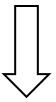

Linhas de Transmissão

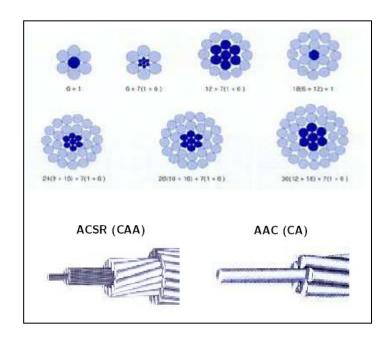
Componentes:

- (1) Condutores
- (2) Isoladores
- (3) Estrutura (torres ou postes)
- (4) Cabo pára-raios

Valores Típicos (em kV):

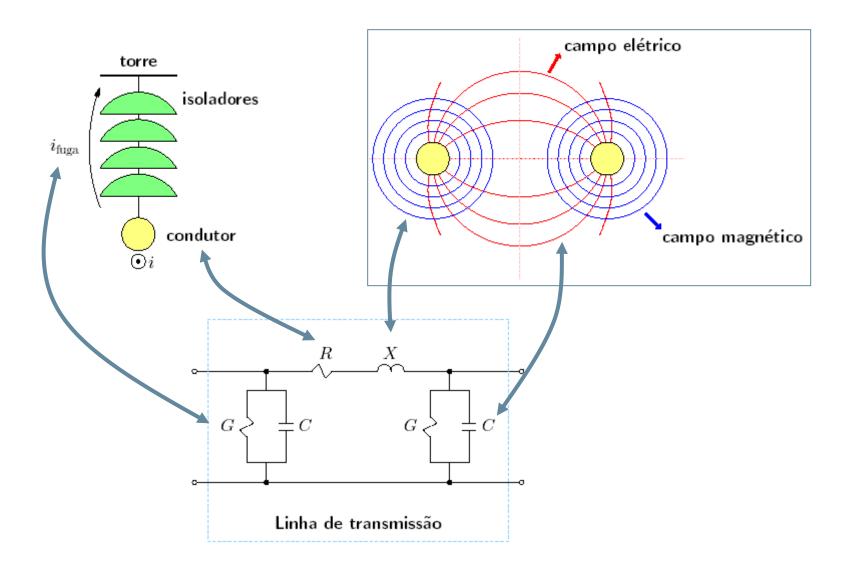

Classes de tensão:

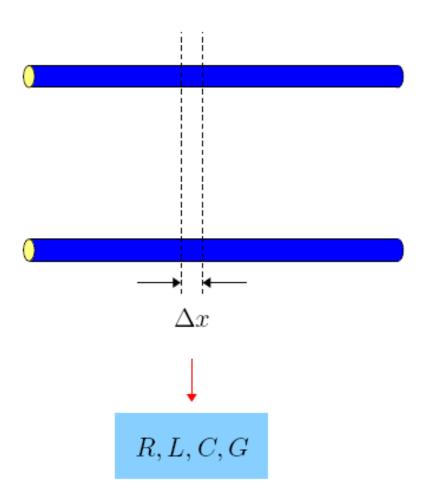
34,5	69	138	230	345	440	500	600 (DC)	765	
MV		HV		EHV				UHV	


Projeto de LTs

Fatores elétricos:

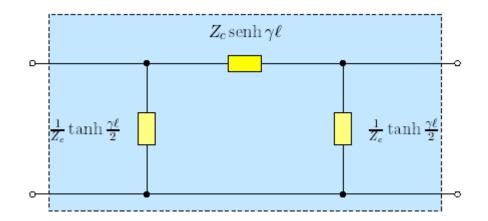
Tipo e número de condutores por fase (Capacidade Térmica e Isolação)


Parâmetros da LT (modelo)


Fatores mecânicos: vento, neve ...

Fatores econômico/ambientais: Uso da terra, Impacto visual, mínimo custo

Parâmetros elétricos



Parâmetros distribuidos:

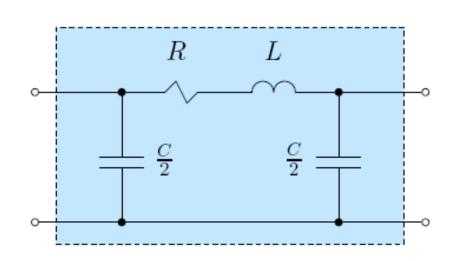
Parâmetros concentrados:

Linha longa (> 240km)

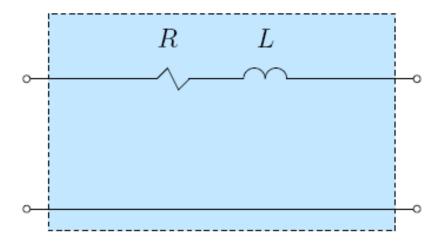
onde:

$$Z_c = \sqrt{\frac{z}{y}}$$
 Impedância caracteristica

$$\gamma = \sqrt{z \cdot y}$$
 Constante de propagação


Linhas médias (< 240km)

Aproximações:


$$senh \gamma \ell \approx \gamma \ell$$

$$cosh \gamma \ell \approx 1 + (\gamma \ell)^2 / 2$$

$$tanh \frac{\gamma \ell}{2} \approx \frac{\gamma \ell}{2}$$

Linhas curtas (< 80km)

Relação x/r (típico)

750kV	20
230kV	5
138kV	2

Exemplo:

Os parâmetros de uma linha de transmissão de 60 Hz, são:

 $R = 0.107.10^{-3} \Omega / m$, $L = 1.35. 10^{-3} H / m$ e $C = 8.45.10^{-12} F / m$.

Compare os circuitos equivalente, considerando a linha com 500 km e com 100 km.

A reatância e admitância da linha são:

$$z=52010^6 \angle 7813^\circ \Omega m$$

 $y=3,1810^9 \angle 90^\circ S/m$

Logo:

$$Z_c = 40405 \angle -5,94^{\circ}\Omega$$

 $\gamma = 1,2910^6 \angle 8406^{\circ} m^{-1}$

p/ 500km

	Modelo Linha longa	Modelo Linha média	Erro (%)
Z	242,84	260,00	-6,6
Y	826.10 ⁻⁶	796.10 ⁻⁶	-3,8

p/ 100km

	Modelo Linha longa	Modelo Linha média	Erro (%)
Z	51,87	52,00	-0,3
Y	159,5.10 ⁻⁶	159,3.10 ⁻⁶	+0,1

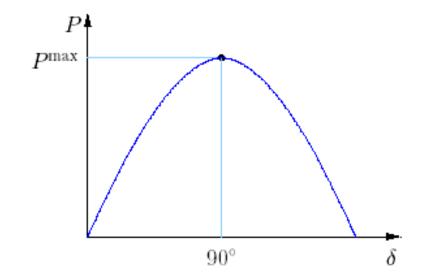
Limites de operação: térmico e de estabilidade

Sabe-se que:

$$P_{km}=\Re \langle V_k I_{km}^* \rangle$$

De maneira simplificada (desprezando perdas) temos:

$$I_{km} = y_{km}(V_k - V_m)$$

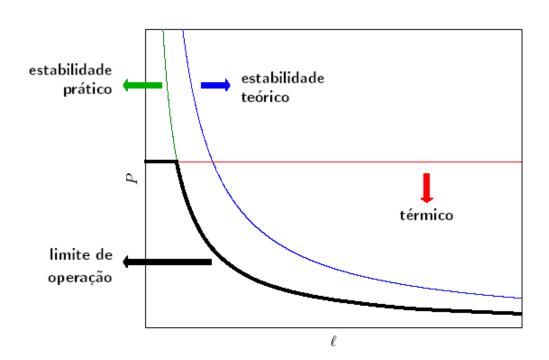

e:

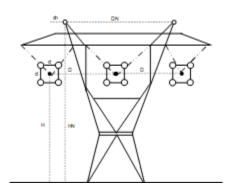
$$P_{km} = \frac{V_k . V_m}{X_{km}} . sen(\delta)$$

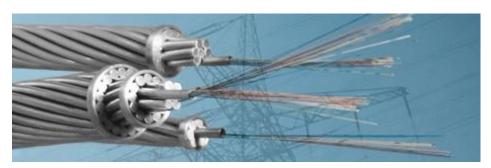
Para δ =90°

$$P_{km}^{\max} = \frac{V_k V_m}{X_{km}}$$

Limite de estabilidade




Como limite de operação normal/segura, considera-se:


$$V_k = V$$
 $V_m \approx 0.95V$
 $\delta \approx 30^\circ$

Assim, tem-se: $P_{km}^{\text{max'}} = 0.475 P_{km}^{\text{max}}$

Como X = x.l pode-se traçar o seguinte gráfico

OPGW – OPtical Ground Wire – Para-raio