MODELO DE PLANO DE ENSINO FICHA Nº 2 (variável)

Disciplina: Conversão de Energia I	Código: TE 146
Natureza: (X) obrigatória () optativa	Semestral (X) Anual () Modular ()
Pré-requisito:	Co-requisito:
Modalidade: (X) Presencial () EaD () 20% EaD
C.H. Semestral Total: 60 h C.H. Anual Total: C.H. Modular Total: PD:60 LB: 00 CP: 00 ES: 00 OR: 00 C.H. Semanal: 04 h	
EMENTA (Unidades Didáticas)	
Revisão sobre conceitos básicos em eletromagnetismo; Circuitos Magnéticos	

- 3. Transformadores
- 4. Princípios de conversão eletromecânica de energia
 5. Máquinas de corrente continua
 6. Motores de passo

PROGRAMA (itens de cada unidade didática)

- 1. Revisão sobre conceitos básicos em eletromagnetismo
 - 1.1. O principio do Imã
 - 1.2. Comportamento Magnético das Substâncias
 - 1.3. Permeabilidade Magnética
 - 1.4. Relutância Magnética
 - 1.5. Fluxo Magnético
- 2. Circuitos Magnéticos
 - 2.1. Lei de Ampere
 - 2.2. Lei de Faraday
 - 2.3. Histerese
 - 2.4. Perdas em circuitos magnéticos
- 3. Transformadores
 - 3.1. Aspectos construtivos
 - 3.2. Princípio de funcionamento
 - 3.3. Transformador ideal
 - 3.4. Transformador real
 - 3.5. Circuito elétrico equivalente
 - 3.6. Determinação dos parâmetros de um Trafo
 - 3.7. Rendimento e regulação de tensão
 - 3.8. Autotransformadores
 - 3.9. Transformadores Trifasicos
- 4. 4. Princípios de conversão eletromecânica de energia
 - 4.1. Produção de energia mecânica com campos magnéticos
 - 4.2. Campo eletromagnético produzido pela corrente passando através de um fio
 - 4.3. Força Eletromagnética
 - 4.4. Torque de giro de uma espira
- 5. Máquinas de corrente contínua
 - 5.1. Componentes de uma Máquina CC Regime permanente
 - 5.2. Princípio de Funcionamento
 - 5.3. Tipos de Máquinas CC
 - 5.4. Aspectos Construtivos
 - 5.5. Reação da armadura no gerador CC
 - 5.6. Ação Geradora
 - 5.7. Ação Motora
 - 5.8. Controle de velocidade dos motores CC
- 6. Motores de passo
 - 6.1. Principais tipos de motores de passo
 - 6.2. Motor de passo unipolar
 - 6.3. Motor de passo bipolar
 - 6.4. Motor de passo bifilar
 - 6.5. Funcionamento básico
 - 6.6. Acionamento do motor de passo
- 7. Aulas Práticas
 - 7.1. Ensaio de transformadores

OBJETIVO GERAL

O aluno, ao final do semestre letivo, deve ser capaz de compreender os princípios de funcionamento e aspectos construtivos, conhecer as aplicações típicas e formas de operação de circuitos magnéticos, transformadores de energia e máquinas de corrente contínua. Além disto, o aluno deverá ter condições de avaliar através de cálculo o comportamento de circuitos magnéticos, transformadores de energia e máquinas de corrente contínua.

OBJETIVO ESPECÍFICO

Rever conceitos básicos de eletromagnetismo de aplicação prática na Engenharia elétrica

Aplicar as leis de Ampere, Faraday e Lenz na solução de circuitos magnéticos.

Desenvolver atividades básicas com eletroímãs, transformadores e máquinas de corrente contínua.

Correlacionar os conceitos teóricos com a vida prática do aluno de Engenharia.

Desenvolver e aprimorar o raciocínio científico ligado ao tema.

PROCEDIMENTOS DIDÁTICOS

A disciplina será desenvolvida mediante aulas expositivo-dialogadas quando serão apresentados os conteúdos curriculares teóricos, além da realização de aulas práticas em laboratórios.

•

Serão utilizados os seguintes recursos: quadro, notebook, projetor multimídia, notas de aula, além de situações reais.

FORMAS DE AVALIAÇÃO

Serão realizadas duas avaliações durante o semestre, com valor de 100 pontos cada. Trabalho técnico em grupo valendo 1,0 na nota final.

Critérios para Aprovação

Trabalho:

- 1,0 ponto extra somado à nota final.
- Relatório técnico do ensaio laboratorial.
- Formato ABNT.

O Exame Final versará sobre todo o conteúdo

BIBLIOGRAFIA BÁSICA (3 TÍTULOS)

Fitzgerald, A.E.; Kingsley, C.; Umans, S., Máquinas Elétricas: com Introdução à Eletrônica de Potência. Bookman. 2006.

Kosow, I. L., Máquinas Elétricas e Transformadores, Ed. Globo.

Del Toro, V. Fundamentos de Máquinas Elétricas. LTC. 1994. .

BIBLIOGRAFIA COMPLEMENTAR (2 TÍTULOS)

Sen, P. C. Principles of Electric Machines and Power Electronics, John Wiley & Sons Inc, 2^aEd, 1989.

Slemon, G. R. Electric machines and drives, Addison-Wesley Publishing Company	
Professor da Disciplina: Carlos Gabriel Bianchin	
Assinatura:	
Chefe de Departamento:	
Assinatura:	

Legenda: Conforme Resolução 15/10-CEPE: PD- Padrão LB – Laboratório CP – Campo ES – Estágio OR -Orientada