

OPERAÇÃO BÁSICA DO SOFTWARE EAGLE

EWALDO LUIZ DE MATTOS MEHL
DEPARTAMENTO DE ENGENHARIA ELÉTRICA

OBS.: PARA ACOMPANHAR ESTA EXPLANAÇÃO, SUPÕE-SE QUE O USUÁRIO JÁ INSTALOU O EAGLE NO MICROCOMPUTADOR E ESTÁ FAZENDO A LEITURA DESSE MANUAL ACOMPANHADO DA ATUAÇÃO SOBRE O SOFTWARE.

1. O Painel de Controle e as "Bibliotecas"

Após iniciar o programa EAGLE, abre-se uma primeira janela que é chamada de *Control Panel*. Este módulo permite carregar e salvar os projetos, bem como controlar certos parâmetros do programa. Dê dois cliques sobre a parte à esquerda onde está escrito **Projects** e verifique que se abre uma árvore de opções que permite tanto a abertura de um novo projeto, ou trabalhar com um projeto já existente. A mesma estrutura em árvore permite que se verifique o conteúdo das "bibliotecas" (*Libraries*) pré-programadas no EAGLE. Dê dois cliques em uma das entradas de uma das *Libraries* e verifique que surge uma descrição da "biblioteca" e em seguida os vários componentes presentes nessa. A figura 1 mostra como exemplo um circuito integrado digital 7410 da série TTL, que contém 3 portas NAND. Observe que o componente está disponível em diversos tipos de encapsulamento, inclusive SMD.

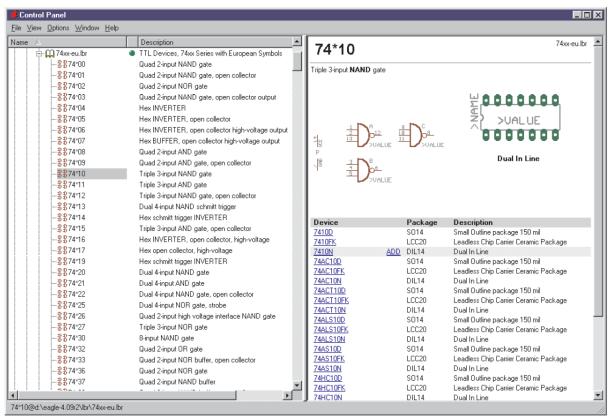


Figura 1: Verificação do conteúdo de uma das **Libraries** do EAGLE.

Observe que ao lado do nome de cada **Library** existe um pequeno círculo de cor verde. Ao se clicar sobre este círculo, o mesmo muda para um círculo menor, de cor preta. Esta ação permite "ligar" (verde) ou "desligar" a respectiva **Library**; ou seja, decide-se se os componentes existentes nessa **Library** serão ou não utilizados no projeto que está sendo executado. É interessante "desligar" as **Libraries** que não se costuma usar, pois isso aumenta a velocidade de abertura do menu correspondente à inserção de componentes nos desenhos.

O painel de controle possibilita também outras funções, tais como a execução de arquivos *script*, a programação de funções especiais e a geração de arquivos de fabricação (chamados *CAM jobs*). Experimente as diversas funções e verifique que, ao se dar um clique com o botão <u>da direita</u> do mouse, abre-se um menu que permite imprimir, abrir, copiar etc. cada um dos itens.

2. ARQUIVOS DO EAGLE

A Tabela 1 lista os arquivos mais importantes do programa EAGLE, associados aos diversos módulos que compõe o ambiente de projeto.

Módulo do EAGLE	Nome do arquiv
Tabela 1: Arquivos usados pelo EAGLE, associados a um	n projeto específico:

Tipo	Módulo do EAGLE	Nome do arquivo
Board	Layout Editor	*.brd
Schematic	Schematic Editor	*.sch
Library	Library Editor	*.lbr
Script File	Text Editor	*.scr
User Language Program	Text Editor	*.ulp
Any text file	Text Editor	*.*

Obs.: Na versão **Linux**, o programa somente reconhece arquivos com a extensão escrita em letras minúsculas.

3. OPERAÇÃO DO MÓDULO SCHEMATICS: EDITANDO UM PROJETO JÁ EXISTENTE NO EAGLE

Observe que no **Control Panel**, abaixo das "bibliotecas", existem algumas entradas para arquivos de exemplo. Dê um clique sobre o símbolo + à frente de onde está escrito **Projects** e depois clique no símbolo + à frente de **examples**. Carregue o arquivo chamado **demo2.sch**. Para abrir o arquivo pode-se dar dois cliques rápidos sobre o nome do arquivo, ou usar o menu principal com a seqüência **File/Open/Schematics**. Após o arquivo ter sido carregado, expanda a janela de modo que ocupe toda a tela do monitor, conforme mostrado na Figura 2.

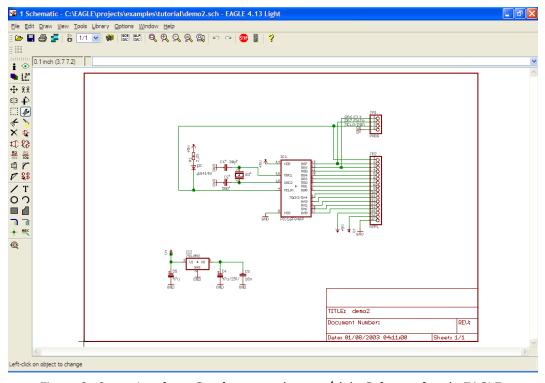


Figura 2: O arquivo demo2.sch carregado no módulo Schematics do EAGLE.

Observar que, logo abaixo do menu superior, existem alguns botões que permitem alterar a forma de visualização. A Tabela 2 mostra as funções desses botões.

Tabela 2: Botões de Visualização, disponíveis tanto no módulo **Schematics** como no módulo **Board**.

Botão	Função	Alternativa
P	Zoom In: aproxima a visão do desenho	F3
<u>Q</u>	Zoom out: afasta a visão do desenho	F4
	Fit: Ajusta o desenho para ser visualizado na janela toda	Alt + F2
2	Amplia uma área determinada do desenho. Use o mouse para definir a área à ser visualizada.	
9	Redraw : Durante algumas situações, o desenho pode ficar com "sujeiras". Este botão corrige o desenho.	F2

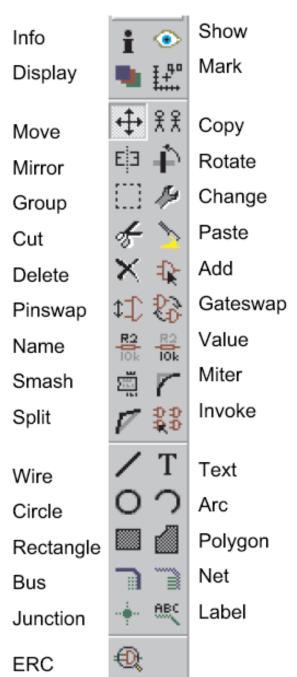
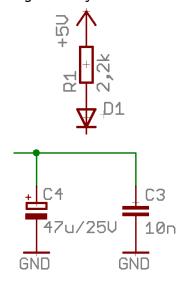


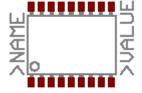
Figura 3: Menu de "botões" do módulo **Schematics**. As funções também estão disponíveis no menu principal do programa.


Barra superior de ação

- 1 Abrir um arquivo existente.
- Salvar o arquivo no disco rígido do computador.
- 3 Imprimir o arquivo.
- 4 Exportar o arquivo em um formato de industrialização (CAM **C**omputer **A**ided **M**anufacturing).
- 5 Passar do desenho esquemático para a placa de circuito impresso, e vice-versa.
- 6 Número de folhas deste desenho.
- 7 Utilizar uma biblioteca (*Library*).
- **8** Executar um arquivo do tipo *script* (*.scr).
- 9 Executar um programa de linguagem do usuário (*.ulp).
- 10 Ajustar o desenho à janela.
- 11 Ampliar o desenho.
- 12 Reduzir o desenho.
- 13 Redesenhar/limpar o desenho.
- 14 Ampliar uma área selecionada do desenho.
- 15 Anular a última alteração.
- 16 Refazer a alteração anterior.
- 17 Cancelar comando.
- 18 Executar comando.
- 19 Solicitar ajuda de um comando específico.

Exercícios:

Após carregar o diagrama esquemático **demo2.sch**, acompanhe as sequintes ações:


- a) Localizar no diagrama esquemático o resistor **R1**, de **2,2 k** Ω . Modificar o valor desse resistor para **3,3 k** Ω e a sua referência para **Rd**.
- b) Observar no diagrama esquemático que a referência e o valor do resistor **R1** estão escritos na <u>vertical</u>. Utilizar o comando **Smash** e mudar estes textos para a posição <u>horizontal</u>.
- c) Localizar, junto ao regulador de tensão **78L05Z**, o capacitor eletrolítico **C4** de **47** μ **F**. Adicione, em paralelo com esse capacitor, um novo capacitor também de **47** μ **F**.

Atenção: a ligação entre os componentes do diagrama é feita com o comando **NET** e não com o comando **WIRE**!

d) Verificar que o microprocessador **PIC16F84** presente no circuito utiliza o encapsulamento tipo *dual-in-line* de 18 pinos (DIL-18). Mudar o encapsulamento desse componente para o tipo SMD e verificar que não há mudança no diagrama esquemático.

4. CRIANDO UM NOVO PROJETO NO EAGLE

Acompanhe a explicação sobre os procedimentos para iniciar um novo projeto e verifique a Figura 4:

- Inicie o programa
- Dê um clique no símbolo + existente em frente do item onde está escrito **Projects**
- Dê um clique no símbolo + existente em frente do item onde está escrito **examples**
- Dê um clique no símbolo <u>+</u> existente em frente do item onde está escrito **tutorial.** Irão surgir os vários itens associados com esta pasta. Clique sobre **tutorial** com o <u>botão direito</u> do mouse e selecione a opção **New Project** no menu.
- Mude o nome do novo projeto para um nome conveniente. Por exemplo, digite
 MeuProjeto e pressione a tecla Enter do teclado do microcomputador. Verifique que será
 criada uma nova pasta, agora com o nome MeuProjeto. Nessa pasta serão arquivados
 todos os arquivos associados com esse projeto.
- Selecione MeuProjeto e dê um clique com o botão <u>da direita</u> do mouse. Você verificará que no item New do menu existem as opções para se iniciar um novo diagrama esquemático do circuito (Schematics), ou uma nova placa de circuito impresso (Board) ou uma nova "biblioteca" de componentes (Library).
- No caso, vamos iniciar um novo diagrama esquemático, portanto escolhemos a opção New e em seguida Schematics.

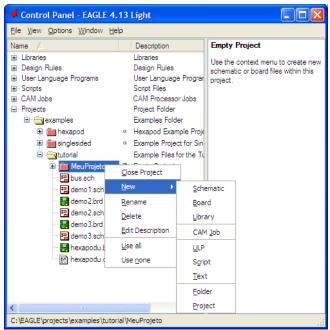


Figura 4: Procedimentos para início de um novo projeto.

A figura 5 mostra a proposta de um circuito eletrônico que será usado como exemplo para a criação de um novo diagrama esquemático. Trata-se de uma fonte de alimentação com regulação linear através do regulador eletrônico LM7815.

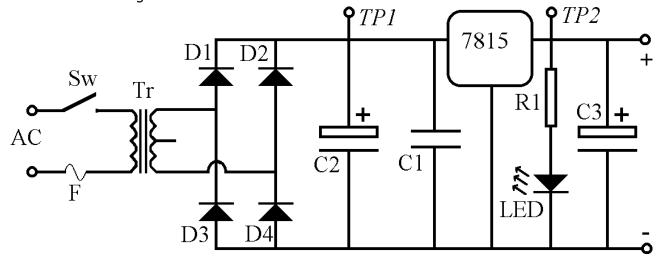


Figura 5: Circuito eletrônico para exemplo de criação de um novo diagrama esquemático.

Supõe-se que o interruptor **Sw**, o fusível **F** e o transformador **Tr**, mostrados na Figura 3-4, serão colocados fora da placa de circuito impresso, de modo que tais componentes também não serão representados no diagrama esquemático. A Tabela 3 relaciona os componentes que serão usados e sua localização nas "bibliotecas" (**Libraries**) do EAGLE.

T 1 1 2 2	^ .	. ~ .	1.	/
Labola Ji Componentec	Alatranicae r	aara criacaa da iim	novo diagrama	ocaliomatica:
Tabela 3: Componentes	elen omloos i	iala Chacao de um	HOVO CIIACII AIIIA	escurentanco.
rabeia di componence	C.CC. CCCC P	Jana chiagao ac ann	note alagrania	coquernation

Referência	Descrição	Valor	Library	Componente
D1, D2, D3, D4	Diodo retificador	1N4001	Discrete	DIODE-10
C1	Capacitor de poliéster	10nF	Discrete	CAP-10
C2	Capacitor Eletrolítico	1000 μF	Discrete	ELC-45
7815	Regulador	LM7815	v-reg	78CXXL
R1	Resistor	680 Ω	Discrete	RESEU-12,5
LED	Diodo foto-emissor		Led – LED	LED5MM
C3	Capacitor Eletrolítico	100 μF	Discrete	ELC-5
	Conector de entrada	Pinhead de 4 pinos	Com-Istb	MA-04-1
	Conector de saída	Pinhead de 4 pinos	Com-Istb	MA-04-1

Acompanhe os passos iniciais e faça como exercício o desenho do diagrama esquemático com o EAGLE. Ao final do trabalho, você deverá ter um desenho semelhante à Figura 6. Não se preocupe se o seu desenho for ligeiramente diferente; o importante é que as ligações entre os componentes estejam corretas.

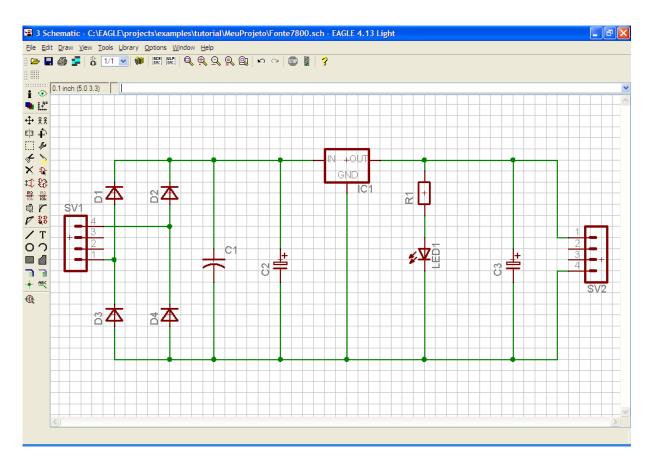


Figura 6: Resultado do desenho do circuito da Figura 3-4, feito no módulo **Schematics** do EAGLE.

Utilize os botões de **Name** e **Value** para alterar as referências e os valores dos componentes, de modo a ficarem de acordo com o que existe na Tabela 3. Ao final, grave o arquivo com um nome conveniente para ser usado em uma próxima etapa, com um nome conveniente.

3.5. CRIANDO A PLACA DE CIRCUITO IMPRESSO COM O EAGLE

A principal vantagem de um sistema de projeto integrado como o EAGLE é a vinculação entre o diagrama esquemático e a respectiva PCI. No módulo **Schematics**, escolha no menu superior **File** e em seguida **Switch to Board**. Você obterá uma mensagem de confirmação da criação de um arquivo com o mesmo nome dado ao diagrama esquemático, porém com a extensão **.brd**, correspondente à PCI associada ao projeto, conforme a Figura 7. Clique em **Yes** para confirmar a criação do arquivo.

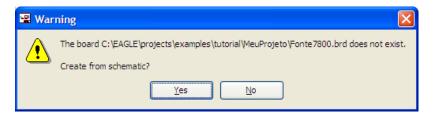


Figura 7: Confirmação da criação do arquivo para o projeto da PCI.

Será aberta então a janela do módulo **Board** do EAGLE, onde se faz o projeto da PCI. A Figura 8 mostra que existe um retângulo correspondente à PCI e, à esquerda desse, os componentes que foram desenhados no módulo **Schematics**. Observe que existem alguns traços finos amarelos, como se fossem "arames", ligando os terminais dos componentes, em conformidade com as ligações executadas no módulo **Schematics**.

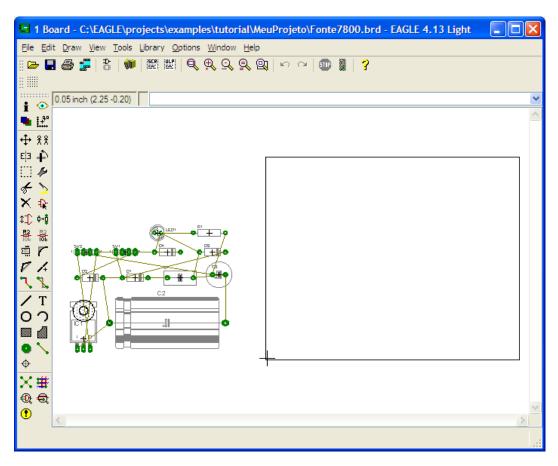


Figura 8: Na tela inicial do módulo **Board**, os componentes estão na área de coordenada negativa do desenho. Na versão *freeware* do EAGLE, aparece à direita a PCI, com dimensões sugeridas de 8 cm x 10 cm.

A próxima tarefa é definir as dimensões da PCI. A versão *light* do EAGLE permite placas com dimensões máximas de 8 cm x 10 cm, sendo essa a sugestão existente na janela inicial do módulo **Board**. Para isso, é interessante ter-se um reticulado (*grid*) adequado. Conforme visto anteriormente, o projeto de PCI é geralmente feito sobre um reticulado em polegadas, pois as dimensões dos componentes são padronizadas nesse sistema de medidas. O reticulado é acionado com o botão existente próximo do canto superior esquerdo da janela. Acionando este botão, obtém-se a janela da Figura 9, onde se tem a sugestão de um reticulado com quadrículas com **0,05** *inch* de lado; não é conveniente alterar este valor, sob pena de se ter problemas para se fazer o roteamento das trilhas. Portanto, acione simplesmente a opção **On**, na sessão onde está escrito **Display** e confirme clicando sobre **OK**.

Figura 9: Definição do reticulado. É conveniente aceitar os valores sugeridos.

No presente exemplo, vamos reduzir a largura da placa para 2 *inch*. Para isso, utilize o botão denominado **Move** e clique sobre o vértice superior direito do retângulo correspondente à placa, deslocando o vértice até obter-se a leitura de coordenadas **(3.19 2.00)**. Repita o procedimento para o vértice superior esquerdo, até obter as coordenadas **(0.00 2.00)**. A Figura 10 mostra o resultado obtido.

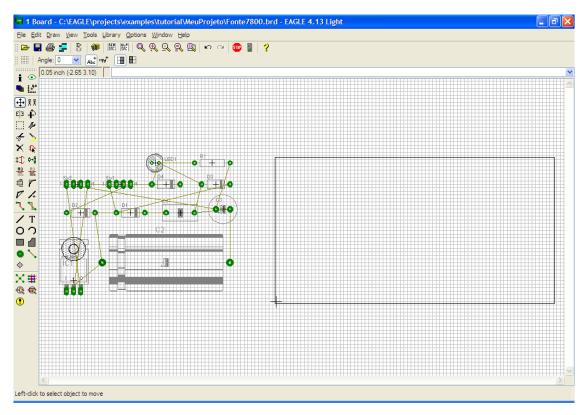


Figura 10: Nesse exemplo, a futura PCI teve as dimensões definidas como 2 inch x 3.19 inch.

O próximo passo é mover os componentes para a placa, distribuindo-os de uma forma adequada. Para isso, utilize novamente o botão **Move** e use o botão da direita do *mouse* para girar o componente 90°. Cada clique do botão da direita do *mouse* promove um giro adicional de 90°. Nesse exercício, distribua os componentes de qualquer forma, apenas para verificar como se faz o autorroteamento. Verifique que não é possível colocar um componente fora do retângulo definido como as dimensões da futura PCI porque, obviamente, não seria possível que as trilhas ultrapassassem os seus limites. Um exemplo de resultado é mostrado na Figura 3-11; o seu desenho pode ser diferente, dependendo do local onde você tenha colocado os componentes na placa. Os terminais *pinhead* de entrada e saída, no entanto, normalmente devem estar próximos das bordas da PCI. Depois de todos os elementos terem sido posicionados sobre a placa, acione o botão denominado **Ratsnest** . Isto faz com que sejam calculados automaticamente os caminhos mais curtos entre os terminais interligados.

Em algumas ocasiões pode acontecer dos desenhos dos componentes eletrônicos, ao serem movidos sobre a área da futura PCI, não ficarem perfeitamente ajustados às quadrículas que formam o **grid** (reticulado) do projeto. Isto ocorre porquê alguns componentes foram criados em um **grid** em milímetros, apesar de que o padrão industrial das PCI geralmente adota medidas em polegadas. Para ajustar o componente ao **grid**, deve-se pressionar a tecla **Ctrl** do teclado do computador, ao mesmo tempo que se move o desenho do componente com o *mouse*.

Info	÷ ••	Show	INFO: Mostra as propriedades dos objetos selecionados. SHOW: Mostra, na barra de status, os nomes e outros detalhes do
Display	• 12	Mark	objeto selecionado. DISPLAY: Permite mostrar ou ocultar as camadas (layers) que pretendemos que apareçam ou não no desenho ou impressão. MARK: Permite selecionar a origem das coordenadas para a
Move	↔ %%	Mirror	apresentação da posição relativa indicada na parte superior esquerda da janela (<i>display</i> de coordenadas). MOVE : Permite mover um objeto selecionado.
Mirror	₽	Rotate	COPY: Permite copiar um objeto. MIRROR: Gera uma imagem invertida dos objetos e grupos
Group		Change	relativamente ao eixo vertical. ROTATE: Permite rodar um objeto. GROUP: Selecionar um conjunto de objetos.
Cut	8 >	Paste	CHANGE: Permite alterar as propriedades dos objetos. CUT e PASTE: Com CUT pode-se guardar na memória um
Delete	X	Add	componente ou grupo e PASTE permite recuperá-lo e colocá-lo na área de trabalho DELETE : Permite apagar um objeto selecionado.
Pinswap	1 0+0	Replace	ADD: Inserir no desenho os componentes que estão disponíveis nas bibliotecas.
Name	R2 R2	Value	NAME : Permite modificar o nome que o programa deu aos componentes e condutores utilizados.
Smash		Miter	VALUE: Permite definir ou modificar o valor de um objeto. SMASH: Permite separar o nome do objeto do seu valor. PINSWAP: Permite troops pince equivalentes de um eirquite
Split		Optimize	PINSWAP: Permite trocar pinos equivalentes de um circuito integrado.GATESWAP: Permite trocar gates equivalentes de um circuito
Route	V /+	Ripup	integrado SPLIT: Permite curvar uma linha já desenhada.
rtouto	1 1		INVOKE : Pode ser utilizado para permitir a ligação do componente ativo a uma fonte de tensão diferente de V _{CC} e GND.
Wire	/ T	Text	WIRE: Desenhar linhas/condutores. TEXT: Escrever textos no desenho. CIRCLE: Desenhar círculos.
Circle	02	Arc	ARC: Desenhar arcos. RECTANGLE: Desenhar retângulos.
Rectangle		Polygon	POLYGON: Desenhar um polígono. BUS: Desenhar barramentos de condutores paralelos.
Via		Signal	NET : Permite fazer ligações elétricas ao bus e definir o dimensionamento das pistas.
	,	Oignai	JUNCTION: Serve para inserir um nó (numa derivação) ou para definir os terminais dos componentes.
Hole	\Phi		LABEL: Permite colocar uma etiqueta com o nome dado a uma linha simples ou barramento. ERC: (Electrical Rule Check) Esta é uma ferramenta que realiza
Ratsnest	$\times #$	Auto	uma verificação elétrica do circuito, detectando erros nos esquemas elétricos.
ERC	⊕ 🖨	DRC	Se necessitar de ajuda suplementar sobre alguma ferramenta,
	•	2.10	clique no seu ícone e, em seguida no ícone de Help. Outra forma é escrever na linha de comando a palavra Help seguida do nome da ferramenta.
Errors			ionamona.

Figura 11: Menu de "botões" do módulo **Board**. As funções também estão disponíveis no menu principal do programa.

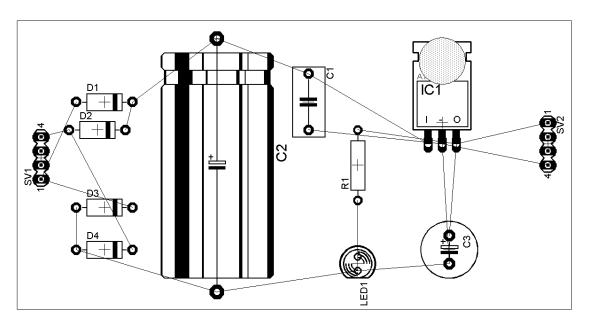


Figura 12: Aspecto da PCI com os componentes distribuídos, porém antes do autorroteamento.

O próximo passo é definir as regras de projeto, que incluem, entre outros itens, a largura mínima das trilhas. Para isso, aciona-se no menu a opção **Edit** e, em seguida, **Design Rules**. A Figura 3-12 mostra a janela obtida, onde se tem diversas opções a serem preenchidas, de acordo com as características elétricas do circuito (correntes e tensões existentes) e com o processo de fabricação à ser usado para se ter a futura PCI.

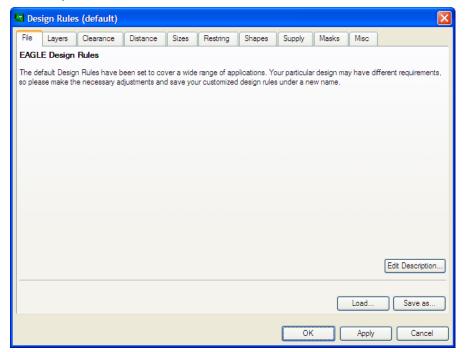


Figura 13: Janela das opções das Regras de Projeto.

No presente exemplo, vamos modificar somente a largura mínima das trilhas. Escolhe-se portanto no janela **Design Rules** o item correspondente a **Sizes**, conforme a figura 14. Verifique que o valor da grandeza **Minimum Width** está especificada como **10mil**. Isso corresponde a 0,01 *inch*, ou seja, uma largura de trilha mínima de 0,254 mm. Esta janela aceita valores tanto em mil, como também em milímetros, de modo que vamos substituir o valor **10mil** por **2mm** (escrito dessa forma, sem espaço entre o algarismo e a unidade). Na verdade a largura mínima das trilhas de uma PCI fabricada industrialmente é da ordem de **4 mils** a **5 mils**, dependendo da espessura da camada de cobre. Neste exemplo estamos adotando largura de **2 mm** para efeito de ilustração.

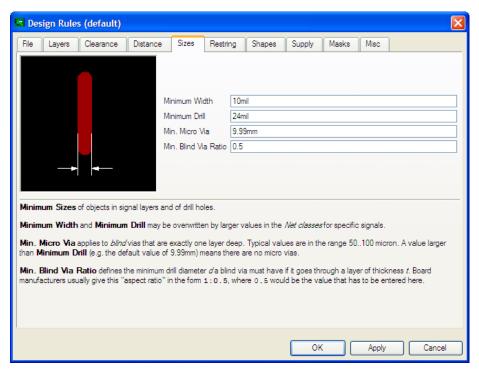


Figura 14: Especificações das Regras de Projeto.

Finalmente, acione no menu superior **Tools** e **Auto...** ou então o botão para fazer o autorroteamento da placa. Você obterá uma janela adicional, ilustrada na Figura 15. Esta janela possibilita, entre outras opções, a escolher a direção preferencial das trilhas nas faces superior e inferior da placa. Permite também, se for o caso, tentar fazer o roteamento somente pela face inferior da placa, para se usar uma placa cobreada em uma única face.

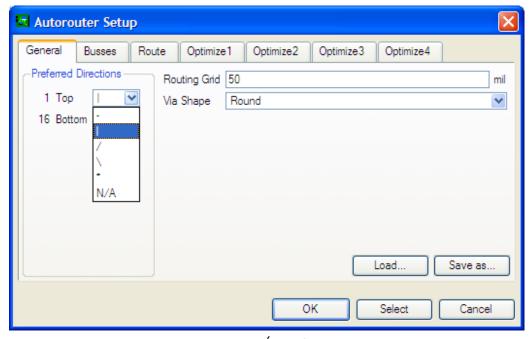


Figura 15: Opções para o autorroteamento da PCI. É possível escolher que as trilhas sejam traçadas em ambas as faces ou em apenas uma face da placa.

A Figura 16 mostra o resultado obtido após o autorroteamento ser completado. As trilhas desenhadas em cor vermelha correspondem à <u>face superior da PCI</u>, onde são normalmente fixados os componentes; as trilhas desenhadas em cor azul correspondem à <u>face inferior da PCI</u>, visualizadas nesse caso como se a PCI fosse transparente.

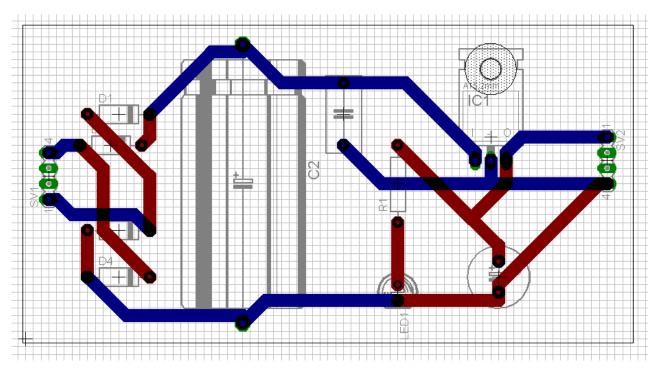


Figura 16: Resultado do roteamento obtido no exemplo.

Observar que na região em torno do orifício de fixação do regulador **LM7815** existe um círculo hachurado. Trata-se de uma região proibida para o roteamento, ou seja, não é permitido que nenhuma trilha passe por esta região, pois se tal ocorresse o montador se defrontaria com um problema para instalar o parafuso e a porca de fixação do regulador. A título de exemplo, vamos supor que no canto inferior esquerdo deva existir uma outra região proibida, de forma retangular e atingindo a trilha que liga o terminal negativo do capacitor **C3** com o pino 4 do *pinhead* de saída.

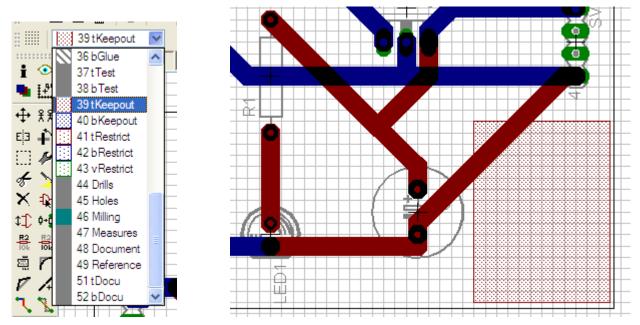


Figura 17: Criação de uma região proibida na face superior da PCI.

Escolhe-se, portanto, o botão correspondente ao desenho de formas retangulares e, no menu superior onde se encontram as "camadas" do desenho, escolhe-se a camada de número **39** denominada **tKeepout**. No caso, a letra **t** correesponde a **top**, ou seja, a face superior da PCI. Desenha-se então com o *mouse* um retângulo no local desejado, conforme mostrado na

Figura 3-16. Em seguida, usando o botão denominado Ripup 🔊 desfaz-se o roteamento dessa

parte do circuito, ou seja, substitui-se a trilha que faz a ligação entre o terminal negativo do capacitor **C3** com o pino 4 do *pinhead* de saída pelo "arame" de conexão.

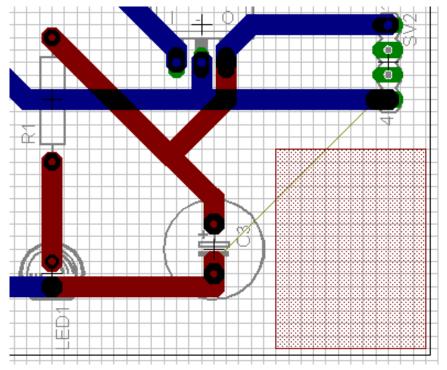


Figura 18: Com a ferramenta Ripup, desfez-se a trilha.

Acionando-se novamente o autorroteamento, observa-se que a ligação entre o terminal negativo do capacitor **C3** e o pino 4 do *pinhead* de saída foi refeita por um outro caminho, mantendo-se livre de trilhas a região proibida definida anteriormente.

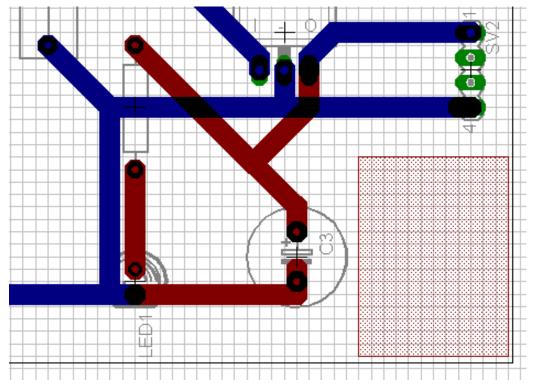


Figura 19: resultado final obtido, onde a trilha foi removida da região proibida.

EXERCÍCIOS PROPOSTOS

1) O circuito da Figura 20 é uma luz temporizada para o interior do automóvel e foi copiado de uma revista. O interruptor S_1 está instalado na porta do veículo e é ligado quando se abre a porta. Com isso o capacitor C_1 carrega-se e portanto o transistor Q_1 é polarizado; através do resistor R_2 o transistor Q_2 é saturado e a lâmpada interna do veículo X_1 acende. Ao se fechar a porta o interruptor S_1 é aberto e a carga do capacitor C_1 escoa-se lentamente através de R_1 e da base de Q_1 , mantendo assim tanto Q_1 como Q_2 em condução por alguns segundos. Ou seja, mesmo após fechar-se a porta do carro a luz interna se mantém acesa por algum tempo. No final da temporização a lâmpada não se apaga repentinamente, mas sim vagarosamente com uma redução de brilho até zero.

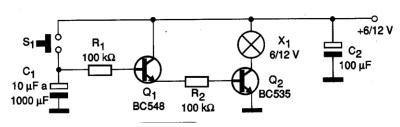
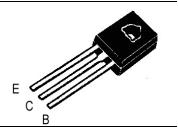


Figura 20: Luz temporizada para automóveis.


Lista de componentes:

- Q₁ = BC548
- Q₂ = BD135
- R₁ = 100 kΩ, 1/8 W
- $R_2 = 100 \Omega$, 1/8 W
- C₁ = C2 = 100 μF, 16 V, eletrolíticos
- X₁ = Lâmpada 12 V, 5 W
- S₁ = Interruptor de pressão

a) Desenhe o circuito utilizando o módulo *Schematics* do EAGLE. O transistor **Q**₁ (BC548) está na Biblioteca *transistor-npn*. Para o transistor **Q**₂, utilize o modelo BD139 existente na Biblioteca *transistor-npn* que utiliza o mesmo encapsulamento TO126; em seguida mude o seu nome de referência para BD135. A lâmpada e o botão de acionamento não estarão na placa de circuito impresso, portanto deverão ser representadas como terminais de saída. Para os capacitores **C**₁ e **C**₂, utilize capacitores eletrolíticos existentes na Biblioteca *discrete*, tipo ELC5L ou ES5L. Para o capacitor **C**₁ adotou-se o valor de 100 μF.

BD135 encapsulamento TO126

b) Após desenhar o circuito no módulo *Schematics*, projete uma placa de circuito impresso utilizando o módulo *Board* do EAGLE. Para que o circuito possa ser acomodado no teto do veículo junto à lâmpada interna, a placa deverá ter dimensões máximas de **0,7** *inch* x **2,0** *inch*, com dois orifícios de **0,1** *inch* de diâmetro em cada extremidade, para fixação (veja figura 21). O transistor BD135 não necessitará de dissipador de calor, pois a potência da lâmpada é baixa. A placa deverá ser do tipo **face-simples** (trilhas de cobre apenas na parte inferior da placa).

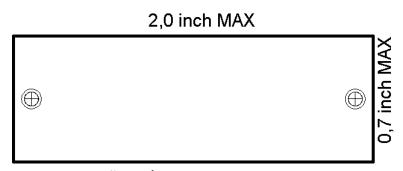
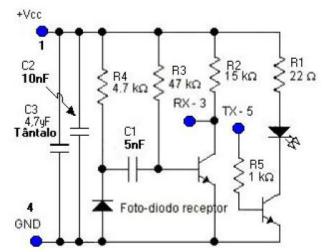



Figura 21: Dimensões máximas da placa de circuito impresso.

2) Muitas placas-mãe de computadores possuem uma interface chamada IrDA (Interface de comunicação serial infra-vermelho). Esta interface permite trocar dados entre o computador e equipamentos que possuem emissores e receptores por infravermelho, tais como telefones celulares, PDAs e calculadoras programáveis. No entanto, geralmente o módulo transmissor/receptor não é fornecido com a placa-mãe, deixando o usuário com uma interface que não tem utilidade.

Figura 22:

Circuito com um LED emissor e um foto-diodo infra-vermelho, destinado a implementar uma interface IrDA para microcomputadores. Os sinais RX e TX estão presentes na placamãe em um conector identificado como IrDA, ou SIR (*serial infra-red*).

Na verdade o circuito necessário é muito simples e está mostrado na Figura 22. Os transistores são do tipo BC548. O LED infravermelho é facilmente encontrado em lojas de componentes eletrônicos e é do tipo usado em controle remoto de TV; sua aparência é de um LED comum, com invólucro na cor azulada. O foto-diodo também tem a aparência de um LED, porém com invólucro translúcido, conforme pode ser visto na Figura 23.

A proposta é projetar uma PCI para o circuito, do menor tamanho possível. Esta placa poderá ser então fixada internamente no gabinete do microcomputador, com uma "janela" transparente, de modo que o LED e o foto-diodo sejam visíveis do exterior.

A Figura 24 mostra a identificação dos pinos nas *motherboards* **Asus** e **PCChips**. Para outras marcas de placas-mãe deve-se consultar o respectivo manual.

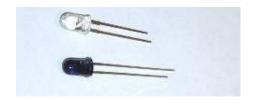


Figura 23: Aspecto do LED (invólucro azulado) e do Foto-Diodo.

Pinagem Asus e Outras		Pinagem PCCh	ips
1 - Power (VCC)	• 1	IR1 He	eader
2 - Não Conectado 3 - IRRX 4 - Gnd 5 - IRTX	• 5	Reserved 1 +5V 3 IRTX 5	4 GND

Figura 24: Identificação dos pinos da interface IrDA nas placas-mãe da ASUS e da PCChips.

É necessário que sejam configurados, no BIOS da placa-mãe, os parâmetros de operação da interface IrDA. Normalmente, é necessário somente habilitar-se a interface. Coloque a interface obrigatoriamente como IRDA, SIR ou HPSir. Não a coloque como ASKIR, ou isto poderá danificar irremediavelmente o circuito! O ASKIR é um protocolo que usa uma sinalização contínua; neste caso o LED ficaria permanentemente "aceso" e o circuito não foi projetado para tal. Mais informações podem ser obtidas em **http://www.irda.org.**

No caso do Windows XP, o sistema identifica automaticamente a nova interface. Pode ser necessário utilizar o CD de instalação do Windows XP para fornecer os *drivers* para a interface IrDA.

ANEXO 1Descrição das *libraries* do EAGLE

Library	Descrição
19INCH	Eurocards with VG connectors
40XX	CMOS 40xx-Series CMOS Logic,
40XXSMD	Same as above, but with SMD packages
41XX1	CMOS 41xx-Series CMOS Logic,
41XXSMD	Same as above, but with SMD packages
45XX4	CMOS 45xx-Series CMOS Logic,
45XXSMD	Same as above, but with SMD packages
74XX11	TTL 74xx-Series TTL Logic,
74XXSMD	Same as above, but with SMD packages
751XX3	TTL 75xx-Series TTL Logic,
751XXSMD	Same as above, but with SMD packages
ACL8	Texas Inst. ACL Logic,
BATTERY	Lithium batteries, NC accumulators
BURR53	Burr-Brown components
BUSBAR	Schroff bus bars
BUZZER	Buzzers, SMD
CAP	Capacitors
CAP-FE	Interference suppression capacitors
CAP-TANT	Tantal capacitors
CAP-WI	Capacitors from WIMA
CON-DIL	DIL connectors for ribbon cables
CON-LSTA	Pinhead connectors, female
CON-LSTB	Pinhead connectors, male
CON-ML	ML connectors
CON-MSF	MSF connectors, grid 2.5mm
CON-MT	MT connectors from AMP
CON-MT6	MT6 crimp connectors from AMP
CON-RIB	Ribbon cables 2.8 / 4.8 / 6.3mm
CON-VG	VG connectors from HARTING
CONNSIMM	SIMM connectors from AMP
CONQUICK	Quick connectors from AMP
DC-DC	DC-DC converters
DEMO	Demo library
DIL	DIL packages, Octagon 63 Mil/drill 32 Mil
DIL-E	DIL packages, YLongOct
DILSWTSCH	DIL switches, encoder switches
DIODE	Diodes
DISCRETE	Discrete components (R,C)
DISP-HP	Display components from HP
DISP-LCD	LCD's from DATA MODUL
DRAM	DRAM's from Motorola
ECL	ECL components from Texas Instr. and Motorola
EXAR	Exar components
FET	FET's
FIB-HP	Fiber optic components, HP
FIB-SI	Fiber optic components, Siemens
FIFO	FIFO components
FRAMES	Drawing frames for schematics
FUJITSU	Fujitsu
FUSE	Fuses
HARRIS	Microprocessor products from Harris
HEATSINK	Heatsinks
HIRSCHM	Hirschmann diodes; LS, Scart connectors etc.
TITAGETTE	ringerinanii diodeg, Eg, Scart connectors etc.

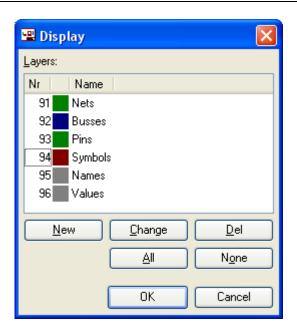
Library	Descrição
Library HOLES	Assembly holes
IC	DIL packages, Octagon 55 Mil
IDTCMOS	IDT products
IND -A69	Inductors, Trafo ETD29
IND-B39	Ferrite cores, Siemens
INTEL	Microprocessor products from Intel
INTELPLD	PLD's from Intel
JUMPER	Bridges for single layer boards, SMD sold.
JUMPS	Jumpers and jumper connectors
KEY	Keys from RAFI and ITT
KEYOMRON	OMRON keys
LED	LED's
LINEAR	Analog components
M68000	68000 family components
MARKS	Crop marks, reference marks
MAXIM	MAXIM components
MEMHITCH	Hitachi memory components
MEMNEC	NEC memory components
MEMORY	Generic memory components
MOTOROLA	Motorola microprocessor products
NPN	NPN transistors
OPTO-TRA	Opto transistors from Siemens
OPTOCPL	Opto couplers
PAL	Monolithic Memories
PHO500	PHOENIX clamp connectors
PHO508A	PHOENIX clamp connectors
PHO508B	PHOENIX clamp connectors
PHO508C	PHOENIX clamp connectors
PHO508D	PHOENIX clamp connectors
PHO508E	PHOENIX clamp connectors
PIC	Microchip PIC controllers
PINH-H	Pinhead connectors with lever, horizontal
PINH-V	Pinhead connectors with lever, vertical
PINHEAD	Pinhead connectors
PLCCPACK	PLCC packages
PNP	PNP transistors
POLCAP	Polarized capacitors
PTC-NTC	PTC's and NTC's
PTR500	PTR clamp connectors
QUARTZ	Quartzes, generators, SMD
R	Resistors
R-DIL	Resistor networks, DIL
R-PWR	Power resistors
R-SIL	Resistor networks, SIL
RECTIF	Rectifier bridges
RELAIS	Relays
RIBCON	PC board connectors
RIBCON4	4-row pc board connectors
SIEMENS	Siemens components
SMD	SMD packages
SMD-IC	SMD packages
SMD-SPC	SMD packages
SOLPAD	Soldering pads
SPECIAL	Special devices, transformer, fuse, lamp, etc.
SRAM	Static RAM's from Motorola
SUBD-A	Sub-D connectors, 9 to 37 pins

Library	Descrição
SUBD-B	Sub-D connectors, 50 pins
SUPPLY1	Supply symbols
SUPPLY2	Supply symbols
SWITCH	Rotary switches, toggle switches
TESTPAD	Test areas, test pins
TRAFO-B	BLOCK transformers
TRAFO-E	ERA transformers
TRAFO-R	Ring core transformers
TRANS-SM	Small power transformers
TRANS-PW	Power Transformers
TRIAC	Thyristors, triacs
TRIMPOT	Trimmpots
ULN	ULN ICs
V-REG	Voltage regulators
VARIST	Siemens varistors
WAGO500	WAGO clamp connectors, grid 5.00mm
WAGO508	WAGO clamp connectors, grid 5.08mm
WIREPAD	Pads for connecting wires
WSIPSD	WSI components
ZILOG	Zilog components

ANEXO 2

Layers

Os desenhos do Eagle organizam os objetos em camadas (layers) diferentes.


Predefined EAGLE Layers

Layout

1 Top	Pistas do lado superior da placa.
2 Route2 Inner layer (signal or supply)	
3 Route3 Inner layer (signal or supply)	1)
4 Route4 Inner layer (signal or supply)	1
5 Route5 Inner layer (signal or supply)	1
6 Route6 Inner layer (signal or supply)	†
7 Route7 Inner layer (signal or supply)	1
8 Route8 Inner layer (signal or supply)	Camadas intermediárias existentes em
9 Route9 Inner layer (signal or supply)	placas de circuito impresso do tipo
10 Route10 Inner layer (signal or supply)	multicamadas.
11 Route11 Inner layer (signal or supply)	1
12 Route12 Inner layer (signal or supply)	1
13 Route13 Inner layer (signal or supply)	1
14 Route14 Inner layer (signal or supply)]
15 Route15 Inner layer (signal or supply)	
16 Bottom Tracks, bottom side	Pistas do lado inferior da placa.
17 Pads (through-hole)	Ilhas para a soldagem dos componentes.
18 Vias (through-hole)	Furos de interligação entre as camadas.
19 Unrouted Airwires (rubberbands)	Ligações que não foram roteadas
20 Dimension Board outlines	Limites da placa e furos de fixação.
21 tPlace	Desenhos em silk-screen na face superior
22 bPlace	Desenhos em silk-screen na face inferior
23 tOrigins	Origins, top side
24 bOrigins	Origins, bottom side
25 tNames	Service print, top side
26 bNames	Service print, bottom side
27 tValues	Component VALUE, top side
28 bValues	Component VALUE, bottom side
29 tStop Solder	stop mask, top side
30 bStop Solder	stop mask, bottom side
31 tCream	Solder cream, top side
32 bCream	Solder cream, bottom side
33 tFinish	Finish, top side
34 bFinish	Finish, bottom side
35 tGlue	Glue mask, top side
36 bGlue	Glue mask, bottom side
37 tTest	Test and adjustment inf., top side
38 bTest	Test and adjustment inf. bottom side
39 tKeepout	Nogo areas for components, top side
40 bKeepout	Nogo areas for components, bottom side
41 tRestrict	Nogo areas for tracks, top side
42 bRestrict	Nogo areas for tracks, bottom side
43 vRestrict	Nogo areas for via-holes
44 Drills	Conducting through-holes

45 Holes	Non-conducting holes
46 Milling	Milling
47 Measures	Measures
48 Document	General documentation
49 Reference	Reference marks
51 tDocu	Part documentation, top side
52 bDocu	Part documentation, bottom side

Schematic

- 91 Nets Nets
- 92 Busses Buses
- 93 Pins Connection points for component symbols with additional information
- 94 Symbols Shapes of component symbols
- 95 Names Names of component symbols
- 96 Values Values/component types