

TE121 Interferência Eletromagnética

Tutorial 1a Eletrostática: capacitor de placas paralelas

Profª Juliana L. M. Iamamura

Tutorial 1: capacitor de placas paralelas

• Abra o FEMM.

- Crie um novo projeto. Na caixa de diálogo que se abre, escolha "electrostatics problem".
- Se surgir qualquer dúvida, o "help" abre um manual completo do FEMM. Sua leitura é fortemente recomendada.

 Abra a aba "problem", que abrirá a caixa de diálogo "problem definition". Escolha planar, mm, profundidade = 100.

Tutorial 1: capacitor de placas paralelas

- Desenharemos agora um capacitor de placas paralelas. As placas condutoras possuem lado = 200 mm e estão separadas de 100 mm.
- O ícone correspondente aos nós já está selecionado. Com auxílio da tecla tab, insira as dimensões correspondentes ao desenho.
- Ajuste o zoom.
- Em seguida, selecione o ícone "segmento" e crie os segmentos de reta necessários, arrastando-os a partir dos respectivos nós, para completar o desenho.

- Vá ao menu properties → conductors → add property
- Crie 2 condutores, com os nomes VO e V1 e tensões 0 e 10V, respectivamente.

Circuit P	roperty			×
Name	V1			
• Pre	scribed Voltage	1		
C Tot	al Charge, C	0		
			ОК	Cancel

• Com um clique direito sobre cada segmento + espaço, atribua VO e V1 aos condutores respectivos.

Segment Proper	by .			×
Boundary	<none></none>			•
Local element size along line:	0	In Group	0	
Chose mesh space automatically	^{ting} 🔽	Hide segme postproces	nt in sor	
In Conductor	V1			-
	<none> V0 V1</none>			

- Importe os seguintes materiais dielétricos:
 - Porcelain
 - Kapton 100
 - Teflon

💈 femm - [Untitled]		
File Edit View Problem Grid Operation	Properties Mesh Analysis	Window <u>H</u> elp
	Materials Boundary Point Conductors Exterior Region Materials Library	

- Para cada material, calcule analiticamente o valor:
 - da capacitância
 - do campo elétrico no interior do capacitor
- Utilize, para o Kapton, V1 = 2V e, para a porcelana, V1 = 50V.

$$C = \frac{\varepsilon S}{d}$$
 $C = \frac{Q}{V}$ $E = -gradV$

• Atribua "Teflon" ao meio entre os dois condutores.

- Salve o arquivo atual.
- Crie uma malha de elementos finitos.

• Efetue o processamento do cálculo numérico.

femm	- [Cap	pacitor p	p teflon.FE	E]	01 - XI					a successioner
File	Edit	View	P <u>r</u> oblem	Grid	<u>Operation</u>	<u>P</u> roperties	Mesh	<u>Analysis</u>	Window	<u>H</u> elp
		• /	n 🛛 🧔		😶 😻 k	2 n c		880		
	12									52

• Abra o pós-processador.

• Clique no símbolo de capacitor e selecione cada um dos condutores para mostrar o valor da carga correspondente.

File Edit	Zoom View	v Operation	Plot X-Y	Integrate	Window	Help
	- / 📰 🗄	+ 1	<u> </u>	~		

onductor Properties					
Conductor Name					
Results Voltage = 1 Volts Charge = 1.00035e-011 Coulombs					
	ОК				

 Faça o mesmo para os demais dielétricos e verifique os resultados, calculando a capacitância a partir do valor da carga. Lembre-se de utilizar, para o Kapton, V1 = 2V e, para a porcelana, V1 = 50V.

• Verifique igualmente o valor do campo elétrico.