Modelagem e Avaliação de Desempenho

Pós Graduação em Engenharia Elétrica - PPGEE Prof. Carlos Marcelo Pedroso 2011

Séries Temporais

- Considere um processo onde o valor presente de uma série depende dos valores passados.
- Uma série temporal é a amostragem sequencial de uma variável durante um intervalo de tempo, via de regra longo, para possibilitar a identificação de padrões. Pode ser obtida analiticamente, ou também por simulação numérica, ou ainda, por medição experimental.

Séries Temporais

A observação de uma série temporal discreta realizada em instantes de tempo $\tau_1, \tau_2, \ldots, \tau_t, \ldots, \tau_n$ pode ser denotada por $X(\tau_1), X(\tau_2), \ldots, X(\tau_t), \ldots, X(\tau_N)$. Neste capítulo serão consideradas apenas séries temporais discretas, onde as observações são realizadas em um intervalo fixo h. Quando N valores sucessivos da série forem analisados, será escrito $X_1, X_2, \ldots, X_t, \ldots, X_N$ para denotar observações realizadas a intervalos de tempo equidistantes $\tau_0 + h, \tau_0 + 2h, \ldots, \tau_0 + th, \ldots, \tau_0 + Nh$. A esperança será denotada $E(X) = \mu$; a variância será denotada por $V[X] = E\left[(X - \mu)^2\right] = \sigma^2$; a auto-covariância com defasagem k será denotada por $E\left[(X_t - \mu)(X_{t-k} - \mu)\right] = \gamma_k$ e a auto-correlação com defasagem k será denotada por $\rho_k = \gamma_k/\gamma_0$.

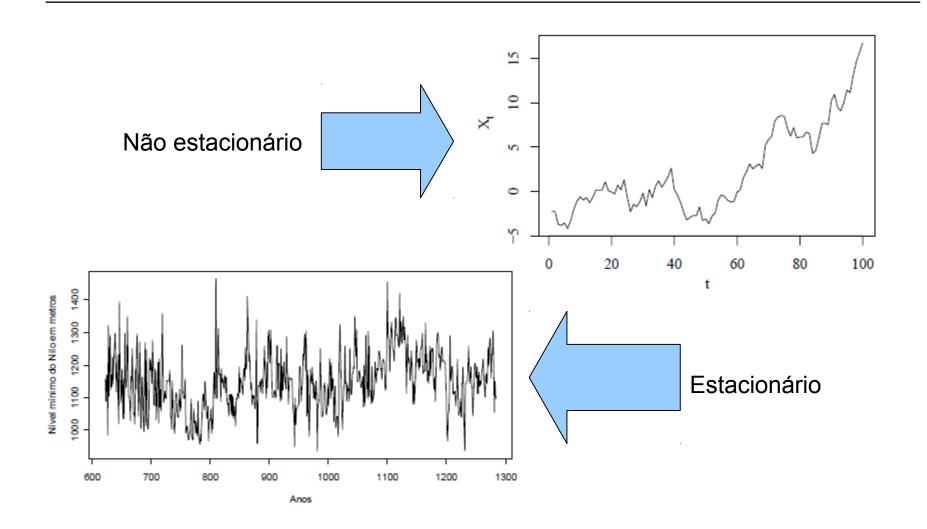
Estacionariedade

Definição 3.1 Estacionariedade estrita [Willinger e Park 2000]. X_t é estritamente estacionário se $[X_{t_1}, X_{t_2}, \ldots, X_{t_n}]$ e $[X_{t_1+k}, X_{t_2+k}, \ldots, X_{t_n+k}]$ possuem a mesma distribuição conjunta para todo $n \in \mathbb{N}$.

Na estacionariedade estrita, o processo deslocado por k, chamado X_{t+k} , e o primeiro chamado X_t , devem ser equivalentes.

Definição 3.2 Estacionariedade fraca ou de segunda ordem [Willinger e Park 2000]. A função de auto-covariância $\gamma(r,s) = E[(X_r - \mu)(X_s - \mu)]$ deve satisfazer à relação de invariância $\gamma(r,s) = \gamma(r+k,s+k) \quad \forall r,s,k \in \mathbb{Z}.$

Estacionariedade



Função de Auto-Correlação

□ Correlação entre X, Y:

$$\rho_{X,Y} = \frac{\text{cov}(X,Y)}{\sigma_X \sigma_Y} = \frac{E((X - \mu_X)(Y - \mu_Y))}{\sigma_X \sigma_Y}$$

- A análise da função de auto-correlação de uma série é muito importante.
 - Auto-Covariância: $E[(X_t \mu)(X_{t-k} \mu)] = \gamma_k$
 - Auto-Correlação: $\rho_k = \gamma_k/\gamma_0$.

O índice k é o deslocamento (ou lag)

Função de auto-correlação

□ Para estimar a função de auto-correlação, calculamos:

$$\overline{\gamma}_k = \frac{\sum_{i=1}^{N-k} (X_i - \overline{X})(X_{i+k} - \overline{X})}{\sum_{i=1}^{N} (X_i - \overline{X})^2}$$

Função de auto-correlação

- □ A função de auto-correlação estabelece o coeficiente de correlação entre um valor X_i da série e o X_{i-k} .
- A análise da função de auto-correlação tem um papel central na análise de desempenho de sistemas de comunicações.

1- Calcule a função de auto-correlação para a série a seguir. Plote o gráfico da série temporal e da função de

autocorrelação.

		10	20
1	3	13	6
2	8	13	3
3	10	32	2
4	27	18	13
5	5	37	2
6	4	16	1
7	5	9	10
8	16	1	2
9	38	9	1

2- Calcule a função de auto-correlação para a série a seguir. Plote o gráfico da série temporal e da função de auto-

correlação (cotação petr4).

		10	20
1	20,80	20,03	20,16
2	20,65	20,37	19,65
3	20,55	21,04	19,70
4	20,52	20,80	20,30
5	20,32	20,55	20,87
6	20,34	20,49	20,76
7	20,15	19,90	20,99
8	20,66	19,86	20,30
9	20,47	20,23	20,21

3- Calcule a função de auto-correlação para a série a seguir. Plote o gráfico da série temporal e da função de auto-

correlação

		10	20
1	2.46	1.87	1.59
2	2.05	1.55	1.12
3	2.14	2.04	1.05
4	2.56	2.43	1.36
5	2.49	1.24	1.67
6	1.12	1.11	2.45
7	1.74	0.89	2.93
8	2.11	1.03	2.36
9	2.34	0.77	2.44

Modelo Auto-Regressivo

3.4 Modelo Auto Regressivo

Seja \tilde{X}_t a diferença entre X_t e μ , $\tilde{X}_t = X_t - \mu$. O modelo AR(p), ou auto-regressivo, é dado por $\tilde{X}_t = \phi_1 \tilde{X}_{t-1} + \ldots + \phi_p \tilde{X}_{t-p} + a_t$, onde a_t é um ruído branco e ϕ_1, \ldots, ϕ_p são parâmetros do modelo. Os parâmetros do modelo são fáceis de estimar e as séries temporais podem ser geradas de maneira simples. A função de auto-correlação decai exponencialmente, o que faz com que o modelo possa ser representado aproximadamente por um modelo de Markov Modulado [Adas 1997]. Este modelo não consegue caracterizar fluxos que possuam uma distribuição de cauda pesada.

Para identificação do modelo AR em uma série existente o analista deve examinar a estrutura da função de auto-correlação da série e estimar o valor de p [Box et al. 1994]. Após esta tarefa, podem ser estimados os valores dos parâmetros $\phi_1, \phi_2, \dots, \phi_p$.

Modelo Média Móvel (MA)

3.5 Modelo Média Móvel

O modelo MA(q), ou médias móveis, é dado por $\tilde{X}_t = a_t - \theta_1 a_{t-1} - \ldots - \theta_q a_{t-q}$, ou seja, o valor atual de \tilde{X}_t é formado pela soma dos choques ponderados de ruídos aleatórios passados. Os valores de $\theta_1, \ldots, \theta_q$ são parâmetros do modelo.

Para estimação de parâmetros a partir de uma série, o analista deve estimar o valor do parâmetro q e depois estimar os valores de $\theta_1, \theta_2, \dots, \theta_q$.

Modelo ARMA

3.6 Modelo ARMA

No modelo ARMA(p,q) os valores de p e q indicam respectivamente o número de parâmetros no modelo AR e MA. O modelo é dado por

$$\tilde{X}_{t} = \phi_{1}\tilde{X}_{t-1} + \ldots + \phi_{p}\tilde{X}_{t-p} + a_{t} - \theta_{1}a_{t-1} - \ldots - \theta_{q}a_{t-q}$$
(3.1)

A estimação de parâmetros do modelos ARMA é mais difícil do que o modelo AR, e envolve a resolução de equações não-lineares [Box et al. 1994]. Na prática podem ser examinadas determinadas propriedades da função de auto-correlação e auto-correlação parcial da série na tentativa de determinar os valores de p e q. Neste modelo, soluções analíticas são mais difíceis de se obter. A geração da série pode ser realizada da mesma maneira mostrada nas Tabelas [3.1] e [3.2]

Modelo ARIMA

3.7 Modelo ARIMA

O modelo $ARIMA(Auto\ Regressive\ Integrated\ Moving\ Average)$ consiste de uma extensão do modelo ARMA(p,q) e é dado por ARIMA(p,d,q) onde ∇^d é um operador de diferenças, definido como $\nabla^d X_t = (X_t - X_{t-d})$. A série original é submetida ao operador de diferenças e sobre a série diferenciada aplica-se um modelo ARMA.

No modelo ARIMA, o operador de diferenças pode ser obtido por

$$\nabla^d X_t = \sum_{i=0}^d \binom{d}{i} (-1)^i X_{t-i}, d \in \mathbb{N}$$
(3.2)

A diferenciação da série normalmente é aplicada na tentativa de torná-la estacionária. Um exemplo de diferenciação é mostrado na seção 5.3.4. Desta maneira, este modelo pode ser utilizado em séries não estacionárias. Uma descrição completa do modelo é encontrada em Box et al. 1994 e softwares de análise em R Development Core Team 2005.

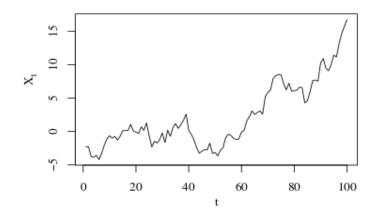
Modelo ARIMA

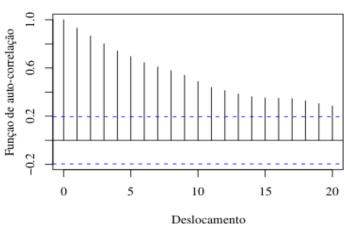
Exemplo 3.3 Considere um modelo ARIMA(1,1,1), com parâmetros $\phi_1 = 0$, 101270 e $\theta_1 = 0$, 110472. O valor de $\nabla^d X_t$ será dado por $\{0,101270X_{t-1}+a_t\}+\{-0,110472a_{t-1}\}$. O valor de X_t pode ser obtido fazendo-se $X_t = \nabla^d X_t + X_{t-1}$. O resultado é mostrado na Tabela 3.3 A série e sua função de auto-correlação são mostrados na Figura 3.1 A função de auto-correlação mostra um decaimento lento, que pode ser confundido com a não estacionariedade da série ou mesmo com a presença de características auto-similares.

Modelo ARIMA

Tabela 3.3: Exemplo de geração de uma série com modelo ARIMA.

t	\tilde{X}_t	$ abla^d ilde{X}_t$	a_t
1	-2,27228	-2,27228	-2,27228
2	-2,26659	0,00569	-0,01522
3	-3,71876	-1,45217	-1,45212
4	-3,84008	-0,12132	-0,13468
5	-3,55374	0,28634	0,28523
:	:	:	:





- 1. Recupere a série de valores históricos para do valor de fechamento da cotação do dolar, com 100 valores passados.
 - Esboce o gráfico da série. Analise o gráfico resultante.
 - Esboce o gráfico da função de auto-correlação (e auto-correlação parcial). Analise o gráfico resultante.
 - Estabeleça uma hipótese sobre um modelo adequado utilizando ARIMA.
 - Utilize o software R (pacote fArima) para estimar os parâmetros.
 - Como verificar se o modelo proposto é adequado? (utilize QQPLOT dos resíduos)

- 2. Suponha a série com o número de mortes em decorrência da Gripe A, em Curitiba, no inverno de 2009.
 - Esboce o gráfico da série. Analise o gráfico resultante.
 - Esboce o gráfico da função de auto-correlação (e auto-correlação parcial). Analise o gráfico resultante.
 - Estabeleça uma hipótese sobre um modelo adequado utilizando ARIMA.
 - Utilize o software R (pacote fArima) para estimar os parâmetros.
 - Como verificar se o modelo proposto é adequado? (utilize QQPLOT dos resíduos)

Série – Gripe A

Gripe A (mortes/dia – 2009)		10	20	30	40	50	60
1	2	1	1	12	3	2	2
2	0	4	2	7	7	3	0
3	1	6	6	8	5	0	1
4	1	7	8	10	4	2	1
5	0	4	13	7	4	3	1
6	3	6	9	6	6	3	
7	3	0	5	6	4	1	
8	2	4	7	2	5	0	
9	3	4	4	2	1	2	

□ Média Móvel

 Esse método considera como previsão para o período futuro a média das observações passadas recentes

$$x_{t} = \frac{x_{t-1} + x_{t-2} + \dots + x_{t-n}}{n}$$

O termo média móvel é utilizado porque à medida que a próxima observação se torna disponível, a média das observações é recalculada, incluindo essa observação no conjunto de observações e desprezando a observação mais antiga

- Alisamento Exponencial Simples
 - Se assemelha a Média Móvel por extrair das observações da série temporal o comportamento aleatório pelo alisamento dos dados históricos.

$$F_{t+1} = \alpha x_t + (1 - \alpha) F_t$$

 $-F_{t}$ representa a série e o parâmetro α deve estar entre 0 e 1.

- Alisamento Exponencial Simples
 - Quanto menor o valor de α, mais estáveis serão as previsões, visto que a utilização de baixo valor de implica na atribuição de peso maior às observações passadas e, conseqüentemente, qualquer flutuação aleatória no presente contribui com menor importância para a obtenção da previsão.
 - Não há metodologia que oriente quanto à seleção de um valor apropriado para, sendo normalmente encontrado por tentativa e erro.

- Alisamento Exponencial Linear
 - Quando o método Alisamento Exponencial Simples é aplicado na previsão de séries temporais que apresentam tendência entre as observações passadas, os valores prognosticados superestimam (ou subestimam) os valores reais.
 - ara evitar esse erro sistemático, o método Alisamento
 Exponencial Linear foi desenvolvido procurando
 reconhecer a presença de tendência na série de dados

Alisamento Exponencial Linear

$$\begin{split} F_{t+m} &= S_t + mT_t \\ S_t &= \alpha x_t + (1-\alpha)(S_{t-1} + T_{t-1}) \\ T_t &= \beta(S_t - S_{t-1}) + (1-\beta)T_{t-1} \end{split}$$

Onde α é o peso atribuído à observação $0 < \alpha < 1$

e β é o coeficiente de alisamento, $0 < \beta < 1$

Alisamento Exponencial Sazonal e Linear de Winter

$$\begin{split} S_t &= \alpha \frac{x_t}{I_{t-l}} + (1 - \alpha)(S_{t-1} + T_{t-1}) \\ T_t &= \beta(S_t - S_{t-1}) + (1 - \beta)T_{t-1} \\ I_t &= \gamma \frac{x_t}{S_t} + (1 - \gamma)I_{t-l} \\ F_{t+m} &= (S_t + mT_t)I_{t-l+m} \end{split}$$

onde I_t corresponde ao alisamento do fator de sazonalidade $\frac{x_t}{S_t}$;

l é o intervalo da sazonalidade e

corresponde ao peso atribuído ao fator de sazonalidade.

- □ Modelos SARIMA:
 - Arima Sazonal.
 - ARIMA(p,d,q)x(P,D,Q)
 - P,D,Q são os componentes sazonais

