
DC Current in CMOS

- > For $V_{IN} < V_{TN}$, N_O is cut off and $I_{DD} = 0$.
- For $V_{TN} < V_{IN} < V_{DD}/2$, N_O is saturated.
- > For V_{DD} /2 < V_{IN} < V_{DD} + V_{TP} , P_O is saturated.
- > For $V_{IN} > V_{DD} + V_{TP}$, P_O is cut off and $I_{DD} = 0$.
- For V_{DD} /2 < V_{IN} < V_{DD} + V_{TP} , P_O is saturated.
- For $V_{IN} > V_{DD} + V_{TP}$, P_O is cut off and $I_{DD} = 0$.
- Even though CMOS exhibits negligible DC dissipation in either logic state, appreciable power is dissipated during switching.

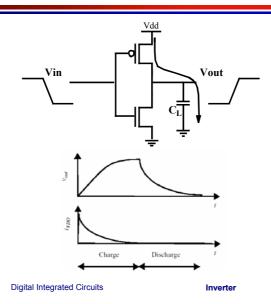
Digital Integrated Circuits

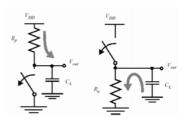
Inverter

Power dissipation in CMOS

Dynamic Power Consumption

Charging and Discharging Capacitors


Short Circuit Currents


Short Circuit Path between Supply Rails during Switching

Leakage

Leaking diodes and transistors

Dynamic Power Dissipation

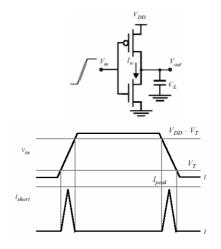
Capacitor Energy:

$$E_{C} = 1/2 C V_{dd}^{2}$$

© Prentice Hall 1995

Dynamic Power Dissipation

For each transition (clock cycle):

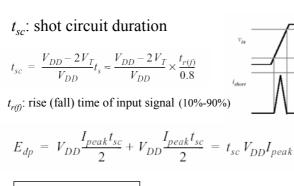

Energy/transition =
$$C_L * V_{dd}^2$$

Power = Energy/transition *
$$f = C_L * V_{dd}^2 * f$$

•Not a function of transistor sizes •Need to reduce C_L, V_{dd} and *f* to reduce power.

Dissipation Due to Direct-Path Currents

- during switching the NMOS and the PMOS transistors are conducting simultaneously.
- This puts the power supply in "short-circuit" during the transitions of the input signal
- "short-circuit" current is limited by transistors current capacity ⇒ depends on transistor size

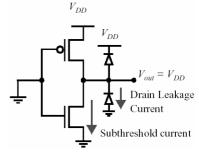


Digital Integrated Circuits

Inverter

© Prentice Hall 1995

Dissipation Due to Direct-Path Currents


$$P_{dp} = t_{sc} V_{DD} I_{peak} f$$

 I_{peak} : peak current of transistors ($Vo=V_{DD}/2$)

f : switching frequency

Dissipation Due to Leakage

- reverse-biased diode junctions and transistors leakage
- 10-100 pA/µm² at room temperature.
- Increases exponentially with temperature

$$P_{stat} = I_{stat} V_{DD}$$

 I_{stat} : leakage currents

Digital Integrated Circuits

Inverter

© Prentice Hall 1995

Total Power Dissipation

$$P_{tot} = P_{dyn} + P_{dp} + P_{stat}$$

$$P_{tot} = (C_L V_{DD}^2 + V_{DD} I_{peak} t_s) f_0 + V_{DD} I_{leak}$$

- •Low frequency operation: P_{stat} dominates
- •*High frequency operation:* $P_{dyn}+P_{dp}$ *dominates*

CMOS Electrical Characteristics

- Power-delay product
- •Latch-up
- •Hot carriers
- Electromigration
- Sheet resistance
- Parasitic capacitances

CMOS

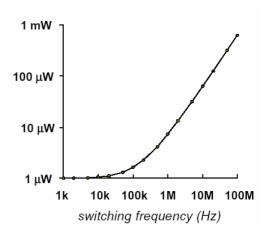

Power-delay product

Figure of merit to determine quality of a digital gate

Power-delay product PDP: measures the energy of the gate [W.s=J]

$$PDP = P_{av}t_p$$

PDP stands for the average energy consumed per switching event

Power-delay product

>Assuming that the gate is switched at its maximum possible rate f_{max}

$$f_{max} = 1/(2t_p), \quad t_p = (t_{pHL} + t_{pLH})/2$$

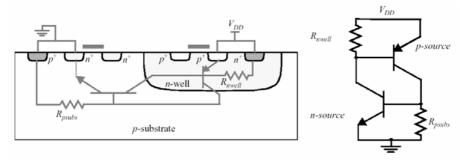
 $PDP = \frac{P_{av}}{2f_{max}}$ $t_P \approx \frac{2C_L}{KV_{DD}}$

> In high frequencies, power dissipation dominated by capacitive load C_L

> ignoring contributions of static and direct-path currents:

$$PDP \approx \frac{2V_{DD}C_L^2 f}{K}$$

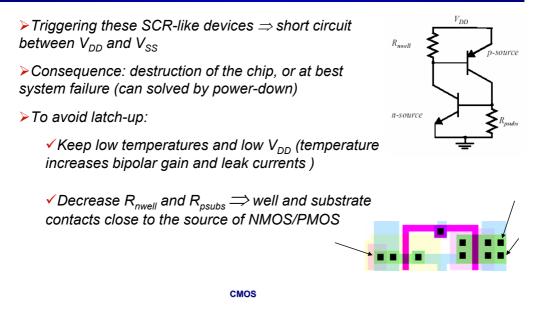
> The design goal is to minimize PDP, in order to get low power in high frequencies


> Thus it is important to decrease V_{DD} but it is extremely important to decrease the load capacitance C_L

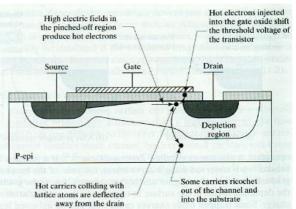
CMOS

Latch-up

>MOS technology contains intrinsic bipolar transistors


➤in CMOS processes, combination of wells and substrates results in parasitic n-p-n-p structures.

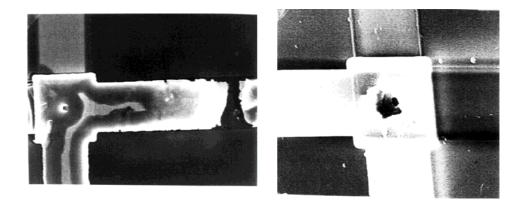
(a) Origin of latchup


(b) Equivalent circuit

Latch-up

Hot carriers

- Small dimension MOSFET suffers from hot-carrier effect
- High velocity electrons leave the silicon and tunnel into the gate oxide
- Electrons trapped in oxide change threshold voltage V_T:
 - *NMOS: V*_{TN} ↑
 - PMOS: |V_{TP}| ↓
- Can cause permanent dammage to the device
- Sensible to Temperature and V_{DD}



Electromigration

- Metal wire can tolerate only a certain amount of current density.
- Direct current for a long time causes ion movement breaking the wire over time.
- Contacts are more vulnerable to electromigration as the current tends to run through the perimeter.
- Possible solutions:
 - » Make wire cross section wider⇒increase width/depth (reduce current density)
 - » Use of copper instead of AI (heavier ions)

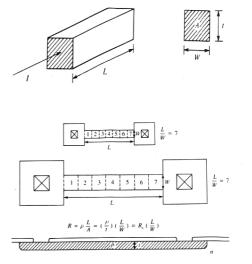
CMOS

Electromigration example

A wire broken off due to electromigration

A contact (via) broken up due to electromigration

These figures are derived from Digital integrated circuit - a design perspective, J. Rabaey Prentice Hall

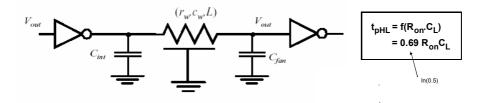

- Electromigration
- Power density: heating due to Joule effect
- Respect max current densities to each layer (specified by the technology design rules)

CMOS

Sheet resistance R_S

- Resistivity of materials are given in ohms/square (Ω/□)
- Easier way to compute resistance due to uniform depth of conducting/semiconducting layers
- To calculate the resistance of a line:
 - » Divide the line in squares
 - » Multiply the number of squares by the given value of R_S in $\ \Omega/\square$

$$R = \rho \frac{L}{A} = \left(\frac{\rho}{t}\right) \left(\frac{L}{W}\right) = R_s \left(\frac{L}{W}\right)$$



Parasitic capacitances

- Conducting lines over substrate or crossing forms parasitic capacitances
- Can be very important for long lines
- Increase power dissipated and PDP
- To calculate the capacitance of two crossing lines:
 - » Calculate the total crossing area
 - » Multiply by the given value of C per area in µF/µm²

CMOS

Delay in the Presence of (Long) Interconnect Wires

 $t_p = 0.69R_{dr}C_{int} + (0.69R_{dr} + 0.38R_w)C_w + 0.69(R_{dr} + R_w)C_{fan}$ = 0.69R_{dr}(C_{int} + C_{fan}) + 0.69(R_{dr}c_w + r_wC_{fan})L + 0.38r_wc_wL^2