
FILAS

Conceitos Fundamentais

Pós Graduação em Engenharia Elétrica - PPGEE Prof. Carlos Marcelo Pedroso

Teoria de Filas

É uma das abordagens mais utilizadas no estudo de desempenho e dimensionamento de redes;

Teoria de Filas

- □ Notação básica:
 - $\lambda \Rightarrow$ taxa média de chegada
 - \square λ =1/IC, IC é o intervalo médio entre pacotes
 - $\mu \Rightarrow$ taxa média de atendimento
 - \square μ = 1/TA, TA é o tempo médio de atendimento
 - TF, TS, TA: Tempo médio na fila, tempo médio no sistema e tempo médio de atendimento
 - \Box TS=TS+TA

Lei de Little

>> <u>Veja anotações da aula</u>

Foi observado o comportamento de um certo servidor de banco de dados.

Durante o período de 1 minuto de observação, o sistema ficou 10% do tempo livre. A taxa média de chegada foi de 100 requisições por segundo. Considere que o tempo de resposta aparente para o usuário foi de 0,1 segundo em média.

Qual o tempo gasto na fila e no processamento da requisição? Qual o número médio de elementos na fila?

Exemplo

- Suponha um provedor de acessos a Internet que recebe uma média de 20 requisições/hora.
 O tempo médio de conexão é de 10 minutos.
 Qual a quantidade de modems para obter um desempenho adequado.
 - Um tempo adequado é o tempo limite que um cliente espera pela conexão para fazer um pagamento com um cartão, por exemplo.

Exemplo

Suponha um provedor de acessos a Internet que recebe uma média de 20 requisições/hora.
 O tempo médio de conexão é de 10 minutos.
 Qual a quantidade mínima de modems para atender este sistema?

Teoria de Filas - Notação

- □ Para o estudo de filas, convencionou-se a seguinte notação: A/S/m/B/K/SD
 - A indica a distribuição de probabilidade do intervalo entre chegadas;
 - S indica a distribuição de probabilidade do tempo de atendimento;
 - M é o número de servidores;
 - B é a capacidade do buffer;
 - K é o tamanho da população;
 - SD é a disciplina da fila (ex. Fifo).

Teoria de Filas - Notação

- As distribuições são indicadas por:
 - M Exponencial
 - E Erlang
 - H Hyperexponencial
 - D Determinística
 - G Geral

M/M/1 com população infinita

$$NF = \frac{\lambda^2}{\mu(\mu - \lambda)} \qquad TF = \frac{\lambda}{\mu(\mu - \lambda)}$$

$$NS = \frac{\lambda}{\mu - \lambda}$$

$$P_{n} = \left(1 - \frac{\lambda}{\mu}\right) \left(\frac{\lambda}{\mu}\right)^{n}$$

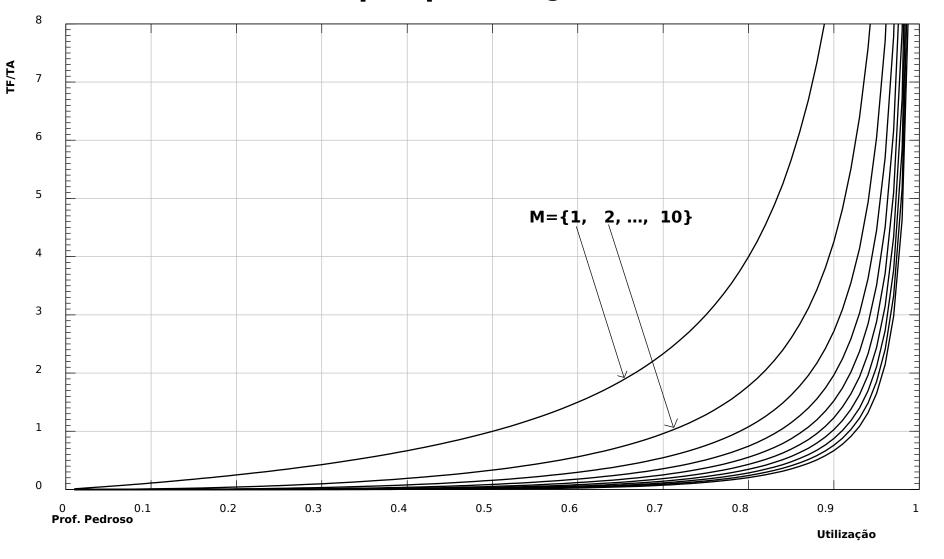
$$P_{n} \acute{e} \ a \ probabilidade \ de \ existirem$$

$$n \ clientes \ no \ sistema$$

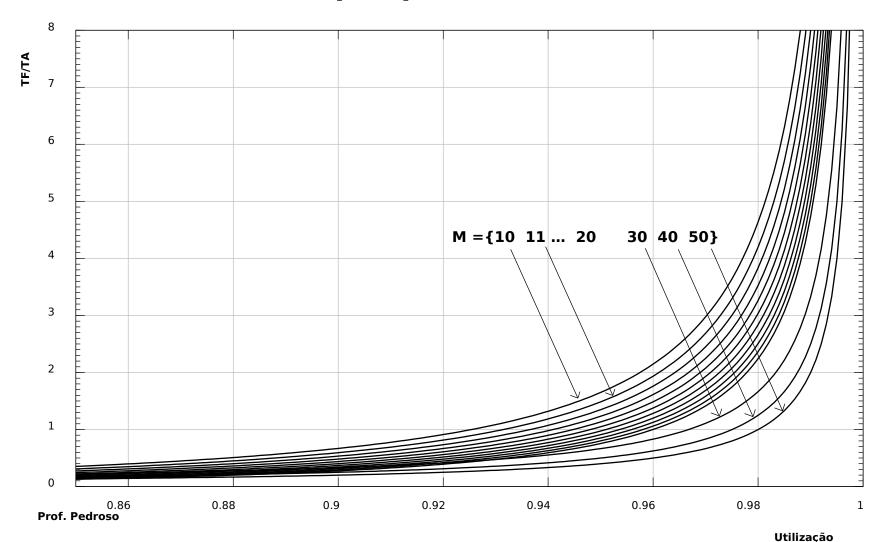
$$TF = \frac{\lambda}{\mu(\mu - \lambda)}$$

$$TS = \frac{1}{\mu - \lambda}$$

n clientes no sistema


M/M/c com população infinita

□ As fórmulas para o modelo M/M/c são relativamente complexas;


$$TF = TA. \frac{1 - A}{(1 - \rho)(1 - \rho A)}, \quad A = \frac{\sum_{i=0}^{M-1} \frac{(M\rho)^i}{i!}}{\sum_{i=0}^{M} \frac{(M\rho)^i}{i!}}$$

□ Normalmente, utiliza-se a abordagem gráfica para resolução de problemas.

M/M/c com população infinita

M/M/c com população infinita

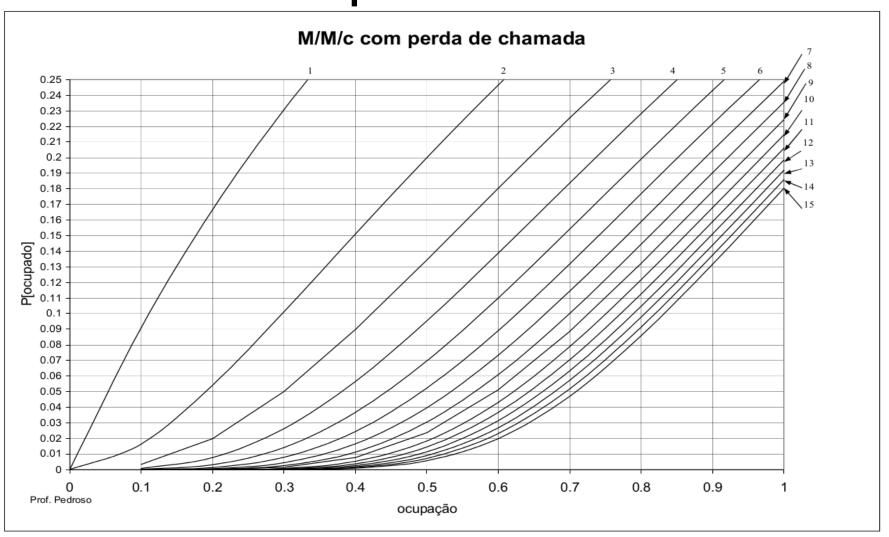
Exemplo

- 1. Suponha um provedor de acessos a Internet que recebe uma média de 20 requisições/hora. O tempo médio de conexão é de 10 minutos. Qual a quantidade de modems necessária para oferecer uma boa qualidade aos usuários?
- 2. Um sistema com uma base de dados consiste de 3 discos rígidos compartilhando uma fila única. O tempo de serviço para uma requisição de E/S é de 50m segundos. As requisições de E/S chegam ao sistema a uma taxa de 30 requisições por segundo. Utilizando o modelo M/M/3, determine o seguinte:
 - A) utilização média dos discos rígidos;
 - B) probabilidade do sistema esta ocioso;
 - C) número médio de requisições de acesso no sistema e o número médio de requisições esperando na fila;
 - D) O tempo médio de resposta.

Exemplo

3. Considere um sistema com uma fila onde os clientes chegam de acordo com o processo de Poisson com uma taxa de 25 clientes por hora. Suponha que o tempo de atendimento possui distribuição exponencial.

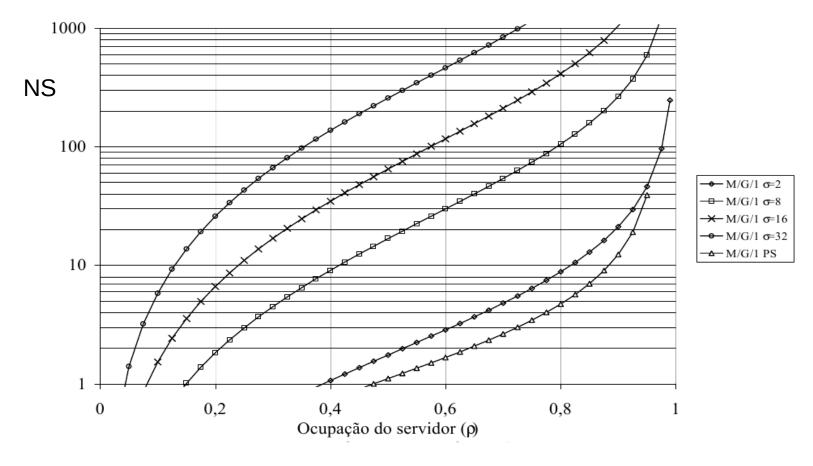
Existem duas opções possíveis para o projeto do sistema. A primeira utiliza dois servidores, cada um atendendo clientes com um tempo médio de atendimento de 4 minutos. A segunda utiliza um único servidor com um tempo médio de atendimento 2 minutos.


Calcule qual o tempo médio de espera na fila em cada um dos casos.

M/M/c com perda de chamada

Para o sistema M/M/c com perda de chamada temos:

$$P[ocupado] = \frac{(M\rho)^{M}/M!}{\sum_{i=0}^{M} \frac{(M\rho)^{i}}{i!}}$$


M/M/c com perda

Exemplo

- Suponha um provedor de acessos a Internet que recebe uma média de 20 requisições/hora.
 O tempo médio de conexão é de 10 minutos.
 Qual a quantidade de modems para obter um desempenho adequado.
 - Um tempo adequado é o tempo limite que um cliente espera pela conexão para fazer um pagamento com um cartão, por exemplo.

M/G/1

$$NF = \frac{\rho^2}{2.(1-\rho)} \cdot \left[1 + \frac{\sigma^2}{TA^2}\right], \quad \rho < 1$$

Exemplo

Uma empresa irá comprar uma máquina que faz a verificação da qualidade final de um produto através de processamento de imagem, e está comparando o desempenho de duas máquinas, chamadas de A e B. A máquina A é mais rápida, e é capaz de processar em média um item a cada 24 segundos, com desvio padrão de 20 segundos. A segunda máquina é mais lenta com um tempo de processamento médio de 25 segundos, mas com desvio padrão de 2 segundos. Se em média são enviados 2 produtos por minuto para verificação, determine qual máquina possui o melhor desempenho.

Exemplo

- Uma oficina mecânica possui um almoxarifado que entrega ferramentas para os mecânicos. Considere que diversos atendentes são disponíveis, que a população de mecânicos é grande e que os tempos de atendimento e intervalos de chegada podem ser modelados com uma distribuição exponencial. A taxa de chegada é de 2 mecânicos por minuto e o tempo de serviço para atender uma solicitação por ferramenta é de 150 segundos em média.
 - Qual o número mínimo de atendentes?
 - Qual o tempo médio de espera do mecânico considerando o número médio de atendentes? Qual o tamanho médio da fila neste caso?
 - Qual o número de atendentes para que o tempo médio de espera do mecânico não seja maior que um minuto? Qual o tamanho da fila neste caso?

M/G/c

- Não existe equacionamento conhecido para o sistema M/G/c para $1 < c < \infty$.
- Uma aproximação do modelo M/G/c pode ser obtido a partir das fórmulas do modelo M/M/c com a aplicação do fator de correção (1+(σ/TA)²)/2. A aproximação será melhor quando σ/TA estiver próximo de 1.

Exemplo

Suponha que no problema da oficina mecânica o tempo de atendimento não possa ser modelado por uma distribuição exponencial. Para este caso, determine o tempo médio de espera (aproximado) se o desvio padrão do tempo de serviço for dado por 50, 300 e 500 segundos.

Outros modelos

A literatura apresenta uma série de modelos prontos:

- Consultar:
 - "The Art of Computer Systems Performance Analysis", Raj Jain.
 - "Discrete Event System Simulation", Jerry Banks.

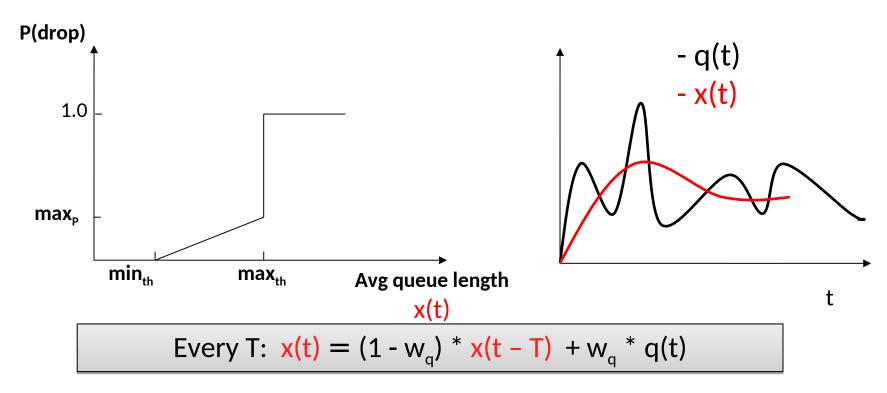
Disciplina de Filas

- FIFO (First In First Out)
- PS (Process Sharing)
- PQ (Priority Queue)
- SFQ (Stochastic Fair Queue)
- RED (Rand Early Detection)
- Entre muitas outras ...

DropTail

Perdas ocorrem devido à falta de **Transmissor 1** espaço no buffer Padrão de fato Receptor Baixa complexidade de implementação **Transmissor 2** Grande atraso Fluxos sincronizados Bufferbloat: atraso excessivo devido à grande capacidade do buffer causa problemas para muitas aplicações

Random Early Detection (RED)


Proposto em 1993

Descarta pacotes (com uma probabilidade de descarte) para prevenir situações de congestionamento reagindo antecipadamente.

Remove a sincronização entre fluxos.

RED

Drop based on *average* queue length x(t) (EWMA algorithm used for averaging)

x(t): smoothed, time averaged q(t)

Based on slide by Vishal Misra (Columbia)

RED

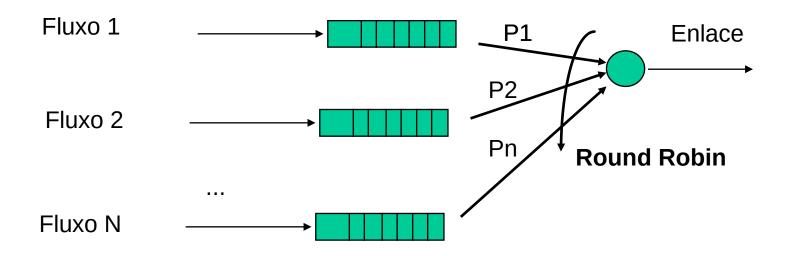
Muitos parâmetros

 $-\min_{th}$, \max_{th} , w_q (constante da EWMA)

Parâmetros afetam desempenho

- Ajuste é difícil, vários métodos automáticos disponívels
- Erros de ajuste podem levar a um desempenho inferior ao droptail

Normalmente disponível em roteadores

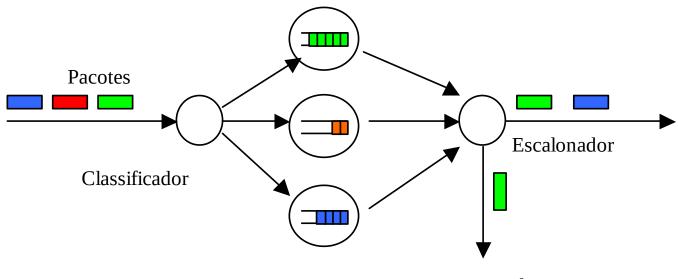

Escalonamento de pacotes

Selecionar qual a próxima fila a ser servida Cada fila possui uma disciplina específica Principais métodos: GPS (Generalized Process Sharing), WRR (Weighted Round Robin), WFQ (Weighted Fair Queue).

GPS

- Supõe que podem ser enviados pacotes divisíveis até o nível de bit.
- Usa Round Robin entre as diversas filas.
- Política de divisão ideal para distribuição de recursos.
- GPS não é implementável!
- Utilizado principalmente na comparação com as políticas implementáveis.

WRR


Anote explicação e exemplo durante a aula!

WFQ - Weighted Fair Queuing

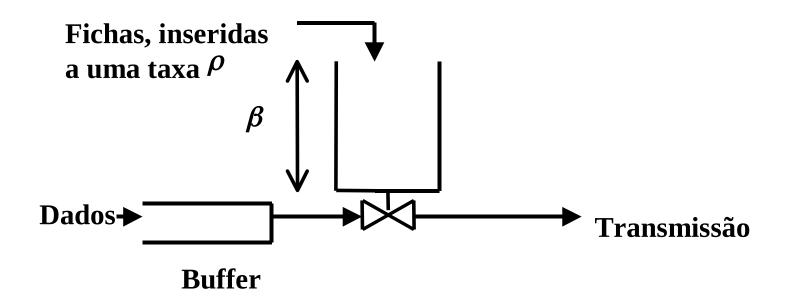
- Divisão justa da banda passante.
- Transmite os pacotes na ordem de término, do menor para o maior.
- Pesos determinam qual pacote será transmitido primeiro.
- Atraso pode ser calculado deterministicamente.

QoS no IP

Modelagem de um roteador

Descarte de Pacotes

- Controle de Admissão
- Controle de Reservas (protocolo RSVP)
- Roteamento

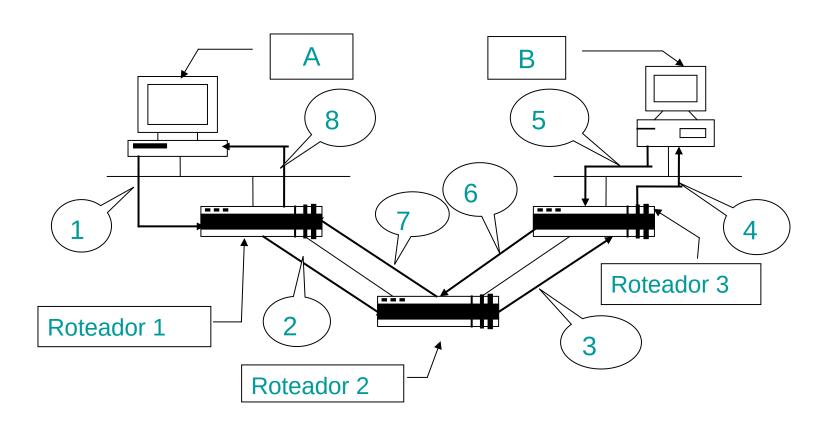

QoS no IP

Modelos:

- Serviço Integrado
 - Melhor Esforço
 - Carga Controlada
 - Serviço Garantido
- Serviço Diferenciado

QoS no IP

Caracterização de tráfego: algoritmo do balde de fichas.



RSVP - Resource Reservation Protocol

Protocolo de Reserva de Recursos sobre o TCP/IP

R S V P	•••	H T T P	F T P	S N M P	•••
UDP		TCP			
IP					

RSVP - Estabelecimento da Reserva

RSVP - Estilos de Reserva

Estilo Filtro Fixo

- FF(S{Q})
- FF(S1{Q1},S2{Q2},...)

Estilo Filtro Explícito Compartilhado

$$-EC((S1,S2,...){Q})$$

Estilo Filtro de Curinga

$$-FC(*{Q}),$$

QoS no IP: Carga Controlada

Modalidade do Serviço Integrado

Distribuição estatística da banda passante

- Parâmetros:
 - r : Taxa de inserção de fichas no balde
 - b : Tamanho do balde de fichas
 - p : Taxa de pico
 - m : Tamanho mínimo da unidade policiada
 - M : Tamanho máximo do pacote

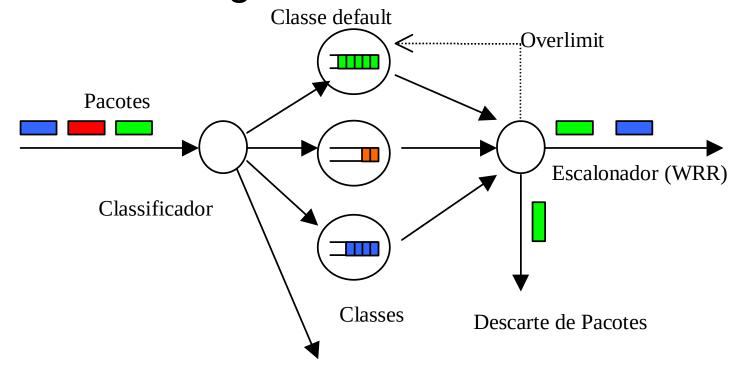
QoS no IP: Serviço Garantido

Modalidade do Serviço Integrado

- Garante o atraso máximo de propagação
- Taxa garantida: R
- Tamanho do balde: B
- Quantidade de dados transmitidos não maior que [M + min (p.T, r.T+b-M)]
- Atraso deve ser menor que [b/R + C/R +D]

QoS no IP: Serviço Diferenciado

- Problema do Serviço Integrado. Complexidade devido a:
 - Grande número de filas.
 - Classificação do tráfego exige muitas vezes o processamento de nível 4 de protocolo.
- Estes problemas são endereçados pelo serviço diferenciado.


Algoritmos de Escalonamento de Pacotes

- Escolher o próximo pacote a ser transmitido
- Realiza o policiamento de tráfego no elemento de rede
- Algoritmo original do IP: FIFOQ
- Algoritmos existentes: SFQ, WFQ, CBQ, RED, etc.

CBQ - Class Based Queuing

Divisão da banda em classes

Estimador de tráfego

