FICHA 2 - PLANO DE ENSINO

CÓDIGO:	DISCIPLINA:	DISCIPLINA:			TURMA:		
TE324	ELETRÔNIC	ELETRÔNICA ANALÓGICA I				NA	
NATUREZA:			MODALIDADE:	MODALIDADE:			
Obrigatória			Presencial	Presencial			
CH TOTAL:			CH Prática como Con	CH Prática como Componente Curricular (PCC):		CH Atividade Curricular de Extensão (ACE):	
60h			0h	0h		0h	
Padrão (PD):	Laboratório (LB):	Campo (CP):	Orientada (OR):	Estágio (ES):	Prática Específica (PE):	Estágio de Formação Pedagógica (EFP):	
60h	0h	0h	0h	0h	0h	0h	
FICHA 2 PREENCHIDA PELO DOCENTE:							
LUIS SCHUARTZ							

Criação: 9/7/2025 Modificação: 31/7/2025

EMENTA

Dispositivos semicondutores. Diodo: tipos e características. Circuitos com diodos. Transistor de efeito de campo e bipolar: características, polarização, análise com pequenos sinais. Transistor como amplificador e chave. Amplificador operacional ideal.

PROGRAMA

- 1) Introdução à Eletrônica-Física dos Semicondutores;
- 2) Diodos-Ideal, real, circuitos com diodos;
- 3) Transistores de Junção Bipolar. Modelos e aplicações;
- 4) Transistores de Efeito de Campo MOS. Modelos e aplicações;
- 5) Amplificador Operacional Ideal;
- 6) Montagens amplificadores clássicas

OBJETIVO GERAL

O aluno deverá ser capaz de identificar os dispositivos semicondutores, resolver, projetar e analisar circuitos elementares em eletrônica.

OBJETIVOS ESPECÍFICOS

- •Interpretar circuitos utilizando componentes semicondutores: diodos, transistores BJT e MOSFET;
- •Projetar circuitos de polarização para diodos, transistores BJT e MOSFET;
- •Interpretar e aplicar transistores BJT e MOSFET como chave e como amplificador;

- Conhecer conceitos básicos sobre amplificadores lineares e configurações amplificadores;
- •Entender amplificador operacional ideal e as aplicações fundamentais.

PROCEDIMENTOS DIDÁTICOS

A disciplina será desenvolvida mediante aulas expositivas utilizando o quadro, podendo ser complementada com apresentação de slides e softwares de auxílio. Ao longo das aulas serão apresentados exemplos, problemas e propostos exercícios de aprendizagem.

Serão disponibilizadas listas de exercícios extra-aula.

Haverá monitoria oferecendo exercícios extra-classe cuja participação e entrega gera bônus de notas.

As informações pertinentes à disciplina serão divulgadas na página do professor (https://www.eletrica.ufpr.br/p/professores:schuartz:inicial) e avisos importantes serão enviados via e-mail pela turma no SIGA.

FORMAS DE AVALIACAO

A avaliação será composta por três avaliações individuais sem consulta e exercícios propostos durantes as aulas, que poderão compor até 30% da nota do semestre. A participação nas monitorias pode gerar até 1 ponto extra.

BIBLIOGRAFIA BÁSICA

SEDRA, AdelS.; SMITH, Kenneth C. Microeletrônica. 5ª edição. Editora Pearson Education do Brasil: São Paulo, 2013.

RAZAVI, Behzad. Fundamentos de microeletrônica. Rio de Janeiro: LTC, 2010. 728p., il. Inclui referências e índice. ISBN 9788521617327 (broch.)

RAZAVI, Behzad. Design of Analog CMOS Integrated Circuits. New York: McGraw-Hill, 2001.

BIBLIOGRAFIA COMPLEMENTAR

SEDRA, AdelS.; SMITH, Kenneth C. Microeletrônica. 5ª edição. Editora Pearson Education do Brasil: São Paulo. 2013.

RAZAVI, Behzad. Fundamentos de microeletrônica. Rio de Janeiro: LTC, 2010. 728p., il. Inclui referências e índice. ISBN 9788521617327 (broch.)

RAZAVI, Behzad. Design of Analog CMOS Integrated Circuits. New York: McGraw-Hill, 2001.

BOYLESTAD, Robert L.; NASHELSKY, Louis. Dispositivos eletrônicos e teoria de circuitos. 8ª edição. Editora Pearson: São Paulo, 2011.

MALVINO, Albert Paul. Eletrônica. Vol. 1. Editora McGraw-Hill: São Paulo: 1987.

MALVINO, Albert Paul. Eletrônica. Vol. 2. 4ª edição. Editora Pearson/Makron Books: São Paulo: 2009.

CRONOGRAMA DE AULAS

Aula 1	Física dos semicondutores e junção pn	
Aula 2	Modelos equivalentes de polarização para diodos	
Aula 3	Ruptura reversa e efeito zener	
Aula 4	Aplicações com diodos	
Aula 5	Aplicações com diodos	
Aula 6	Modelos de pequenos sinais para diodos	
Aula 7	Aplicação de modelos de pequenos sinais	
Aula 8	Amplificadores básicos ideais	
Aula 9	Amplificadores básicos ideais	
Aula 10	1ª Avaliação	
Aula 11	Física do transistor bipolar de junção	
Aula 12	Modelos de polarização do BJT	
Aula 13	BJT como chave e como amplificador	
Aula 14	BJT como chave e como amplificador	
Aula 15	Modelos de pequenos sinais do BJT	
Aula 16	Modelos de pequenos sinais do BJT	
Aula 17	Configurações amplificadoras com BJT	
Aula 18	Configurações amplificadoras com BJT	
Aula 19	Configurações amplificadoras com BJT	
Aula 20	2ª Avaliação	
Aula 21	Física do transistor de efeito de campo	
Aula 22	Modelos de polarização do MOSFET	
Aula 23	MOSFET como chave e como amplificador	
Aula 24	Modelos de pequenos sinais do MOSFET	
Aula 25	Configurações amplificadoras com MOSFET	
Aula 26	Configurações amplificadoras com MOSFET	
Aula 27	Configurações amplificadoras com MOSFET	
Aula 28	AmpOp Ideal	

Aula 29	AmpOp Ideal
Aula 30	3ª Avaliação

