Séries Temporais EELT7055 Modelagem e Avaliação de Desempenho

Prof. Carlos Marcelo Pedroso

Pós Graduação em Engenharia Elétrica - PPGEE

2025

Séries Temporais

- Considere um processo onde o valor presente de uma série depende dos valores passados.
- Uma série temporal é a amostragem sequencial de uma variável durante um intervalo de tempo, via de regra longo, para possibilitar a identificação de padrões.
- Pode ser obtida analiticamente, ou também por simulação numérica, ou ainda, por medição experimental.

Séries Temporais: Notação

- ▶ Observação de uma série temporal discreta em instantes $\tau_1, \tau_2, ..., \tau_t, ..., \tau_n$: $X(\tau_1), X(\tau_2), ..., X(\tau_t), ..., X(\tau_N)$.
- ▶ Para N valores sucessivos com intervalo fixo h: $X_1, X_2, ..., X_t, ..., X_N$.
- **Esperança**: $E(X) = \mu$.
- ► Variância: $V[X] = E[(X \mu)^2] = \sigma^2$.
- Auto-covariância com defasagem k:

$$\gamma_k = E[(X_t - \mu)(X_{t-k} - \mu)]$$

Auto-correlação com defasagem k:

$$\rho_{\mathbf{k}} = \gamma_{\mathbf{k}}/\gamma_0$$

Estacionariedade

- $ightharpoonup X_t$ é estritamente estacionário se $[X_{t_1}, X_{t_2}, ..., X_{t_n}]$ e $[X_{t_1+k}, X_{t_2+k}, ..., X_{t_n+k}]$ possuem a mesma distribuição conjunta para todo $n \in \mathbb{N}$.
- ▶ O processo deslocado por k, X_{t+k} , e o primeiro, X_t , devem ser equivalentes.
- A função de auto-covariância $\gamma(r,s)=E[(X_r-\mu)(X_s-\mu)]$ deve satisfazer a relação de invariância $\gamma(r,s)=\gamma(r+k,s+k)$ para $r,s,k\in\mathbb{Z}$.

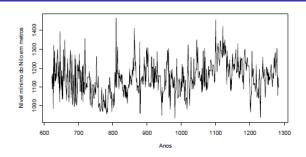
Teste de Estacionariedade: Dickey-Fuller Aumentado (ADF)

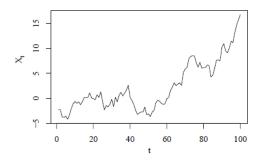
- **Objetivo:** Determinar se uma série temporal (Y_t) é estacionária ou se possui uma *raiz unitária*.
- ▶ **Hipóteses:** O teste ADF é um teste de raiz unitária.
 - Hipótese Nula (H_0): A série Y_t é NÃO ESTACIONÁRIA (Possui raiz unitária, $\gamma = 0$).
 - Hipótese Alternativa (H_a): A série Y_t é ESTACIONÁRIA ($\gamma < 0$).
- Equação de Teste Geral:

$$\Delta Y_t = \alpha + \beta t + \gamma Y_{t-1} + \sum_{i=1}^{p} \delta_i \Delta Y_{t-i} + \epsilon_t$$

- Interpretação (no R):
 - ✓ Se p-value $\leq \alpha$ (ex: 0.05): **Rejeitamos** H_0 . Conclusão: a série é **ESTACIONÁRIA**.
 - Se p-value > α: Não Rejeitamos H₀. Conclusão: a série é NÃO ESTACIONÁRIA.

Exemplos de Estacionariedade





Coeficiente de Correlação ($\rho_{X,Y}$)

- ➤ Função de Correlação (População): Mede a dependência linear entre duas variáveis aleatórias X e Y.
- **Definição:** O Coeficiente de Correlação de Pearson, $\rho_{X,Y}$, é dado por:

$$\rho_{X,Y} = \frac{\mathsf{Cov}(X,Y)}{\sqrt{\mathsf{Var}(X)\mathsf{Var}(Y)}} = \frac{E[(X - \mu_X)(Y - \mu_Y)]}{\sigma_X \sigma_Y}$$

- > Propriedades:
 - ✓ Varia no intervalo: $-1 \le \rho_{X,Y} \le 1$.
 - \checkmark $\rho_{X,Y} = 1$: Correlação linear positiva perfeita.
 - ✓ $\rho_{X,Y} = -1$: Correlação linear negativa perfeita.
 - $\rho_{X,Y} = 0$: Ausência de correlação linear.

Estimador Amostral do Coeficiente de Correlação $(\hat{\rho}_{X,Y})$

- Amostra: Considere uma amostra de n pares de observações: $\{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}.$
- **Estimador Amostral:** O estimador de correlação (amostral) $\hat{\rho}_{X,Y}$ é dado por:

$$\hat{\rho}_{X,Y} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2 \sum_{i=1}^{n} (y_i - \bar{y})^2}}$$

- Onde:

 - $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$ é a média amostral de X. $\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$ é a média amostral de Y.
 - ✓ O numerador é a **Covariância Amostral** (não-viesada, sem o $\frac{1}{n-1}$ ou $\frac{1}{n}$ no denominador, mas a fórmula acima é a forma padrão do coeficiente).
- **Vso:** $\hat{\rho}_{X,Y}$ é uma estatística que estima o verdadeiro parâmetro populacional $\rho_{X,Y}$.

Exemplo de Cálculo: Estimador de Correlação ($\hat{\rho}$)

Estimador Amostral ($\hat{\rho}_{X,Y}$):

$$\hat{\rho}_{X,Y} = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum (x_i - \bar{x})^2 \sum (y_i - \bar{y})^2}}$$

-47.0

Dados Amostrais (10 Pares):

i	$\mathbf{X}_{\mathbf{i}}$	$\mathbf{Y}_{\mathbf{i}}$	$\left(X_{i}-x\right)$	$(\mathbf{Y_i} - \mathbf{y})$	$(X_i-x)(Y_i-y)\\$
1	2	8	-4.5	3.0	-13.5
2	3	7	-3.5	2.0	-7.0
3	4	7	-2.5	2.0	-5.0
4	5	5	-1.5	0.0	0.0
5	6	6	-0.5	1.0	-0.5
6	7	4	0.5	-1.0	-0.5
7	8	3	1.5	-2.0	-3.0
8	9	4	2.5	-1.0	-2.5
9	10	2	3.5	-3.0	-10.5
10	11	4	4.5	-1.0	-4.5

> SPD: $\sum (X_i - \bar{x})(Y_i - \bar{y}) = -47.0$
--

Soma dos Produtos dos Desvios (SPD):

>
$$SQD_Y$$
: $\sum_{i} (Y_i - \bar{y})^2 = 34.0$

 $\hat{\rho}_{X,Y} = -0.8874$

Função de Auto-Correlação

- ➤ A análise da Função de Auto-Correlação (FAC) de uma série é muito importante.
- ➤ A FAC estabelece o coeficiente de correlação entre um valor X_i da série e o valor defasado X_{i-k}.
- ➤ O índice k é o deslocamento (ou lag).
- ➤ A análise da FAC tem um papel central na análise de desempenho de sistemas de comunicações.
- > Auto-Covariância:

$$\gamma_k = E[(X_t - \mu)(X_{t-k} - \mu)]$$

> Auto-Correlação:

$$\rho_k = \gamma_k / \gamma_0$$

Estimador da Auto-Correlação:

$$\overline{\gamma}_k = \frac{\sum_{i=1}^{N-k} (X_i - \overline{X})(X_{i+k} - \overline{X})}{\sum_{i=1}^{N} (X_i - \overline{X})^2}$$

Modelo Auto-Regressivo (AR)

 \triangleright O modelo AR(p), ou auto-regressivo, é dado por:

$$\tilde{X}_t = \phi_1 \tilde{X}_{t-1} + \dots + \phi_p \tilde{X}_{t-p} + a_t$$

onde $\tilde{X}_t = X_t - \mu$, a_t é um ruído branco e ϕ_1, \dots, ϕ_p são parâmetros do modelo.

- ➤ A função de auto-correlação decai exponencialmente, o que faz com que o modelo possa ser representado aproximadamente por um modelo de Markov Modulado.
- ▶ Para identificação, o analista deve examinar a estrutura da função de auto-correlação e estimar o valor de p.

Modelo Auto-Regressivo (AR)

Aqui uma lista de comandos, anotar o significado na aula!

Comandos R

```
serie ar1 < - arima.sim(n = 1000, model = list(ar = 0.9), sd = 3) + 10
tseries::adf.test(serie arl)
plot(serie arl)
acf(serie arl)
pacf(serie arl)
modelo \leftarrow arima(serie arl, order = c(1, 0, 0))
modelo
cat("\n--- Criterios de Informacao: Ouanto menor o AIC/BIC, melhor o modelo ---\n")
cat("Criterio de Informacao de Akaike (AIC) modelo AR(1):", AIC(modelo), "\n")
cat("Criterio de Informacao Bayesiano (BIC) modelo AR(1):", BIC(modelo), "\n")
str(modelo)
residual<-na.omit(modelo$resid)
par(mfrow = c(2. 2))
plot(residual)
hist(residual.freq=FALSE)
lines(x, dnorm(x, mean=mean(residual), sd=sd(residual)), col=2)
acf(residual)
plot(serie ar1)
lines(residual, col=2)
```

Interpretação do Teste Dickey-Fuller Aumentado

Resultado do Teste

Dickey-Fuller = -6.6239, Lag order = 9, **p-value = 0.01** alternative hypothesis: stationary

- ► Hipótese Nula (*H*₀): A série é NÃO ESTACIONÁRIA.
- ► Hipótese Alternativa (H_a): A série é ESTACIONÁRIA.

Decisão Estatística ($\alpha = 5\%$)

- **Nível de Significância** (α): Adota-se 0.05 (5%).
- ➤ Valor-p Reportado: 0.01.

Comparação: p-value $(\mathbf{0.01}) \leq \alpha \ (\mathbf{0.05})$

Conclusão

Como o **p-value é menor** que o nível de significância de 5%, **rejeitamos a Hipótese Nula** (H_0) .

A série serie_ar1 é ESTACIONÁRIA. ✓

Modelo Média Móvel (MA)

 \triangleright O modelo MA(q), ou médias móveis, é dado por:

$$\tilde{X}_t = a_t - \theta_1 a_{t-1} - \dots - \theta_q a_{t-q}$$

- ightharpoonup O valor atual de X_t é formado pela soma dos choques ponderados de ruídos aleatórios passados.
- $\triangleright \theta_1, \dots, \theta_q$ são os parâmetros do modelo.

Modelo Média Móvel (MA)

Aqui uma lista de comandos, anotar o significado na aula!

Comandos R

```
serie ma1 <- arima.sim(n = 1000, model = list(ma = -0.5), sd = 3) + 10
plot(serie mal)
acf(serie mal)
pacf(serie mal)
modelo \leftarrow arima(serie mal. order = c(0, 0, 1))
modelo
cat("\n--- Criterios de Informacao: Quanto menor o AIC/BIC, melhor o modelo ---\n")
cat("Criterio de Informacao de Akaike (AIC) modelo AR(1):", AIC(modelo), "\n")
cat("Criterio de Informacao Bavesiano (BIC) modelo AR(1):". BIC(modelo). "\n")
str(modelo)
residual <- na. omit (modelo resid)
par(mfrow = c(2, 2))
plot(residual)
hist(residual,freg=FALSE)
lines(x.dnorm(x.mean=mean(residual).sd=sd(residual)).col=2)
acf(residual)
plot(serie mal)
lines(residual, col=2)
```

Modelo ARMA

- \triangleright O modelo ARMA(p,q) combina os modelos AR e MA.
- ➤ Os valores de *p* e *q* indicam, respectivamente, o número de parâmetros no modelo AR e MA.
- O modelo é dado por:

$$\tilde{X}_t = \phi_1 \tilde{X}_{t-1} + \dots + \phi_p \tilde{X}_{t-p} + a_t - \theta_1 a_{t-1} - \dots - \theta_q a_{t-q}$$

➤ A estimação de parâmetros é mais difícil que no modelo AR, envolvendo a resolução de equações não-lineares.

Modelo ARMA

Aqui uma lista de comandos, anotar o significado na aula!

Comandos R

```
serie armal1 \leftarrow arima.sim(n = 1000, model = list(ar = 0.7, ma = -0.5))
plot(serie armall)
acf(serie armall)
pacf(serie armall)
modelo \leftarrow arima(serie armall, order = c(1, 0, 1))
modelo
cat("\n--- Criterios de Informacao: Quanto menor o AIC/BIC, melhor o modelo ---\n")
cat("Criterio de Informacao de Akaike (AIC) modelo AR(1):", AIC(modelo), "\n")
cat("Criterio de Informacao Bavesiano (BIC) modelo AR(1):". BIC(modelo). "\n")
str(modelo)
residual<-na.omit(modelo$resid)
par(mfrow = c(2, 2))
plot(residual)
hist(residual,freg=FALSE)
lines(x.dnorm(x.mean=mean(residual).sd=sd(residual)).col=2)
acf(residual)
plot(serie armall)
lines(residual, col=2)
```

Modelo ARIMA

- ➤ O modelo ARIMA (Auto Regressive Integrated Moving Average) é uma extensão do modelo ARMA(p,q).
- \blacktriangleright É dado por ARIMA(p,d,q), onde ∇^d é um operador de diferenças.
- $ightharpoonup
 abla^d X_t$ é definido como $abla^1 X_t = X_t X_{t-1}$.
- ➤ A diferenciação da série $(\nabla^d X_t)$ é normalmente aplicada na tentativa de torná-la **estacionária**.
- Após a diferenciação, aplica-se um modelo ARMA sobre a série diferenciada.
- Desta maneira, o modelo pode ser utilizado em séries não estacionárias.

Modelo ARIMA

Aqui uma lista de comandos, anotar o significado na aula!

Comandos R

```
serie arimal11 < - arima.sim(n = 1000, model = list(order = c(1, 1, 1), ar = 0.7, ma = 0.7)
     -0.5)
tseries::adf.test(serie arimall1)
plot(serie arimal11)
acf(serie arimall1)
pacf(serie arimall1)
serie diferenciada<-diff(serie arimall1, lag = 1, differences = 1)
plot(serie diferenciada)
acf(serie diferenciada)
tseries::adf.test(serie diferenciada)
modelo \leftarrow arima(serie arimall1, order = c(1, 1, 1))
modelo
cat("\n--- Criterios de Informacao: Quanto menor o AIC/BIC, melhor o modelo ---\n")
cat("Criterio de Informacao de Akaike (AIC) modelo AR(1):". AIC(modelo). "\n")
cat("Criterio de Informacao Bayesiano (BIC) modelo AR(1):", BIC(modelo), "\n")
str(modelo)
residual<-na.omit(modelo$resid)
par(mfrow = c(2, 2))
plot(residual)
hist(residual.freg=FALSE)
lines(x,dnorm(x,mean=mean(residual),sd=sd(residual)),col=2)
acf(residual)
plot(serie arimall1)
lines(residual, col=2)
```

Teste de Estacionariedade no exemplo

Resultado do Teste

Dickey-Fuller = -1.958, Lag order = 9, p-value = 0.5961 alternative hypothesis: stationary

- Para o Teste de Dickey-Fuller Aumentado (ADF):
 - ► Hipótese Nula (H₀): A série é NÃO ESTACIONÁRIA.
 - ► Hipótese Alternativa (H_a): A série é ESTACIONÁRIA.
- Decisão Estatística:
 - ✓ Valor-p: 0.3276. Nível de Signifância Padrão (α): 0.05 (5%)
 - ✓ Regra de Decisão: Compare o p-value com α .
 - **✓ p**-value (0.3276) > α (0.05)
 - ✓ Como o p-value é maior que 0.05, você NÃO REJEITA a Hipótese Nula (H_0).
- A série é NÃO ESTACIONÁRIA
- Verificar após a aplicação do operador nabla!

O que é uma Série Temporal Sazonal?

- ightharpoonup Uma Série Temporal (Y_t) é uma sequência de observações ordenadas no tempo e registradas em intervalos regulares.
- ➤ O componente de **Sazonalidade** (S_t) refere-se a um padrão repetitivo e previsível que ocorre em períodos fixos (ex: mensal, trimestral, semanal).
- Exemplo Clássico: Vendas no varejo, consumo de energia, e a famosa série AirPassengers (Passageiros Aéreos).
- ➤ **Desafio:** O modelo ARIMA tradicional (não-sazonal) não consegue capturar essa periodicidade de longo prazo de forma eficaz.

Componentes de uma Série Temporal

A maioria das séries temporais não-estacionárias é composta por 3 ou 4 elementos:

- **1 Tendência** (T_t) : Comportamento de longo prazo (crescimento ou decrescimento).
- **2 Sazonalidade** (S_t): Variações regulares e periódicas (ex: picos em Dezembro).
- **3 Ciclo** (C_t): Flutuações de longo prazo, mas irregulares e de duração variável (ligadas a ciclos econômicos, por exemplo).
- **1** Irregular/Ruído (ϵ_t): Variações aleatórias e não explicadas.

Decomposição (Modelo Aditivo):

$$Y_t = T_t + S_t + C_t + \epsilon_t$$

Decomposição (Modelo Multiplicativo):

$$Y_t = T_t \times S_t \times C_t \times \epsilon_t$$

Revisão: O Modelo ARIMA (p, d, q)

O ARIMA (AutoRegressive Integrated Moving Average) é base para a modelagem:

- \triangleright AR(p): AutoRegressive
 - \checkmark Usa observações passadas de Y_t para prever o valor atual.
 - $\checkmark p = \text{número de termos autorregressivos}.$
- ➤ I(d): Integrated
 - ✓ Diferenciação para tornar a série Estacionária.
 - \checkmark d = número de diferenciações necessárias (remove Tendência).
- ➤ MA(q): Moving Average
 - \checkmark Usa os erros (ϵ_t) das previsões passadas para prever o valor atual.
 - $\checkmark q = \text{número de termos de média móvel}.$

O Modelo SARIMA (ARIMA Sazonal)

O SARIMA é uma extensão do ARIMA que adiciona termos para a sazonalidade.

Notação do SARIMA:

$$SARIMA(p, d, q) \times (P, D, Q)_s$$

- (p, d, q) (Parte Não-Sazonal): Descreve a estrutura de curto prazo (não sazonal).
- \triangleright $(P, D, Q)_s$ (Parte Sazonal): Descreve a estrutura sazonal.
 - ✓ P (AR Sazonal): Termos AR na defasagem s.
 - ✓ D (Diferenciação Sazonal): Remove a sazonalidade.
 - ✓ Q (MA Sazonal): Termos MA na defasagem s.
 - \checkmark s: Período de sazonalidade (ex: s = 12 para dados mensais).

O Coração do SARIMA: Diferenciação Sazonal (D)

- O parâmetro D (Diferenciação Sazonal) é crucial para séries como a AirPassengers.
- ➤ **Função:** Eliminar o padrão sazonal, garantindo que as propriedades estatísticas sejam constantes em múltiplos do período s.
- **Exemplo** (s = 12):
 - ✓ A diferenciação compara uma observação (Y_t) com a observação do mesmo período no ano anterior (Y_{t-12}).
 - **✓** Operador Diferença Sazonal: $\nabla_s Y_t = Y_t Y_{t-s}$
- Na série AirPassengers, geralmente precisamos de d=1 (Tendência) e D=1 (Sazonalidade) para atingir a estacionariedade.

Exemplo: Aplicação do SARIMA na Série AirPassengers

- **Série Temporal:** Número de passageiros aéreos internacionais (mensal, s=12).
- Pré-Processamento (R-Cran):
 - \checkmark \rightarrow Aplicação de $\log()$ para estabilizar a variância.
 - \checkmark → Aplicação da diferenciação não-sazonal (d=1).
 - ightharpoonup
 igh
- Modelo Comum (Clássico Box-Jenkins):

SARIMA
$$(0,1,1) \times (0,1,1)_{12}$$

- Interpretação:
 - \checkmark (0,1,1): Um termo de Média Móvel (MA) e uma Diferenciação (d=1).
 - $(0,1,1)_{12}$: Um termo de Média Móvel Sazonal (Q=1) e uma Diferenciação Sazonal (D=1) no período 12.

Modelo SARIMA

Aqui uma lista de comandos, anotar o significado na aula!

Comandos R

```
dados passagens <- AirPassengers
plot(dados passagens, main = "AirPassengers", ylab = "Passageiros (milhares)", xlab = "Ano"
log passagens <- log(dados passagens)</pre>
par(mfrow = c(2, 2))
plot(log passagens,main = "LogAirPassengers", ylab = "Ano")
acf(log passagens, main = "ACF - LogAirPassengers", lag.max=50)
pacf(log passagens, main = "PACF - LogAirPassengers", lag.max=50)
# Diferenciacao Nao-Sazonal (d=1)
diff log passagens d1 <- diff(log passagens, differences = 1)</pre>
par(mfrow = c(2, 2))
plot(diff log passagens d1)
acf(diff log passagens dl, main = "ACF - Diferenca d=1")
pacf(diff log passagens d1, main = "PACF - Diferenca d=1")
# Diferenciacao Sazonal (D=1, periodo s=12)
diff sazonal <- diff(diff log passagens d1, lag = 12)</pre>
par(mfrow = c(2, 2))
plot(diff sazonal)
acf(diff sazonal, lag.max = 50, main = "ACF - Diferenca Sazonal")
pacf(diff sazonal, lag.max = 50, main = "PACF - Diferenca Sazonal")
modelo \leftarrow Arima(log passagens, order = c(1, 1, 1), seasonal = list(order = c(1, 1, 1),
     period = 12))
summary(modelo)
```

Modelo SARIMA

Aqui uma lista de comandos, anotar o significado na aula!

Comandos R

```
# Ajuste Automatico
modelo auto <- auto.arima(log passagens,
                          trace = TRUE, # mostra os modelos testados
                          stepwise = FALSE, # testa mais combinacoes
                          approximation = FALSE) # nao usa aproximacao
summary(modelo auto)
checkresiduals(modelo auto)
# Previsao para os proximos 3 anos (h=3*12)
previsao <- forecast(modelo auto, h = 36)</pre>
# Plotar a previsao
plot(previsao, main = "Previsao AirPassengers com SARIMA")
# Exibir os valores previstos (revertendo o log)
previsao revertida <- exp(previsao$mean)
previsao revertida
```

Conclusão: Modelagem com SARIMA

O SARIMA é o modelo ideal para séries sazonais porque:

- ➤ Ele **integra** a estrutura não-sazonal (curto prazo) e a estrutura sazonal (longo prazo) em um único modelo.
- Usa a Diferenciação (não-sazonal e sazonal) para remover tendências e sazonalidade e garantir a Estacionariedade.
- ➤ É uma ferramenta **robusta** e amplamente utilizada para previsão.

Próxima Etapa: Diagnóstico dos Resíduos e Previsão.

Outros Modelos: Média Móvel

- ➤ O método da Média Móvel considera como previsão para o período futuro a média das observações passadas recentes.
- O termo é usado porque a média é recalculada com a próxima observação, incluindo-a e desprezando a observação mais antiga.
- > Fórmula (Média Móvel de N períodos):

$$\bar{X}_t = \frac{X_{t-1} + X_{t-2} + \dots + X_{t-N}}{N}$$

EWMA?

Média Móvel Exponencialmente Ponderada

- O EWMA é uma técnica de Suavização Exponencial utilizada para calcular uma média móvel de uma série temporal.
- ➤ **Diferencial:** Diferente da Média Móvel Simples (SMA), o EWMA atribui **pesos decrescentes exponencialmente** às observações à medida que elas ficam mais distantes no passado.
- Conceito Chave: Os dados mais recentes têm uma importância significativamente maior na determinação do valor atual do EWMA.
- Aplicações Principais:
 - Previsão de Séries Temporais (modelos de suavização).
 - 2 Estimativa de Volatilidade (Mercado Financeiro RiskMetrics).
 - 3 Controle Estatístico de Processo (CEP) (Gráficos de Controle EWMA).

Cálculo da Média Ponderada

O EWMA (S_t) no tempo t é calculado como uma combinação linear da observação atual (X_t) e do valor EWMA do período anterior (S_{t-1}) .

$$S_t = \lambda X_t + (1 - \lambda)S_{t-1}, \quad 0 \le \lambda \le 1$$

- $ightharpoonup \mathbf{S_t}$: Valor do EWMA no tempo t.
- X_t: Observação atual da série temporal no tempo t.
- $ightharpoonup S_{t-1}$: Valor do EWMA no período anterior.
- λ: Fator de Suavização (Peso) ou Decaimento.

O Fator de Suavização (λ)

Ajustando a Memória do Modelo

- ▶ O λ (Lambda) é o único parâmetro do modelo, e $0 < \lambda \le 1$.
- Ele controla o peso dado à observação mais recente (Y_t) versus o histórico (S_{t-1}) .
- **EWMA** com λ Alto (Perto de 1):
 - ✓ O modelo é mais sensível a mudanças recentes.
 - ✓ Tem pouca memória do passado distante (acompanha mais de perto o ruído).
- **EWMA** com λ Baixo (Perto de 0):
 - ✓ O modelo é mais suave (menos volátil).
 - Tem muita memória do passado (lento para reagir a choques recentes).
- **Exemplos:** Para estimativa de volatilidade financeira, EWMA com $\lambda = 0.94$ é frequentemente utilizado para dados diários. Para estimativa do Round Trip Time do TCP, EWMA com $\lambda = 0.8$ a $\lambda = 0.9$ é comum. No escalonador PF do 4G/5G, é usado o EWMA para estimar o consumo de banda dos dispositivos com $\lambda = 0.8$.

Pesos Decrescentes Exponencialmente

Expandindo a fórmula recorrente, vemos a ponderação exponencial:

$$S_t = \lambda X_t + \lambda (1 - \lambda) X_{t-1} + \lambda (1 - \lambda)^2 X_{t-2} + \dots + \lambda (1 - \lambda)^k X_{t-k} + \dots$$

- ightharpoonup O peso dado à observação k períodos no passado (Y_{t-k}) é $\lambda(1-\lambda)^k$.
- ➤ Como 1λ é um valor entre 0 e 1, o termo $(1 \lambda)^k$ diminui rapidamente à medida que k aumenta.
- Isso formaliza o conceito: o passado recente é mais relevante que o passado remoto.

Aplicação em Volatilidade (EWMA-Vol)

Modelo utilizado pelo J.P. Morgan RiskMetrics (1994)

O EWMA é frequentemente utilizado para estimar a **Volatilidade** (σ_t^2) dos retornos de ativos financeiros (r_t^2) .

$$\sigma_t^2 = \lambda \sigma_{t-1}^2 + (1 - \lambda) r_{t-1}^2$$

- $ightharpoonup \sigma_t^2$: Previsão da Volatilidade (Variância) no tempo t.
- $ightharpoonup \sigma_{t-1}^2$: Volatilidade (Variância) prevista no período anterior.
- $ightharpoonup {f r}_{t-1}^2$: Retorno ao Quadrado (choque/inovação) no período anterior.

Vantagem: Simples, fácil de implementar e captura a característica de clustering de volatilidade (a volatilidade muda ao longo do tempo).

EWMA vs. GARCH(1,1)

- ➤ O modelo EWMA de volatilidade pode ser visto como um caso especial do modelo GARCH(1,1).
- ➤ Fórmula GARCH(1,1) para Volatilidade:

$$\sigma_t^2 = \omega + \alpha r_{t-1}^2 + \beta \sigma_{t-1}^2$$

- > Relação com EWMA: O EWMA ocorre quando:
 - \checkmark $\omega = 0$ (o termo de longo prazo/variância incondicional é zero).
 - \checkmark $\alpha + \beta = 1$ (a persistência é máxima, $\alpha = 1 \lambda$ e $\beta = \lambda$).
- Implicação: No EWMA, a média de longo prazo da volatilidade é zero, o que pode ser uma limitação em séries financeiras de longo prazo.

Modelo EWMA

Aqui uma lista de comandos, anotar o significado na aula!

```
library(forecast)
library(fpp2)
# Serie Temporal de Exemplo (dados anuais de producao de cerveia australiana)
dados cerveja <- window(ausbeer, start = 1990)
# Visualizar a Serie
plot(dados cerveia.
    main = "Producao de Cerveja Australiana (desde 1990)",
     vlab = "Milhoes de Litros")
# Aplicar a EWMA
# A funcao 'ses' ajusta o modelo SES, otimizando o parametro alpha (lambda)
\# h = 8: Previsao para os proximos 8 periodos (trimestres)
modelo ses <- ses(dados cerveja, h = 8)
# Visualizar o Resultado do Ajuste e Previsao
plot(modelo ses.
    main = "Previsca com EWMA",
     vlab = "Milhoes de Litros")
# Exibir o modelo
summary(modelo ses)
```

Exemplo: MACD

(Moving Average Convergence Divergence)

- ➤ Objetivo: Identificar a força, direção e momentum de uma tendência de preços.
- Método: Baseado na diferença entre duas Médias Móveis Exponenciais (MME) de períodos distintos (rápida e lenta).
- Pacotes R: TTR e quantmod.

Composição do MACD (Padrão 12, 26, 9)

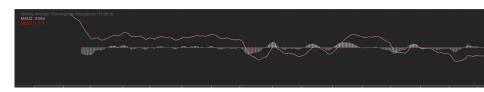
- **1** Linha MACD: $MME_{12} MME_{26}$
- 2 Linha de Sinal: MME₉ da Linha MACD
- **③ Histograma:** Linha MACD − Linha de Sinal

Comandos R-CRAN para MACD

Análise da Ação AAPL (Apple)

- MME Rápida (fast = 12): o λ implícito é relativamente alto (próximo a $1/12 \approx 0.083$).
- MME Lenta (slow = 26): O λ implícito é menor (próximo a $1/26 \approx 0.038$).
- Linha de Sinal (signal = 9): Cálculo: A Média Móvel Exponencial é aplicada não aos preços, mas sim à própria Linha MACD (a diferença entre a EMA de 12 e a EMA de 26), usando 9 períodos. Ο λ implícito é moderado (próximo a 1/9 ≈ 0.11). Esta linha atua como um filtro. Ela suaviza o movimento rápido da Linha MACD, tornando os cruzamentos (os sinais de negociação) menos frequentes e, teoricamente, mais confiáveis.

Interpretação e Sinais do MACD



Sinal	Condição	Implicação (Previsão)
Compra Venda	MACD cruza a Linha de Sinal <u>acima</u> MACD cruza a Linha de Sinal <u>abaixo</u>	Momentum de alta acelerando. Momentum de baixa acelerando.
Zero	Linha MACD cruza o eixo zero	Forte mudança na média de longo prazo.

Divergência

Se o preço faz nova máxima, mas o MACD não, isso é um sinal forte de que a **tendência está perdendo força** e pode reverter.

O Desafio da Amostragem Assíncrona

Por Que o EMA Clássico Não Funciona?

- ➤ Amostragem Síncrona (Clássica): Assume um intervalo de tempo (Δt) constante entre as observações.
- Fórmula EMA (Síncrona):

$$\mu_t = \alpha Y_t + (1 - \alpha)\mu_{t-1}$$
 onde α é constante.

- ightharpoonup Amostragem Assíncrona: Ocorre quando o intervalo $t_i=t_i-t_{i-1}$ é variável ou irregular (ex: sensores de rede, dados de mercado de alta frequência, registro de eventos).
- **Problema:** Se Δt é maior, o peso do histórico (μ_{t-1}) deveria decair mais rapidamente. O uso de um α constante introduz **viés**.

Adaptação: Constante de Tempo (τ)

Relacionando o α com o Intervalo de Tempo

- No EMA/EWMA, o parâmetro α está fundamentalmente ligado a uma **Constante de Tempo** (τ) .
- ightharpoonup au representa o "horizonte de memória"do filtro, ou o tempo que leva para o peso decair a um certo nível ($e^{-1} \approx 36.8\%$).
- ➤ Relação Geral (∆t constante):

$$\alpha = 1 - e^{-\Delta t/\tau}$$

A Solução para o Caso Assíncrono

Para lidar com $\mathbf{t_i}$ variável, devemos usar um fator de suavização α_i que **também** é variável.

O Modelo EMA para t Variável

Fórmula com Fator de Suavização Dinâmico

1 Passo 1: Calcular o Fator de Decaimento (β_i) O termo $(1 - \alpha)$ na fórmula clássica é substituído pelo fator de decaimento:

$$\beta_i = e^{-\Delta t_i/\tau}$$

2 Passo 2: Definir o Novo α Variável (α_i)

$$\alpha_i = 1 - \beta_i = 1 - e^{-\Delta t_i/\tau}$$

3 Passo 3: Aplicar a Fórmula EMA Dinâmica O valor suavizado (μ_i) é calculado no novo tempo t_i :

$$\mu_i = \alpha_i Y_i + (1 - \alpha_i) \mu_{i-1}$$

Interpretação e Vantagens

Garantindo a Consistência do Filtro

- Consistência Garantida: O filtro mantém a mesma Constante de Tempo (τ) (o "horizonte de memória") independentemente da frequência de amostragem.
- Reação ao t:
 - ✓ Se $\mathbf{t_i}$ é **pequeno** $\rightarrow \alpha_i$ é pequeno \rightarrow O novo dado Y_i tem pouco peso.
 - ✓ Se $\mathbf{t_i}$ é **grande** $\rightarrow \alpha_i$ é grande \rightarrow O novo dado Y_i tem um peso maior (pois a média anterior, μ_{i-1} , está "velha").
- **Desafio Prático:** A principal dificuldade é **estimar ou escolher** a Constante de Tempo (τ) de forma apropriada para o processo.

Aplicações em Sistemas Assíncronos

- Sistemas de Controle em Rede (NCS): Sensores e atuadores que se comunicam através de redes com atrasos e perdas de pacotes variáveis.
- Séries Temporais de Alta Frequência (Finanças): Dados tick-by-tick ou event-based, onde o tempo entre as transações é irregular.
- Internet das Coisas (IoT): Dispositivos que enviam dados apenas quando um limite é cruzado (event-triggered sampling), gerando intervalos de tempo irregulares.

EWMA Assíncrono

```
# 1. Dados de Exemplo (Simulação Assincrona)
# Definir tempos e valores com espacamento irregular
# Tempo (em dias) - Assincrono
tempos < c(0, 1, 3, 4, 8, 9, 10, 15, 17, 20)
# Valores (Ex: leitura de um sensor)
valores <- c(53.0, 52.0, 58.0, 57.5, 60.0, 61.5, 59.0, 67.0, 65.5, 64.0)
# 2. Parametro Chave: Constante de Tempo (tau)
# Tau (tau): Representa a "memoria" do filtro em dias.
# Um Tau menor (ex: 2 dias) torna o filtro mais reativo.
# Um Tau major (ex: 10 dias) torna o filtro mais suave.
tau <- 5 # 5 dias de horizonte de memoria
# 3. Calcular os Intervalos de Tempo (Delta t)
# diff(tempos) calcula a diferenca entre um tempo e o tempo anterior
delta t <- c(NA, diff(tempos)) # 0 primeiro Delta t e NA
# 4. Inicializar o Vetor de EWMA (mu)
ewma assincrono <- numeric(length(valores))</pre>
ewma assincrono[1] <- valores[1] # Inicializa o primeiro valor com a la observacao
```

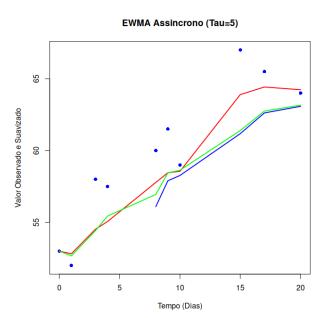
EWMA Assíncrono

```
# 5. Loop para o Calculo Dinamico (onde a logica "Next" e aplicada)
for (i in 2:length(valores)) {
 # 5a. Calcular o alpha (alpha i) dinamico
 # alpha i = 1 - \exp(-Delta + i / tau)
 alpha i < 1 - exp(-delta t[i] / tau)
 # 5b. Aplicar a formula EMA (EWMA)
 # mu \ i = alpha \ i * Y \ i + (1 - alpha \ i) * <math>mu \ \{i-1\}
 ewma assincrono[i]<-alpha i*valores[i] + (1-alpha i)*ewma assincrono[i-1]
# 6. Reunir os Resultados no Data Frame
resultado cran <- data.frame(
 Tempo dias = tempos, Valor Y = valores, Delta t = delta t,
 Alpha i = round(c(NA, 1 - exp(-delta t[-1] / tau)), 4), # Calculando e arredondando
       alpha
 EWMA Assincrono = round(ewma assincrono, 4)
# 7. Fxibir o Resultado
print("--- Tabela de Resultados do EWMA Assincrono (tau = 5 dias) ---")
print(resultado cran)
```

EWMA Assíncrono

```
# 8. Visualização
plot(tempos, valores, type = 'p', pch = 16, col = 'blue',
     main = "EWMA Assincrono (Tau=5)",
     xlab = "Tempo (Dias)",
     vlab = "Valor Observado e Suavizado")
lines(tempos, ewma assincrono, col = 'red', lwd = 2)
# 9. Comparação de resultados
# Calcular o EMA (EWMA) tradicional com n=5, corresponde a um alpha (peso) de 2/(5+1) =
     0.333
ewma resultado <- EMA(valores, n = 5)
lines(tempos, ewma resultado, col = 'blue', lwd = 2)
# Outra forma
library(qcc)
ewma smooth resultado \leftarrow ewmaSmooth(x = tempos, y = valores, lambda = 0.33)
lines(ewma smooth resultado$x, ewma smooth resultado$v, col = 'green', lwd = 2)
```

EWMA Assincrono comparado



Outros Modelos: Alisamento Exponencial Linear

- Utilizado para evitar erros sistemáticos (superestimação ou subestimação) quando o Alisamento Exponencial Simples é aplicado em séries com tendência.
- Procura reconhecer a presença de tendência na série de dados.
- > Fórmulas:

$$F_{t+m} = S_t + mT_t$$

$$S_t = \alpha X_t + (1 - \alpha)(S_{t-1} + T_{t-1})$$

$$T_t = \beta(S_t - S_{t-1}) + (1 - \beta)T_{t-1}$$

ightharpoonup lpha é o peso atribuído à observação ($0<\alpha<1$) e β é o coeficiente de alisamento da tendência ($0<\beta<1$).

Outros Modelos: Alisamento Exponencial Sazonal e Linear de Winter

> Fórmulas:

$$S_{t} = \alpha \frac{X_{t}}{L_{t-l}} + (1 - \alpha)(S_{t-1} + T_{t-1})$$

$$T_{t} = \beta(S_{t} - S_{t-1}) + (1 - \beta)T_{t-1}$$

$$L_{t} = \gamma \frac{X_{t}}{S_{t}} + (1 - \gamma)L_{t-l}$$

$$F_{t+m} = (S_{t} + mT_{t})L_{t-l+m}$$

- $ightharpoonup L_t$ corresponde ao alisamento do fator de sazonalidade $\frac{X_t}{S_t}$.
- / / é o intervalo da sazonalidade.
- $lacktriangle \gamma$ corresponde ao peso atribuído ao fator de sazonalidade.

Exercício

- Modele a série representada pelo valor de fechamento diário das ações da Petrobras (PETR4).
 - ✓ Utilize o modelo ARIMA
 - ✓ Explique o resultado. Qual outro modelo esse resultado indica?
 - Analise o comportamento com o método MACD e explique o significado.
- 2 Modele a série representada pelo valor do IPCA mensal no Brasil.
- Modele a série Producao de Cerveja Australiana (desde 1990) com o modelo ARIMA.
- Modele a série de Vendas ao Varejo no Brasil com o modelo ARIMA.

Exercício PETR4

```
library(quantmod)
library(forecast)
ticker <- "PFTR4.SA"
data inicio <- "2023-01-01" # Exemplo: 1º de janeiro de 2023 até hoje
# Baixa os dados históricos do Yahoo Finance
getSymbols(ticker.
           src = "yahoo",
           from = data inicio,
           to = Svs.Date().
           auto.assign = TRUE)
# O obieto criado é chamado "PETR4.SA"
# Extrai o preco de fechamento ajustado (ideal para análise de séries temporais)
# 'Cl' é um atalho do quantmod para a coluna de fechamento ajustado
fechamento aiustado <- Cl(get(ticker))</pre>
# Estuda a série
print(tail(fechamento aiustado))
plot(fechamento ajustado)
acf(fechamento ajustado)
pacf(fechamento ajustado)
hist(fechamento ajustado)
```

Exercício PETR4

```
# AJUSTE DO MODELO ARIMA AUTOMÁTICO (auto.arima)
modelo arima <- auto.arima(fechamento ajustado,</pre>
                           trace = TRUE, # Imprime o processo de busca
                           stepwise = FALSE, # Busca mais exaustiva (lenta, mas melhor)
                           approximation = FALSE) # Sem aproximação (mais preciso)
print(summary(modelo arima))
# DTAGNÓSTICO DOS RESÍDUOS
checkresiduals(modelo arima)
# PREVISÃO (FORECAST)
horizonte previsao <- 21
previsao <- forecast(modelo arima, h = horizonte previsao)</pre>
print(previsao)
plot(previsao.
     main = "Previsão ARIMA para PETR4.SA (Fechamento Ajustado)",
     xlab = "Data",
     vlab = "Preço (R$)")
```

Exercício PETR4

```
# MACD
library(TTR)
library(quantmod)
# 0 MACD usa os preços de Fechamento.
precos fechamento <- Cl(PETR4.SA)
# Para uma EMA de 12 períodos (\$n=12\$), o multiplicador \$\alpha\$ será: \$2 / (12 + 1) \
     approx 0.1538$, ou cerca de $15.38\%$.
EMA rapida <- EMA(precos fechamento, n = 12)
# Calcula a EMA de 26 períodos
EMA lenta <- EMA(precos fechamento, n = 26)
# Plota o gráfico principal (OHLC) sem indicadores (TA=NULL)
chartSeries(PETR4.SA.
            name = "PETR4.SA - EWMA para MACD".
            theme = "white",
            TA = NIIII)
addTA(EMA rapida, on = 1, col = "red", lty = 1)
addTA(EMA lenta, on = 1, col = "blue", lty = 1)
# Usando o pacote já implementado
addMACD(fast = 12, slow = 26, signal = 9)
```

Exercício IPCA

Comandos R

```
library(rbcb)
library(forecast)
# Baixando dados mensais do IPCA (Código BCB 433) com rbcb
ipca <- rbcb::get series(</pre>
    code = 433,
    start date = "2010-01-01"
str(ipca)
ipca #observe os dados
ipca[["433"]]
# Verificação da série:")
par(mfrow = c(2, 2))
plot(ipca,type="l")
hist(ipca[["433"]])
acf(ipca[["433"]])
pacf(ipca[["433"]])
```

Analise as Hipóteses

Exercício IPCA

Comandos R

Analise e proponha alternativas'

Modelo EWMA

Comandos R

```
library(forecast)
library(fpp2)
# Serie producao de cerveja australiana)
cerveja <- window(ausbeer, start = 1990)
cerveja # observe que são dados trimestrais!!
str(cerveja)
# Verificação da série:")
par(mfrow = c(2, 2))
plot(cerveja,
     main = "Producao de Cerveia Australiana (desde 1990)".
     vlab = "Milhoes de Litros")
hist(cerveja)
acf(cerveja)
pacf(cerveia)
```

Analise as Hipóteses e proponha alternativas

Exercício Vendas no Varejo no Brasil

```
Comandos R
library(rbcb)
library(forecast)
# Código 20108: Índice de Volume de Vendas no Varejo (Anual)
vendas <- rbcb::get series(</pre>
 code = 20108,
 start = "1990-01-01", # Geralmente, séries anuais têm um histórico mais longo
vendas # observe os dados
str(vendas)
# Verificação da série:")
par(mfrow = c(2, 2))
plot(vendas, ,type="l")
hist(vendas[["20108"]])
acf(vendas[["20108"]],lag.max=100)
pacf(vendas[["20108"]],lag.max=24)
```

Analise as Hipóteses e proponha alternativas