Redes de Computadores

Universidade Federal do Paraná
Departamento de Engenharia Elétrica
Prof. Carlos Marcelo Pedroso
pedroso@eletrica.ufpr.br
http://www.eletrica.ufpr.br

Metodologia

- Aulas Expositivas
- Trabalhos em grupo

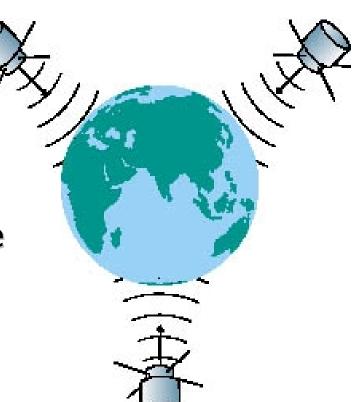
Avaliação:

-3 Provas;

Ementa

```
Modelo OSI;
Redes Locais;
Protocolos;
Inter-redes;
Padrão IEEE 802.3;
TCP/IP.
```

Referências


- Redes de Computadores e Internet. Douglas Comer. Bookman.
- Redes de Computadores. Andrew Tanenbaum. Editora Campus.
- Redes de Computadores e Internet, James F. Kurose. Addison Wesley.

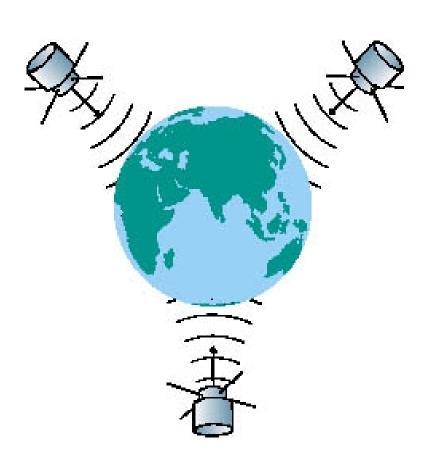
Página do curso

- Auxílio ao ensino
 - http://www.eletrica.ufpr.br/pedroso
- Edital com avisos.
- Slides, material para leitura, especificação de trabalhos.

Sumário

- Introdução
- Modelo OSI
- Camada Física
- Camada de Enlace
- Camada de Rede
- Camada de Transporte

Modelo OSI

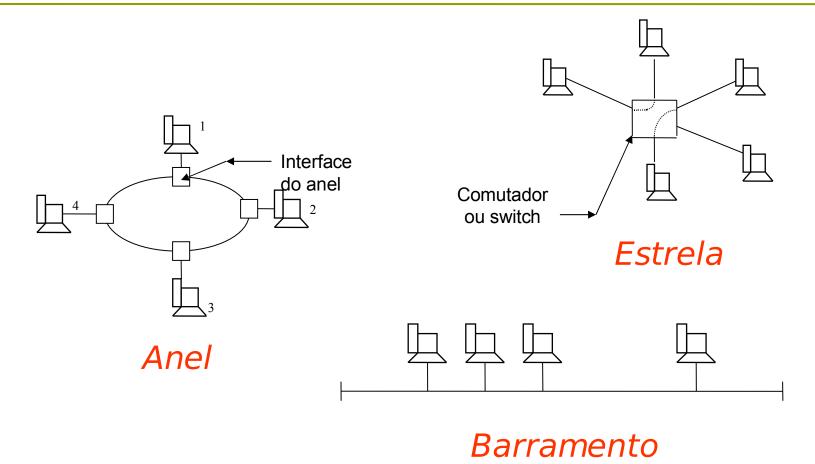

- Modelo OSI Open System Interconection
 - Modelo de Referência
 - 7 Camadas
 - Cada camada envia dados para a camada inferior

Obs. ver anotações em aula

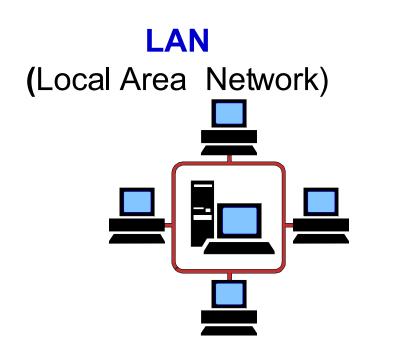
Sumário

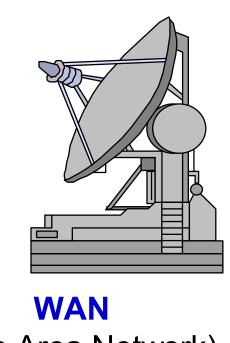
- Introdução
- Modelo OSI
- Camada Física
- Camada de Enlace
- Camada de Rede
- Camada de Transporte

Camada Física


- Padrões físicos: conectores, níveis de sinal, codificação.
- □ Meio de transmissão (cabos, conectores ...).
 - Anotar: meios de transmissão utilizados em redes e suas características
 - ...
 - ...
 - **...**
- Transmissão digital serial: assíncrona, síncrona.
- Codificação Manchester
- □ A unidade de transferência de informação é o bit.

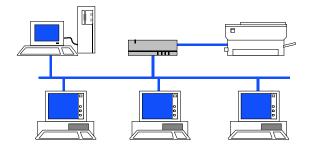
Conceitos Básicos


- Taxa de transmissão: Velocidade que os dados são transferidos entre dois nós da rede. Unidade básica: bits por segundo (bps)
 - Exemplos (em aula)
- Atraso de Propagação
 - >>
- Latência
 - >>



Topologias

Tipos de Redes

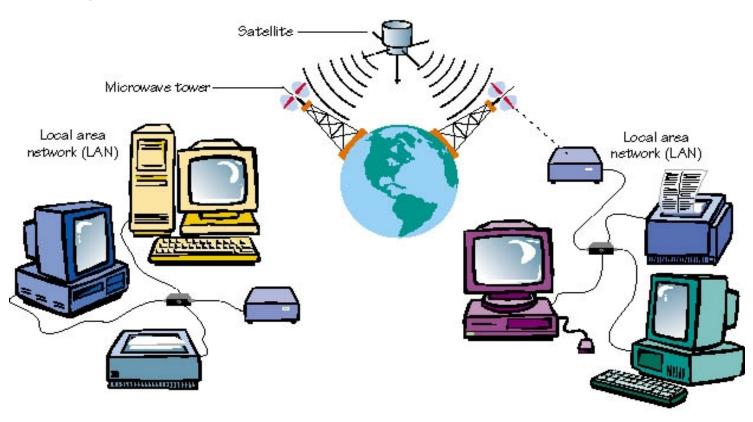

(Wide Area Network)

Tipos de Redes

	Range	Bandwidth (Mbps)	Latency (ms)
LAN	1-2 kms	10-1000	1-10
WAN	worldwide	0.010-600	100-500
MAN	2-50 kms	1-150	10
Wireless LAN	0.15-1.5 km	2-11	5-20
Wireless WAN	worldwide	0.010-2	100-500
Internet	worldwide	0.010-2	100-500

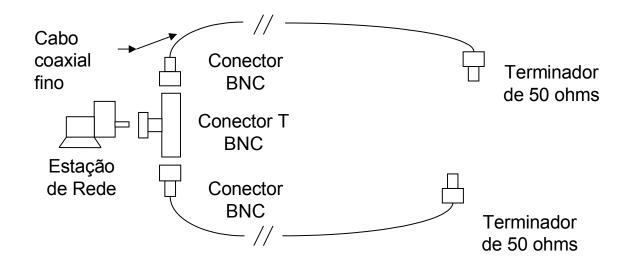
Tipos de Redes

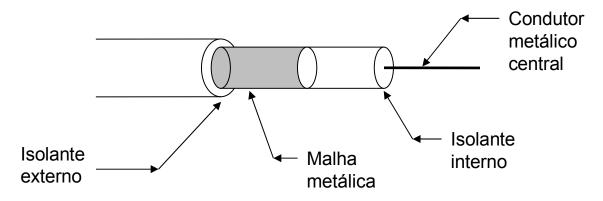
- Uma LAN é uma rede onde os computadores estão normalmente próximos uns aos outros
 - Os equipamentos compartilham recursos através da rede
 - Cada computador e dispositivo compartilhado são nós da rede



Tipos de Rede

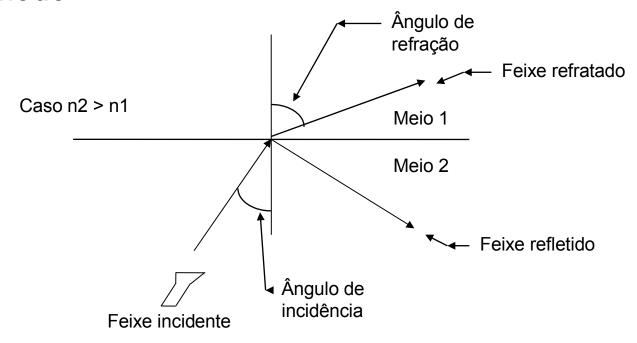
- Uma WAN é uma rede com grandes distâncias entre os equipamentos conectados
 - Conexões são realizadas via satélite, microondas, rede de telefonia, cabos ópticos, etc.


Tipos de Rede

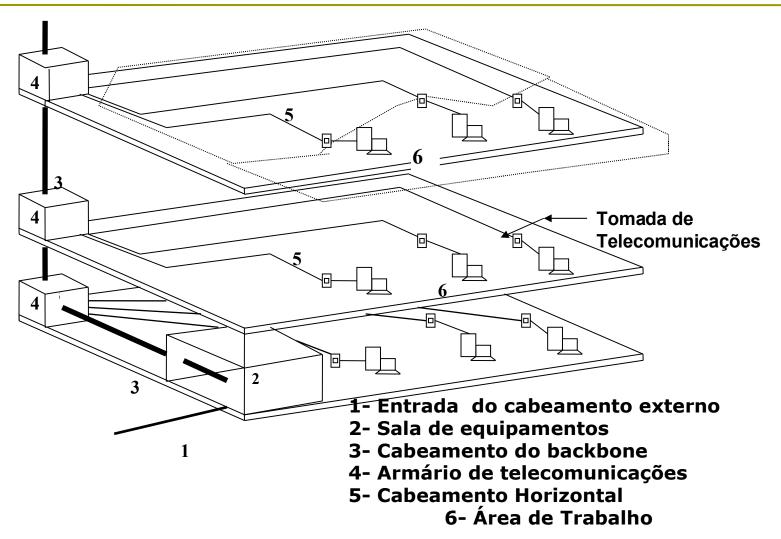

 Normalmente WANs são um conjunto de LANs interligadas

Camada Física - Padrões

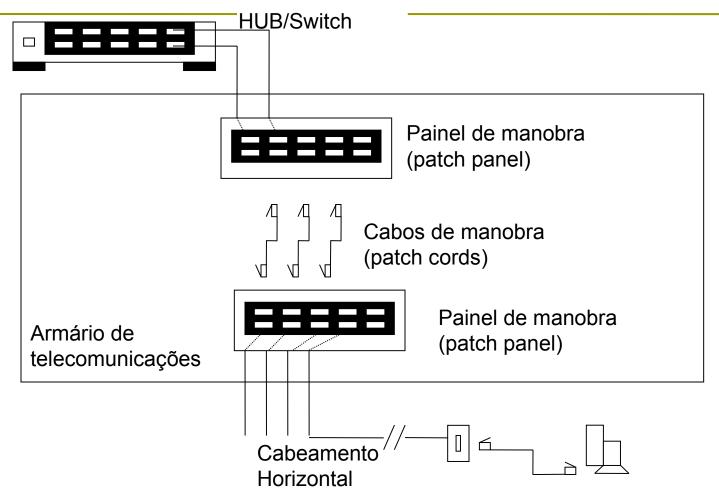
□ 10BASE2

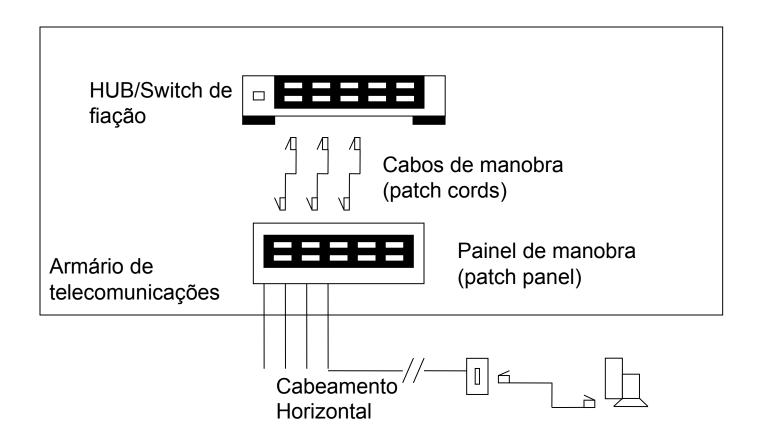

Camada Física - Padrões

- □ 10BASET
 - Topologia em Estrela
 - Par Trançado
 - HUB / Switch como
 - elemento central

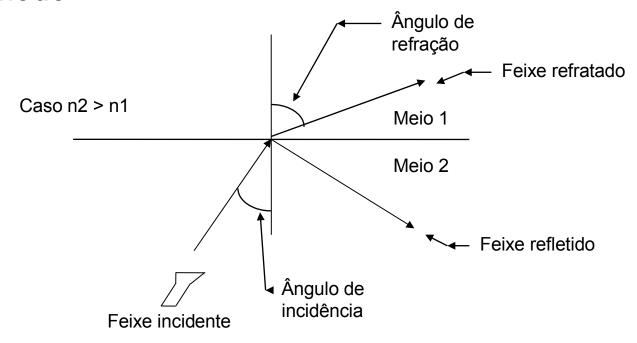


Camada Física - Padrões

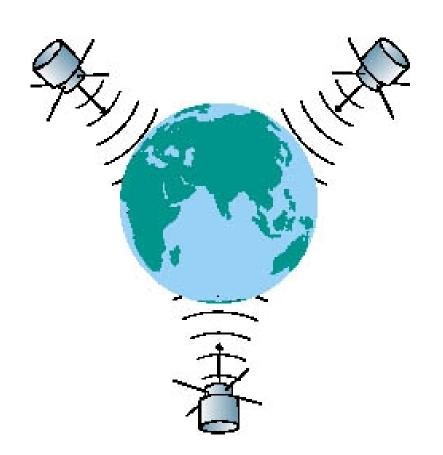

- □ Fibra Ótica
 - Monomodo
 - Multimodo


Cabeamento Estruturado

Cabeamento Estruturado - AT



Cabeamento Estruturado


Camada Física – Padrões

- □ Fibra Ótica
 - Monomodo
 - Multimodo

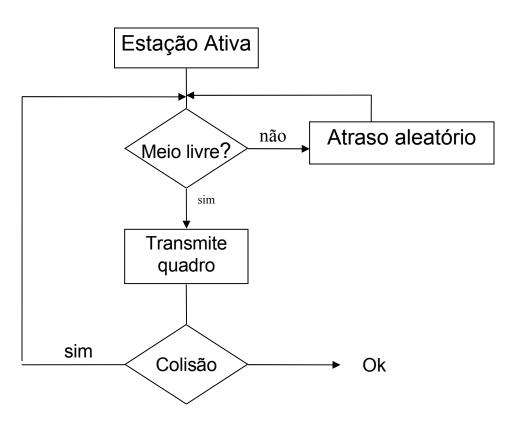
Sumário

- Introdução
- Modelo OSI
- Camada Física
- Camada de Enlace
- Camada de Rede
- Camada de Transporte

- □ Primeira camada que envolve protocolo
- Principais funções:
 - Enquadramento;
 - Controle de erros;
 - Controle de fluxo;
 - Controle de acesso ao meio;

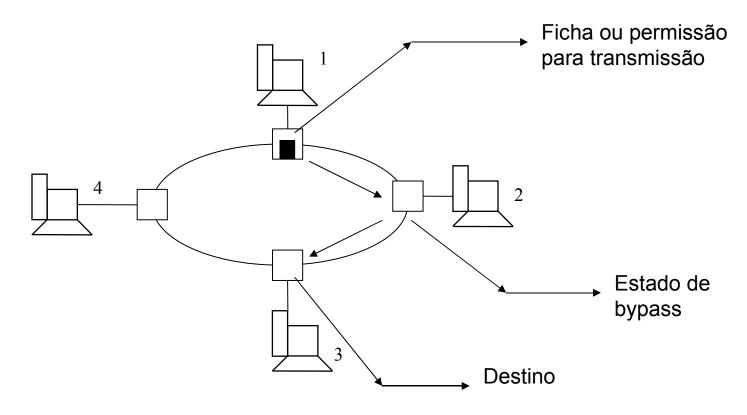
- □ Técnicas de enquadramento:
 - Contagem de bytes
 - Caracter delimitador
 - Bits delimitadores

Ver ex. em aula


- Controle de erros:
 - Eco
 - Paridade
 - CRC

Detalhes sobre as técnicas abordadas em aula

- Controle de fluxo:
 - Transmite e espera
 - Janelas de transmissão


Controle de Acesso ao Meio

CSMA / CD

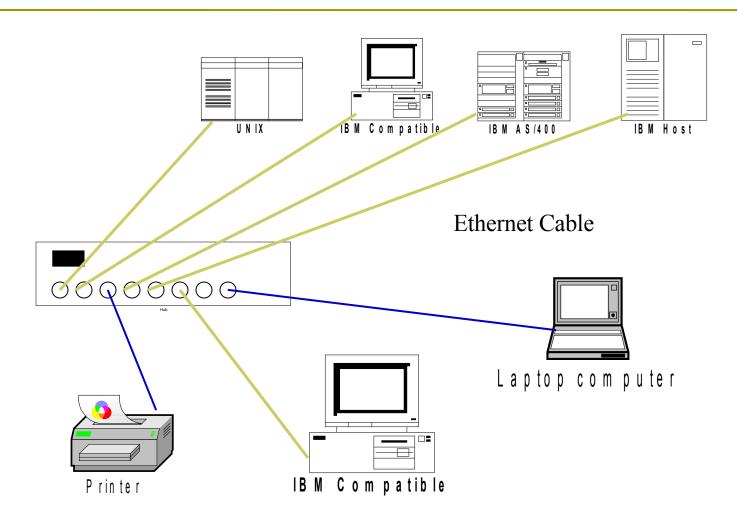
Controle de Acesso ao Meio

Token Ring

Protocolos

- Conjunto de regras e formatos utilizados na comunicação
- □ Especifica:
 - Seqüência de mensagens trocadas
 - Formato dos dados nas mensagens
- A camada de enlace implementa o primeiro nível de protocolo

Protocolos


□ Ver exemplo em aula

Padrões de Mercado

Camada Física e de Enlace

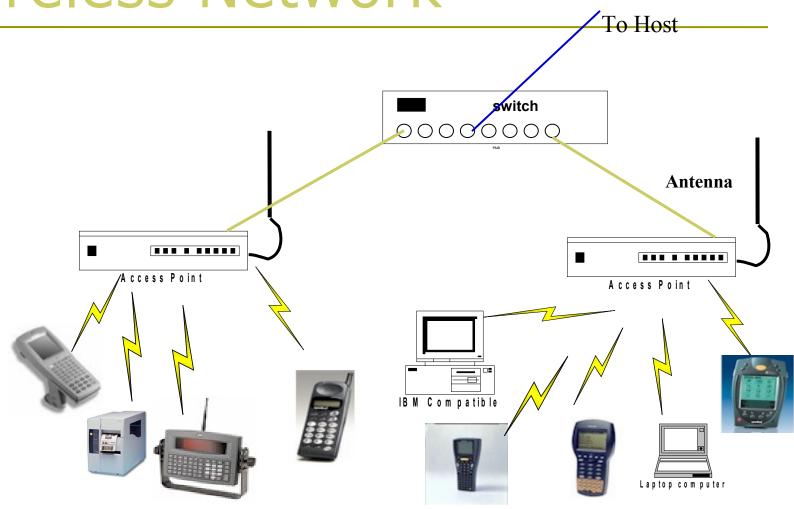
ENLACE	LLC	IEEE 802.2				
	MAC					
FÍSICO			IEEE .3 802 80.		- — — —	•••

Rede Ethernet

Protocolo Ethernet

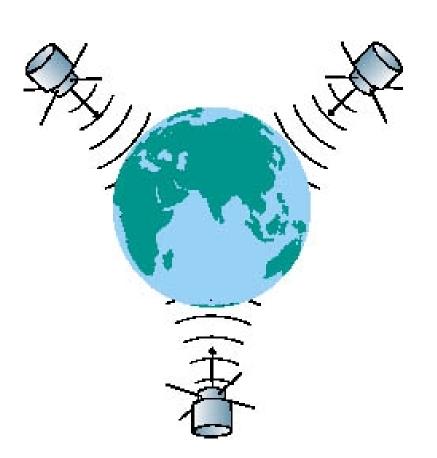
DST SRC L/T DATA CRC

- DST: Endereço de destino (48 bits)
- □ SRC: Endereço de origem (48 bits)
- L/T: Tamanho/Tipo (16 bits)
- CRC: Código redundante polinomial (32bits)


Protocolo Ethernet

- Endereçamento universal
 - Unicast;
 - Multicast;
 - Broadcast.
- Maximum tranfer unit (MTU)

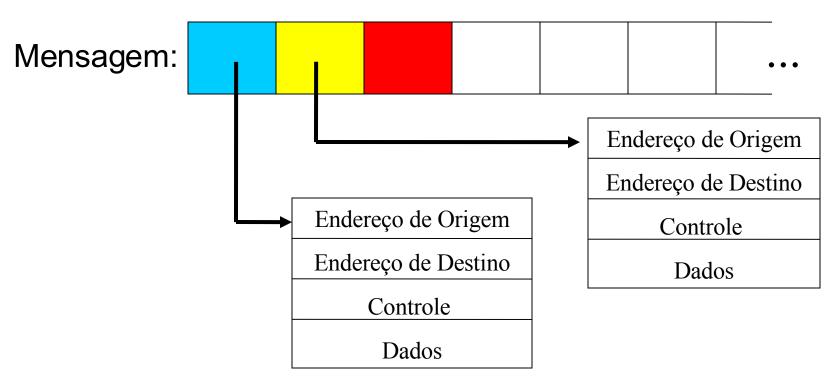
Protocolo Ethernet


- Equipamentos:
 - Switch / bridge vs. hub
- Uso do campo tamanho/tipo;
- Spanning tree;
- Conceito de VLAN;
- □ 802.1Q
 - 802.1p

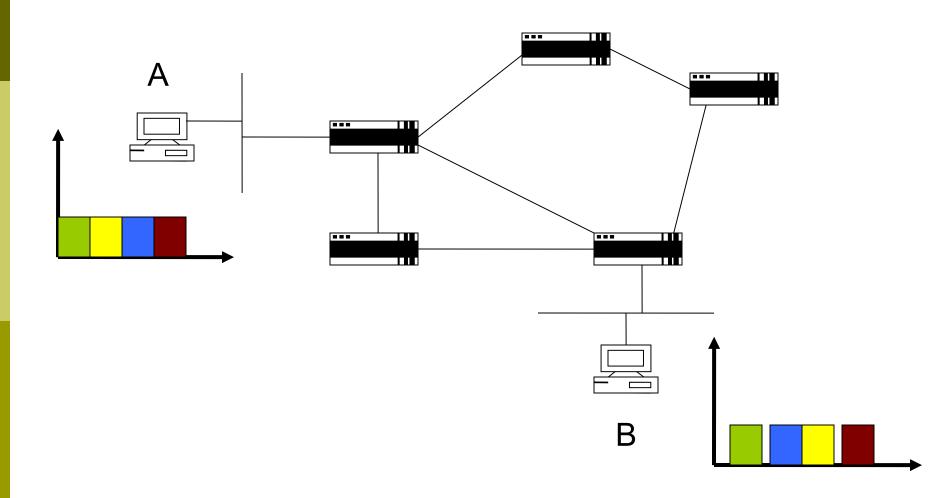
Wireless Network

Sumário

- Conceitos Básicos
- Modelo OSI
- Protocolos
- Camada Física
- Camada de Enlace
- Internet
- Aplicações


Protocolos Inter Rede

Padronização: RFC
 (Request For Comment)
 http://www.ietf.org/rfc.html
 Tem se tornado padrão
 para interconexão de
 redes heterogêneas
 IP: RFC 791


Aplicação	E	T E L	7	
Apresentaçã	T P	L N E	N S	•••
- Sessão	-	T		
Transports	7	CP/	(UD	Р
Transporte		1	P	
Rede				
Enlace				
Físico				
OSI	7		P/I	P

IP - Internet Protocol

□ Datagrama não confiável:

IP - Internet Protocol

IP - Internet Protocol

- □ Problemas:
 - Pacotes podem chegar fora de ordem
 - Não existe garantia de tempo de atraso
 - Não existe garantia de entrega
- Ideal para transmissão de DADOS

Anotar na aula: conceito de circuito virtual

IP - Internet Protocol (v.4)

- Endereçamento: 32 bits
 - Endereçamento Hierárquico: endereços de rede e host;
- Roteamento:
 - São disponibilizados vários protocolos de roteamento distribuído e hierárquico

IP-Formato do datagrama

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Versão	Tamanho do header	Campo DSCP (antigo ToS)	Tamanho total			
Identificação		0	D F	ΜF	OffSet do Fragmento	
Time t	to Live	Prox. Protocolo	Checksum do header		Checksum do header	
Endereço Origem						
Endereço Destino						
Opções + preenchimento						

Dados

<u>IP -Endereçamento</u>

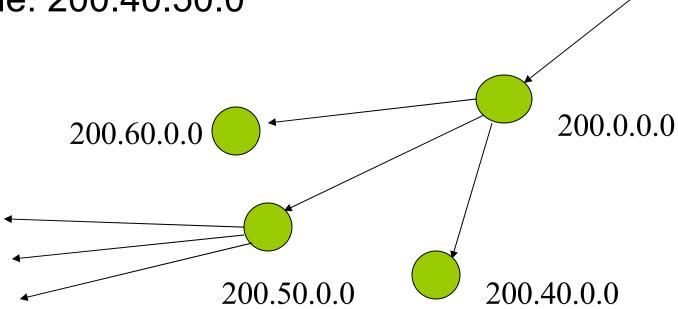
- Endereços de 32 bits divididos em 4 octetos (X.X.X.X)
- Classes de endereçamento
 - Classe A
 - Classe B
 - Classe C
 - Classe D Multicast
 - Classe E Reservado

Classe A

- □ O primeiro bit deve ser 0
 - Primeiro octeto: 0 a 127
- □ Significado dos octetos:
 - R.H.H.H

Classe B

- □ Os primeiros bits devem ser 10
 - Primeiro octeto: 128 a 191
- □ Significado dos octetos:
 - R.R.H.H

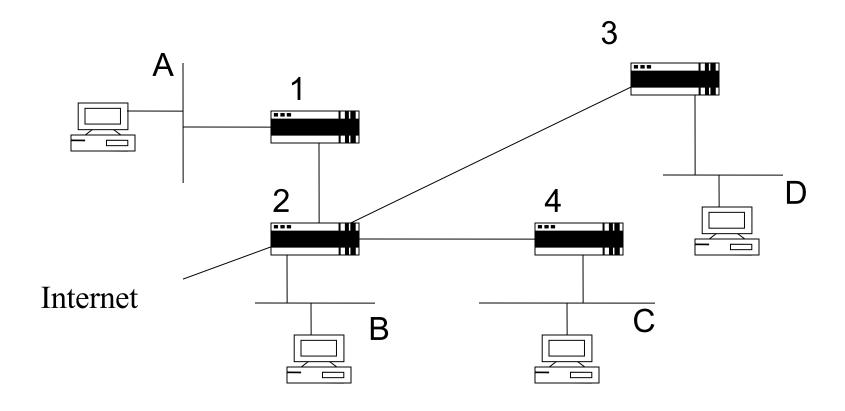

Classe C

- Os primeiros bits devem ser 110
 - Primeiro octeto: 192 a 223
- Significado dos octetos:
 - R.R.R.H
- É o esquema de endereçamento utilizado na Internet

Exemplos - Endereço IP

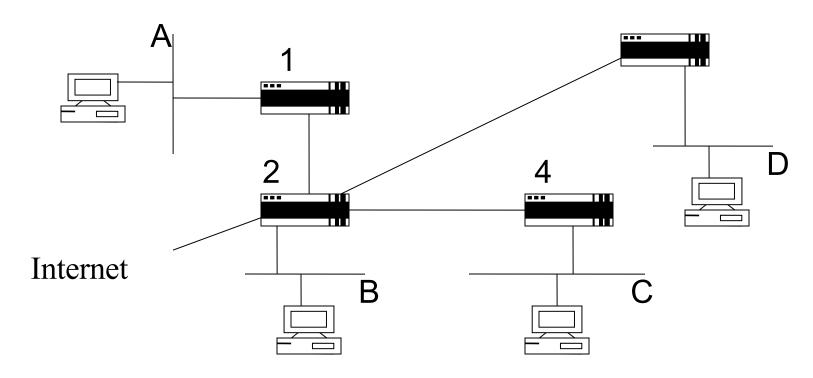
□ Host: 200.40.50.1

□ Rede: 200.40.50.0

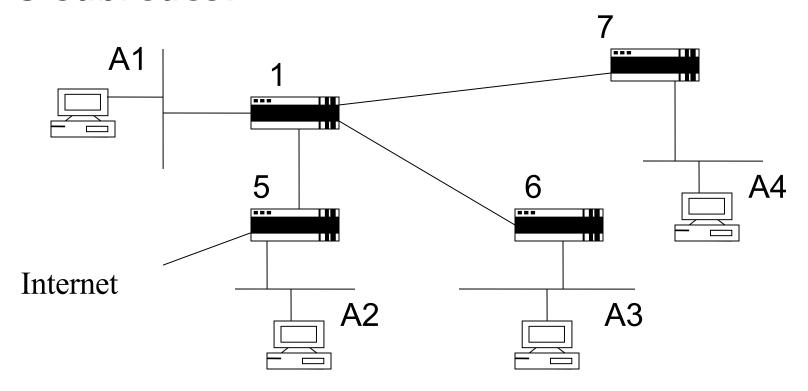

Endereçamento

- Endereço de Rede
- Endereço de Broadcast
- Máscara de Rede
- □ Endereço de Loop-back
- Sub-Redes

- Significado binário
- Altera significado dos bits equivalentes no endereço
- O bit 0 indica endereço de host
- O bit 1 indica endereço de rede


A máscara pode ser alterada conforme necessidade do usuário

Exemplo: Suponha uma empresa com 4 sub-redes. Foi obtido um endereço IP válido. Como realizar o endereçamento ?


Exercícios

1. Defina um esquema de endereçamento classe B para rede abaixo:

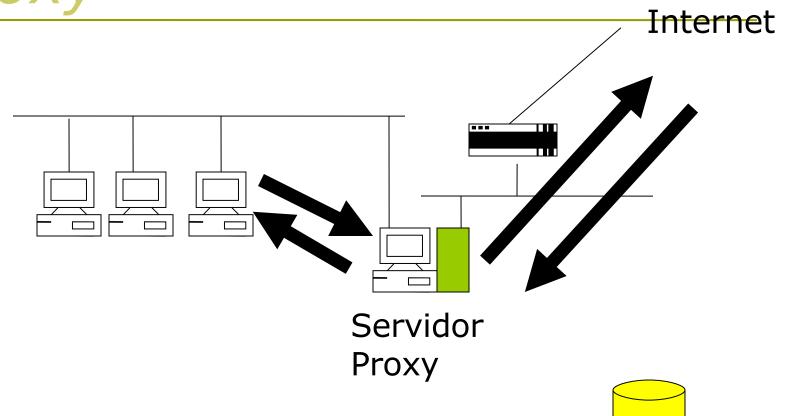
Exercícios

2. Suponha que a rede A foi dividida em 3 subredes:

Exercícios

 O que pode ser feito para suportar as novas sub-redes sem alterar o TODO o esquema de endereçamento e roteamento da rede ?
 (a solução deve utilizar uma nova máscara de rede)

Detalhes do Protocolo IP


- Anote a função de cada um dos campos:
 - Time to Live (TTL)
 - Type of Service (TOS) ou DSCP
 - Identificação e off-set do fragmento (explique o uso no caso de pacotes fragmentados)
 - Checksum do cabeçalho

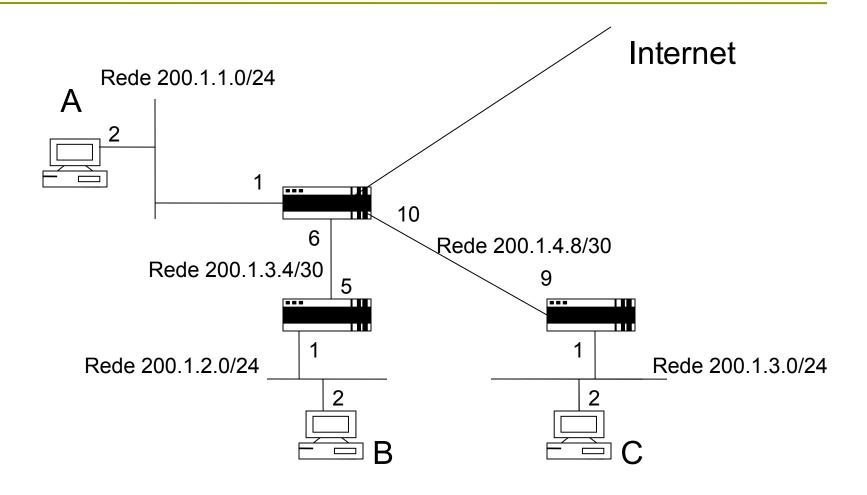
Grandes Redes

- NAT Network Address Translation
- NAPT Network Address Port Translation
- Proxy

Obs. Anote durante a aula

Proxy

NAT


Network Address Translation

- RFC 1631
- Endereços reservados:
 - **1**0.0.0.0 10.255.255.255
 - **172.16.0.0 172.31.255.255**
 - **1**92.168.0.0 192.168.255.255

- Processo pelo qual o roteador encaminha os datagramas até o destino.
- Montagem da tabela de rotas:
 - Manual
 - Automático

Ver exemplos em aula

Tabela de rotas / Windows							
===========	========	========	:=======	=====			
Lista de interfaces							
		MS TCP Loopback	k interface				
	1 02 87 FB 81 3	•					
=======================================							
========							
==========	========	========	=======	=====			
========							
Rotas ativas:							
Endereço de rede	Máscara	Ender. gateway	Interface				
Custo	0 0 0 0	10 22 1 1	10 22 1 71	4			
0.0.0.0	0.0.0.0	10.32.1.1		1			
10.32.1.0 255.255							
10.32.1.71 255.255							
10.255.255.255	255.255.255.255	10.32.1.71	10.32.1.71	1			
127.0.0.0	255.0.0.0	127.0.0.1	127.0.0.1	1			
224.0.0.0	224.0.0.0	10.32.1.71	10.32.1.71	1			
255.255.255.255	255.255.255.255	10.32.1.71	10.32.1.71	1			
Gateway padrão:	10.32.1.1						
=========							

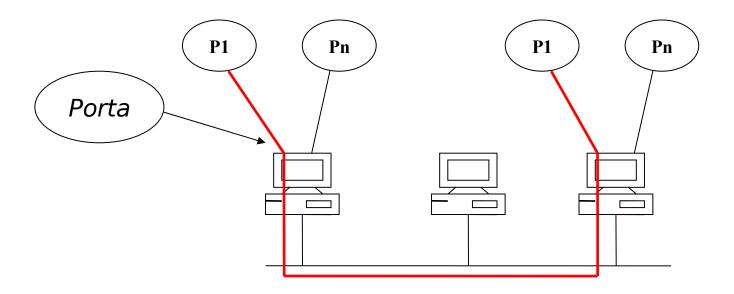
Rede	Próximo salto	Interface
200.1.1.0/24		
200.1.2.0/24		
200.1.3.0/24		
200.1.4.4/30		
200.1.4.8/30		

Protocolos de descoberta de rotas

- RIP;OSPF;BGP;
- entre outros

TCP - Transmission Control Protocol

- RFC 761
- □ Baseado em conexão. Opera sobre o IP
- Multiplexação: portas
- Sequenciação
- Controle de erros fim a fim
- Controle de fluxo fim a fim
- Controle de congestionamento



<u> UDP - User Datagram Protocol</u>

- Apenas uma extensão para utilização do IP. Principais características:
 - Multiplexação;
 - Não oferece controle de erro ou fluxo.
- A utilização do IP na camada de rede é obrigatória. Na camada de transporte pode optar-se por outros protocolos de transporte, conforme a necessidade. O TCP e o UDP são os mais utilizados.

Multiplexação lógica: Portas

- RFC147
- Identifica um fluxo em particular na rede

Multiplexação lógica: Portas

- □ Portas Padrão:
- PRFC 1700 Assigned Numbers (antiga)
- Reservados 0-1023

Portas

. . .

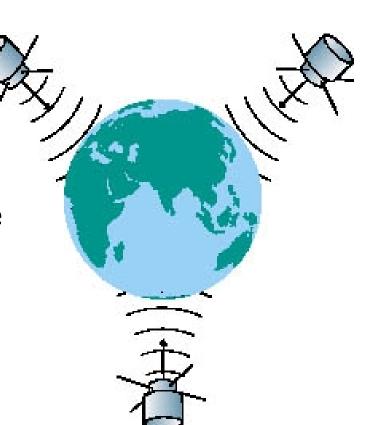
```
echo
             7/tcp Echo
ftp-data
             20/tcp
                          File Transfer [Data]
ftp
             21/tcp
                          File Transfer [Control]
telnet
             23/tcp
                          Telnet
             25/tcp
smtp
                          Simple Mail Transfer
             42/tcp
                          Host Name Server
nameserver
             79/tcp
finger
                          Finger
             80/tcp
                          World Wide Web HTTP
www-http
sql-net
             150/tcp
                          SQL-NET
```

- Estabelecimento de conexão
 - Three way handshake

Ver exemplo em aula

- Controle de erros
 - Retransmissões?
 - Dup ack
 - Rtt

Ver exemplo em aula


- □ Controle de fluxo:
 - Janela de transmissão

Ver exemplo em aula

- Controle de congestionamento
 - Algoritmo slow start (novamente, ver exemplos em aula)
 - Outros ...

Sumário

- Conceitos Básicos
- Modelo OSI
- Protocolos
- Camada Física
- Camada de Enlace
- Camada de Rede
- Camada de Transporte
- Aplicações

Arquitetura

Aplicação Apresentaçã o		F T P	T E N E	D N S	
- Sessão			T		
Transporte		TCP/UDP			
Rede		IP			
Enlace					
Físico					
OSI	SI TCP/IP		P		

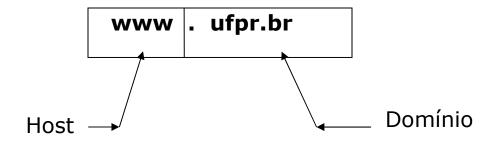
Aplicações

- Serviços Disponíveis :
 - News
 - Pesquisa
 - Comércio
 - Home Banking

Aplicações

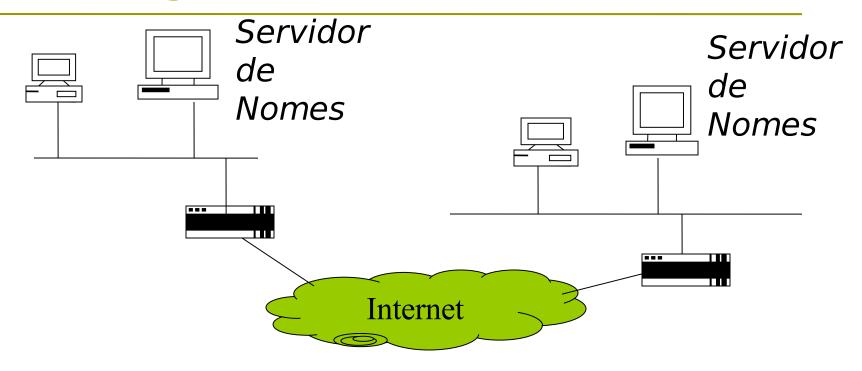
- A arquitetura Inter Rede IP não prevê protocolos específicos para as camadas de sessão e apresentação
 - Sentimos falta de protocolos específicos para as funcionalidades destas camadas?
 - Como seria a arquitetura Inter Rede IP se houvesse um protocolo de uso obrigatório para a camada de sessão?

Protocolos de Aplicação

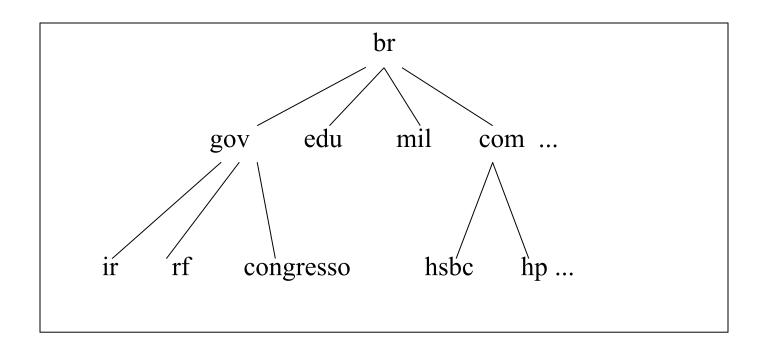

- □ Alguns importantes:
 - FTP File Transfer Protocol (20 21)
 - HTTP Hypertext Transfer Prot (80)
 - DNS Domain Name Server (51)
 - SMTP Simple Mail Transfer Protocol (25)
 - Antigo Telnet (25) e SSH (22)
 - POP (110)
 - NFS Network File System

Protocolos de Aplicação

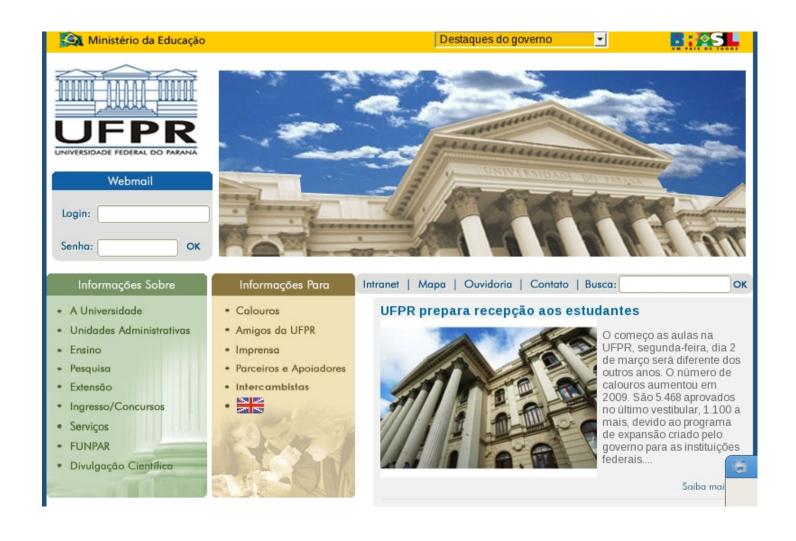
- SNMP Simple Network Management Protocol
- DHCP Dynamic Hosting Control Protocol


... entre muitos outros ...

Resolução de Nomes - DNS


- Histórico: arquivo de hosts do Unix
- □ RFC 1591 Nomes de domínios:
 - mil gov edu com org int net
 - us(!) br uk it ...

Resolução de Nomes


- □ RFC 1035 Protocolo
 - Cliente x Servidor

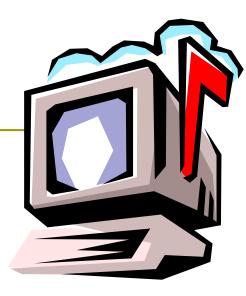
Resolução de Nomes

Hierarquia de Nomes

- HTTP-Hypertext Transfer Protocol
 - Socket 80
 - Cliente x Servidor
 - Transfere hipertexto em geral, páginas em formato HTML – HyperText Markup Language

- Protocolo HTTP
 - Principais mensagens e exemplo
 - Html
 - Xml
- Solução:
 - CGI Common Gateway Interface
 - Aplicativos que criam páginas dinamicamente
 - Esta abordagem possui limitações

- Outras Abordagens:
 - Tópicos Relacionados:
 - Java
 - ASP
 - Tendências


Correio Eletrônico

- SMTP-Simple Mail Transfer Protocol
- Uma entrada especial na configuração do servidor DNS informa qual é o servidor de correio responsável pelo domínio.
 - Nome@dominio
 - pedroso@eletrica.ufpr.br

Correio Eletrônico

- □ Princípios: SMTP POP e outros
- Mensagens do protocolo SMPT e exemplos.
- Vantagens da comunicação assíncrona:
 - Os participantes podem enviar mensagens de acordo com a sua disponibilidade de tempo.
 - Participantes podem receber mensagens de um grupo.
 - Newsgroup (!)

POP

- Recuperação de correio eletrônico
- Cliente Servidor
- □ Socket 110
- Protocolo muito simples
- Exercício: Em laboratório, utilize o cliente telnet para realizar uma conexão no socket 110

Chamada a proc. remotos

- □ Protocolo RPC
 - Aplicações
 - Vantagens
 - Exemplos
- □ Corba e RMI

Gerência de Rede

- □ Áreas de Gerência
- □ Protocolo SNMP
 - Principais mensagens
 - Agentes e Gerente
 - MIB

Ver anotações em aula

Outros

- **P** *FTP*:
 - Transferência de Arquivos
 - Cliente Servidor
- □ Telnet
 - Emulação de terminal
- □ NFS
 - Sistema de arquivos em rede

Intranet

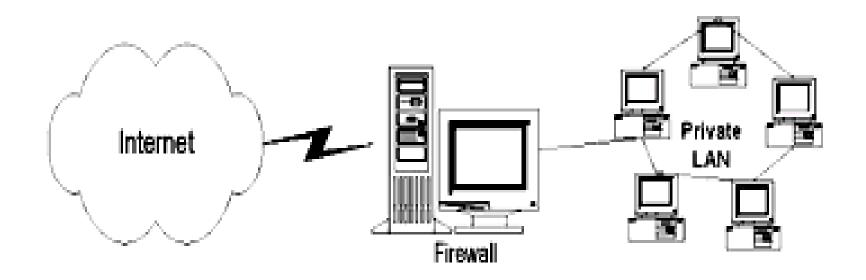
- Agilidade na distribuição de informação;
- Integração com os aplicativos existentes:
 - Escolha da plataforma e da linguagem de desenvolvimento são fatores fundamentais.
- Integração com a Internet;
- Problemas de segurança:
 - Problemas mais comuns
 - Firewall
 - Filtros de Pacotes

Segurança

Segurança

- □ Principais problemas:
 - Configuração da rede (topologia)
 - Servidores escutando sockets
 - Transmissão sem criptografia
 - Senhas de usuários

Segurança - Servidores


Type of site	Total # of hosts scanned:	Total % Vulnerable	% Yellow	% Red
banks	660	68.33	32.73	35.61
credit unions	274	51.09	30.66	20.44
US federal sites	47	61.70	23.40	38.30
newspapers	312	69.55	30.77	38.78
sex	451	66.08	40.58	25.50
Totals	1734	64.94	33.85	31.08
Random group	469	33.05	15.78	17.27

Fonte: http://www.fish.com/survey/

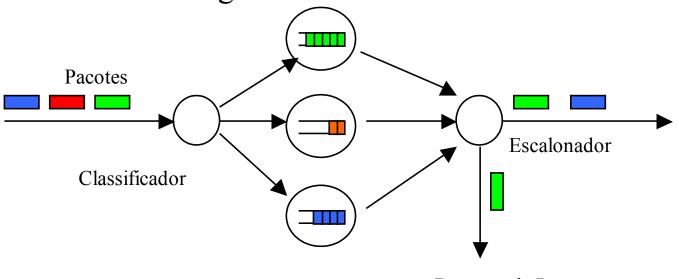
Segurança

- □ Topologia da rede:
 - Separação física
 - Firewall
 - Comutadores (switch) ou hubs Ethernet
 - VPN

Firewall

Proteção contra acessos indevidos

Dicas de Sobrevivência

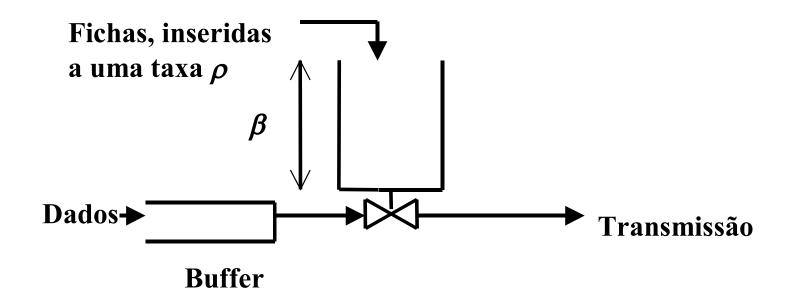

- Nunca execute programas de origem desconhecida
- Só abra correio eletrônico de fontes confiáveis
- Utilize um anti-vírus
- Cuidado com documentos gerados externamente (vírus de macro).

QoS no IP

- □ Modelos:
 - Serviços Integrados
 - Serviço Diferenciado
- Categorias do Serviço Integrado:
 - Melhor Esforço
 - Carga Controlada
 - Serviço Garantido

QoS no IP

Modelagem de um roteador



Descarte de Pacotes

- Controle de Admissão
- Controle de Reservas (protocolo RSVP)
- Roteamento

QoS no IP

Caracterização de tráfego: algoritmo do balde de fichas.

RSVP - Resource Reservation Protocol

□ Protocolo de Reserva de Recursos sobre o TCP/IP

R S V P	•••	H T T P	F T P	S N M P	•••	
	UDP	TCP				
IP						