(z - \frac{1}{4}) (z - \frac{1}{3})} \right] z \right\}_{z_0 = 0} \\
= \left\{ 12 \left( \frac{1}{4} \right)^n - 6 \left( \frac{1}{3} \right)^n \right\} u[n] - 6 \delta[n] \]

Note que o valor \(-6 \delta[n]\) vem do fato de que para \(n = 0\) o último resíduo é igual a \(-6(0)^0 = -6\), ao passo que para \(n \neq 0\), é \(-6(0)^n = 0\).

Em todos os exemplos apresentados até aqui, operamos com potências positivas de \(z\), inclusive para determinação dos zeros de diversos polinômios (que resultam em pólos de \(X(z)\) ou \(X(z)z^{-1}\)).

### 5.5.2 Frações Parciais

Da mesma forma que na Transformada de Laplace, podemos usar a técnica de frações parciais para calcular a Transformada Inversa de Z, basicamente decompondo \(X(z)\), geralmente formada a partir de uma razão entre dois polinômios, em somatório de frações cujas transformadas no domínio Z são facilmente obtidas.

Podemos representar qualquer razão entre polinômios por potências positivas ou negativas de \(z\). Ou seja:

\[
X(z) = \frac{\sum_{k=0}^{M} b_k z^{-k}}{\sum_{k=0}^{N} a_k z^{-k}} = \frac{\sum_{k=0}^{M} b_k z^{M-k}}{\sum_{k=0}^{N} a_k z^{N-k}} = \frac{b_0 \prod_{k=1}^{M} (1 - c_k z^{-1})}{a_0 \prod_{k=1}^{N} (1 - d_k z^{-1})}
\]

onde \(c_k\) e \(d_k\) são os zeros e pólos de \(X(z)\).

Tendo em vista tal decomposição, podemos assumir algumas situações práticas para \(M\) e \(N\). Se \(M < N\) e todos os PÓLOS de \(X(z)\) são de PRIMEIRA
**Ordem**, então:

\[ X(z) = \sum_{k=1}^{N} \frac{A_k}{1 - d_k z^{-1}} \]  \hspace{1cm} (5.11)

com:

\[ A_k = [X(z) (1 - d_k z^{-1})]_{z=d_k} \]

**Exemplo:**

Seja:

\[ X(z) = \frac{1}{(1 - \frac{1}{4} z^{-1})(1 - \frac{1}{2} z^{-1})}, \quad |z| > \frac{1}{2} \]

Facilmente determinamos que as raízes de \( X(z) \) são \( \frac{1}{4} \) e \( \frac{1}{2} \). Logo:

\[ X(z) = \frac{A_1}{1 - \frac{1}{4} z^{-1}} + \frac{A_2}{1 - \frac{1}{2} z^{-1}} \]

com:

\[ A_1 = \left[ X(z) \left(1 - \frac{1}{4} z^{-1}\right)\right]_{z=\frac{1}{4}} = -1 \]

\[ A_2 = \left[ X(z) \left(1 - \frac{1}{2} z^{-1}\right)\right]_{z=\frac{1}{2}} = 2 \]

Por inspeção em valores tabelados de pares de Transformada Z, temos que a Transformada Inversa de Z de \( X(z) \) é:

\[ x[n] = -\left(\frac{1}{4}\right)^n u[n] + 2 \left(\frac{1}{2}\right)^n u[n] \]

Assumindo agora que \( M \geq N \) e alguns **Pólos** de \( X(z) \) possuem **Ordem Superior**, temos:

\[ X(z) = \sum_{r=0}^{M-N} B_r z^{-r} + \sum_{k=1,k\neq i}^{N} \frac{A_k}{1 - d_k z^{-1}} + \sum_{m=1}^{S} \frac{C_m}{(1 - d_m z^{-1})^m} \]  \hspace{1cm} (5.12)

onde \( d_i \) são os pólos com multiplicidade \( s \), \( d_k (k \neq i) \) são os pólos de ordem 1, \( A_k \) é definido a partir da Equação 5.11, e:

\[ C_m = \frac{1}{(s-m)!(d_i)^{s-m}} \left\{ \frac{d^{s-m}}{dw^{s-m}} \left[ (1 - d_i w)^s X(w^{-1}) \right] \right\}_{w=d_i^{-1}} \]

Para determinar \( B_r \), lançamos mão de divisão longa entre polinômios. Com base na ROC de \( X(z) \) e em algumas Transformadas Z tabeladas, como:
\[ B_r z^{-r} \xrightarrow{\mathcal{Z}} B_r \delta[n - r] \nonumber \]

\[ \frac{A_k}{1 - d_k z^{-1}} \xrightarrow{\mathcal{Z}} A_k (d_k)^n u[n] \text{ ou } -A_k (d_k)^n u[-n - 1] \nonumber \]

**Exemplo:**

Seja

\[ X(z) = \frac{1 + 2z^{-1} + z^{-2}}{1 - \frac{3}{2}z^{-1} + \frac{1}{2}z^{-2} \quad |z| > 1} \nonumber \]

\[ = \frac{(1 + z^{-1})^2}{(1 - \frac{1}{2}z^{-1})(1 - z^{-1})} \nonumber \]

Como \( M = N = 2 \), então aplicamos a divisão longa para obter o termo \( B_0 \). Como a ROC envolve \( |z| > 1 \) então a série converge para potências negativas de \( z \). Assim, a divisão fica:

\[ \begin{array}{c|cc}
 z^{-2} + z^{-1} + 1 & \frac{\frac{1}{2}z^{-2} - \frac{3}{2}z^{-1} + 1}{2} & \frac{\frac{1}{2}z^{-2} - \frac{3}{2}z^{-1} + 1}{2} \\
 -\left[ z^{-2} - 3z^{-1} + 1 \right] & \frac{5z^{-1} - 1}{2} & \frac{5z^{-1} - 1}{2} \\
\end{array} \]

Note que essa divisão longa foi feita da tal forma que a potência do resto seja maior do que a potência do denominador. Esse é o critério de parada para a divisão longa. Assim:

\[ X(z) = 2 + \frac{-1 + 5z^{-1}}{(1 - \frac{1}{2}z^{-1})(1 - z^{-1})} \nonumber \]

\[ = 2 + \frac{A_1}{(1 - \frac{1}{2}z^{-1})} + \frac{A_2}{(1 - z^{-1})} \nonumber \]

com:

\[ A_1 = \left[ X(z) \left( 1 - \frac{1}{2}z^{-1} \right) \right]_{z=\frac{1}{2}} = -9 \nonumber \]

\[ A_2 = \left[ X(z) \left( 1 - z^{-1} \right) \right]_{z=1} = 8 \nonumber \]

Por inspeção em valores tabelados de pares de Transformada Z, temos que a Transformada Inversa de Z de \( X(z) \) é:

\[ x[n] = 2\delta[n] - 9 \left( \frac{1}{2} \right)^n u[n] + 8u[n] \nonumber \]
Note que em frações parciais operamos com potências **negativas** de \( z \), pois os pares tabelados de Transformada \( Z \) são fornecidos dessa forma. No entanto, para encontrar os pôlos de \( X(z) \), fica mais fácil operar com potências **positivas** de \( z \).

### 5.5.3 Expansão em Série de Potências

A expansão em série de potências atende a \( X(z) \) que não podem ser definidos por uma razão de polinômios. Existem funções em \( z \) que podem ser descritas a partir da sua Série de Taylor.

Tal técnica se baseia na definição de \( \mathcal{Z}\{x[n]\} \) (Equação 5.2), ou seja:

\[
X(z) = \sum_{n=-\infty}^{+\infty} x[n] z^{-n}
\]

\[
= \cdots + x[-2]z^2 + x[-1]z^1 + x[0] + x[1]z^{-1} + x[2]z^{-2} + \cdots
\]

Assim, por inspeção podemos determinar \( x[n] \) que se encaixa na definição. Tal abordagem também é bastante útil para sequências finitas.

#### Exemplos:

**Seja** \( X(z) \) **definida pela expressão transcendental:**

\[
X(z) = \log(1 + az^{-1})
\]

Sabe-se que a **Série de Taylor de** \( \log(1 + x) \) **é definida como:**

\[
\log(1 + x) = \sum_{n=1}^{+\infty} \frac{(-1)^{n+1} x^n}{n}
\]

Logo:

\[
X(z) = \sum_{n=1}^{+\infty} \frac{(-1)^{n+1} a^n}{n} z^{-n}
\]

**Ou seja, por inspeção em relação a Equação 5.13, a Transformada Inversa de** \( Z \) **de** \( X(z) \) **é:**

\[
x[n] = \begin{cases} 
(-1)^{n+1} \frac{a^n}{n}, & n \geq 1 \\
0 & \text{c.c.}
\end{cases}
\]
Considere agora $X(z)$ tal que:

$$X(z) = \frac{1}{1 - az^{-1}}, \quad |z| > |a|$$

Vamos agora realizar uma divisão longa de tal forma que a potência do
resto seja sempre menor do que a potência do denominador. Assim, quando
$|z| \to +\infty$, o resto tende a zero, assintoticamente.

$$
\begin{array}{c|c}
1 & 1 - az^{-1} \\
-1 & 1 + az^{-1} + a^2z^{-2} + \cdots \\
\hline
+az^{-1} & -[az^{-1} - a^2z^{-2}] \\
+az^{-1} & -[a^2z^{-2} - a^3z^{-3}] \\
\hline
\end{array}
$$

Assim, $X(z) = 1 + az^{-1} + a^2z^{-2} + \cdots$. Por inspeção em relação a Equação
5.13, a Transformada Inversa de Z de $X(z)$ é $x[n] = a^n u[n]$.

Finalmente considere $X(z)$ tal que:

$$X(z) = \frac{1}{1 - az^{-1}}, \quad |z| < |a|$$

Vamos agora realizar uma divisão longa de tal forma que a potência do
resto seja sempre maior do que a potência do denominador. Assim, quando
$|z| \to -\infty$, o resto tende a zero, assintoticamente.

$$
\begin{array}{c|c}
1 & 1 - az^{-1} \\
-1 & -a^{-1}z^{1} - a^{-2}z^{2} + a^{-3}z^{3} \cdots \\
\hline
+az^{1} & -[a^{-1}z^{1} - a^{-2}z^{2}] \\
+az^{1} & -[a^{-2}z^{2} - a^{-3}z^{3}] \\
\hline
\end{array}
$$

Assim, $X(z) = -a^{-1}z^{1} - a^{-2}z^{2} + \cdots$. Por inspeção em relação a Equação
5.13, a Transformada Inversa de Z de $X(z)$ é $x[n] = -a^n u[-n - 1]$.

A diferença dessas duas divisões longas reside nos valores permissíveis de
$z$ - ROC - que garantem convergência assintótica (ou existência) de $X(z)$. 
Dessa forma, tais restrições impõe que com o aumento das potências de $z$ do resto no processo de divisão longa, o resto deverá convergir para zero.

5.6 Propriedades da Transformada Z

A seguir serão listadas várias propriedades da Transformada Z. O intuito é mostrar que podemos encontrar rapidamente tal transformada de sequência com características especiais, com base em suas propriedades matemáticas. Tais propriedades terão ligação estreita com as propriedades da Transformada de Fourier Discreta no Tempo, da seção 3.3.

As propriedades a seguir assumem que se conhecemos $X(z)$ para uma dada sequência $x[n]$, então podemos obter rapidamente sua $\mathcal{Z}\{x[n]\}$ de uma dada sequência que apresente alguma características específica em relação $x[n]$, ou seja:

$$x[n] \underset{Z}{\longleftrightarrow} X(z), \quad ROC : R_x$$

Transformada Z de sequência conjugada

$$x[n] \underset{Z}{\longleftrightarrow} X(z) \iff x^*[n] \underset{Z}{\longleftrightarrow} X^*(z^*)$$

$$ROC : R_x \iff ROC : R_x$$

Demonstração. A partir de $\mathcal{Z}\{x[n]\}$, temos:

$$X(z) = \sum_{n=-\infty}^{+\infty} x[n] z^{-n}$$

Aplicando o conjugado em ambos os termos, temos:

$$[X(z)]^* = \left[ \sum_{n=-\infty}^{+\infty} x[n] z^{-n} \right]^* = \sum_{n=-\infty}^{+\infty} x^*[n] (z^{-n})^* = \sum_{n=-\infty}^{+\infty} x^*[n] (z^*)^{-n}$$

Substituindo $w = z^*$ temos finalmente:

$$X^*(w^*) = \sum_{n=-\infty}^{+\infty} x^*[n] w^{-n}$$

□
Linearidade

Seja uma sequência qualquer \( x[n] \) que pode ser decomposta linearmente na soma ponderada de duas outras sequências \( (x_1[n] \text{ e } x_2[n]) \), com \( a, b \in \mathbb{C} \) e:

\[
\begin{align*}
  x_1[n] & \xrightarrow{\mathcal{Z}} X_1(z), & ROC : R_{x_1} \\
  x_2[n] & \xrightarrow{\mathcal{Z}} X_2(z), & ROC : R_{x_2}
\end{align*}
\]

A Transformada Z é linear, pois:

\[
x[n] = a x_1[n] + b x_2[n] \xrightarrow{\mathcal{Z}} X(z) = aX_1(z) + bX_2(z) \quad ROC : R_{x_1} \cap R_{x_2}
\]

\[\text{(5.15)}\]

Demonstração. Calculando \( \mathcal{Z}\{x[n]\} \), obtemos:

\[
X(z) = \sum_{n=-\infty}^{+\infty} x[n] z^{-n} \\
= \sum_{n=-\infty}^{+\infty} \{a x_1[n] + b x_2[n]\} z^{-n} \\
= a \left\{ \sum_{n=-\infty}^{+\infty} x_1[n] z^{-n} \right\} + b \left\{ \sum_{n=-\infty}^{+\infty} x_2[n] z^{-n} \right\} \\
= aX_1(z) + bX_2(z)
\]

A ROC de \( X(z) \) deve ser tal que um valor \( z_0 \) qualquer deve pertencer simultaneamente à ROC de \( X_1(z) \) e \( X_2(z) \). Assim, a ROC de \( X(z) \) é a interseção das ROC’s de \( X_1(z) \) e \( X_2(z) \).

\[\square\]

É importante salientar que na determinação da ROC de \( X(z) \) alguns pólos de \( X_1(z) \) podem ser cancelados com zeros de \( X_2(z) \) (e vice-versa), fazendo com que a ROC de \( X(z) \) tenha maior dimensão do que as ROC’s individuais de \( X_1(z) \) e \( X_2(z) \).

Deslocamento no tempo

Considere a sequência \( x[n] \), cuja Transformada Z é conhecida. Se deslocarmos suas amostras em \( n_d \) amostras \( (n_d \in \mathbb{Z}) \), \( \mathcal{Z}\{x[n-n_d]\} \) é:

\[
\begin{align*}
  x[n] & \xrightarrow{\mathcal{Z}} X(z) \iff x[n-n_d] \xrightarrow{\mathcal{Z}} z^{-n_d}X(z) \\
  ROC : R_x & \iff ROC : R_x^*
\end{align*}
\]

\[\text{(5.16)}\]
A ROC $R_x^*$ pode ser uma versão simplificada de $R_x$, pois o termo $z^{-n_d}$ pode eliminar ou adicionar pólos em $z = 0$ ou $z = \infty$.

Demonstração. Calculando a Transformada Z de $x'[n] = x[n - n_d]$, temos:

$$X'(z) = \sum_{n=-\infty}^{+\infty} x[n - n_d] z^{-n}$$

Trocando de variáveis ($m = n - n_d$, ou seja, $n = m + n_d$), temos:

$$X'(z) = \sum_{(m+n_d)=-\infty}^{+\infty} x[m] z^{-(m+n_d)}$$

$$= z^{-n_d} \sum_{m=-\infty}^{+\infty} x[m] z^{-m} = z^{-n_d}X(z)$$

Quando a ROC de $X(z)$, o termo $z^{-n_d}$ pode adicionar ou remover pólos em $z = 0$ ou $z = \infty$, dependendo de $X(z)$ e de $n_d$. \hfill \Box

Deslocamento em z

Considere a sequência $x[n]$, cuja Transformada Z é conhecida. Se a modularmos por uma sequência $z_0^n$ complexa, sua Transformada Z é:

$$x[n] \overset{\mathcal{Z}}{\leftrightarrow} X(z) \iff z_0^n x[n] \overset{\mathcal{Z}}{\leftrightarrow} X\left(\frac{z}{z_0}\right)$$

(5.17)

$$ROC : R_x \iff ROC : |z_0| R_x$$

Demonstração. Calculando a Transformada Z da sequência modularizada, temos:

$$X'(z) = \sum_{n=-\infty}^{+\infty} z_0^n x[n] z^{-n} = \sum_{n=-\infty}^{+\infty} x[n] \left(\frac{z}{z_0}\right)^{-n} = X\left(\frac{z}{z_0}\right)$$

Para o cálculo da ROC de $X(z/z_0)$, levamos em conta que originalmente a ROC de $X(z)$ pode ser descrita pelo seguinte anel:

$$\text{raio}_e < |z| < \text{raio}_d$$

Como trocamos de variável (pela modulação), a ROC de $X(z/z_0)$ é:

$$\text{raio}_e < \left|\frac{z}{z_0}\right| < \text{raio}_d \implies \text{raio}_e < \frac{|z|}{|z_0|} < \text{raio}_d \implies$$

$$|z_0|\text{raio}_e < |z| < |z_0|\text{raio}_d$$

\hfill \Box
Modulação de degrau por cossenoide:

Seja a seguinte sequência

\[ x[n] = r^n \cos(\omega_0 n) u[n] \]

Aplicando a relação de Euler (Equação 2.19), temos:

\[ x[n] = \frac{1}{2} (r e^{j\omega_0})^n + \frac{1}{2} (r e^{-j\omega_0})^n \]

Logo, \( z_0 = r e^{j\omega_0} \). Assim, \( \mathcal{Z}\{x[n]\} \) é (por essa propriedade):

\[
X(z) = \frac{\frac{1}{2}}{1 - z_0 z^{-1}} + \frac{\frac{1}{2}}{1 - z_0^* z^{-1}} = \frac{1 - \left(\frac{1}{2} z_0^* + \frac{1}{2} z_0\right) z^{-1}}{1 - (z_0 + z_0^*) z^{-1} + z_0 z_0^* z^{-2}}
= \frac{1 - r \left(\frac{e^{-j\omega_0} + e^{j\omega_0}}{2}\right) z^{-1}}{1 - 2r \left(\frac{e^{-j\omega_0} + e^{j\omega_0}}{2}\right) + r^2 \left[e^{(-j\omega_0+j\omega_0)}\right] z^{-2}}
= \frac{1 - r \cos(\omega_0) z^{-1}}{1 - r \cos(\omega_0) + r^2 z^{-2}}
\]

com a ROC de \( X(z) \) igual a \(|z| > r\), pois a ROC de \( \mathcal{Z}\{u[n]\} \) é \(|z| > r\).

Reversão temporal

Considere a sequência \( x[n] \), cuja Transformada Z é conhecida. Se revertermos tal sequência, sua Transformada Z é:

\[
x[n] \overset{\mathcal{Z}}{\leftrightarrow} X(z) \overset{\mathcal{Z}}{\leftrightarrow} x[-n] \overset{\mathcal{Z}}{\leftrightarrow} X^*(1/z^*)
\]

\[
ROC : R_x \iff ROC : \frac{1}{R_x}
\]

(5.18)

Se \( x[n] \in \mathbb{R} \), então,

\[
x[-n] \overset{\mathcal{Z}}{\leftrightarrow} X(1/z), \quad ROC = \frac{1}{R_x}
\]
Diferenciação em $z$

Seja uma sequência qualquer $x[n]$, cuja Transformada $Z$ é conhecida. Se a modularmos por uma sequência linearmente crescente, sua Transformada $Z$ é:

$$
\begin{align*}
x[n] \overset{x}{\xrightarrow{} } X(z) & \iff n x[n] \overset{x}{\xrightarrow{} } -z \frac{dX(z)}{dz} \\
\text{ROC : } R_x & \iff \text{ROC : } R_x
\end{align*}
$$

(5.19)

Demonstração. Considere a Transformada $Z$ de $x[n]$:

$$
X(z) = \sum_{n=-\infty}^{+\infty} x[n] z^{-n}
$$

Diferenciando ambos os termos da igualdade em relação a $z$, temos:

$$
\frac{dX(z)}{dz} = \sum_{n=-\infty}^{+\infty} x[n] z^{-n-1}(-n)
$$

Multiplicando por $-z$, temos:

$$
-z \frac{dX(z)}{dz} = j \sum_{n=-\infty}^{+\infty} \{n x[n]\} z^{-n}
$$

onde $n x[n]$ é a sequência modulada.

Teorema da convolução

O teorema da convolução diz que a convolução de duas sequências no domínio do tempo é equivalente a modulação das Transformadas $Z$ dessas duas sequências, no domínio $z$.

Ou seja, se:

$$
\begin{align*}
x_1[n] & \overset{x}{\xrightarrow{} } X_1(z), \quad \text{ROC : } R_{x_1} \\
x_2[n] & \overset{x}{\xrightarrow{} } X_2(z), \quad \text{ROC : } R_{x_2}
\end{align*}
$$

Então:

$$
\begin{align*}
x[n] = x_1[n] \ast x_2[n] & \overset{x}{\xrightarrow{} } X(z) = X_1(z)X_2(z), \quad \text{ROC } \supset \{R_{x_1} \cap R_{x_2}\}
\end{align*}
$$

(5.20)
Demonstração. Considere $\mathscr{Z}\{x[n]\}$:

$$
X(z) = \sum_{n=-\infty}^{+\infty} x[n] z^{-n} \\
= \sum_{n=-\infty}^{+\infty} \left\{ \sum_{k=-\infty}^{+\infty} x_1[k] x_2[n-k] \right\} z^{-n} \\
= \sum_{k=-\infty}^{+\infty} x_1[k] \left\{ \sum_{n=-\infty}^{+\infty} x_2[n-k] z^{-n} \right\}
$$

Por troca de variáveis $(n-k = m, \text{ ou seja, } n = k + m)$, temos:

$$
X(z) = \sum_{k=-\infty}^{+\infty} x_1[k] \left\{ \sum_{m=-\infty}^{+\infty} x_2[m] z^{-m} \right\} z^{-k} \\
= X_2(z) \sum_{k=-\infty}^{+\infty} x_1[k] z^{-k} \\
= X_2(z) X_1(z)
$$

Teorema da modulação

Analogamente ao teorema da convolução, temos que a modulação de duas sequências no domínio do tempo é equivalente a convolução de suas Transformadas Z, no domínio $z$.

 Ou seja, se:

$$
x_1[n] \xrightarrow{\mathscr{Z}} X_1(z), \quad ROC : R_{x_1-} < |z| < R_{x_1+} \\
x_2[n] \xrightarrow{\mathscr{Z}} X_2(z), \quad ROC : R_{x_2-} < |z| < R_{x_2+}
$$

(Agora definimos as regiões de convergência através da descrição de um anel. Tal definição pode ser expandida para círculos quando não há limite inferior nas inequações).

Então:

$$
x[n] = x_1[n] x_2[n] \xrightarrow{\mathscr{Z}} X(z) = \frac{1}{2\pi j} \oint_C X_1(z/v) X_2(v) v^{-1} dv \\
X(z) = \frac{1}{2\pi j} \oint_C X_1(v) X_2(z/v) v^{-1} dv \quad (5.21) \\
ROC : R_{x_1-} \cdot R_{x_2-} < |z| < R_{x_1+} \cdot R_{x_2+}$$
Demonstração. Pela definição de $\mathcal{Z}\{x[n]\}$, temos:

$$X(z) = \sum_{n=-\infty}^{+\infty} x_1[n]x_2[n] z^{-n}$$

Mas, pela definição de $\mathcal{Z}^{-1}\{X_2(z)\}$ (Equação 5.5), ou seja:

$$x_2[n] = \frac{1}{2\pi j} \oint_C X_2(v)v^{n-1}dv$$

Então:

$$X(z) = \sum_{n=-\infty}^{+\infty} x_1[n] \left\{ \frac{1}{2\pi j} \oint_C X_2(v)v^{n-1}dv \right\} z^{-n}$$

$$= \frac{1}{2\pi j} \oint_C \sum_{n=-\infty}^{+\infty} x[n] X_2(v) \left( \frac{z}{v} \right)^{-n} v^{-1}dv$$

$$= \frac{1}{2\pi j} \oint_C \left[ \sum_{n=-\infty}^{+\infty} x[n] \left( \frac{z}{v} \right)^{-n} \right] X_2(v)v^{-1}dv$$

$$= \frac{1}{2\pi j} \oint_C X_1(z/v)X_2(v)v^{-1}dv$$

A definição da ROC de $X(z)$ depende da simplificação que pólos de $X_1(z)$ podem produzir quando sobrepostos com zeros de $X_2(z)$, e vice-versa, podendo expandir a definição da ROC apresenta nessa propriedade. 

\[\square\]

Teorema de Parseval

Como vimos anteriormente (seção 3.3.2), o teorema de Parseval define que a energia total de um sistema é a soma das contribuições das energias distribuídas em cada uma das frequências normalizadas $\omega$ considerando $z = re^{j\omega}$.

$$\sum_{n=-\infty}^{+\infty} x_1[n] x_2[n] = \frac{1}{2\pi j} \oint_C X_1(v)X_2^*(1/v^*) v^{-1}dv \quad (5.22)$$

Ou, para $x_1[n] = x_2[n] = x[n]$:

$$\sum_{n=-\infty}^{+\infty} |x[n]|^2 = \frac{1}{2\pi j} \oint_C X(v)X^*(1/v^*) v^{-1}dv \quad (5.23)$$
Teorema do valor inicial

O teorema do valor inicial lida com a condição assintótica de \( X(z) \). Se \( x[n] \) é causal, então:

\[
x[0] = \lim_{z \to +\infty} X(z)
\]

(5.24)

Pares de transformadas

Segue agora uma relação de diversas Transformadas \( Z \), cuja prova pode ser obtida diretamente das equações 5.2.

\[
\delta[n] \overset{Z}{\leftrightarrow} 1 \quad z \in \mathbb{C}
\]

\[
u[n] \overset{Z}{\leftrightarrow} \frac{1}{1 - z^{-1}} \quad |z| > 1
\]

\[-u[-n - 1] \overset{Z}{\leftrightarrow} \frac{1}{1 - z^{-1}} \quad |z| < 1\]

\[
\delta[n - n_d] \overset{Z}{\leftrightarrow} z^{-n_d} \quad z \neq 0, n_d > 0
\]

\[
\delta[n - n_d] \overset{Z}{\leftrightarrow} z^{-n_d} \quad z \neq \infty, n_d < 0
\]

\[
a^n u[n] \overset{Z}{\leftrightarrow} \frac{1}{1 - az^{-1}} \quad |z| > |a|
\]

\[-a^n u[-n - 1] \overset{Z}{\leftrightarrow} \frac{1}{1 - az^{-1}} \quad |z| < |a|
\]

\[
a^n u[n] \overset{Z}{\leftrightarrow} \frac{az^{-1}}{(1 - az^{-1})^2} \quad |z| > |a|
\]

\[-a^n u[-n - 1] \overset{Z}{\leftrightarrow} \frac{az^{-1}}{(1 - az^{-1})^2} \quad |z| < |a|
\]

\[
[c \cos(\omega_0 n)] u[n] \overset{Z}{\leftrightarrow} \frac{1 - [c \cos(\omega_0)] z^{-1}}{1 - [2 c \cos(\omega_0)] z^{-1} + z^{-2}} \quad |z| > 1
\]

\[
[c \sin(\omega_0 n)] u[n] \overset{Z}{\leftrightarrow} \frac{1 - [c \sin(\omega_0)] z^{-1}}{1 - [2 c \cos(\omega_0)] z^{-1} + z^{-2}} \quad |z| > 1
\]
\[ [r^n \cos(\omega_0 n)] u[n] \xrightarrow{z} \frac{1 - [r \cos(\omega_0)] z^{-1}}{1 - [2r \cos(\omega_0)] z^{-1} + r^2 z^{-2}} \quad |z| > r \]

\[ [r^n \sin(\omega_0 n)] u[n] \xrightarrow{z} \frac{[r \sin(\omega_0)] z^{-1}}{1 - [2r \cos(\omega_0)] z^{-1} + r^2 z^{-2}} \quad |z| > r \]

\[ \begin{cases} 
  a^n, & 0 \leq n \leq N - 1 \\
  0, & \text{c.c.}
\end{cases} \xrightarrow{z} \frac{1 - a^N z^{-N}}{1 - a z^{-1}} \quad |z| > 0 \]
Capítulo 6

Análise de Sistemas Lineares
Invariantes no Tempo

Neste capítulo analisaremos qual o comportamento de um sistema linear e invariante no tempo em relação a diversos parâmetros. A restrição a tal sistema é motivada pelo fato de que nesse sistema podemos facilmente isolar os efeitos do mesmo sobre o sinal na forma de uma resposta ao impulso e consequente resposta em frequência.

Em nossas análises, usaremos tanto a Transformada Z como a Transformada de Fourier Discreta no Tempo, pois já sabemos que elas são intercambiáveis de acordo com condições específicas.

6.1 Magnitude e Fase

Como vimos anteriormente, a resposta em frequência de um sistema linear e invariante no tempo $h[n]$ é $H(e^{j\omega})$. Pelo teorema da convolução (Seção 3.3.2), sabemos que dado um sinal de entradas $x[n]$, sua saída é definida, no domínios temporal e espectral, por:

$$y[n] = x[n] * h[n]$$
$$Y(e^{j\omega}) = X(e^{j\omega}) \cdot H(e^{j\omega})$$

Podemos decompor a resposta em frequência da sequência de saída em relação a magnitude e fase das respostas em frequência da sequências de entrada e da resposta ao impulso do sistema, ou seja:

$$|Y(e^{j\omega})| = |X(e^{j\omega})| \cdot |H(e^{j\omega})|$$
$$\angle Y(e^{j\omega}) = \angle X(e^{j\omega}) + \angle H(e^{j\omega})$$

111
Demonstração. Pela definição:
\[
Y(e^{j\omega}) = |Y(e^{j\omega})| e^{\angle Y(e^{j\omega})}
\]

A convolução no tempo implica em modulação em frequência. Assim:
\[
X(e^{j\omega}) H(e^{j\omega}) = |X(e^{j\omega})| e^{\angle X(e^{j\omega})} |H(e^{j\omega})| e^{\angle H(e^{j\omega})}
\]
\[
= |X(e^{j\omega})| |H(e^{j\omega})| e^{\angle X(e^{j\omega}) + \angle H(e^{j\omega})}
\]

Com essa decomposição da saída, podemos analisar quais os efeitos que o sistema produzirá, em termos de magnitude e fase, nessa sequência de entrada, cujas características espetrais são conhecidas. Logo, convencionarse chamar tais efeitos de **DISTORÇÃO** em magnitude e fase.

---

**Exemplos:**

**Considere um filtro passa-baixas ideal, definido por:**
\[
H_{bp}(e^{j\omega}) = \begin{cases} 
1, & |\omega| < \omega_c \\
0, & \omega_c < |\omega| \leq \pi 
\end{cases}
\]

Calculando \(\mathcal{F}_{DT}^{-1}\{H_{bp}(e^{j\omega})\}\), temos:

\[
h_{bp} = \frac{\text{sen}(\omega n)}{\pi n}, \quad n \in \mathbb{Z}
\]

Analisando as características desse sistema, notamos que:

- **NÃO** é causal;
- Sua resposta ao impulso **NÃO** é computacionalmente realizável;
- Sua resposta em fase é **ZERO** (ou nula).

Outro sistema conhecido é o atrasador ideal, definido por:

\[
h_{id} = \delta[n - n_d]
\]

Sua resposta em frequência é:

\[
H_{id}(e^{j\omega}) = e^{-j\omega n_d}
\]

Em termos de magnitude e frequência, o atrasador ideal é definido por:

\[
|H_{id}(e^{j\omega})| = 1 \\
\angle H_{id}(e^{j\omega}) = -\omega n_d \quad |\omega| < \pi
\]

---
Uma rápida análise da magnitude e fase desse sistema mostra que sua fase é linear (em relação a \( \omega \)).

Finalmente, se combinarmos ambos os sistemas em cascata (filtro passa-baixas e atrasador, ambos ideais), temos ( lembrando que convolução no tempo é modulação em frequência) como resposta em frequência:

\[
H(e^{j\omega}) = H_{bp}(e^{j\omega}) H_d(e^{j\omega}) = \begin{cases} 
  e^{-j\omega n_d}, & |\omega| < \omega_c \\
  0, & \omega_c < |\omega| < \pi
\end{cases}
\]

E como resposta ao impulso:

\[
h[n] = \frac{\text{sen}(\omega_c(n - n_d))}{\pi(n - n_d)}, \quad n \in \mathbb{Z}
\]

As características desse novo sistema são:

- É um filtro passa-baixas com fase linear;
- Ainda \( \text{NÃO} \) é axusal (independente de \( n_d \)).

Considerando agora que qualquer sistema pode ser reescrito através de uma equação de diferença linear com coeficientes constantes (Seção 2.3.7), podemos analisar qual a influência dos pôlos e zeros na magnitude e fase do sistema.

Pela Equação 2.30, temos:

\[
\sum_{k=0}^{N} a_k y[n - k] = \sum_{k=0}^{M} b_k x[n - k]
\]

Aplicando a Transformada Z em ambos os lados dessa equação, e usando as propriedades de linearidade e deslocamento no tempo, temos:

\[
\sum_{k=0}^{N} a_k z^{-k} Y(z) = \sum_{k=0}^{M} b_k z^{-k} X(z)
\]

\[
Y(z) \left[ \sum_{k=0}^{N} a_k z^{-k} \right] = X(z) \left[ \sum_{k=0}^{M} b_k z^{-k} \right]
\]

Isolando \( Y(z) \) e \( X(z) \) em um lado da equação, temos:

\[
\frac{Y(z)}{X(z)} = H(z) = \frac{\sum_{k=0}^{M} b_k z^{-k}}{\sum_{k=0}^{N} a_k z^{-k}}
\]
Se fatorarmos os polinômios do numerador e do denominador em termos de $z^{-1}$, temos:

$$H(z) = \frac{\prod_{k=1}^{M}(1 - c_k z^{-1})}{\prod_{k=1}^{N}(1 - d_k z^{-1})}$$

onde $c_k$ é o k-ésimo zero de $H(z)$ e $d_k$ é o k-ésimo pôlo de $H(z)$.

Essa fatoração tem por objetivo permitir que analisemos os efeitos dos pólos e zeros de um sistema linear e invariante no tempo em sua magnitude e fase, de forma análoga ao que ocorre quando analisamos o diagrama de Bode para sistemas contínuos.

### 6.2 Estabilidade e Causalidade

Como sabemos da Transformada Z, diversos sistemas podem apresentar uma mesma equação descritiva para $H(z)$ com diferentes ROC’s. Como vimos na Seção 5.4, podemos definir a estabilidade e causalidade de um determinado sistema $H(z)$ através das características de sua ROC, ou seja:

Um sistema será causal se, e somente se, sua ROC incluir $|z| = \infty$. De maneira análoga, um sistema será estável se, e somente se, sua ROC incluir $|z| = 1$.

**Exemplo:**

Considere o seguinte sistema definido por sua equação de diferenças lineares com coeficientes constantes:

$$y[n] - \frac{5}{2}y[n-1] + y[n-2] = x[n]$$

com $y[-1] = 0$ e $y[-2] = 0$. Usando a Transformada Z, como vimos anteriormente, temos:

$$H(z) = \frac{1}{1 - \frac{5}{2}z^{-1} + z^{-2}} = \frac{1}{(1 - \frac{1}{2}z^{-1})(1 - 2z^{-1})}$$

Tal expressão implica em três possíveis ROC’s:

- $|z| > 2$ produz um sistema causal e instável;
- $\frac{1}{2} < |z| < 2$ produz um sistema não causal e estável;
- $|z| < \frac{1}{2}$ produz um sistema não causal e instável.
Assim, dependendo da definição do tipo de sistema em relação à causalidade e estabilidade, podemos determinar a resposta do impulso \( h[n] \) desse sistema a partir de seu \( H(z) \).

Considere agora um sistema descrito por:

\[
H(z) = \sum_{r=0}^{M-N} B_r z^{-r} + \sum_{k=1}^{N} \frac{A_k}{1 - d_k z^{-1}}
\]

Assumindo que o sistema é causal, temos:

\[
h[n] = \sum_{r=0}^{M-N} B_r \delta[n - r] + \sum_{k=1}^{N} A_k d_k^n u[n]
\]

Com essas suposições, chegamos a duas classes de sistemas:

1. Pelo menos 1 (um) pôlo não-nulo não é cancelado por um zero. Assim, existirá pelo menos 1 (um) termo da forma \( A_k d_k^n u[n] \), e, consequentemente, \( h[n] \) terá duração infinita.

2. Não há pôlos, exceto em \( z = 0 \). Assim teremos apenas polinômios da forma \( b_r z^{-r} \), e, consequentemente, \( h[n] \) terá duração finita.

Classes de sistemas:

Seja \( h[n] \) definido pela seguinte equação de diferenças finitas:

\[
y[n] - ay[n - 1] = x[n]
\]

Sua transformada Z produz:

\[
H(z) = \frac{1}{1 - az^{-1}} = \frac{z}{z - a}, \quad |z| < |a|
\]

Nesse sistema, temos 1 pôlo em \( z = a \) e 1 zero em \( z = 0 \). Se garantirmos que o sistema é estável, \( |a| < 1 \). Logo:

\[
h[n] = a^n u[n]
\]

Tal sistema é notadamente de resposta infinita, contendo 1 pôlo não-nulo. Considere agora o sistema descrito pela seguinte resposta ao impulso:

\[
h[n] = \begin{cases} 
a^n, & 0 \leq n \leq M \\
0, & c.c
\end{cases}
\]
Neste caso, sua transformada Z produz

\[ H(z) = \sum_{n=0}^{M} a^n z^{-n} = \frac{1 - a^{M+1}z^{-M-1}}{1 - az^{-1}} = \frac{z^{M+1} - a^{M+1}}{z^M (z - a)} \]

Uma análise preliminar indica que temos \( M + 1 \) zeros dispostos uniformemente ao redor do círculo de raio \( a \) conforme a expressão:

\[ z_k = a e^{\frac{2\pi k}{M+1}}, \quad k = 0, 1, \cdots, M \]

Também temos, preliminarmente, pólos em \( z = 0 \) (com multiplicidade \( M \)) e em \( z = a \). Entretanto, esse último pólo simplifica-se com um dos zeros (zero em \( z = a \)). Logo temos:

\[ y[n] = \sum_{k=0}^{M} a^k x[n-k] \]

ou

\[ y[n] - ay[n-1] = x[n] - a^{M+1}x[n - (M + 1)] \]

Cuja resposta ao impulso é finita.

### 6.3 Sistemas Inversos

Um sistema \( H_i(z) \) é dito ser inverso de um sistema \( H(z) \) se, e somente se:

\[ H(z) \cdot H_i(z) = 1 \]

\[ H_i(z) = \frac{1}{H(z)} \quad (6.1) \]

Aplicando a Transformada Inversa de Z, temos que tal relação no domínio do “tempo” é dada por:

\[ h[n] \ast h_i[n] = \delta[n] \quad (6.2) \]

Considerando a relação existente entre Transformada Z e a DTFT temos que:

\[ H_i(e^{j\omega}) = \frac{1}{H(e^{j\omega})} \]

Logo:

\[ \log(|Xe^{j\omega}H_i|^2) = -\log |Xe^{j\omega}H_i|^2 \]

\[ \angle H_i(e^{j\omega}) = -\angle H_i(e^{j\omega}) \]
Percebemos pela relação anterior que um sistema inverso \((h_i[n])\) produz magnitude e fase negativas em relação a magnitude e fase dos sistema original \((h[n])\).

Entretanto, nem todos os sistemas possuem sistema inverso. Sistemas como os filtros passa-baixas, por exemplo, anulam componentes espectrais impedindo sua restauração por qualquer sistema inverso que seja projetado.

Considerando que existem sistemas podem ser reescritos em termos de pólos e zeros, como:

\[
H(z) = \left( \frac{b_0}{a_0} \right) \prod_{k=1}^{M} \frac{1}{1 - c_k z^{-1}} \prod_{k=1}^{N} \frac{1}{1 - d_k z^{-1}}
\]

Então, seu inverso é definido por:

\[
H_i(z) = \left( \frac{a_0}{b_0} \right) \prod_{k=1}^{N} \frac{1}{1 - d_k z^{-1}} \prod_{k=1}^{M} \frac{1}{1 - c_k z^{-1}}
\]

Intuitivamente os pólos e zeros de \(H(z)\) tornam-se zeros e pólos de \(H_i(z)\), respectivamente. Assim, o sistema inverso tem sua estabilidade definida pela posição dos zeros de \(H(z)\). Logo, um sistema inverso é estável se todos os zeros do sistema original forem internos ao círculo unitário.

Para avaliar a ROC de \(H_i(z)\) consideramos a teoria da convolução, pois sabemos que \(H(z) \cdot H_i(z) = 1\). Com base nos pólos de ambos os sistemas, a ROC de \(H_i(z)\) deve ser tal que as ROC’s de \(H(z)\) e \(H_i(z)\) produzam um conjunto em \(z\) não-nulo (ou seja, que ambas as ROC’s se sobreponham no plano complexo).

Mais ainda, se \(H(z)\) for causal, então a ROC deve incluir a restrição de que \(|z| > \max_k |c_k|\).

**Exemplo:**

Considere o seguinte sistema:

\[
H(z) = \frac{1 - 0.5z^{-1}}{1 - 0.9z^{-1}}, \quad ROC: |z| > 0.9
\]
O sistema inverso é obtido através da Equação 6.1, ou seja:

\[
H_i(z) = \frac{1 - 0,9z^{-1}}{1 - 0,5z^{-1}} = \frac{1}{1 - 0,5z^{-1}} - 0,9z^{-1} \frac{1}{1 - 0,5z^{-1}}
\]

As possíveis ROC’s de \( H_i(z) \) são \(|z| > 0,5 \) e \(|z| < 0,5 \). Para que haja sobreposição entre as ROC’s de \( H(z) \) e \( H_i(z) \) é necessário que a ROC de \( H_i(z) \) seja tal que \(|z| > 0,5 \). Dessa forma, a resposta ao impulso do sistema inverso é:

\[
h_i[n] = 0,5^n u[n] - 0,9(0,5)^{n-1}u[n - 1]
\]

Logo, tal sistema é estável (por incluir o círculo unitário em sua ROC) e é causal.

Considere agora o seguinte sistema:

\[
H(z) = \frac{z^{-1} - 0,5}{1 - 0,9z^{-1}}, \quad \text{ROC : } |z| > 0,9
\]

Seu inverso é:

\[
H_i(z) = \frac{1 - 0,9z^{-1}}{z^{-1} - 0,5} = \frac{-2}{1 - 2z^{-1}} + 1,8z^{-1} \frac{1}{1 - 2z^{-1}}
\]

As possíveis ROC’s de \( H_i(z) \) são \(|z| > 2 \) e \(|z| < 2 \). Ambas garantem que haja sobreposição entre as ROC’s de \( H(z) \) e \( H_i(z) \). Dessa forma, as respostas ao impulso do sistema inverso são:

\[
\begin{align*}
h_i[n] &= 2(2)^n u[-n - 1] - 1,8(2)^{n-1}u[-n], & |z| < 2 \\
h_i[n] &= -2(2)^n u[n] + 1,8(2)^{n-1}u[n - 1], & |z| > 2
\end{align*}
\]

Para \(|z| < 2 \), temos um sistema que é estável e não-causal, enquanto que para \(|z| > 2 \), temos um sistema que é instável e causal. Assim, o sistema \( H(z) \) admite dois sistemas inversos.

Generalizando, temos que dado um sistema \( H(z) \), que seja causal, com zeros \( c_k (1 \leq k \leq M) \), o seu sistema inverso, \( H_i(z) \), será causal se, e somente se, a ROC de \( H_i(z) \) for tal que \(|z| > \max_k |c_k| \).

Se \( H(z) \) também é estável, \( H_i(z) \) será estável se, e somente se, a ROC de \( H_i(z) \) incluir o círculo unitário, ou seja, \( \max_k |c_k| < 1 \).

Em termos de zeros e pólos, tais condições exigem que todos os zeros e pólos de \( H(z) \) estejam DENTRO do círculo unitário. Tal sistema também é dito ser de mínima fase, consideração que faremos na Seção 6.6.
6.4 Resposta em Frequência para Sistemas baseados em Funções Racionais

Para analisar melhor o comportamento de sistemas em termos de sua resposta em frequência, vamos analisar a relação entre pólos e zeros em relação a sua magnitude e fase.

Considere o seguinte sistema genérico definido pela razão entre dois polinômios.

$$H(z) = \frac{\sum_{k=0}^{M} b_k z^{-k}}{\sum_{k=0}^{N} a_k z^{-k}}$$

Se o analisarmos em pontos \( z \) do círculo unitário, obtemos rapidamente sua DTFT, ou seja:

$$H(e^{j\omega}) = \frac{\sum_{k=0}^{M} b_k e^{-j\omega k}}{\sum_{k=0}^{N} a_k e^{-j\omega k}}$$

Expressando \( H(e^{j\omega}) \) em termos de pólos \( (d_k) \) e zeros \( (c_k) \) (por fatoração), temos:

$$H(e^{j\omega}) = \frac{b_0}{a_0} \prod_{k=1}^{M} \frac{1 - c_k e^{-j\omega}}{1 - d_k e^{-j\omega}}$$

A magnitude desse sistema é definida por:

$$|H(e^{j\omega})| = \left| \frac{b_0}{a_0} \frac{\prod_{k=1}^{M} |1 - c_k e^{-j\omega}|}{\prod_{k=1}^{M} |1 - d_k e^{-j\omega}|} \right|$$

Como \( |H(e^{j\omega})|^2 = H(e^{j\omega}) H^*(e^{j\omega}) \), então:

$$|H(e^{j\omega})|^2 = \left| \frac{b_0}{a_0} \frac{\prod_{k=1}^{M} (1 - c_k e^{-j\omega}) (1 - \overline{c_k} e^{j\omega})}{\prod_{k=1}^{M} (1 - d_k e^{-j\omega}) (1 - \overline{d_k} e^{j\omega})} \right|^2$$

Apliçando o \( \log \) para obter a magnitude em decibéis (não esquecendo que usamos efetivamente \( 10 \log_{10} \) para obter valores em dB), temos:

$$20 \log_{10} |H(e^{j\omega})| = 20 \log_{10} \left| \frac{b_0}{a_0} \right| + \sum_{k=1}^{M} 20 \log_{10} |1 - c_k e^{-j\omega}| - \sum_{k=1}^{M} 20 \log_{10} |1 - d_k e^{-j\omega}|$$ (6.3)
É bom salientar algumas propriedades básicas do logaritmo (\( \log_{10}(\cdot) \)) para as análises de resposta em frequência. Particularmente:

\[
\begin{align*}
|H(e^{j\omega})| &= 1 & \longrightarrow & 0 \text{ dB} \\
|H(e^{j\omega})| &= 10^m & \longrightarrow & 20m \text{ dB} \\
|H(e^{j\omega})| &= 2^m & \longrightarrow & 6m \text{ dB}
\end{align*}
\]

Em relação a fase, temos que:

\[
\angle H(e^{j\omega}) = \angle \frac{b_0}{a_0} + \sum_{k=1}^{M} \angle (1 - c_k e^{-j\omega}) - \sum_{k=1}^{M} \angle (1 - d_k e^{-j\omega}) \tag{6.4}
\]

O cálculo do ângulo é realizado através da função \( \arctan() \), que fornece apenas o assim chamado valor principal, ou seja:

\[-\pi < \arctan H(e^{j\omega}) < +\pi\]

Assim, o valor efetivo do ângulo de \( H(e^{j\omega}) \) é:

\[
\angle H(e^{j\omega}) = \arctan H(e^{j\omega}) + 2\pi r(\omega)
\]

Todas essas análises nos levam a alguns resultados importantes. Os pólos de um sistema linear e invariante no tempo **AMPLIFICAM** componentes espectrais da sequência de entrada, pois se observarmos a Equação 6.3 notaremos a medida que nos aproximamos de um pólo \( d_k \), temos:

\[e^{-j\omega} = z^{-1} \approx d_k^{-1} \implies -20 \ \text{log}_{10}(1 - d_k e^{-j\omega}) \rightarrow +\infty\]

Analogamente, os zeros de um sistema linear e invariante no tempo **ATE-NUA** componentes espectrais da sequência de entrada, pois a medida que nos aproximamos de um zero \( c_k \), temos:

\[e^{-j\omega} = z^{-1} \approx c_k^{-1} \implies +20 \ \text{log}_{10}(1 - c_k e^{-j\omega}) \rightarrow -\infty\]

Note que a atenuação torna-se um valor positivo quanto sua magnitude \( |H(e^{j\omega})| \) é menor que a unidade \( (< 1) \). Por exemplo, uma atenuação de -60 dB em uma dada frequência \( \omega_0 \) significa que \( |H(e^{j\omega_0})| = 0.001 \).

Pólos e zeros também são úteis para compensar (atrasando ou adiantando) componentes espectrais de acordo suas posições ao longo do círculo unitário, conforme mostra a Equação 6.4. Com relação a fase, é importante notar que os cálculos numéricos usando \( \arctan() \) podem produzir descontinuidades. Assim, a cada descontinuidade, devemos somar múltiplos de \( 2\pi \) para obter a curva de fase corrigida de um sistema em análise.
Exemplo:

Considere o termo \((1 - z_0 z^{-1})\), que pode ser tanto um polo quanto um zero. Decompondo \(z_0\) em coordenadas polares, ou seja, \(z_0 = re^{j\theta}\), e analisando o termo sobre o círculo unitário, temos:

\[
(1 - z_0 z^{-1}) = (1 - re^{j\theta} e^{-j\omega})
\]

A magnitude desse termo é descrita (em função de \(\omega\)) por:

\[
10 \log_{10} \left| (1 - re^{j\theta} e^{-j\omega}) \right|^2 = 10 \log_{10} \left[ (1 - re^{-j\theta} e^{j\omega}) (1 - re^{j\theta} e^{-j\omega}) \right] = 10 \log_{10} \left[ (1 + r^2 - 2r \cos(\omega - \theta)) \right]
\]

Sua fase é descrita por:

\[
\arctan \left[ 1 - re^{j\theta} e^{-j\omega} \right] = \arctan \left[ \frac{r \sin(\omega - \theta)}{1 - r \cos(\omega - \theta)} \right]
\]

Gráficamente temos que esse termo possui a seguinte resposta em magnitude e fase:

![Magnitude e Fase](image)

Figura 6.1: Resposta em magnitude e fase de \((1 - z_0 z^{-1})\), com \(\theta = \pi\).

Note que a máxima atenuação ocorre exatamente em \(\omega = \theta\), pois:

\[
\omega = \theta \Rightarrow \cos(\omega - \theta) = 1 \Rightarrow 10 \log_{10} \left( 1 + r^2 - 2r \right) \text{ será mínimo.}
\]

Já a amplificação máxima ocorre exatamente em \(\omega - \theta = \pi\), pois:

\[
\omega - \theta = \pi \Rightarrow \cos(\omega - \theta) = -1 \Rightarrow 10 \log_{10} \left( 1 + r^2 + 2r \right) \text{ será máxima.}
\]
6.5 Sistemas Passa-Tudo

O sistema passa-tudo leva esse nome porque não atenua nem amplifica qualquer componente espectral de uma sequência de entrada. Sua ação é alterar a fase da sequência de entrada.

Matematicamente um sistema passa-tudo de primeira ordem é definido por:

\[ H_{ap}(z) = \frac{z^{-1} - a^*}{1 - az^{-1}} \]  \hspace{1cm} (6.5)

onde \( a \in \mathbb{C} \).

Reescrevendo a Equação 6.5 em termos de \( \omega \) (ou seja, \( z = e^{j\omega} \)), temos:

\[ H_{ap}(e^{j\omega}) = \frac{e^{-j\omega} - a^*}{1 - ae^{-j\omega}} = e^{-j\omega} \frac{1 - a^*e^{-j\omega}}{(1 - ae^{-j\omega})} \]  \hspace{1cm} (6.6)

Calculando a magnitude de \( H_{ap}(e^{j\omega}) \), temos:

\[ \left| H_{ap}(e^{j\omega}) \right|^2 = \left| \frac{1 - a^*e^{-j\omega}}{(1 - ae^{-j\omega})} \right|^2 = 1 \]

Logo,

\[ \left| H_{ap}(e^{j\omega}) \right| = 1 \]  \hspace{1cm} (6.7)

Geometricamente (no plano \( z \)), um sistema passa-tudo de primeira ordem é representado por um polo em \( a \) e um zero em \( 1/a^* \) (no recíproco do conjugado de \( a \)) conforme Figura 6.2.

Figura 6.2: Representação dos polos e zeros de um sistema passa-tudo de primeira ordem.
A fase desse sistema passa-tudo de primeira ordem é definida por:

\[ \angle H_{ap}(e^{j\omega}) = \angle \left[ \frac{e^{-j\omega} - re^{-j\theta}}{1 - re^{j\theta}e^{-j\omega}} \right] = -\omega - 2 \arctan\left( \frac{r \sin(\omega - \theta)}{1 - r \cos(\omega - \theta)} \right) \] (6.8)

onde \( a = re^{-j\theta} \) na Equação 6.6.

Demonstração. Considere um sistema passa-tudo de primeira ordem cuja resposta em frequência é definida pela Equação 6.6, com \( a = re^{-j\theta} \).

Sua fase é descrita por:

\[ \angle H_{ap}(e^{j\omega}) = \angle \left[ \frac{e^{-j\omega} - re^{-j\theta}}{1 - re^{j\theta}e^{-j\omega}} \right] \]

\[ \quad = \angle \left\{ e^{-j\omega} \left[ \frac{1 - re^{j(\omega+\theta)}}{1 - re^{-j(\omega+\theta)}} \right] \right\} \]

\[ \quad = \angle e^{-j\omega} + \angle \left( 1 - re^{j(\omega+\theta)} \right) - \angle \left( 1 - re^{-j(\omega+\theta)} \right) \]

Decompondo no plano complexo, temos:

\[ \angle H_{ap}(e^{j\omega}) = -\omega + \angle \left[ 1 - r \cos(\omega + \theta) - jr \sin(\omega + \theta) \right] \]

\[ \quad - \angle \left[ 1 - r \cos(\omega + \theta) + jr \sin(\omega + \theta) \right] \]

Logo,

\[ \angle H_{ap}(e^{j\omega}) = -\omega + \arctan\left( \frac{-r \sin(\omega + \theta)}{1 - r \cos(\omega + \theta)} \right) - \arctan\left( \frac{r \sin(\omega + \theta)}{1 - r \cos(\omega + \theta)} \right) \]

\[ \quad = -\omega - 2 \arctan\left( \frac{r \sin(\omega + \theta)}{1 - r \cos(\omega + \theta)} \right) \]

\[ \square \]

A forma mais geral de um sistema passa-tudo pode envolver múltiplos pares de pôlos e zeros reais (em total \( M_r \)) e múltiplos pares de pôlos e zeros complexos (em total \( M_c \)). A separação entre reais e complexos se deve ao fato que sua aplicação se dará sobre sequências reais, cujas representações espectrais apresentam simetria em relação ao eixo das abscissas. Dessa forma, uma alteração espectral nas componentes espectrais de 0 até \( \pi \) também deve ser realizada naquelas simétricas localizadas entre \( \pi \) e \( 2\pi \).

Assim,

\[ H_{ap}(z) = \prod_{k=1}^{M_r} \left( \frac{z^{-1} - d_k}{1 - d_k z^{-1}} \right) \prod_{k=1}^{M_c} \left( \frac{z^{-1} - e_k^*}{1 - e_k z^{-1}} \right) \left( \frac{z^{-1} - e_k}{1 - e_k^* z^{-1}} \right) \] (6.9)
onde \( d_k \in \mathbb{R} \), \( c_k \in \mathbb{C} \).

Para que este sistema seja causal e estável, devemos garantir que \(|d_k| < 1\) e \(|e_k| < 1\).

Se considerarmos um sistema de segunda ordem baseado na Equação 6.9, contendo um par de pólos complexos em \( e_0 = r e^{j\theta} \), sua fase é analiticamente descrita por:

\[
\angle H_{dp}(e^{j\omega}) = \angle \left( \frac{(e^{-j\omega} - r e^{-j\theta}) (e^{-j\omega} - r e^{+j\theta})}{(1 - re^{j\theta} e^{-j\omega}) (1 - re^{-j\theta} e^{-j\omega})} \right) \\
= -2\omega - 2 \arctan(\frac{r \sin(\omega - \theta)}{1 - r \cos(\omega - \theta)}) - 2 \arctan(\frac{r \sin(\omega + \theta)}{1 - r \cos(\omega + \theta)})
\]

(6.10)

Geometricamente (no plano \( z \)), um sistema passa-tudo de terceira ordem (envolvendo dois pares de pólos-zeros complexos e um par de pólos-zeros real) conforme Figura 6.3.

![Figura 6.3: Representação dos pólos e zeros de um sistema passa-tudo de terceira ordem.](image)

Note que a adição de novos pares de pólos e zeros produz naturalmente reduções do ângulo (para qualquer frequência \( \omega \)) quando analisamos as Equações 6.8 e 6.10. Este resultado será útil quando falamos de sistemas de fase mínima.

**Exemplo:**
Considere dois sistemas passa-tudo de primeira ordem (Equação 6.5) definidos por \( a_1 = 0.9 \) e \( a_2 = -0.9 \). Isso implica em \( r_1 = r_2 = 0.9 \) com \( \theta_1 = 0 \) e \( \theta_2 = \pi \). Como sabemos que \( |H_{sp}(\omega)| = 1 \), podemos analisar então como é fase desses sistemas através da Figura 6.4.

![Diagrama](image)

Figura 6.4: Fase de um sistema passa-tudo de primeira ordem (com e sem limitação de intervalo igual a \( 2\pi \)).

Ambos os gráficos na Figura 6.4 são os mesmos. A diferença é que o primeiro é obtido usando a função \( \arctan() \), cuja imagem é \( -\pi < \omega < +\pi \) e apresenta uma descontinuidade em \( \omega = \pi \). Efetivamente, se "desdobrarmos" essa curva descontínua, obtemos a função do ângulo de fase do sistema passa-tudo.

A primeira utilidade de um sistema de passa-tudo é representar compensadores para distorção de fase. Como vimos, uma cuidadosa alocação dos pares de pólos e zeros pode resultador em correção de atrasos e avanços da sequência ou sistema analisados.


### 6.6 Sistemas de Mínima Fase

Considere primeiramente um sistema que é causal e estável. Tal sistema tem seus pólos dentro do círculo unitário, de tal forma que sua região de
convergência (que é externa ao pólo de maior módulo, pela causalidade) inclua $|z| < 1$.

Note que os critérios de estabilidade e causalidade apenas afetam os pólos do sistema. Nada é mencionado a respeito dos seus zeros. Adicionamos restrições à posição dos zeros quando exigimos que esse sistema seja inversível, o que implica em todos os zeros situarem-se dentro do círculo unitário.

Tal sistema (que é estável e causal) também é chamado **sistema de mínima fase** quando esse sistema possui todos os zeros dentro do círculo unitário.

Qualquer sistema $H(z)$ pode ser decomposto em:

$$H(z) = H_{\min}(z) \cdot H_{\text{ap}}(z) \quad (6.11)$$

onde $H_{\text{ap}}(z)$ é um sistema passa-tudo e $H_{\min}(z)$ é a versão de mínima fase do sistema $H(z)$.

**Demonstração.** Demonstração da Equação 6.11

Assuma $H(z)$ sendo estável e causal, e contendo um zero ($z = 1/c^*$ com $|c| < 1$) fora do círculo unitário e demais pólos e zeros dentro do círculo unitário. Isso implica na seguinte representação:

$$H(z) = H_1(z) \cdot (z^{-1} - c^*)$$

Pela definição, $H_1(z)$ é um sistema de fase mínima.

Podemos reescrever $H(z)$ como:

$$H(z) = H_1(z) \cdot (z^{-1} - c^*) \cdot \frac{(1 - cz^{-1})}{(1 - cz^{-1})}$$

$$= H_1(z) \cdot (1 - cz^{-1}) \cdot \frac{(z^{-1} - c^*)}{(1 - cz^{-1})}$$

A partir dessa manipulação algébrica temos que:

- $H_1(z) \cdot (1 - cz^{-1})$ é um sistema de fase mínima (pois todos os seus pólos e zeros, incluindo o zero $z = c$, são internos ao círculo unitário).

- $\frac{(z^{-1} - c^*)}{(1 - cz^{-1})}$ é um sistema passa-tudo.

Logo

$$H(z) = H_{\min}(z) \cdot H_{\text{ap}}(z)$$
Da definição, decorre que:

\[ |H(z)| = |H_{\text{min}}(z)| \cdot |H_{\text{ap}}(z)| = |H_{\text{min}}(z)| \]

Ou seja, o sistema qualquer possui a mesma resposta em frequência do seu equivalente de mínima fase. Isso decorre também do fato de que a magnitude espectral não é condição suficiente para definir um sistema linear e invariante no tempo, pois:

\[ |H(e^{j\omega})| = H(e^{j\omega}) \cdot H^*(e^{j\omega}) = H(z) \cdot H^*(1/z^*)|_{z=e^{j\omega}} = C(z)|_{z=e^{j\omega}} \]

onde \( C(z) \), que representa a resposta em frequência de \( H(z) \) quando consideramos \( z = e^{j\omega} \), contém todos os pólos e zeros de \( H(z) \), bem como seus conjugados que pertencem a \( H^*(1/z^*) \).

Assim, não é possível de \( H(z) \) unicamente a partir de \( C(z) \), pois podemos escolher qualquer combinação de zeros (assumindo que \( H(z) \) é causal e estável, todos os seus pólos são internos ao círculo unitário e os pólos externos ao círculo unitário pertencem a \( H^*(1/z^*) \)) para compor \( H(z) \).

Restringindo a escolha com o intuito de formar um sistema de mínima fase, \( H(z) \) possuirá todos os zeros internos ao círculo unitário de \( C(z) \), e os zeros remanescentes pertencerão a \( H^*(1/z^*) \).

Essa característica de sistemas lineares e invariantes no tempo de incompletude na especificação de \( H(z) \) a partir de uma definição de \( C(z) \) permite encontrar um sistema \( H_{\text{min}}(z) \) possa ser obtido a partir qualquer sistema \( H(z) \) sem mínima fase, causal e estável, bastando para isso refletir os zeros fora do círculo unitário de \( H(z) \) para dentro do círculo unitário.

### 6.6.1 Propriedade de fase mínima

Também chamado de atraso de fase mínima, deriva-se da definição de fase de um sistema qualquer, que é definido para um sistema qualquer como:

\[ \angle H(z) = \angle H_{\text{min}}(z) + \angle H_{\text{ap}}(z) \]

Mas na Seção 6.5 sabemos que \( \angle H_{\text{ap}}(z) < 0 \) para \( z = e^{j\omega} \). Isto significa que os atrasos impostos às componentes espectrais de uma sequência a ser filtrada por um sistema de mínima fase serão **sempre menores** que qualquer outro sistema com a mesma magnitude da resposta em frequência (equivalente sem mínima fase), devido ao efeito imposto por \( \angle H_{\text{ap}}(z) \).
6.6.2 Propriedade de energia mínima

Como $|H(e^{j\omega})| = |H_{\text{min}}(e^{j\omega})|$, temos que:

$$|h[0]| \leq |h_{\text{min}}[0]|$$

para qualquer sequência causal e estável.

Demonstração. Demonstração da propriedade de energia mínima.

Pela Equação 5.24, temos:

$$h[0] = \lim_{z \to \infty} H(z)$$

$$|h[0]| = \left| \lim_{z \to \infty} H(z) \right|$$

$$= \lim_{z \to \infty} |H(z)|$$

A partir da Equação 6.11, temos:

$$|h[0]| = \lim_{z \to \infty} |H_{\text{min}}(z) \cdot H_{\text{ap}}(z)|$$

$$\leq \lim_{z \to \infty} |H_{\text{min}}(z)| \cdot |H_{\text{ap}}(z)|$$

$$\leq \lim_{z \to \infty} |H_{\text{min}}(z)|$$

$$|h[0]| \leq |h_{\text{min}}[0]|$$

A partir do teorema de Parseval (Seções 3.3.2 e 5.6), sabemos que:

$$\sum_{n=0}^{\infty} |h[n]|^2 = \sum_{n=0}^{\infty} |h_{\text{min}}[n]|^2$$

Definindo ‘energia’ como:

$$E[n] = \sum_{m=0}^{n} |h[m]|^2$$

Temos que:

$$E[n] \leq E_{\text{min}}[n]$$

$$\sum_{m=0}^{n} |h[m]|^2 \leq \sum_{m=0}^{n} |h_{\text{min}}[m]|^2$$

Tal expressão significa que a energia das primeiras $m$ amostras é mais concentrada em um sistema de mínima fase do que em um sistema sem tal propriedade. Assim, em um processo de truncagem, a perda de energia (ou “informação”) é mais danosa em um sistema que não seja de mínima fase.
Demonstração
Considerando o sistema \( H(z) \) e seu equivalente de mínima fase \( H_{\text{min}}(z) \), sendo descritos por:

\[
H_{\text{min}}(z) = Q(z) \cdot (1 - z_0 z^{-1})
\]
\[
H(z) = Q(z) \cdot (z^{-1} - z_0^*)
\]

onde \( Q(z) \) é um “subsistema” estável e causal de fase mínima de \( H_{\text{min}}(z) \) e \( H(z) \), e \( z_0 \) é um zero interno ao círculo unitário \(|z_0| < 0\).

Calculando a resposta ao impulso de ambos os sistemas, temos:

\[
h_{\text{min}}[n] = q[n] - z_0 q[n - 1]
\]
\[
h[n] = -z_0^* q[n] + q[n - 1]
\]

Podemos então determinar a energia da resposta ao impulso:

\[
|h_{\text{min}}[n]|^2 = |q[n]|^2 + |z_0| |q[n - 1]|^2
\]
\[
|h[n]|^2 = |z_0|^2 |q[n]|^2 + |q[n - 1]|^2
\]

e

\[
E_{\text{min}}[m] = \sum_{n=0}^{m} |q[m]|^2 + |z_0| |q[m - 1]|^2
\]
\[
E[m] = \sum_{n=0}^{m} |z_0|^2 |q[m]|^2 + |q[m - 1]|^2
\]

A diferença termo-a-termo entre as energias das respostas ao impulso de ambos os sistemas é:

\[
|h_{\text{min}}[n]|^2 - |h[n]|^2 = (1 - |z_0|^2) |q[n]|^2 - (1 - |z_0|^2) |q[n - 1]|^2
\]

Assim, temos, pela causalidade de \( q[n] \), a seguinte sequência:

\[
|h_{\text{min}}[0]|^2 - |h[0]|^2 = (1 - |z_0|^2) |q[0]|^2
\]
\[
|h_{\text{min}}[1]|^2 - |h[1]|^2 = (1 - |z_0|^2) |q[1]|^2 - (1 - |z_0|^2) |q[0]|^2
\]
\[
|h_{\text{min}}[2]|^2 - |h[2]|^2 = (1 - |z_0|^2) |q[2]|^2 - (1 - |z_0|^2) |q[1]|^2
\]

Logo, a diferença de energia entre \( h_{\text{min}}[n] \) e \( h[n] \) é:

\[
E_{\text{diff}}[m] = \sum_{n=0}^{m} \{ |h_{\text{min}}[0]|^2 - |h[0]|^2 \}
\]
\[
= (1 - |z_0|^2) |q[m]|^2
\]
Como $|z_0| < 0$, então o termo $(1 - |z_0|^2) |q[m]|^2 > 0$, $\forall m |m > 0$. Logo:

$$\sum_{n=0}^{m} |h_{min}[0]|^2 - \sum_{n=0}^{m} |h[0]|^2 = (1 - |z_0|^2) |q[m]|^2$$

ou

$$\sum_{n=0}^{m} |h_{min}[0]|^2 \geq \sum_{n=0}^{m} |h[0]|^2$$

\[\square\]

### 6.7 Sistemas de Fase Linear

Como vimos anteriormente (Seção 6.1), sistemas ideais (com fase zero) são não causais. Assim, a distorção de fase com menor impacto é a fase linear. Assim, acoplando-se em cascata sistemas atrasadores a sistemas teóricos de fase zero, podemos obter sistemas de fase linear causais que são passíveis de aplicação prática.

Assim, torna-se interessante definir qual é o formato da resposta ao impulso, $h[n]$, de um sistema de fase linear, bem como as condições para que o mesmo tenha tal propriedade.

Um sistema de fase linear tem o seguinte formato algbrico de resposta em frequência:

$$H(e^{j\omega}) = |H(e^{j\omega})| e^{-j\omega \alpha} \quad |\omega| < \pi$$  \hspace{1cm} (6.12)

onde $|H(e^{j\omega})| \in \mathbb{R}^+$. 

Também podemos encarar $|H(e^{j\omega})|$ como um sistema de fase zero, acoplado em cascata a um sistema atrasador ideal $e^{-j\omega \alpha}$, ou seja:

$$y[n] = h_{fase \ zero}[n] \ast h_{atrasador}[n] \ast x[n]$$

$$= h[n] \ast x[n]$$

Isto implica em:

$$h[2\alpha - n] = h[n]$$

ou

$$h[N - n] = h[n]$$

onde $N$ é o número de amostras da resposta ao impulso do sistema $h[n]$.

**Exemplos:**
Considere um filtro passa-baixas ideal com fase linear, definido por:

\[ H_{bp}(e^{j\omega}) = \begin{cases} e^{-j\omega n_d}, & |\omega| < \omega_c \\ 0, & \omega_c < |\omega| \leq \pi \end{cases} \]

Calculando \( \mathcal{F}_{DT}^{-1}\{H_{bp}(e^{j\omega})\} \), temos:

\[
h_{bp}[n] = \frac{\text{sen}(\omega_c(n - n_d))}{\pi(n - n_d)}, \quad n \in \mathbb{Z}
\]

Mas,

\[
h_{bp}[2n_d - n] = \frac{\text{sen}(\omega_c(2n_d - n - n_d))}{\pi(2n_d - n - n_d)} = \frac{\text{sen}(\omega_c(n_d - n))}{\pi(n_d - n)} = h_{bp}[n]
\]

Ou seja, temos simetria da sequência em torno da amostra \( n_d = N/2 \). Isto implica em \( N = 2n_d \).

Quando \( n_d = 0 \), \( \hat{h}_{bp}[n] = \hat{h}_{bp}[-n] \).

Note que a fase zero ocorre quanto \( n_d = 0 \) na Equação 6.12. Logo, quando defasamos a sequência \( n_d \) amostras, tornamos a sua resposta em frequência defasada linearmente na proporção de \( -\omega n_d \) radianos.

Qualquer sistema linear e invariante no tempo, \( h[n] \), que apresente simetria em relação a um determinado instante \( n_d \) apresentará distorção de fase linear. Se este instante for zero, então o sistema não apresentará distorção de fase.

### 6.7.1 Fase linear generalizada

Quando generalizamos a distorção de fase linear para uma equação linear mais genérica, temos:

\[
H(e^{j\omega}) = A(e^{j\omega})e^{-j\omega \alpha + j\beta}
\]

onde \( \alpha, \beta \in \mathbb{R} \) são constantes, e \( A(e^{j\omega}) \in \mathbb{R} \) é função de \( \omega \).

A questão que é verificar quais os efeitos de \( \alpha \) e \( \beta \) sobre a simetria das amostras da resposta ao impulso do sistema \( h[n] \).
Demonstração. Avaliação de simetria de $h[b]$.

Considere um sistema com fase linear generalizada definido por:

$$H(e^{j\omega}) = A(e^{j\omega}) \cos(\beta - \alpha \omega) + jA(e^{j\omega}) \sen(\beta - \alpha \omega)$$

Mas

$$H(e^{j\omega}) = \sum_{n=-\infty}^{+\infty} h[n] e^{-j\omega n}$$

$$= \sum_{n=-\infty}^{+\infty} h[n] \cos(\omega n) - j \sum_{n=-\infty}^{+\infty} h[n] \sen(\omega n)$$

onde assumimos que $h[n] \in \mathbb{R}$.

Isto implica em:

$$\tan(\beta - \omega \alpha) = \frac{\sen(\beta - \alpha \omega)}{\cos(\beta - \alpha \omega)} = \frac{\sum_{n=-\infty}^{+\infty} h[n] \sen(\omega n)}{\sum_{n=-\infty}^{+\infty} h[n] \cos(\omega n)}$$

Lembrando das propriedades de trigonometria ($\sen(a \pm b) = \sen(a) \cos(b) \pm \cos(a) \sen(b)$), temos:

$$\sum_{n=-\infty}^{+\infty} h[n] \sen(\omega(n - \alpha) + \beta) = 0, \quad \forall \omega \in \mathbb{R}$$

Esta é uma condição necessária mas não suficiente para definir um sistema de fase linear. Ou seja, não define quais são os valores de $\alpha$, $\beta$ e a sequência $h[n]$, mas apenas indica que se as conhecermos, $h[n]$ terá fase linear se a condição for verdadeira.

□

Exemplos:

Se $\beta = 0$ ou $\beta = \pi$, $2\alpha = N$, e $h[2\alpha - n] = h[n]$, então:
\[
\sum_{n=-\infty}^{+\infty} h[n] \sen(\omega(n - \alpha)) = 0
\]
\[
\sum_{n=0}^{+\alpha} h[n] \sen(\omega(n - \alpha)) + \sum_{n=0}^{2\alpha} h[n] \sen(\omega(n - \alpha)) = 0
\]
\[
\sum_{n=0}^{+\alpha} h[n] \sen(\omega(n - \alpha)) + \sum_{n=0}^{\alpha} h[2\alpha - n] \sen(\omega(2\alpha - n - \alpha)) = 0
\]
\[
\sum_{n=0}^{+\alpha} h[n] \sen(\omega(n - \alpha)) - \sum_{n=0}^{\alpha} h[2\alpha - n] \sen(\omega(n - \alpha)) = 0
\]

Logo, \(h[n] = h[2\alpha - n]\) apresenta simetria em relação a amostra \(N/2 = \alpha\). Agora, \(\beta = \pi/2\) ou \(\beta = 3\pi/2\), \(2\alpha = N\), e \(h[2\alpha - n] = -h[n]\), então:
\[
\sum_{n=-\infty}^{+\infty} h[n] \cos(\omega(n - \alpha)) = 0
\]

cuja manipulação algébrica implica em \(h[2\alpha - n] = -h[n]\).

Note que a combinação de \(\alpha\) e \(\beta\) implica em diferentes combinações de simetria da resposta ao impulso para produzir uma resposta em frequência \(H(e^{j\omega})\) com distorção de fase linear.
Capítulo 7

Transformada Discreta de Fourier (incompleto)
Capítulo 8

Filtros Digitais (incompleto)