Modelagem e Avaliação de Desempenho

Pós Graduação em Engenharia Elétrica - PPGEE Prof. Carlos Marcelo Pedroso 2013

Simulação de Sistemas

□ Simulação é a técnica de solução de um problema pela análise de um modelo que descreve o comportamento do sistema utilizando um computador digital.

□ Metodologia:

- Construção de um modelo da situação e reproduzir computacionalmente.
- Inclusão de alterações para o estudo de otimizações desejadas.

Simulação de Sistemas

- □ O método de Monte Carlo:
 - Deveu-se a revisão de uma técnica matemática utilizada por cientistas do projeto Manhattan, em Los Alamos, década de 1940, publicada em 1949.
 - Na aplicação desta técnica, os dados são gerados empregando-se um gerador de número aleatórios e uma distribuição de probabilidade que descreve a variável aleatória de interesse.

Simulação de Sistemas

- □ O método de Monte Carlo
 - 1 Definir o domínio de entradas possíveis.
 - Gerar as entradas de acordo com uma distribuição de probabilidade que descreve a entrada.
 - 3 Realizar o processamento determinístico das entrada.
 - 4 Agregar os resultados e retornar ao passo 2.

Geração de Variáveis Aleatórias

- □ Método da inversa
 - Toma-se a distribuição acumulada da variável aleatória, da por $P(X \le x) = F(x)$.
 - Atribui-se um valor randômico (Ri) entre 0 e
 1 para F(x).
 - Calcula-se o valor de x.
 - Desta forma, para cada valor randômico entre 0 e 1 será obtido um valor de x_i .
- Exemplos: distribuição exponencial, distribuição empírica (desenvolvidos em sala).

Geração de Variáveis Aleatórias

□ Exercícios:

- Calcule a expressão para obter uma variável aleatória que segue a distribuição uniforme.
- Calcule a expressão para obter uma variável aleatória que segue a distribuição triangular.

Geração de Números Randômicos

- □ Um dos problemas a serem resolvidos é como gerar números randômicos, uniformemente distribuídos entre 0 e 1.
- □ Gerador Congruente Linear ("LCG")
 - Definido pela equação linear $x_{n+1} = (ax_n + b) \mod m$
 - Produz uma sequência entre {0, 1, ..., m-1}
 - Pode-se chamar $LCG(m, a, b, x_0)$
 - x_0 é a semente (valor inicial)
 - Ansi $C \to LCG(2^{31}, 1103515245, 12345, 12345)$
 - Minimal Standard $\rightarrow LCG(2^{31}, 16807, 0, 1)$

Geração de Números Randômicos

□ Método Tausworthe

•
$$x_n = \theta_1 x_{n-1} \oplus \theta_2 x_{n-2} \oplus \dots \oplus \theta_q x_{n-q}$$

O método é chamado gerador auto regressivo de ordem q (AR(q)). Este método é utilizado em sistemas criptográficos.

Geração de Variáveis aleatórias

- □ Algumas distribuções podem não possuir expressão analítica para distribuição acumulada (é o caso da distribuição normal).
- □ Neste caso, é necessário aplicar outros métodos.
- Um dos métodos é o método "acceptance-rejection"
- \square Para gerar uma VA X com distribuição F(x):
 - Toma-se uma distribuição G(y), com método analítico conhecido.
 - G deve ser próxima de F, com quociente F/G=c

Geração de Variáveis aleatórias

Acceptance-Rejection Algorithm for continuous random variables

- 1. Generate a rv Y distributed as G.
- 2. Generate U (independent from Y).
- 3. If

$$U \le \frac{f(Y)}{cg(Y)},$$

then set X = Y ("accept"); otherwise go back to 1 ("reject").

Acceptance-Rejectio Method

Example 1: Generating a random variable from

$$f_X(x) = 3x^2, \qquad 0 \le x \le 1.$$

Assume

$$g_X(x) = 1,$$
 $0 \le x \le 1.$

Thus

$$\max(\frac{f_X(x)}{g_X(x)}) = 3 = c.$$

$$\frac{f_X(x)}{cg_X(x)}) = x^2.$$

Algorithm:

- 1) Generate two uniform random variables U_1 and U_2 from U(0, 1).
- 2) If $U_2 \le U_1^2$ accept U_1 as the random variable from $f_{\mathcal{X}}(x)$, otherwise go to step 1).

Distribuição Normal

□ Aproximação:

$$x_i = F^{-1}(R_i) = [R_i^{0,135} - (1-R_i)^{0,135}]/0,1975$$

Média 0, desvio padrão 1 [N(0, 1)]

É possível transformar para qualquer outra média μ e desvio padrão σ, fazendo:

• $y_i = \mu + \sigma x_i$

Distribuição Normal

- □ *Método acceptance-rejection:*
- 1. Gere duas variáveis randômicas com distr. Uniforme U(0,1), R_1 e R_2
- 2. $Seja x = -lnR_1$
- 3. Se $R_2 > e^{-(1/2)(x-1)^2}$, volte ao passo 1
- 4. Gere R_3
- 5. Se $R_3 > 0.5$, retorne $\mu + \sigma x$, caso contrário retorne $\mu \sigma x$

Exercício

- 1- Utilize o Método de Monte Carlo para realizar a simulação de uma fila com um servidor, onde o intervalo entre chegadas segue a distribuição exponencial e o tempo de atendimento também segue a distribuição exponencial. Compare o tempo médio na fila com os resultados obtidos com a teoria de filas, modelo M/M/1.
- 2- Utilize o Método de Monte Carlo para realizar uma simulação de forma a determinar o valor do número π através de uma simulação.

Análise de resultados

- □ A análise de resultados de uma simulação deve ser feita de maneira muito cuidadosa
 - Especialmente, não cometa o erro de generalizar resultados específicos
 - Para fazer qualquer tipo de inferência sobre os resultados, é necessário realizar uma análise estatística

- Um intervalo de confiança compreende um intervalo numérico que possui uma probabilidade igual a (1-α) de incluir o verdadeiro valor da medida de desempenho sob análise, com um nível de confiança.
 - (1- α) representa o intervalo de confiança.
 - α representa o erro admitido ao se concluir sobre a presença do verdadeiro valor da variável no intervalo calculado.

- □ Suponha que foi simulado o tempo médio na fila em um sistema.
 - Assumindo que a variável aleatória X representa o tempo médio na fila.
 - A simulação foi realizada 5 vezes, tomandose o cuidado de iniciar a simulação com valores de sementes diferentes

Os resultados obtidos foram:

Rodada	x
1	63,2
2	69,7
3	67,3
4	64,8
5	72

□ O semi-intervalo h é calculado por:

$$h = t_{n-1,1-\alpha/2} \frac{\sigma}{\sqrt{n}}$$

- n é o número de rodadas
- σ é o desvio padrão
- t indica os valores críticos para distr. t student

Valores críticos – t student

Valores de t para v graus de liberdade

v	0,995	0,99	0,975	0,95	0,90
1	63,66	31,82	12,71	6,31	3,08
2	9,92	6,96	4,30	2,92	1,89
3	5,84	4,54	3,18	2,35	1,64
4	4,60	3,75	2,78	2,13	1,53
5	4,03	3,36	2,57	2,02	1,48
6	3,71	3,14	2,45	1,94	1,44
7	3,50	3,00	2,36	1,90	1,42
8	3,36	2,90	2,31	1,86	1,40
9	3,25	2,82	2,26	1,83	1,38
10	3,17	2,76	2,23	1,81	1,37
11	3,11	2,72	2,20	1,80	1,36
12	3,06	2,68	2,18	1,78	1,36
13	3,01	2,65	2,16	1,77	1,35
14	2,98	2,62	2,14	1,76	1,34
15	2,95	2,60	2,13	1,75	1,34
16	2,92	2,58	2,12	1,75	1,34
17	2,90	2,57	2,11	1,74	1,33
. 18	2,88	2,55	2,10	1,73	1,33
19	2,86	2,54	2,09	1,73	1,33
20	2,84	2,53	2,09	1,72	1,32
21	2,83	2,52	2,08	1,72	1,32
22	2,82	2,51	2,07	1,72	1,32
23	2,81	2,50	2,07	1,71	1,32
24	2,80	2,49	2,06		1,32
25	2,79	2,48	2,06	1,71	1,32
26	2,78	2,48	2,06	1,71	1,32
27	2,77	2,47	2,05	1,70	1,31
28	2,76	2,47	2,05	1,70	1,31
29	2,76	2,46	2,04	1,70	1,31
30	2,75	2,46			1,31
40	2,70	2,42		1,68	
60	2,66	2,39			1,30
120	2,62	2,36			
> 120	2,58	2,33		1,65	1,28

No caso anterior, a média calculada é 67.22 e o desvio padrão σ é igual a 3.84;

- □ Para 99% de confiança, α =0,05 e $t_{4, 0.975}$ =2.78
- □ O valor de h calculado é de 4,77
- □ Com 97.5% de confiança a verdadeira média estará entre 62.44 e 71.99.

Exercícios

- Utilize a simulação de fila realizada anteriormente, para chegadas exponenciais e atendimentos exponenciais.
 - Calcule o semi intervalo h para um nível de confiança de 99%
 - O que fazer para melhorar a resposta?
 (melhorar a resposta implica em reduzir ao mínimo o valor de h).

Exercícios

- □ Suponha novamente o sistema com uma fila. No entanto, desta vez, suponha que a chegada é modelada por uma distribuição normal N(5,10) e o atendimento é modelado também por uma distribuição normal N(4, 20).
 - Determine o tempo médio de fila e tempo médio no sistema.
 - Realize a simulação de forma a obter uma boa resposta para para o nível de confiança de 99%.
 - Interprete os resultados.

Exercícios

- Suponha novamente o sistema com uma fila. No entanto, desta vez, suponha que a chegada é modelada por uma distribuição exponencial com média 4 e o atendimento é modelado também por uma distribuição de Pareto com parâmetros α=2,5 e β=2. A distribuição de Pareto é uma distribuição de cauda pesada.
 - Determine o tempo médio de fila e tempo médio no sistema.
 - Realize a simulação de forma a obter uma boa resposta para para o nível de confiança de 99%.
 - Interprete os resultados.

Distribuição de Pareto	
Parâmetros	α, β
	$\alpha > 0$, parâmetro de forma
	$\beta > 0$, parâmetro de escala
Limites	$b \le x < +\infty$
Densidade de Probabilidade	$f(x) = \frac{\alpha \beta^{\alpha}}{x^{\alpha+1}}$
Distribuição Acumulada	$F(x) = 1 - \left(\frac{\beta}{x}\right)^{\alpha}$
Esperança ($E[X]$)	$\frac{\alpha\beta}{\alpha-1}$, $\alpha>1$
Variança $(Var[X])$	$\frac{\alpha\beta}{(\alpha-1)^2(\alpha-2)}, \alpha > 2$

Simuladores

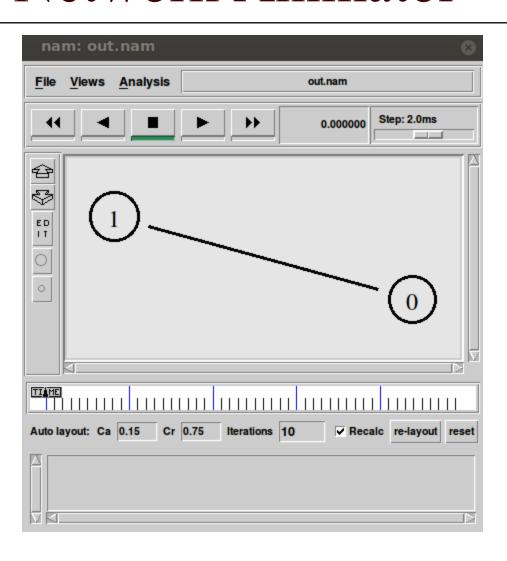
- O desempenho de redes de comunicação pode ser estudado através de simulações;
- O simulador pode apresentar resultados muito próximos do que se obteria na realidade;
- Os resultados devem ser tratados com rigor estatístico.

Network Simulator

□ O NS é um simulador escrito em C++ com interpretador OTcl como frontend.


```
#Create a simulator object
set ns [new Simulator]
#Open the nam trace file
set nf [open out.nam w]
$ns namtrace-all $nf
#Create two nodes
set n0 [$ns node]
set n1 [$ns node]
#Create a duplex link between the nodes
$ns duplex-link $n0 $n1 1Mb 10ms DropTail
```

```
#Create a UDP agent and attach it to node n0
set udp0 [new Agent/UDP]
$ns attach-agent $n0 $udp0
# Create a CBR traffic source and attach it to udp0
set cbr0 [new Application/Traffic/CBR]
$cbr0 set packetSize 500
$cbr0 set interval 0.005
$cbr0 attach-agent $udp0
#Create a Null agent (a traffic sink) and attach it to node
set null0 [new Agent/Null]
$ns attach-agent $n1 $null0
```


```
#Connect the traffic source with the traffic sink
$ns connect $udp0 $null0

#Schedule events for the CBR agent
$ns at 0.5 "$cbr0 start"
$ns at 4.5 "$cbr0 stop"
#Call the finish procedure after 5 seconds of simulation time
$ns at 5.0 "finish"

#Run the simulation
$ns run
```

```
#Define a 'finish' procedure
proc finish {} {
    global ns nf
    $ns flush-trace
    #Close the trace file
    close $nf
    #Execute nam on the trace file
    exec nam out.nam &
    exit 0
}
```

NAM - Network Animator


```
#Create a simulator object
set ns [new Simulator]
#Define different colors for data flows
$ns color 1 Blue
$ns color 2 Red
#Open the nam trace file
set nf [open out.nam w]
$ns namtrace-all $nf
```

```
#Create four nodes
set n0 [$ns node]
set n1 [$ns node]
set n2 [$ns node]
set n3 [$ns node]
#Create links between the nodes
$ns duplex-link $n0 $n2 1Mb 10ms DropTail
$ns duplex-link $n1 $n2 1Mb 10ms PropTail
$ns duplex-link $n3 $n2 1Mb 10ms SFQ
```

```
#Monitor the queue for the link between node 2
and node 3
$ns duplex-link-op $n2 $n3 queuePos 0.5
#Create a UDP agent and attach it to node n0
set udp0 [new Agent/UDP]
$udp0 set class 1
$ns attach-agent $n0 $udp0
# Create a CBR traffic source and attach it to
udp0
set cbr0 [new Application/Traffic/CBR]
$cbr0 set packetSize 500
$cbr0 set interval 0.005
$cbr0 attach-agent $udp0
```

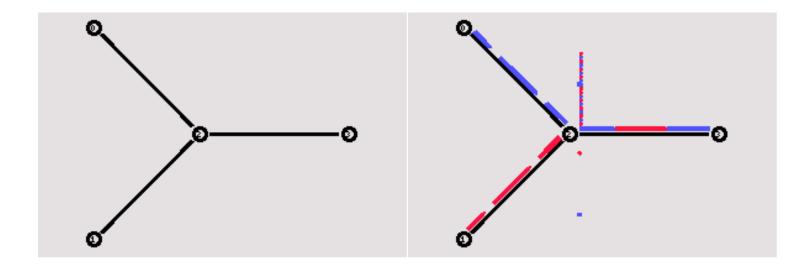
800Kb/s

```
#Create a UDP agent and attach it to node n1
set udp1 [new Agent/UDP]
$ns attach-agent $n1 $udp1

# Create a CBR traffic source and attach it to udp1
set cbr1 [new Application/Traffic/CBR]
$cbr1 set packetSize_ 500
$cbr1 set interval_ 0.005
$cbr1 attach-agent $udp1
*800Kb/s
```

```
#Create a Null agent (a traffic sink) and attach it to node n3
set null0 [new Agent/Null]
$ns attach-agent $n3 $null0

#Connect the traffic sources with the traffic sink
$ns connect $udp0 $null0
$ns connect $udp1 $null0
```


```
#Schedule events for the CBR agents
$ns at 0.5 "$cbr0 start"
$ns at 1.0 "$cbr1 start"
$ns at 4.0 "$cbr1 stop"
$ns at 4.5 "$cbr0 stop"
#Call the finish procedure after 5 seconds of simulation time
$ns at 5.0 "finish"

#Run the simulation
$ns run
```

```
#Schedule events for the CBR agents
$ns at 0.5 "$cbr0 start"
$ns at 1.0 "$cbr1 start"
$ns at 4.0 "$cbr1 stop"
$ns at 4.5 "$cbr0 stop"

#Call the finish procedure after 5 seconds of simulation time
$ns at 5.0 "finish"

#Run the simulation
$ns run
```



```
#Open the NAM trace file
set nam_file [open out.nam w]
$ns namtrace-all $nam_file
set tf [open out.tr w]
$ns trace-all $tf
```

```
#Simulation time
set SimTime 3.0
#Bottleneck link
Bandwidth
set bw 10Mb
#Bottleneck link delay
set delay 20ms
#Bottleneck link
queuetype
set queuetype DropTail
```

```
#Buffer Size
set BufferSize 50
#TCP packet size
set packetsize 1000
#TCP window size
set windowsize 80
#Initialize a variable
set old_data 0
```

#Set Queue size of the bottleneck link (n2-n3) to 20
\$ns queue-limit \$n2 \$n3 \$BufferSize

```
#Create four nodes
set n0 [$ns node]
set n1 [$ns node]
set n2 [$ns node]
set n3 [$ns node]
#Connect the nodes - Create links between the nodes
$ns duplex-link $n0 $n2 100Mb 2ms DropTail
$ns duplex-link $n1 $n2 100Mb 2ms DropTail
$ns duplex-link $n2 $n3 $bw $delay $queuetype
```

```
#Setup a TCP connection
set agent tcp [new Agent/TCP]
#Attach TCP Agent to source node n0
$ns attach-agent $n0 $agent tcp
set agent sink [new Agent/TCPSink]
#Attach a TCPSink Agent to destination node n3
$ns attach-agent $n3 $agent sink
#Connect TCP Agent with TCPSink Agent
$ns connect $agent tcp $agent sink
#Flow Identity for TCP
$agent tcp set fid 1
```

```
#TCP parameters
$agent_tcp set packet_size_ $packetsize
$agent_tcp set window_ $windowsize
#Setup a FTP traffic over TCP connection
set traf_ftp [new Application/FTP]
$traf_ftp attach-agent $agent_tcp
```

```
#Setup a UDP connection
set agent udp [new Agent/UDP]
#Attach UDP Agent to source node n1
$ns attach-agent $n1 $agent udp
set agent null [new Agent/Null]
#Attach a Null Agent to destination node n3
$ns attach-agent $n3 $agent null
#Connect UDP Agent with NULL Agent
$ns connect $agent udp $agent null
#Flow Identity for UDP
$agent udp set fid 2
#Setup a CBR traffic over UDP connection
set traf cbr [new Application/Traffic/CBR]
$traf cbr attach-agent $agent udp
```

utilizando o NAM

```
#CBR parameters
$traf_cbr set packet_size_ 1000
$traf_cbr set rate_ 4Mb
$ns at 0.0 "$ns trace-queue $n2 $n3 $trace_file"

Verifique o algoritmo
    slow start do TCP
```

Transmitindo sobre o UDP

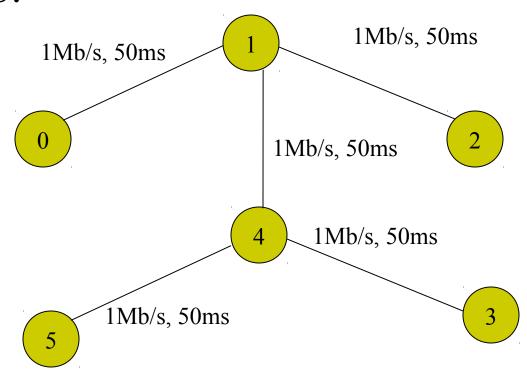
□ UDP

- set udp [new Agent/UDP]
- set null [new Agent/Null]
- \$ns attach-agent \$n0 \$udp
- \$ns attach-agent \$n1 \$null
- \$ns connect \$udp \$null

Geradores de tráfego sobre o UDP

- □ CBR
 - set src [new Application/Traffic/CBR]
 - \$src attach-agent \$udp
 - \$ns at 3.0 "\$src start"
- Exponential
 - set src [new Application/Traffic/Exponential]
- □ Pareto on/off
 - set src [new Application/Traffic/Pareto]

Criando uma conexão TCP


- □ TCP
 - set tcp [new Agent/TCP]
 - set tcpsink [new Agent/TCPSink]
 - \$ns attach-agent \$n0 \$tcp
 - \$ns attach-agent \$n1 \$tcpsink
 - \$ns connect \$tcp \$tcpsink

Aplicações sobre o TCP

- □ Web
 - set session [new httpSession \$ns <numPages>
 <cli><clientNode>]
 - Exemplo

Exercícios

Escreva uma simulação para a topologia abaixo:

Exercício

- Adicione aplicativos CBR transmitindo de 0 para 2, de 3 para 2 e de 5 para 2 sobre o protocolo UDP;
- Aumente progressivamente a taxa de geração de tráfego e determine o ponto de saturação da rede. Compare com o máximo teórico;
- Repita a operação utilizando como gerador de tráfego uma aplicação do tipo FTP e verifique como o algoritmo de gerência de janela ativa reduziu a taxa de transmissão. A divisão de banda é justa?
- □ Troque o algoritmo de descarte para SFQ e verifique se a justiça melhorou
- Adicione um gerador de tráfego UDP anote o efeito sobre os aplicativos TCP