UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE TECNOLOGIA ENGENHARIA ELÉTRICA

ELTON RODRIGUES DE LIMA

APLICAÇÃO DE MÉTODO DE CÁLCULO NÃO ITERATIVO PARA APOIO A ESTUDOS DE SISTEMAS DE DISTRIBUIÇÃO DE ENERGIA ELÉTRICA ATIVOS

> CURITIBA 2019

ELTON RODRIGUES DE LIMA

APLICAÇÃO DE MÉTODO DE CÁLCULO NÃO ITERATIVO PARA APOIO A ESTUDOS DE SISTEMAS DE DISTRIBUIÇÃO DE ENERGIA ELÉTRICA ATIVOS

Trabalho de conclusão de curso apresentado ao curso de Engenharia Elétrica, com ênfase em Eletotécnica, Departamento de Engenharia Elétrica, Setor de Tecnologia, Universidade Federal do Paraná, como requisito parcial à obtenção do título de Bacharel em Engenharia Elétrica. Orientador: Prof. Dr. Odilon Luís Tortelli

TERMO DE APROVAÇÃO

ELTON RODRIGUES DE LIMA

APLICAÇÃO DE MÉTODO DE CÁLCULO NÃO ITERATIVO PARA APOIO A ESTUDOS DE SISTEMAS DE DISTRIBUIÇÃO DE ENERGIA ELÉTRICA ATIVOS

Trabalho de Conclusão de Curso aprovado como requisito parcial à obtenção do título de Bacharel em Engenharia Elétrica, Curso de Graduação em Engenharia Elétrica, Setor de Tecnologia da Universidade Federal do Paraná, pela seguinte banca examinadora:

> Orientador: Prof. Dr. Odilon Luís Tortelli Departamento de Engenharia Elétrica, UFPR

> Prof. Dr. Mateus Duarte Teixeira Departamento de Engenharia Elétrica, UFPR

> Prof. Dr. Wilson Arnaldo Artuzi Junior Departamento de Engenharia Elétrica, UFPR

> > Curitiba, 14 de junho de 2019

AGRADECIMENTOS

Agradeço primeiramente a minha família, por ter disposto de muita paciência, me apoiando e me amando incondicionalmente.

Agradeço a minha namorada pelos conselhos, companheirismo e por sempre estar ao meu lado nesta reta final de graduação.

Meu agradecimento especial ao Prof. Dr. Odilon Luís Tortelli, que foi fundamental para o desenvolvimento deste trabalho, aconselhando e me orientando para a melhor execução possível.

Aos amigos de Diretório Acadêmico de Engenharia Elétrica, que foram peças fundamentais nos últimos 3 anos.

Aos amigos que conheci dentro do Conselho dos Estudantes de Tecnologia, por todas as conversas, lutas e problemas solucionados, sempre com muita alegria.

"A única coisa que podemos ter certeza é a incerteza." Zygmunt Bauman

RESUMO

O presente trabalho trata da aplicação de um método de cálculo não iterativo para determinação da condição de operação de redes elétricas de distribuição, baseado na abordagem linearizada do Fluxo de Potência utilizado em sistemas de transmissão, orientado para o apoio a estudos de planejamento e operação de sistemas de distribuição de energia elétrica. Também, realiza a comparação de valores. O método apresentado faz uso da técnica de normalização complexa por unidade, a fim de aprimorar a precisão dos resultados obtidos. Simulações computacionais são realizadas, considerando diferentes exemplos de sistemas teste de distribuição e o impacto da alta relação R/X desses sistemas. Os resultados obtidos são comparados com métodos tradicionais de calculo do fluxo de potencia.e demonstram que o método não iterativo é eficiente e constitui-se numa relevante alternativa de análise para colaborar com os estudos de sistemas de distribuição modernos.

Palavras-chave: sistemas de distribuição, fluxo de potência, fluxo de potência linearizado, normalização complexa.

LISTA DE ILUSTRAÇÕES

Figura 1 – Arranjos típicos de Redes de Subtransmissão	13
Figura 2 - Arranjo de barra simples com um circuito de suprimento	14
Figura 3 - Arranjo de barra dupla com dois circuitos de suprimento	14
Figura 4 - Relação do número de conexões de geração distribuída no Brasil	15
Figura 5 - Representação da c.p.u	20
Figura 6 - Representação da c.p.u para as injeções de potência	21
Figura 7 - Nova representação da linha de distribuição normalizada	23
Figura 8 - Representação do sistema com duas barras	23
Figura 9 – Exemplo para obtenção de G' e G''	25
Figura 10 - Sistema após aplicação da c.p.u	26
Figura 11 - Fluxograma relacionada à formação de G' e G''	28
Figura 12 – Possibilidades quanto à escolha de $ atla base$	29
Figura 13 - Sistema de 3 barras utilizado como exemplo	31
Figura 14 – Sistema de 69 barras utilizado como exemplo	31
Figura 15 - Comparação dos erros obtidos na forma percentual	33
Figura 16 - Gráfico de barras para verificar o erro do sistema com a presença do	
ângulo de 30º	35
Figura 17 - Demonstração em cores do erro entre os métodos não iterativo e	
Newton Raphson	35
Figura 18 - Gráfico de barras para verificar o erro do sistema sem a presença do	
ângulo de 30º	36
Figura 19 - Demonstração em cores do erro entre os métodos não iterativo e Nev	vton
Raphson	36
Figura 20 - Gráfico do erro para relação R/X nominal	38
Figura 21 - Gráfico do erro para relação R/X duplicada	38
Figura 22 - Gráfico do erro para relação R/X triplicada	39
Figura 23 – Perfil de Tensão com o método NR	40
Figura 24 – Perfil de Tensão com o método não iterativo	41
Figura 25 - Gráfico comparativo do erro percentual	42

LISTA DE TABELAS

Гabela 1 - Subdivisão do Sistema de distribuição1	2
labela 2 - Comparação de valores entre o método não iterativo e o método Newton	
Raphson	32
Fabela 3 - Comparação de valores entre o método não iterativo e o método Newton	
Raphson	33
labela 4 - Comparação de valores entre o método não iterativo e o método Newton	
Raphson	34
labela 5 - Comparação de valores entre o método não iterativo e o método Newton	
Raphson	34
Tabela 6 - Erro máximo obtido	39
Fabela 7 - Valores máximos dos erros para os 3 cenários	2

LISTA DE ABREVIATURAS E SIGLAS

FPDC	Fluxo de Potência Linearizado
ANEEL	Agência Nacional de Energia Elétrica
РСН	Pequenas Centrais Hidrelétricas
MVA/km²	Mega Volt Ampere por quilômetros quadrados
c.p.u	Normalização complexa por unidade
NR	Newton Raphson
UFPR	Universidade Federal do Paraná

	SUMÁRIO	
1	INTRODUÇÃO	10
1.1	CONTEXTO	10
1.2	OBJETIVOS	11
1.2.1	Objetivo Geral	11
1.2.2	Objetivos Específicos	11
2	FUNDAMENTAÇÃO TEÓRICA	12
2.1	SISTEMAS DE DISTRIBUIÇÃO	12
2.2	GERAÇÃO DISTRIBUÍDA	15
3	METODOLOGIA APLICADA	22
3.1	MÉTODO NÃO ITERATIVO	22
3.2	ESTRATÉGIA DE AVALIAÇÂO	30
4	RESULTADOS OBTIDOS	32
4.1	SISTEMA COM 3 BARRAS	32
4.2	SISTEMA COM 69 BARRAS	37
5	CONCLUSÃO	43
REFE	RÊNCIAS	44
APÊN	DICE A – VALORES PARA R/X NOMINAL	46
APÊN	DICE B – VALORES PARA R/X DUPLICADA	48
APÊN	DICE C – VALORES PARA R/X TRIPLICADA	50
APÊN	DICE D – VALORES PARA O MÉTODO NEWTON RAPHSON	52
APÊN	DICE E – VALORES D ERRO PARA R/X NOMINAL	54
APÊN	DICE F – VALORES DO ERRO PARA R/X DUPLICADO	56
APÊN	DICE G – VALORES DO ERRO PARA R/X TRIPLICADO	58
APÊN	DICE H – VALORES DE GD PARA NR	60
APÊN	DICE I – VALORES DE GD MÉTODO NÃO ITERATIVO	62
APÊN	DICE J – ERRO PERCENTUAL	64

1 INTRODUÇÃO

1.1 CONTEXTO

Os sistemas de distribuição vêm passando por significativas mudanças, principalmente pelas novas tecnologias desenvolvidas e pela demanda de integração de diferentes fontes de energia. Como consequência dessa evolução, observa-se também uma necessidade de que se aprimorem os métodos de análise associados a tais sistemas.

Ao longo dos últimos anos, nota-se uma diferença no comportamento dos sistemas de distribuição, visto que com o adendo da geração distribuída bem como do conceito de Smart Grids, os sistemas tradicionalmente passivos e com fluxo de potência unidirecional, tornam-se sistemas ativos com bidirecionalidade do fluxo de potência, o que eleva a complexidade dos estudos acerca disso e comprometem a efetiva utilização de métodos de análise corriqueiramente aplicados. Dado este contexto, no qual os métodos tradicionais para a análise de fluxo de potência não oferecem a efetividade esperada, têm-se a necessidade do desenvolvimento de metodologias alternativas e que se enquadrem mais adequadamente a este novo cenário.

Uma das alternativas que vem sendo estudada é a aplicação da técnica de normalização complexa por unidade (cpu) (TORTELLI et al., 2015), (AMBRÓSIO, 2019) para, artificialmente, modificar a relação R/X dos condutores da rede elétrica de distribuição, a fim de adequá-la a utilização de métodos de análise de fluxo de potência, comumente utilizado nos sistemas de transmissão.

A ferramenta de análise de fluxo de potência linearizado, amplamente utilizada em estudos de planejamento dos sistemas de transmissão de energia elétrica, propicia a obtenção de valores aproximados dos ângulos de tensão da barra de forma não iterativa, e, assim, proporcionando rapidez e eficácia na análise.

A possibilidade da utilização do método linearizado se dá pela característica de acoplamento P-θ dos sistemas de transmissão, consequência da baixa relação R/X típica de linhas de transmissão. Diferentemente, nos sistemas de distribuição, por ter uma característica de alta relação R/X, este acoplamento é menos significativo, o que

implica na diferença da magnitude de tensão entre as barras, tornando este fator mais significativo relacionado ao fluxo de potência ativo.

1.2 OBJETIVOS

1.2.1 Objetivo Geral

O objetivo geral do trabalho é realizar a aplicação e avaliação de um método não iterativo para obtenção das tensões nodais de sistemas de distribuição ativos.

1.2.2 Objetivos Específicos

Os objetivos específicos consistem em:

- a) Apresentar as caracateristicas fundamentais de sistemas de distribuição modernos e seus métodos de análise;
- b) Apresentar os fundamentos da metodologia de cálculo não iterativo;
- c) Avaliar a precisão dos resultados obtidos com o método não iterativo aplicado a diferentes estruturas de distribuição.

2 FUNDAMENTAÇÃO TEÓRICA

2.1 SISTEMAS DE DISTRIBUIÇÃO

É possível caracterizar o sistema de distribuição de energia elétrica como um conjunto que engloba equipamentos, linhas, fontes de geração de energia elétrica e subestações, que é interligado ao sistema de transmissão.

No Brasil, o órgão responsável pela regulação do sistema de distribuição, bem como do sistema elétrico em geral, atualmente, é a Agência Nacional de Energia Elétrica (ANEEL), que dita as regras do sistema bem como elabora as resoluções que são seguidas por todas as companhias de energia elétrica que atuam no sistema elétrico brasileiro.

Área do S.E.P.	Componente do Sistema	
	Subtransmissão	
Distribuição	Distribuição primária	
	Distribuição secundária	

Tabela 1 - Subdivisão do Sistema de distribuição

Fonte: Acervo pessoal do Autor, 2019.

O sistema de subtransmissão está alocado entre os sistemas de transmissão e as subestações de distribuição, tendo como função receber as linhas do sistema de transmissão (230kV) e transportá-las às subestações de distribuição em tensões de 69kV e 138kV. Em casos específicos, este transporte é realizado em 34,5kV, não sendo comum essa configuração. Os consumidores deste sistema são representados por grandes instalações industriais, estações de tratamento e bombeamento de água (KAGAN, OLIVEIRA e ROBBA, 2010). Das configurações de operação, os sistemas de subtransmissão podem ser utilizados tanto em malha como em configuração radial, com diferentes tipos de arranjo. Estes arranjos podem ser observados abaixo (Figura 1).

Figura 1 – Arranjos típicos de Redes de Subtransmissão.

Fonte: Retirado de (KAGAN, OLIVEIRA e ROBBA, 2010), pág. 9.

As subestações de distribuição recebem as redes de subtransmissão, sendo então responsáveis pelo abaixamento de tensão destas redes para interligação com a rede de distribuição primária. Os arranjos para estas subestações são inúmeros, sendo dependentes de fatores como a quantidade de densidade de carga bem como a confiabilidade da subestação. Cita-se alguns tipos de arranjo, como o arranjo de barra simples com um circuito de suprimento e o arranjo de barra dupla com dois circuitos de suprimento (KAGAN, OLIVEIRA e ROBBA) representados pelas Figura 2 e 3, respectivamente.

Figura 2 - Arranjo de barra simples com um circuito de suprimento.

Fonte: Retirado de (KAGAN, OLIVEIRA e ROBBA, 2010), pág. 10.

Figura 3 - Arranjo de barra dupla com dois circuitos de suprimento.

Fonte: Retirado de (KAGAN, OLIVEIRA e ROBBA, 2010), pág.11

Conforme a Tabela 1, o sistema de distribuição é subdividido em três partes, subtransmissão, distribuição primária e secundária. As redes de distribuição primária se caracterizam por ser um sistema radial, enquanto a secundária funciona tanto em rede malhada como também em radial.

A rede de distribuição primária pode ser tanto aérea como subterrânea, com diferentes arranjos em cada sistema. Constroem-se as redes aéreas com a utilização de postes de concreto, cruzetas, etc. No caso de zonas rurais, também se utiliza madeira tratada para a construção dos postes. As redes subterrâneas são utilizadas quando a densidade de carga atinge valores elevados, maiores que 28 MVA/km² (KAGAN, OLIVEIRA e ROBBA, 2010). Apesar de ser relativamente mais caro do que as redes aéreas, as redes subterrâneas oferecem mais confiabilidade contra falhas

provenientes de causas externas, uma vez que não há a exposição das linhas contra intempéries e até mesmo ação humana.

2.2 GERAÇÃO DISTRIBUÍDA

Por definição, geração distribuída é a geração de energia elétrica, independente da potência, através de instalações consumidoras ou próximas a elas, operando de forma paralela ou isolada. A geração distribuída inclui co-geradores, PCH's (Pequenas Centrais Hidrelétricas), painéis fotovoltaicos, geradores de emergência, etc.

Buscando regulamentar a geração de energia elétrica pelas instalações consumidoras, em 2012 a ANEEL aplicou a Resolução Normativa nº 482, que viabilizou aos consumidores brasileiros a geração própria, incluindo a possibilidade do fornecimento do excedente gerado para as redes de distribuição. De acordo com a ANEEL, as justificativas para viabilizar a geração distribuída, estão na diversificação da matriz energética, uma vez que majoritariamente a geração de energia elétrica no Brasil se dá por recursos hídricos, o baixo impacto ambiental e o adiamento de investimentos em expansão nos sistemas de distribuição e transmissão.

Desde sua regulamentação, têm-se cada vez mais unidades consumidoras inseridas no contexto de geração distribuída. Para fins de exemplificação, o gráfico da Figura 4 retrata este cenário.

Figura 4 - Relação do número de conexões de geração distribuída no Brasil

Fonte: (FILHO, 2018)

Ainda que no Brasil seja notória a busca por fontes renováveis de energia, a Nota Técnica 0056/2017 elaborada pela ANEEL nos mostra que grande parte desta procura se dá por painéis fotovoltaicos, uma vez que sua instalação em residências é mais fácil. Ainda segundo a Nota Técnica, levando-se em conta as dimensões do Brasil bem como suas características geográficas, a procura pela geração distribuída ainda está abaixo do potencial de expansão do país. Um fator que justifica isto é o preço alto de instalação destas fontes.

2.3 ANÁLISE DO FLUXO DE POTÊNCIA

A análise do fluxo de potência é uma ferramenta amplamente utilizada, seja para planejamento da expansão ou da operação do sistema elétrico, que possibilita a avaliação das condições de operação de estados atuais e futuros, auxiliando na obtenção de níveis de perdas e sobrecargas em equipamentos, dentre outras possibilidades.

De acrodo com (MONTICELLI, 1983), a formulação matemática usual do problema de cálculo do fluxo de potência leva em conta a existência de quatro variáveis em cada barra (nó elétrico) do sistema elétrico, associadas às duas equações obtidas pela aplicação das Leis de Kirchhoff: a equação de balanço de potencia ativa e a de balanço de potencia reativa. Assim, para que o problema possa ser resolvido, apenas duas dessas variáveis podem permanecer como incógnitas, sendo as outras duas especificadas como dados de entrada do problema. Sendo assim, temos as variáveis do problema de fluxo de potência:

 V_k – magnitude da tensão nodal da barra k;

 θ_k – ângulo da tensão nodal da barra k;

 P_k – geração líquida (geração menos a carga) de potência ativa da barra k;

 Q_k – geração líquida de potência reativa da barra k;

Conforme a definição das variáveis especificadas, tem-se a caracterização de três tipos diferentes de barra, ditas como barras de carga, barras de geração ou barra de referência, ou seja:

Barras tipo PQ (barras de carga) – dados $P_k \in Q_k$, calculados $V_k \in \theta_k$; Barras tipo PV (barras de geração) – dados $P_k \in V_k$, calculados $Q_k \in \theta_k$; Barras tipo $V\theta$ (barra de referência) – dados $V_k \in \theta_k$, calculados $P_k \in V_k$;

Da primeira Lei de Kirchoff, obtém-se a formulação matemática descrita abaixo, em que as potências ativas e reativas injetadas nas barras equivalem à soma dos fluxos de potência ativa e reativa que saem das barras. Assim sendo,

$$P_{k} = \sum_{m \in \Omega_{k}} P_{km} \left(V_{k}, V_{m}, \theta_{k}, \theta_{m} \right)$$
(2.1)

$$Q_k + Q_k^{sh}(V_k) = \sum_{m \in \Omega_k} Q_{km}(V_k, V_m, \theta_k, \theta_m)$$
(2.2)

Em que:

k = 1, ...NB, em que NB é o número de barras da rede;

 Ω_m – conjunto das barras vizinhas à barra k;

 V_k , V_m – magnitudes das tensões das barras terminais do ramo k-m;

 θ_k , θ_m – ângulos das tensões das barras terminais do ramo k-m;

 P_{km} – fluxo de potência ativo no ramo k-m;

 Q_{km} – fluxo de potência reativa no ramo k-m;

 Q_k^{sh} – injeção de potência reativa devida ao elemento shunt da barra k;

As injeções das potências ativa e reativa são dadas por:

$$P_{k} = V_{k} \sum_{m \in K} V_{m} \left(G_{km} \cos \theta_{km} + B_{km} \sin \theta_{km} \right) \quad (2.3)$$

$$Q_{k} = V_{k} \sum_{m \in K} V_{m} \left(B_{km} \cos \theta_{km} - G_{km} \sin \theta_{km} \right) \quad (2.4)$$

Tal que:

 G_{km} , B_{km} – coeficientes reais e imaginários da matriz admitância;

K – conjunto das barras vizinhas à barra k, incluindo K;

Definindo o número de barras PQ e PV como NPQ e NPV, respectivamente, o problema se divide em 2 subsistemas. Sendo assim, no subsistema 1 é objetivado o cálculo dos módulos das tensões e ângulos para as barras PQ e PV. Tem-se então a equação 2.5

$$x = \begin{bmatrix} \theta \\ V \end{bmatrix}$$
(2.5)

O vetor θ possui dimensão NPQ + NPV, já o vetor V apenas NPQ. Assim, o subsistema 1 é dado por 2NPQ + NPV equações algébricas não lineares, definido por:

$$g(x) = g(V,\theta) = \begin{bmatrix} \Delta P \\ \Delta Q \end{bmatrix} = \begin{bmatrix} p^{esp} & -P(V,\theta) \\ Q^{esp} & -Q(V,\theta) \end{bmatrix} = 0$$
(2.6)

Sendo então:

 ΔP – vetor dos desvios de potência ativa;

 ΔQ – vetor dos desvios de potência reativa;

 p^{esp} – vetor das injeções de potência ativa nas barras PQ e PV;

 Q^{esp} – vetor das injeções de potência reativa nas barras PQ e PV;

P – vetor das injeções de potência ativa calculados por 2.3;

Q – vetor das injeções de potência reativa calculados por 2.4;

Para se resolver o subsistema 1, é necessário a utilização de métodos iterativos, uma vez que o problema não possui solução direta.

Com a obtenção de todos os valores dos módulos e ângulos das tensões através do subsistema 1, no subsistema 2 calculam-se os valores de P_k e Q_k para a barra $V\theta$ e Q_k para as barras PV de forma direta, com a utilização das equações 2.3 e 2.4.

A necessidade da utilização de um método iterativo para resolução do problema do fluxo de potência tem sido amplamente estudada para que se busque alternativas quanto ao seu uso, uma vez que mesmo os métodos mais adequados ao problema podem demorar para apresentar um resultado ou até mesmo não conseguindo atingí-lo, já que não é sempre que o método utilizado irá convergir. Essa dependência de valores condizentes nos dados do problema limita, por exemplo, o operador do sistema para que se faça a análise de expansão do sistema, bem como testes em determinadas condições de operação.

2.4 NORMALIZAÇÃO COMPLEXA

A normalização complexa por unidade (c.p.u) é um mecanismo capaz de alterar, artificialmente, a relação R/X dos condutores de uma rede elétrica. Retomada

e reapresentada por Lourenço, Loddi e Tortelli (2010), a c.p.u é oriunda da técnica de rotação de eixos apresentada por Garcia e Monticelli (1984).

A c.p.u é uma generalização do método convencional de normalização das grandezas elétricas por unidade (DURCE et.al., 2012). Na c.p.u., utiliza-se uma base de potência complexa conforme um ângulo escolhido, ajustando-se assim a relação R/X de seus condutores.

Ao se ajustar a relação R/X para valores baixos, uma vez que nos sistemas de distribuição têm-se a característica de uma alta relação R/X, torna-se possível a aplicação de mecanismos utilizados nos sistemas de transmissão.

A c.p.u, como já dito, é obtida pela aplicação de uma potência base complexa, conforme a equação 2.7 abaixo:

$$S_{base}^* = |S_{base}|e^{-j\phi_{base}} \tag{2.7}$$

Em que ϕ_{base} representa o ângulo complexo da potência base. Assim, a impedância base fica determinada por,

$$Z_{base}^{*} = \frac{V_{base}^{2}}{S_{base}^{*}} = |Z_{base}^{*}|e^{-j\phi_{base}}$$
 (2.8)

A partir da expressão (2.8), pode-se determinar então os valores de R_{cpu} e X_{cpu} , apresentados pelas equações 2.9 e 2.10.

$$R_{cpu} = |Z_{pu}|\cos(\theta + \phi_{base})$$
(2.9)
$$X_{cpu} = |Z_{pu}|\sin(\theta + \phi_{base})$$
(2.10)

Tendo então as equações (2.9) e (2.10), é possível estabelecer uma relação R/X, assim sendo

$$\frac{X_{cpu}}{R_{cpu}} = \tan(\theta + \phi_{base})$$
(2.11)

Nota-se que a relação R/X demonstrada por (2.11) é ajustada por um ϕ_{base} . A Figura 5 ilustra a aplicação da c.p.u, em que α representa o ângulo ϕ_{base} ajustado.

Figura 5 - Representação da c.p.u

Fonte: Acervo pessoal do Autor, 2019.

Pela Figura 5, é visto que o valor da impedância foi alterado. Num primeiro momento, tinha-se Z_{pu} e, a partir da da normalização proporcionada pela c.p.u, os parâmetros são modificados, de modo que para permanecer com o estado inicial da rede, esta modificação ocorre também para as injeções de potência ativa e reativa, que possuem um ângulo δ , denominado ângulo de potência das injeções. Então,

$$S_{cpu}^{*} = \frac{|S_{VA}^{*}|e^{j\delta}}{|S_{base}^{*}|e^{-j\theta_{base}}} = |S_{pu}^{*}|e^{j(\delta + \phi_{base})}$$
(2.12)

As potências ativa e reativa normalizadas são dadas por:

$$P_{cpu} = |S_{pu}^*| \cos(\delta + \phi_{base})$$
(2.13)

$$Q_{cpu} = |S_{pu}^*| \operatorname{sen}(\delta + \phi_{base})$$
(2.14)

Graficamente, esta normalização pode ser visualizada através da Figura 6, em que β é a representação angular de ϕ_{base} . Nota-se que a potência reativa se aproxima de zero, efeito este causado pela utilização da c.p.u.

Fonte: Acervo pessoal do Autor, 2019.

3 METODOLOGIA APLICADA

3.1 MÉTODO NÃO ITERATIVO

O método não iterativo proposto em (AMBROSIO, 2019) tem como objetivo principal a obtenção das tensões nodais em sistemas com elevada relação R/X.

Esta alta relação R/X, anteriormente comentada, é uma característica presente tipicamente em sistemas de distribuição. Um grande impacto ocasionado por este aspecto é a dependência do fluxo de potência ativo pelas magnitudes das tensões nodais, o que permite afirmar que a variável fundamental a ser determinada é a magnitude da tensão. Isto não ocorre em sistema com baixa relação R/X como por exemplo, nas redes de transmissão, em que se evidencia o acoplamento P- θ , ou seja, existe uma forte sensibilidade entre potência ativa e ângulo de tensão.

Nesse sentido, o Fluxo de Potência Linearizado (FPDC) é utilizado na determinação dos ângulos das tensões de sistemas de transmissão. Já na metodologia proposta em (AMBROSIO, 2019) utiliza-se uma abordagem semelhante ao método linearizado, porém, nesse caso, para obtenção de valores da magnitude das tensões de sistemas de distribuição.

A aplicabilidade desta metodologia é bastante ampla, podendo ser empregada tanto em sistemas com malha como também em sistemas de distribuição radiais, com ou sem a ocorrência de geração distribuída.

A metodologia faz uso da técnica de normalização complexa, dada a sua capacidade de acentuar a relação R/X, proporcionando resultados mais precisos.

Conforme a relação R/X aumenta, o efeito resistivo nas redes de distribuição fica mais pronunciado. Tendo em vista que este aumento representa maior discrepância entre o impacto resistivo e o impacto reativo presentes nas linhas de distribuição, a característica reativa da linha pode então ser desprezada, de forma análoga às simplificações consideradas nos sistemas de transmissão quanto ao efeito resistivo, quando da utilização do método de fluxo de potência linearizado.

Portanto, ocorre a simplificação da representação das linhas equivalentes de distribuição que, após a normalização, são representadas somente por sua característica resistiva. A Figura 7 indica esta representação simplificada da linha de distribuição.

Figura 7 - Nova representação da linha de distribuição normalizada.

Fonte: Acervo pessoal do Autor, 2019.

Desta forma, é considerado somente a energia ativa que circula pela rede, que, normalizada, é puramente resistiva. Têm-se então um circuito em corrente contínua convencional.

Para demonstrar este circuito, a Figura 8 representa uma linha de distribuição convencional, com presença de uma carga e de um gerador. Neste caso, a barra de referência é a mesma do gerador, designada barra tipo V θ em que é conhecida a tensão V_1 . Então, a variável de estado que será calculada é a tensão na barra 2, V_2 .

Figura 8 - Representação do sistema com duas barras.

Fonte: Acervo pessoal do Autor, 2019.

Aplica-se a Lei de Kirchhoff, afim de se obter o valor de V_2 , uma vez que já é conhecida a tensão na barra 1. Então,

$$V_2 = V_1 - I * R \tag{3.1}$$

Da equação que relaciona a potência ativa e a tensão na barra 2, dá-se a equação da corrente de carga, que é

$$I = \frac{P_2}{V_2}$$
(3.2)

Das equações (3.1) e (3.2), substitui-se o valor da corrente e, invertendo a resistência, é obtido a equação (3.3):

$$V_2 = V_1 - \frac{P_2}{V_2} G^{-1} \qquad (3.3)$$

Por fim, ambos os lados da equação (3.3) são multiplicados por V_2 , resultando em:

$$V_2^2 + (-V_1)V_2 + P_2G^{-1} = 0 (3.4)$$

A variável V_2 é quadrática e, para ser possível determinar seu valor, aplica-se a fórmula de Bhaskara, em que:

$$V_2 = \frac{V_1 + (V_1^2 + -4P_2G^{-1})^{\frac{1}{2}}}{2}$$
(3.5)

Generalizando para um sistema com n barras e com a expansão matricial das variáveis de estado, bem como dos parâmetros do sistema, em que sua dimensão é dada pelo número de barras sem controle de tensão (barras PQ), obtém-se a equação (3.6).

$$[V] = \frac{[V_{ref}] + ([V_{ref}]^2 - 4G^{-1}[P])^{\frac{1}{2}}}{2}$$
(3.6)

Em que:

[V]: vetor de variáveis de estado, relativo às tensões;

 $[V_{ref}]$: vetor relativo à tensão das barras de tensão controlada, dada por (3.7);

[P]: vetor de injeções de potência ativa;

G: matriz condutância da rede, que é obtido através das simplificações do método (AMBROSIO, 2019);

O vetor $[V_{ref}]$ é definido por:

$$[V_{ref}] = [G']^{-1}[G''][V_A]$$
(3.7)

Em que:

G' e G" são submatrizes do tipo conduntância;

 $[V_A]$: vetor das tensões das barras de tensão controlada.

Para melhor compreensão de como são formadas G' e G", o sistema de 5 barras da Figura 9 a seguir é mostrado.

Figura 9 – Exemplo para obtenção de G' e G".

O sistema normalizado através da c.p.u é dado pela Figura 10.

A matriz condutância (G) do sistema é:

$$\begin{aligned} G \\ &= \begin{bmatrix} -\left(\frac{1}{R_{12}} + \frac{1}{R_{14}} + \frac{1}{R_{15}}\right) & \frac{1}{R_{12}} & 0 & \frac{1}{R_{14}} & \frac{1}{R_{15}} \\ \frac{1}{R_{12}} & -\left(\frac{1}{R_{12}} + \frac{1}{R_{23}} + \frac{1}{R_{25}}\right) & \frac{1}{R_{23}} & 0 & \frac{1}{R_{25}} \\ 0 & \frac{1}{R_{23}} & -\left(\frac{1}{R_{23}}\right) & 0 & 0 \\ \frac{1}{R_{14}} & \frac{1}{R_{23}} & 0 & -\left(\frac{1}{R_{14}} + \frac{1}{R_{45}}\right) & \frac{1}{R_{45}} \\ \frac{1}{R_{15}} & \frac{1}{R_{25}} & 0 & \frac{1}{R_{45}} & -\left(\frac{1}{R_{15}} + \frac{1}{R_{25}} + \frac{1}{R_{45}}\right) \end{bmatrix} \end{aligned}$$
(3.8)

Reescrevendo a matriz G, temos:

$$G = \begin{bmatrix} -(g_{12} + g_{14} + g_{15}) & g_{12} & 0 & g_{14} & g_{15} \\ g_{12} & -(g_{12} + g_{23} + g_{25}) & g_{23} & 0 & g_{25} \\ 0 & g_{23} & -g_{23} & 0 & 0 \\ g_{14} & 0 & 0 & -(g_{14} + g_{45}) & g_{45} \\ g_{15} & g_{25} & 0 & g_{45} & -(g_{15} + g_{25} + g_{45}) \end{bmatrix}$$
(3.9)

Para fins de representação, temos outra forma para a matriz G, dada por:

$$G = \begin{bmatrix} -G_{11} & G_{12} & 0 & G_{14} & G_{15} \\ G_{12} & -G_{22} & G_{23} & 0 & G_{25} \\ 0 & G_{23} & -G_{33} & 0 & 0 \\ G_{14} & 0 & 0 & -G_{44} & G_{45} \\ G_{15} & G_{25} & 0 & G_{45} & -G_{55} \end{bmatrix}$$
(3.10)

Conforme já comentado, as submatrizes G' e G'' partem da matriz condutância simplificada. A submatriz G' é referente às barras de carga do sistema (PQ), que no caso do exemplo acima é:

$$G' = \begin{bmatrix} -\left(\frac{1}{R_{12}} + \frac{1}{R_{14}} + \frac{1}{R_{15}}\right) & \frac{1}{R_{14}} & \frac{1}{R_{15}} \\ \frac{1}{R_{14}} & -\left(\frac{1}{R_{14}} + \frac{1}{R_{45}}\right) & \frac{1}{R_{45}} \\ \frac{1}{R_{15}} & \frac{1}{R_{45}} & -\left(\frac{1}{R_{15}} + \frac{1}{R_{25}} + \frac{1}{R_{45}}\right) \end{bmatrix} (3.11)$$

Assim como a matriz G, aqui faz-se também a simplificação da matriz G'. Então,

$$G' = \begin{bmatrix} -G_{11} & G_{14} & G_{15} \\ G_{14} & -G_{44} & G_{45} \\ G_{15} & G_{45} & -G_{55} \end{bmatrix} (3.12)$$

A submatriz G" difere nas regras para sua montagem. Suas colunas são compostas pelas barras V θ e PV e suas linhas pelas barras PQ. Têm-se então:

$$G'' = \begin{bmatrix} \frac{1}{R_{12}} & 0\\ \frac{1}{R_{24}} & 0\\ \frac{1}{R_{25}} & 0 \end{bmatrix} (3.13)$$

Na forma de condutância,

$$G'' = \begin{bmatrix} G_{12} & 0 \\ G_{42} & 0 \\ G_{52} & 0 \end{bmatrix} (3.14)$$

Através de (3.13) e (3.14), é possível observar que a submatriz G'' é formada por (nPQ) x (nPV + 1). O sistema de distribuição comumente é composto por mais de uma barra de carga (PQ), portanto, a submatriz G'' é usualmente retangular, dado que caso existisse uma barra PQ a mais que o número total de barras PV, a matriz seria quadrada.

A partir disso, têm-se algumas constatações:

G' e G" derivam da matriz G.

G' e G" não incluem as linhas referentes às barras PV e V θ .

Para G', considera-se as colunas referentes às barras de carga.

Para G", considera-se as colunas referentes às barras que não são de carga (PV e V θ).

O fluxograma retirado de (AMBROSIO, 2019) resume a formação relacionada às sumatrizes G' e G".

Figura 11 - Fluxograma relacionada à formação de G' e G".

Fonte: (AMBROSIO), 2019

Para um bom funcionamento do método não iterativo, a escolha do ângulo da potencia base é fundamental, já que seu valor impacta diretamente no resultado do uso da metodologia. Cabe destacar que não há um ângulo base perfeito para todo o

sistema, visto que a variação da relação R/X das linhas de distribuição pode ser muito grande quando o sistema apresenta muitas linhas.

A c.p.u ideal é a que tornaria a impedância totalmente resistiva. Porém, só é possível determinar um ângulo de rotação, o que impede de modificar todas as impedâncias das linhas. Tendo os eixos X e R para obtenção da impedância, pode-se ter três principais possibilidades quando selecionado o ângulo base de rotação:

- > Escolhe-se ϕ_{base} de modo à impedância se tornar puramente resistiva;
- Escolhe-se Ø_{base} de modo à impedância estar próxima ao eixo R, mas tendo ainda um pequeno efeito reativo;
- Escolhe-se Ø_{base} de modo à impedância ultrapassar o eixo R, mas com baixo impacto reativo, uma vez que procura-se o melhor valor possível do ângulo, mesmo que a impedância não seja puramente resistiva;

A Figura 12 representa as 3 possibilidades.

 \triangleright

Fonte: (AMBROSIO, 2019).

A estratégia proposta por (AMBROSIO, 2019), baseia-se no fato que o ângulo base tem relação direta com as características das linhas de distribuição (Tortelli et al. 2015). Então, primeiramente visa-se buscar a razão máxima e mínima do sistema, tal que:

$$\gamma = \frac{\tan^{-1}(\frac{X}{R})_{MAX} + \tan^{-1}(\frac{X}{R})_{MIN}}{2}$$
(3.16)

O valor do fator de potência impacta também na determinação do ângulo base. Quando seu valor é muito baixo, faz-se necessário exercer uma correção em seu valor, que é definida por:

$$e = 1 - \frac{\sum_{i=1}^{l} \cos\left(tan^{-1}\frac{Q_i}{P_i}\right)}{l}$$
(3.17)

A partir de (3.16) e (3.17), é possível determinar o ângulo ϕ_{base} .

$$\phi_{base} = \gamma(1-e) \tag{3.18}$$

Temos então uma equação simples para determinação do ângulo base referente à normalização complexa.

3.2 ESTRATÉGIA DE AVALIAÇÂO

A avaliação do método proposto em (AMBROSIO, 2019) consistirá, num primeiro momento, da comparação de valores das magnitudes de tensões nodais obtidas através da metodologia proposta em relação à valores obtidos através do método de fluxo de potencia Newton-Raphson implementado no toolbox Matpower da plataforma MatLab.

Com esta análise comparativa, será possível verificar se os valores obtidos através do método não iterativo são condizentes com o esperado e seu nível de precisão.

Além disso, será verificada a eficiência do método quanto à variação do ângulo base bem como do fator de potência e o impacto que estes fatores podem acarretar no sistema escolhido.

Uma terceira etapa da avaliação do método se dará pelo impacto do aumento desta relação num sistema de distribuição estabelecido, bem como seu funcionamento quanto à inserção da geração distribuída no sistema.

Nas duas primeiras etapas da avaliação, o sistema utilizado é composto de 3 barras, Figura 13, sendo uma barra de carga (PQ), uma barra de referência (V θ) e uma barra de geração (PV).

Já na última etapa, foi utilizado o caso de 69 barras do IEEE, conforme apresenta a Figura 14.

Fonte: Acervo pessoal do Autor, 2019.

4 RESULTADOS OBTIDOS

4.1 SISTEMA COM 3 BARRAS

Conforme comentado na seção 3.2, o primeiro teste da metodologia proposta é feito para um sistema de distribuição de 3 barras, conforme Figura 18. A Tabela 4.1 consiste nos valores obtidos através do método não iterativo bem como através do método Newton Raphson. Cabe destacar também que a metodologia foi simulada para 2 aspectos, com aplicação da normalização complexa, em que o ângulo base tem valor de -45º e para ângulo base 0º, ou seja, sem a presença da normalização complexa.

Para obtenção do valor do erro, a formulação utilizada foi:

$$\varepsilon_{\%} = 1 - \frac{V_{2Niter}}{V_{2NR}} \tag{4.1}$$

Em que:

 $\varepsilon_{\%}$: Representa o erro percentual entre os métodos;

*V*_{2*Niter}: Corresponde aos valores da magnitude de tensão obtidos através do método não iterativo;</sub>*

 V_{2NR} : Corresponde aos valores da magnitude de tensão obtidos através do método iterativo Newton Raphson.

Fator de Carga	Tensão via NR (pu)	Tensão via Método s/ cpu (pu)	Erro s/ cpu (%)	Tensão via Método c/ cpu (pu)	Erro com cpu (%)
1	0,982026	0,98734	0,538214	0,982183	0,015985
1,5	0,972499	0,980885	0,854942	0,973022	0,05375
2	0,962523	0,974342	1,213024	0,963681	0,120164
2,5	0,952024	0,967707	1,620635	0,954148	0,222607
3	0,940904	0,960977	2,088811	0,94441	0,371237

Tabela 2 - Comparação de valores entre o método não iterativo e o método Newton Raphson.

Fonte: Acervo pessoal do Autor, 2019.

A Tabela 2 mostra que os erros encontrados foram sempre baixos, pouco superior a 2% no pior caso. Além disso, observa-se que quanto maior a carga presente no sistema, maior foi erro observado. Também, nota-se a importância da utilização da normalização complexa, visto que, se comparado os valores dos erros relativos aos métodos, o erro encontrado com a utilização da c.p.u é, no mínimo 3 vezes menor que quando se emprega a normalização convencional. Isto nos mostra que a utilização da normalização complexa é de suma importância para aprimorar os resultados.

Para uma melhor visualização da discrepância dos valores obtidos com e sem c.p.u, o gráfico da Figura 15 é apresentado.

Fonte: Acervo pessoal do Autor, 2019.

Após a análise da importância da c.p.u no contexto da metodologia aplicada, o próximo passo é testar o ângulo de rotação para o mesmo sistema de 3 barras. Para tanto, realizou-se uma análise variando o fator de potência da carga entre 0,9 e 1,0 e o ângulo base da normalização entre 0º e 90º.

As tabelas 3, 4 e 5 correspondem aos valores obtidos através do método não iterativo, através do método tradicional Newton Raphson e aos valores relativos do erro entre os dois métodos, respectivamente.

Tabela 3 - Comparação de valores entre o método não iterativo e o método Newton Raphson.

fn	Ang_Z(°)									
	0	10	20	30	40	50	60	70	80	90
0,9	0,964466	0,961917	0,960563	0,960458	0,961604	0,963957	0,967429	0,9718913	0,977182	0,983116
0,92	0,963646	0,96142	0,960408	0,960651	0,962137	0,964811	0,968572	0,97328	0,978769	0,984847
0,94	0,962824	0,960970	0,960349	0,960983	0,962849	0,965875	0,969949	0,974921	0,980614	0,986835
0,96	0,962	0,960595	0,960437	0,961531	0,963835	0,967263	0,971687	0,976947	0,982858	0,989222
0,98	0,961175	0,960363	0,960805	0,962486	0,965341	0,969263	0,974109	0,979704	0,985857	0,992364
1	0,960349	0,960977	0,962836	0,965857	0,969925	0,974893	0,980584	0,986802	0,993343	1

Fonte: Acervo pessoal do Autor, 2019.

fn		Ang_Z(°)								
	0	10	20	30	40	50	60	70	80	90
0,9	-	-	-	0,958071	0,960336	0,963029	0,966589	0,97103	0,976252	0,982106
0,92	-	-	-	0,958129	0,960787	0,963813	0,967666	0,972358	0,977785	0,983791
0,94	-	-	-	0,958322	0,96141	0,964801	0,968972	0,973933	0,979575	0,985735
0,96	-	-	-	0,958726	0,962299	0,966103	0,970632	0,97589	0,98176	0,988078
0,98	-	-	-	0,959534	0,963695	0,968004	0,972963	0,978569	0,984698	0,991179
1	-	-	-	0,962755	0,968107	0,973462	0,979284	0,985546	0,992108	0,99879

Tabela 4 - Comparação de valores entre o método não iterativo e o método Newton Raphson.

Fonte: Acervo pessoal do Autor, 2019.

Cabe destacar na Tabela 4, que os valores para os ângulos 0º, 10º e 20º não foram possíveis de se obter pois o método tradicional não convergiu.

fp	Ang_Z(°)							
	30	40	50	60	70	80	90	
0,9	0,2485273	0,131863	0,0962699	0,0868281	0,088621	0,0951716	0,1027346	
0,92	0,2625303	0,1403127	0,1034399	0,0935398	0,0947312	0,1005344	0,1072248	
0,94	0,276904	0,1494523	0,1111945	0,1007269	0,1013415	0,105954	0,1114675	
0,96	0,2917223	0,1593634	0,119926	0,1085741	0,1081942	0,111715	0,1156464	
0,98	0,3067058	0,1705097	0,1298925	0,117646	0,1158513	0,1175627	0,1194118	
1	0,3211656	0,1874372	0,1467853	0,1325741	0,1272798	0,1243276	0,121	

Tabela 5 - Comparação de valores entre o método não iterativo e o método Newton Raphson.

Fonte: Acervo pessoal do Autor, 2019.

Pela Tabela 5 e para melhor visualização quanto ao erro proveniente da comparação entre os métodos, as Figuras 16, 17, 18 e 19 mostram os gráficos referentes ao erro conforme se aumenta tanto o fator de potência como também o ângulo de rotação. As Figuras 15 e 16 incluem os resultados obtidos para o ângulo de 30°. Como a diferença do erro apresentado por este ângulo é muito maior que para os outros valores, os resultados foram reapresentados sem a presença de tais valores, a fim de melhorar a visualização dos resultados.

Figura 16 - Gráfico de barras para verificar o erro do sistema com a presença do ângulo de 30º.

Fonte: Acervo pessoal do Autor, 2019.

Figura 17 - Demonstração em cores do erro entre os métodos não iterativo e Newton Raphson.

Fonte: Acervo pessoal do Autor, 2019.

Figura 18 - Gráfico de barras para verificar o erro do sistema sem a presença do ângulo de 30º.

Fonte: Acervo pessoal do Autor, 2019.

Fonte: Acervo pessoal do Autor, 2019.

Das Figuras 18 e 19, uma primeira análise a se fazer é que, conforme o ângulo se aproxima de 90°, o erro diminui. Também, é importante destacar que se verifica que o ângulo da normalização complexa impacta diretamente no valor do erro em vista do fator de potência, ou seja, a variação do fator de potência não altera significativamente os valores do erro.

O fato do fator de potência não alterar consideravelmente o erro é um adendo importante, uma vez que na operação do sistema de distribuição o fator de potência não é geralmente definido pelo operador e sim por circunstâncias das características da carga. Em contrapartida, o valor do ângulo de rotação da normalização complexa é um dado especificado pelo operador do método não iterativo, assim, a partir de uma breve análise do sistema, torna-se viável a escolha do ângulo ideal para que os resultados obtidos através da metodologia proposta sejam coerentes e confiáveis de modo que sua implementação efetiva.

4.2 SISTEMA COM 69 BARRAS

Para o sistema composto por 69 barras, foram realizadas duas simulações. Na primeira, procurou-se verificar o impacto da variação da relação R/X e comparar os erros obtidos. Os dados obtidos consistem numa variação do ângulo de rotação com aplicação da c.p.u para três casos, -20°, -30° e ´-40°. Para a relação R/X, também foram realizadas simulações para 3 casos, em que esta relação foi duplicada e, depois, triplicada. Para visualização das tabelas correspondentes aos valores obtidos através do método iterativo relacionando os ângulos de rotação e a variação da relação R/X, consultar os apêndices A, B e C presentes neste trabalho. A tabela que demonstra os valores obtidos pelo método tradicional Newton Raphson consta no apêndice D do presente trabalho.

Através das simulações, foram geradas 3 tabelas referentes aos erros percentuais obtidos através da comparação entre os métodos. Os apêndices E, F e G referenciam tais tabelas.

Os gráficos das Figuras 20, 21 e 22 representam o erro obtido pela comparação de valores entre o método não iterativo e o método Newton Raphson, em que se altera o valor da relação R/X do sistema.

Fonte: Acervo pessoal do Autor, 2019.

Fonte: Acervo pessoal do Autor, 2019.

Figura 22 - Gráfico do erro para relação R/X triplicada.

Fonte: Acervo pessoal do autor, 2019.

A Tabela 6 permite a visualização do erro máximo obtido para cada caso.

Tabela 6 - Erro máximo obtido.

Relação	Ângulo				
R/X	-20	-30	-40		
1	0,135128	0,129135	0,300854		
2	0,592793	0,147159	0,115628		
3	1,273227	0,287095	0,516591		

Fonte: Acervo pessoal do Autor, 2019

Uma avaliação das três figuras e da Tabela 6 mostra que, quanto maior a relação R/X, maior é o erro obtido. Isto ocorreu pelo fato de que o aumento na relação R/X se sucedeu no reativo das barras. Desta forma, houve uma diminuição na relação R/X. Isto nos permite comprovar que a ausência do impacto reativo nas barras melhora o desempenho do método não iterativo.

Outra análise, agora abordando os ângulos de rotação, permite avaliar que os ângulos debase de (-30°) e (-40°) atenuou de maneira significativa o erro nas simulações.

Numa segunda simulação, analisou-se o impacto da geração distribuída. Para tanto, foram escolhidos 3 cenários.

Cenário 1 – Sem GD: Neste cenário tem-se o sistema radial original, sem a participação de qualquer fonte de geração distribuída.

Cenário 2 – Elevada participação de GD: Neste cenário é considerada a participação de GDs de menor porte (0,1 pu de potencia ativa), mas com presença em 34 das 69 barras do sistema, o que implica numa potencia gerada superior à carga do sistema de distribuição, que é de aproximadamente 2.8pu. Assim, nessa condição de operação o sistema de distribuição contribui com potencia para o sistema de transmissão, caracterizando-se como uma rede ativa.

Cenário 3 – Participação concentrada de GD: Neste terceiro cenário, tem-se a participação de GDs de maior porte (0,3 pu de geração ativa por unidade geradora), mas de forma mais concentrada, atuando em apenas 6 barras do sistema de distribuição. Assim, nessa condição, embora a potencia gerada não é suficiente para atender toda a carga da distribuição, mas reduz sensivelmente a necessidade de fornecimento por meio do sistema de transmissão.

As Figuras 23 e 24 demonstram o perfil de tensão obtido para os 3 cenários, tanto pelo método tradicional como pelo método não iterativo. Os dados para obtenção dos dados estão referenciados nos apêndices H e I. A relação R/X utilizada foi a nominal, ou seja, representa a condição original da rede de distribuição. No caso do método não iterativo, para fins de exemplificação, utilizou-se o ângulo base de -30^o para todos os três cenários avaliados.

Fonte: Acervo pessoal do autor. 2019.

As Figuras 23 e 24 mostram que as tensões mais elevadas foram verificadas no cenário em que a GD tem maior participação (cenário 2 -34 GDs com potencia individual de 0.1 pu). Nessa situação observam-se tensões superiores à tensão no barramento de conexão com a transmissão (barra 1), confirmando a atuação ativa da rede de distribuição.

Dos gráficos 23 e 24, é possível obter o erro percentual entre o método de NR e o método não iterativo, que é apresentado na Figura 25. Para este gráfico, foi utilizado os valores referentes ao apêndice J.

Fonte: Acervo pessoal do autor, 2019.

Do gráfico apresentado pela Figura 25, tem-se a Tabela 7, que relaciona

o maior erro para cada cenário.

Erro Máximo (%)						
Cenário 1 Cenário 2 Cenário 3						
0,13 0,60 0,35						
Fonte: Acervo pessoal do Autor 2019						

Tabela 7 - Valores máximos dos erros para os 3 cenários

Apesar da presença da geração distribuída representar um aumento do

erro, os valores encontrados são bastante satisfatórios, visto que, considerando todos os cenários, o máximo erro ficou bem abaixo de 1%.

5 CONCLUSÃO

O presente trabalho insere-se no contexto dos sistemas de distribuição modernos e, assim, tratou de apresentar suas características fundamentais aliadas ao impacto causado pelas novas tecnologias, que estão cada vez mais presentes, como o caso da geração distribuída.

Como o Sistema Elétrico de Potência vem sofrendo muitas mudanças, destacou-se a necessidade da pesquisa para inovação na busca por meios eficazes para análise dos aspectos que impactam diretamente no seu planejamento, na sua operação e manutenção. Nesse sentido, buscou-se avaliar o funcionamento do método não iterativo para determinação das tensões nodais de sistemas de distribuição, apresentando suas características gerais e também sua aplicação em cenários específicos.

O documento apresenta uma avaliação do método não iterativo quanto ao seu funcionamento para diferentes valores de relação R/X da rede de distribuição, ou seja, se o método apresenta ou não limites quanto à valores desta relação. Cabe-se salientar novamente que os sistemas de distribuição possuem esta relação alta, o que reforça a importância da normalização complexa, que é o artificio capaz de melhor adaptar esta relação.

Avaliou-se que a escolha de um bom ângulo base é essencial para a aplicação efetiva da normalização complexa, que se mostra relevante na obtenção do elevado grau de precisão proporcionado pelo método não-iterativo.

Na análise do método não iterativo quanto à presença da geração distribuída, confirmou-se o bom desempenho do método. Isto representa um sinal positivo na busca de meios mais ágeis na análise de redes elétricas de distribuição, visto que o método não depende de iterações para ser executado.

Isto posto, conclui-se que o método não iterativo apresentou valores condizentes com o esperado, podendo vir a ser utilizado no âmbito da análise de fluxo de potência em sistemas de distribuição, vindo a ser uma alternativa eficaz em vista dos já conhecidos métodos iterativos tradicionais.

REFERÊNCIAS

DURCE, C. C. Normalização complexa e Cálculo de Fluxo de Potência para Sistemas Elétricos Emergentes. [s.l] Universidade Federal do Paraná, 2012.

AMBROSIO, B. A. S. Método Não Iterativo para Determinação das Tensões Nodais em Sistemas de Distribuição Ativos. [s.l] Universidade Federal do Paraná, 2019.

FILHO, M. O. de L. **Projeto Integrado de uma Minirrede Inteligente Aliada à Gestão de Energia: Uma Iniciativa de redução dos custos da UFPR com energia elétrica.** Universidade Federal do Paraná, 2018.

PORTELINHA, R. K. Fluxo de Potência Desacoplado Rápido Trifásico para Redes de Distribuição. [s.l.] Universidade Federal do Paraná, 2016

AMBROSIO, B. A. S. TORTELLI, O. L. A Non-iterative Method for Distribution Systems Power Flow Analysis. **The 12º Latin-american Congress on Electricity and Transmisson**, 2017.

TORTELLI, O. L. LOURENÇO, E. M. GARCIA, A. V. PAL, B. C. Fast Decoupled Power Flow to Emerging Distribution Systems via Complex pu Normalization. **IEEE Transactions on Power Systems**, v.30, n.3, p.1351 – 1358, 2015.

LOURENÇO, E. M. LODDI, T. TORTELLI, O. L. Unified load flow analysis for emerging distribution systems. **Innovative Smart Grid Technologies Conference Europe** (ISGT Europe), p. 1-7, 2010

GARCIA, A. MONTICELLI, A. Simulação de Redes de Distribuição de Engergia Elétrica através de Fluxo de Carga Desacoplado Rápido. **IX Seminário nacional de Distribuição de Energia Elétrica – SENDI, Bahia,** 1984.

MONTICELLI, A. J. **Fluxo de carga em redes de energia elétrica.** São Paulo: Edgard Blucher, 1983

KAGAN, N. OLIVEIRA, C.C. ROBBA, E.J. Introdução aos sistemas de distribuição de Energia Elétrica. São Paulo: Edgard Blucher, 2010.

ANEEL – AGÊNCIA NACIONAL DE ENERGIA ELÉTRICA. **Nota Técnica 0056:** Atualização das projeções de consumidores residenciais e comerciais com microgeração solar fotovoltaicos no horizonte 2017-2024, 2017. Disponível em: < http://www.aneel.gov.br/documents/656827/15234696/Nota+T%C3%A9cnica_0056_ PROJE%C3%87%C3%95ES+GD+2017/38cad9ae-71f6-8788-0429d097409a0ba9>. Acesso em: 25 mai. 2019.

ANEEL – AGÊNCIA NACIONAL DE ENERGIA ELÉTRICA. **Resolução Normativa 482:** Geração Distribuída. Brasília: -, 2012. Disponível em: http://www2.aneel.gov.br/cedoc/bren2012482.pdf>. Acesso em: 25 mai. 2019.

	Fator R/X nominal						
	Ângulo de rotação						
Nº de							
barras	-20	-30	-40				
Barra 1	1,000000	1,000000	1,000000				
Barra 2	0,998332	0,998351	0,998471				
Barra 3	0,996659	0,996696	0,996938				
Barra 4	0,996232	0,996272	0,996542				
Barra 5	0,995746	0,995802	0,996118				
Barra 6	0,987661	0,987460	0,988032				
Barra 7	0,979112	0,978635	0,979483				
Barra 8	0,977073	0,976530	0,977445				
Barra 9	0,976058	0,975482	0,976431				
Barra 10	0,967814	0,967154	0,968559				
Barra 11	0,965979	0,965299	0,966807				
Barra 12	0,960685	0,959956	0,961767				
Barra 13	0,955752	0,954989	0,957098				
Barra 14	0,950811	0,950013	0,952423				
Barra 15	0,945865	0,945033	0,947748				
Barra 16	0,944940	0,944100	0,946873				
Barra 17	0,943408	0,942558	0,945427				
Barra 18	0,943393	0,942543	0,945412				
Barra 19	0,942582	0,941721	0,944636				
Barra 20	0,942059	0,941191	0,944136				
Barra 21	0,941215	0,940336	0,943329				
Barra 22	0,941203	0,940324	0,943318				
Barra 23	0,941077	0,940196	0,943197				
Barra 24	0,940803	0,939918	0,942935				
Barra 25	0,940507	0,939617	0,942651				
Barra 26	0,940384	0,939493	0,942534				
Barra 27	0,940350	0,939458	0,942501				
Barra 28	0,996654	0,996691	0,996933				
Barra 29	0,996603	0,996640	0,996886				
Barra 30	0,996406	0,996441	0,996697				
Barra 31	0,996371	0,996406	0,996663				
Barra 32	0,996197	0,996230	0,996496				
Barra 33	0,995781	0,995809	0,996096				
Barra 34	0,995234	0,995256	0,995572				
Barra 35	0,995125	0,995146	0,995467				
Barra 36	0,996649	0,996686	0,996929				
Barra 37	0,996525	0,996563	0,996814				
Barra 38	0,996362	0,996405	0,996670				

APÊNDICE A – VALORES PARA R/X NOMINAL

Barra 39	0,996315	0,996359	0,996628
Barra 40	0,996313	0,996357	0,996626
Barra 41	0,995592	0,995657	0,995992
Barra 42	0,995289	0,995363	0,995726
Barra 43	0,995249	0,995325	0,995690
Barra 44	0,995241	0,995316	0,995683
Barra 45	0,995142	0,995220	0,995596
Barra 46	0,995141	0,995220	0,995595
Barra 47	0,996196	0,996237	0,996509
Barra 48	0,995314	0,995357	0,995687
Barra 49	0,992580	0,992629	0,993137
Barra 50	0,992191	0,992241	0,992774
Barra 51	0,977017	0,976471	0,977388
Barra 52	0,977001	0,976455	0,977372
Barra 53	0,974386	0,973768	0,974784
Barra 54	0,972441	0,971774	0,972868
Barra 55	0,969811	0,969079	0,970281
Barra 56	0,967288	0,966495	0,967802
Barra 57	0,953552	0,952783	0,955015
Barra 58	0,946625	0,945869	0,948579
Barra 59	0,943911	0,943162	0,946063
Barra 60	0,941016	0,940297	0,943422
Barra 61	0,936923	0,936117	0,939444
Barra 62	0,936455	0,935630	0,938971
Barra 63	0,935828	0,934977	0,938339
Barra 64	0,932744	0,931765	0,935224
Barra 65	0,931807	0,930789	0,934279
Barra 66	0,965883	0,965202	0,966715
Barra 67	0,965882	0,965201	0,966714
Barra 68	0,960125	0,959388	0,961229
Barra 69	0,960123	0,959386	0,961228

Fator R/X duplicada			
	Âng	ulo de rota	ição
Nº de			
barras	-20	-30	-40
Barra 1	1,000000	1,000000	1,000000
Barra 2	0,998208	0,998165	0,998233
Barra 3	0,996410	0,996322	0,996459
Barra 4	0,995947	0,995844	0,995994
Barra 5	0,995442	0,995345	0,995532
Barra 6	0,986074	0,985077	0,984986
Barra 7	0,976142	0,974170	0,973777
Barra 8	0,973768	0,971560	0,971094
Barra 9	0,972586	0,970260	0,969758
Barra 10	0,963380	0,960474	0,960020
Barra 11	0,961327	0,958290	0,957847
Barra 12	0,955401	0,951988	0,951584
Barra 13	0,949872	0,946118	0,945765
Barra 14	0,944325	0,940224	0,939923
Barra 15	0,938764	0,934310	0,934062
Barra 16	0,937722	0,933201	0,932964
Barra 17	0,935998	0,931366	0,931145
Barra 18	0,935980	0,931348	0,931127
Barra 19	0,935066	0,930369	0,930151
Barra 20	0,934478	0,929738	0,929522
Barra 21	0,933527	0,928719	0,928506
Barra 22	0,933513	0,928705	0,928492
Barra 23	0,933371	0,928553	0,928340
Barra 24	0,933062	0,928221	0,928010
Barra 25	0,932728	0,927863	0,927652
Barra 26	0,932590	0,927715	0,927505
Barra 27	0,932552	0,927673	0,927463
Barra 28	0,996405	0,996317	0,996453
Barra 29	0,996350	0,996260	0,996398
Barra 30	0,996132	0,996028	0,996167
Barra 31	0,996093	0,995988	0,996127
Barra 32	0,995900	0,995783	0,995923
Barra 33	0,995438	0,995293	0,995434
Barra 34	0,994833	0,994651	0,994795
Barra 35	0,994711	0,994523	0,994668
Barra 36	0,996400	0,996311	0,996448
Barra 37	0,996266	0,996173	0,996314
Barra 38	0,996096	0,996004	0,996157
Barra 39	0,996047	0,995955	0,996111

APÊNDICE B – VALORES PARA R/X DUPLICADA

Barra 40	0,996044	0,995953	0,996109
Barra 41	0,995293	0,995209	0,995417
Barra 42	0,994978	0,994896	0,995127
Barra 43	0,994936	0,994855	0,995089
Barra 44	0,994928	0,994846	0,995081
Barra 45	0,994824	0,994743	0,994985
Barra 46	0,994824	0,994743	0,994984
Barra 47	0,995909	0,995805	0,995956
Barra 48	0,994954	0,994814	0,994991
Barra 49	0,991993	0,991745	0,992002
Barra 50	0,991572	0,991308	0,991576
Barra 51	0,973702	0,971487	0,971018
Barra 52	0,973685	0,971468	0,970999
Barra 53	0,970638	0,968133	0,967586
Barra 54	0,968370	0,965655	0,965057
Barra 55	0,965301	0,962301	0,961635
Barra 56	0,962354	0,959081	0,958351
Barra 57	0,946928	0,942837	0,942372
Barra 58	0,939125	0,934606	0,934279
Barra 59	0,936067	0,931382	0,931113
Barra 60	0,932825	0,927997	0,927823
Barra 61	0,927997	0,922712	0,922456
Barra 62	0,927445	0,922095	0,921817
Barra 63	0,926705	0,921269	0,920962
Barra 64	0,923059	0,917193	0,916741
Barra 65	0,921951	0,915954	0,915458
Barra 66	0,961220	0,958176	0,957734
Barra 67	0,961219	0,958175	0,957733
Barra 68	0,954773	0,951317	0,950914
Barra 69	0,954772	0,951315	0,950912

Eator B/X triplicado			
NIQ do	Ang		içau
harras	_20	-30	_10
Barra 1	1 00000	1 00000	1 00000
Barra 2	0.000000	0.007070	0.007004
Darra 2	0,996064	0,997978	0,997994
Barra 4	0,990101	0,995948	0,995979
Barra 4	0,995663	0,995416	0,995446
Barra 5	0,995137	0,994887	0,994945
Barra 6	0,984482	0,982683	0,981921
Barra /	0,973153	0,969663	0,968001
Barra 8	0,970440	0,966537	0,964656
Barra 9	0,969088	0,964980	0,962989
Barra 10	0,958902	0,953695	0,951319
Barra 11	0,956628	0,951171	0,948708
Barra 12	0,950056	0,943877	0,941165
Barra 13	0,943914	0,937067	0,934136
Barra 14	0,937742	0,930212	0,927057
Barra 15	0,931545	0,923316	0,919931
Barra 16	0,930383	0,922021	0,918592
Barra 17	0,928459	0,919876	0,916375
Barra 18	0,928440	0,919854	0,916352
Barra 19	0,927419	0,918709	0,915161
Barra 20	0,926762	0,917972	0,914393
Barra 21	0,925700	0,916779	0,913152
Barra 22	0,925685	0,916762	0,913134
Barra 23	0,925526	0,916584	0,912949
Barra 24	0,925181	0,916196	0,912545
Barra 25	0,924807	0,915776	0,912108
Barra 26	0,924653	0,915603	0,911927
Barra 27	0,924610	0,915554	0,911877
Barra 28	0,996156	0,995942	0,995973
Barra 29	0,996096	0,995879	0,995909
Barra 30	0,995857	0,995615	0,995638
Barra 31	0,995815	0,995569	0,995590
Barra 32	0,995603	0,995336	0,995350
Barra 33	0.995095	0.994777	0.994772
Barra 34	0,994431	0,994046	0,994018
Barra 35	0,994297	0,993899	0,993868
Barra 36	0.996150	0.995936	0.995967
Barra 37	0.996006	0.995782	0.995813
Barra 38	0.995829	0.995604	0.995643
Barra 39	0.995778	0.995552	0.995594

APÊNDICE C – VALORES PARA R/X TRIPLICADA

Barra 40	0,995776	0,995549	0,995591
Barra 41	0,994995	0,994760	0,994842
Barra 42	0,994667	0,994429	0,994528
Barra 43	0,994624	0,994385	0,994486
Barra 44	0,994615	0,994376	0,994477
Barra 45	0,994507	0,994266	0,994373
Barra 46	0,994507	0,994266	0,994373
Barra 47	0,995622	0,995372	0,995402
Barra 48	0,994594	0,994272	0,994295
Barra 49	0,991406	0,990859	0,990864
Barra 50	0,990952	0,990373	0,990375
Barra 51	0,970365	0,966450	0,964562
Barra 52	0,970345	0,966429	0,964539
Barra 53	0,966859	0,962429	0,960276
Barra 54	0,964263	0,959454	0,957112
Barra 55	0,960746	0,955423	0,952825
Barra 56	0,957366	0,951546	0,948701
Barra 57	0,940204	0,932662	0,929356
Barra 58	0,931494	0,923044	0,919493
Barra 59	0,928078	0,919271	0,915627
Barra 60	0,924476	0,915333	0,911634
Barra 61	0,918881	0,908867	0,904755
Barra 62	0,918241	0,908112	0,903936
Barra 63	0,917382	0,907099	0,902836
Barra 64	0,913147	0,902094	0,897400
Barra 65	0,911859	0,900570	0,895744
Barra 66	0,956510	0,951041	0,948573
Barra 67	0,956509	0,951040	0,948572
Barra 68	0,949358	0,943100	0,940357
Barra 69	0,949356	0,943097	0,940355

APÊNDICE D – VALORES PARA O MÉTODO NEWTON RAPHSON

	Fator R/X		
Nº de			
barras	1	2	3
Barra 1	1,000000	1,000000	1,000000
Barra 2	0,998332	0,998107	0,997872
Barra 3	0,996664	0,996214	0,995744
Barra 4	0,996234	0,99572	0,995182
Barra 5	0,995754	0,995203	0,994625
Barra 6	0,987136	0,984298	0,981274
Barra 7	0,97818	0,97297	0,967429
Barra 8	0,976065	0,970296	0,964166
Barra 9	0,975014	0,968969	0,962545
Barra 10	0,966906	0,959265	0,951183
Barra 11	0,965119	0,957125	0,948678
Barra 12	0,959984	0,950982	0,941487
Barra 13	0,955219	0,945297	0,934842
Barra 14	0,950498	0,939662	0,928256
Barra 15	0,945824	0,934082	0,921736
Barra 16	0,944955	0,933044	0,920523
Barra 17	0,943521	0,931332	0,918523
Barra 18	0,943507	0,931314	0,918503
Barra 19	0,942749	0,930401	0,917428
Barra 20	0,942262	0,929813	0,916737
Barra 21	0,941477	0,928866	0,915622
Barra 22	0,941466	0,928853	0,915606
Barra 23	0,941349	0,928711	0,91544
Barra 24	0,941094	0,928404	0,915078
Barra 25	0,940818	0,928071	0,914686
Barra 26	0,940705	0,927934	0,914525
Barra 27	0,940673	0,927895	0,914479
Barra 28	0,996659	0,996209	0,995738
Barra 29	0,99661	0,996152	0,995674
Barra 30	0,996415	0,99592	0,995404
Barra 31	0,99638	0,995879	0,995357
Barra 32	0,996208	0,995675	0,995119
Barra 33	0,995796	0,995183	0,994548
Barra 34	0,995256	0,994541	0,993803
Barra 35	0,995148	0,994413	0,993655
Barra 36	0,996654	0,996204	0,995732
Barra 37	0,996534	0,996066	0,995577
Barra 38	0,996382	0,995902	0,995401
Barra 39	0,996337	0,995855	0,99535
Barra 40	0,996335	0,995852	0,995348

	Barra 41	0,995659	0,995126	0,994572
	Barra 42	0,995376	0,994822	0,994247
	Barra 43	0,995338	0,994782	0,994204
	Barra 44	0,99533	0,994773	0,994195
	Barra 45	0,995237	0,994673	0,994087
	Barra 46	0,995237	0,994673	0,994087
	Barra 47	0,9962	0,995681	0,995137
	Barra 48	0,995345	0,994699	0,994027
	Barra 49	0,992706	0,991664	0,990596
	Barra 50	0,992332	0,991234	0,990109
	Barra 51	0,976008	0,970224	0,964078
	Barra 52	0,975993	0,970206	0,964056
	Barra 53	0,973281	0,966798	0,959906
	Barra 54	0,971272	0,964284	0,956849
	Barra 55	0,968566	0,9609	0,952739
	Barra 56	0,965983	0,957672	0,948822
	Barra 57	0,952515	0,941766	0,930326
	Barra 58	0,945879	0,933927	0,921218
	Barra 59	0,94331	0,930895	0,917702
	Barra 60	0,940592	0,927734	0,914075
	Barra 61	0,936669	0,922861	0,908211
	Barra 62	0,936216	0,922279	0,907493
	Barra 63	0,935609	0,921498	0,906532
	Barra 64	0,932638	0,917674	0,901819
	Barra 65	0,93174	0,916518	0,900395
	Barra 66	0,965028	0,957017	0,948551
	Barra 67	0,965027	0,957015	0,94855
	Barra 68	0,959451	0,950341	0,940735
ĺ	Barra 69	0,959449	0,950339	0,940733

Fator R/X nominal			
Nº de			
barras	-20	-30	-40
Barra 1	0	0	0
Barra 2	1,79E-05	0,001879	0,013942
Barra 3	0,000526	0,003214	0,027458
Barra 4	0,000231	0,003784	0,030949
Barra 5	0,000753	0,004853	0,03655
Barra 6	0,053158	0,032801	0,090739
Barra 7	0,095326	0,046545	0,133235
Barra 8	0,10327	0,047599	0,141348
Barra 9	0,107079	0,048019	0,145361
Barra 10	0,09395	0,025626	0,170975
Barra 11	0,089105	0,018662	0,174909
Barra 12	0,07305	0,002951	0,185756
Barra 13	0,055837	0,024106	0,196664
Barra 14	0,032933	0,051021	0,202543
Barra 15	0,004364	0,083657	0,203435
Barra 16	0,001634	0,090434	0,203002
Barra 17	0,011954	0,102033	0,201968
Barra 18	0,012082	0,102181	0,201917
Barra 19	0,017761	0,109089	0,200165
Barra 20	0,021529	0,11365	0,198934
Barra 21	0,027809	0,121216	0,19676
Barra 22	0,027918	0,121343	0,196709
Barra 23	0,028871	0,122496	0,196357
Barra 24	0,030914	0,124973	0,195624
Barra 25	0,033105	0,127635	0,19485
Barra 26	0,034106	0,128831	0,194433
Barra 27	0,034355	0,129135	0,194349
Barra 28	0,000506	0,003235	0,02751
Barra 29	0,000714	0,003043	0,027653
Barra 30	0,000905	0,002629	0,028258
Barra 31	0,000881	0,002614	0,028422
Barra 32	0,001065	0,002233	0,028941
Barra 33	0,001517	0,001275	0,030108
Barra 34	0,002167	2,41E-05	0,03171
Barra 35	0,002345	0,000222	0,032084
Barra 36	0,000496	0,003248	0,027557
Barra 37	0,000878	0,002928	0,028071
Barra 38	0,001991	0,00228	0,028888
Barra 39	0,002215	0,002191	0,029224
Barra 40	0,002244	0,002169	0,029223

APÊNDICE E – VALORES D ERRO PARA R/X NOMINAL

	Barra 41	0,006769	0,0002	0,033422
ļ	Barra 42	0,008752	0,001269	0,035123
	Barra 43	0,008958	0,001354	0,035405
	Barra 44	0,008986	0,001358	0,035476
	Barra 45	0,009587	0,001673	0,036053
	Barra 46	0,009632	0,001717	0,036014
	Barra 47	0,000352	0,003672	0,031067
	Barra 48	0,003083	0,001156	0,034311
	Barra 49	0,012683	0,007762	0,043381
	Barra 50	0,014201	0,009182	0,044535
	Barra 51	0,103338	0,047437	0,141347
	Barra 52	0,103258	0,047327	0,141315
	Barra 53	0,113566	0,050059	0,154428
	Barra 54	0,120365	0,051675	0,164311
	Barra 55	0,12854	0,052947	0,17703
	Barra 56	0,135128	0,052991	0,188316
	Barra 57	0,108832	0,028136	0,262505
	Barra 58	0,078857	0,001069	0,285397
	Barra 59	0,063757	0,015654	0,291818
	Barra 60	0,04513	0,031381	0,300854
	Barra 61	0,027114	0,058951	0,296225
	Barra 62	0,025536	0,062621	0,294308
	Barra 63	0,023417	0,06755	0,291739
	Barra 64	0,011313	0,093657	0,277266
	Barra 65	0,007217	0,102024	0,27248
	Barra 66	0,088569	0,018018	0,174847
	Barra 67	0,088558	0,018006	0,174842
	Barra 68	0,070225	0,006616	0,185358
	Barra 69	0,070251	0,006593	0,18539

Fator R/X duplicado			
Nº de			
barras	-20	-30	-40
Barra 1	0	0	0
Barra 2	0,01015	0,00576	0,01258
Barra 3	0,01969	0,01087	0,02457
Barra 4	0,02282	0,01246	0,02755
Barra 5	0,02402	0,01424	0,03303
Barra 6	0,18044	0,07917	0,0699
Barra 7	0,32603	0,12336	0,08292
Barra 8	0,35782	0,13026	0,0822
Barra 9	0,37325	0,13327	0,08145
Barra 10	0,42894	0,12601	0,07872
Barra 11	0,43903	0,12169	0,07541
Barra 12	0,46472	0,10578	0,06326
Barra 13	0,48398	0,08684	0,04948
Barra 14	0,49621	0,05978	0,02775
Barra 15	0,50121	0,02441	0,00209
Barra 16	0,50134	0,01685	0,00862
Barra 17	0,50096	0,00368	0,02003
Barra 18	0,50106	0,00364	0,02007
Barra 19	0,50144	0,00347	0,02688
Barra 20	0,5017	0,00805	0,03126
Barra 21	0,50179	0,0158	0,03871
Barra 22	0,50173	0,01597	0,03886
Barra 23	0,50182	0,01707	0,03993
Barra 24	0,50177	0,01969	0,04246
Barra 25	0,50181	0,02244	0,04512
Barra 26	0,50178	0,02362	0,04627
Barra 27	0,50184	0,02389	0,04653
Barra 28	0,01967	0,01083	0,02454
Barra 29	0,01984	0,0108	0,02467
Barra 30	0,02124	0,01089	0,02485
Barra 31	0,02149	0,01091	0,02488
Barra 32	0,02264	0,01089	0,02495
Barra 33	0,02565	0,01106	0,02526
Barra 34	0,02933	0,01109	0,02557
Barra 35	0,02997	0,01106	0,02566
Barra 36	0,01964	0,01078	0,02451
Barra 37	0,02004	0,01073	0,02485
Barra 38	0,01946	0,01027	0,02557
Barra 39	0,01925	0,01009	0,02573
Barra 40	0,01931	0,01015	0,02581

APÊNDICE F – VALORES DO ERRO PARA R/X DUPLICADO

Barra 41	0,01682	0,00831	0,02927
Barra 42	0,01569	0,00746	0,03066
Barra 43	0,01552	0,00732	0,03082
Barra 44	0,01556	0,00736	0,03092
Barra 45	0,01522	0,00709	0,03135
Barra 46	0,01517	0,00704	0,03131
Barra 47	0,02291	0,01241	0,02761
Barra 48	0,02565	0,01161	0,0294
Barra 49	0,03322	0,00816	0,03405
Barra 50	0,03411	0,00746	0,03452
Barra 51	0,3585	0,1302	0,08187
Barra 52	0,35855	0,13011	0,08178
Barra 53	0,39718	0,13806	0,08154
Barra 54	0,42371	0,14214	0,08012
Barra 55	0,45796	0,14584	0,07651
Barra 56	0,48885	0,14716	0,07091
Barra 57	0,5481	0,11369	0,06433
Barra 58	0,55655	0,07274	0,03774
Barra 59	0,55557	0,05231	0,02345
Barra 60	0,54877	0,02833	0,00962
Barra 61	0,55654	0,01617	0,04392
Barra 62	0,56013	0,01993	0,05004
Barra 63	0,56503	0,02489	0,05818
Barra 64	0,58679	0,0524	0,10163
Barra 65	0,59279	0,06152	0,11563
Barra 66	0,4392	0,12113	0,07494
Barra 67	0,43928	0,1212	0,07502
Barra 68	0,46641	0,10271	0,0603
Barra 69	0,46641	0,1027	0,06029

Fator R/X triplicado			
Nº de			
barras	-20	-30	-40
Barra 1	0	0	0
Barra 2	0,02129	0,01065	0,0122
Barra 3	0,04192	0,02051	0,02364
Barra 4	0,04829	0,02352	0,02651
Barra 5	0,05151	0,02631	0,03216
Barra 6	0,32695	0,14359	0,06595
Barra 7	0,5917	0,23089	0,05909
Barra 8	0,65068	0,24595	0,05078
Barra 9	0,67972	0,25296	0,04612
Barra 10	0,81153	0,26413	0,01435
Barra 11	0,83799	0,26283	0,00312
Barra 12	0,91011	0,25388	0,03422
Barra 13	0,97042	0,23802	0,0755
Barra 14	1,02195	0,21069	0,1292
Barra 15	1,06422	0,17139	0,19583
Barra 16	1,07112	0,16268	0,20979
Barra 17	1,08172	0,14731	0,23389
Barra 18	1,08182	0,14713	0,23417
Barra 19	1,08904	0,13966	0,24714
Barra 20	1,09354	0,13467	0,25568
Barra 21	1,10065	0,12636	0,26976
Barra 22	1,10077	0,12625	0,26995
Barra 23	1,10178	0,12495	0,27213
Barra 24	1,10405	0,12217	0,27682
Barra 25	1,10655	0,11918	0,28187
Barra 26	1,10749	0,11786	0,28405
Barra 27	1,10785	0,11758	0,28457
Barra 28	0,04196	0,02051	0,02363
Barra 29	0,04242	0,02055	0,02364
Barra 30	0,0455	0,02123	0,02349
Barra 31	0,04598	0,02128	0,02339
Barra 32	0,04866	0,02184	0,02321
Barra 33	0,05504	0,02301	0,02252
Barra 34	0,06315	0,02441	0,02162
Barra 35	0,06461	0,02459	0,02142
Barra 36	0,04199	0,0205	0,02362
Barra 37	0,04308	0,02062	0,02369
Barra 38	0,04303	0,02035	0,02431
Barra 39	0,04302	0,02027	0,02449
Barra 40	0,04298	0,02022	0,02446

APÊNDICE G – VALORES DO ERRO PARA R/X TRIPLICADO

Barra 41	0,04253	0,01889	0,02716
Barra 42	0,04226	0,01826	0,02823
Barra 43	0,04223	0,01818	0,02837
Barra 44	0,04223	0,01816	0,0284
Barra 45	0,04225	0,01802	0,02878
Barra 46	0,0422	0,01797	0,02873
Barra 47	0,0487	0,02363	0,0266
Barra 48	0,05701	0,02464	0,027
Barra 49	0,08179	0,02657	0,02707
Barra 50	0,08518	0,02669	0,02691
Barra 51	0,65208	0,24607	0,05018
Barra 52	0,65236	0,2461	0,05012
Barra 53	0,72438	0,26281	0,03856
Barra 54	0,77482	0,27224	0,02747
Barra 55	0,84042	0,28171	0,009
Barra 56	0,90045	0,2871	0,01275
Barra 57	1,06181	0,25108	0,10425
Barra 58	1,11551	0,19822	0,18722
Barra 59	1,1307	0,17093	0,22616
Barra 60	1,13784	0,1376	0,26704
Barra 61	1,17485	0,07228	0,3805
Barra 62	1,18433	0,06822	0,39199
Barra 63	1,19687	0,06253	0,40767
Barra 64	1,25614	0,03049	0,49
Barra 65	1,27323	0,01942	0,51659
Barra 66	0,83908	0,26253	0,00236
Barra 67	0,83904	0,26247	0,0023
Barra 68	0,91667	0,25136	0,04016
Barra 69	0,91665	0,25131	0,04022

APÊNDICE H – VALORES DE GD PARA NR

		GD
	GD ELEV.	CONC.
Barra 1	1,000000	1,000000
Barra 2	1,000068	0,999264
Barra 3	1,000087	0,998530
Barra 4	0,999990	0,998277
Barra 5	1,000031	0,998039
Barra 6	0,999035	0,992968
Barra 7	0,997652	0,987711
Barra 8	0,997371	0,986492
Barra 9	0,997203	0,985920
Barra 10	0,998403	0,983011
Barra 11	0,998558	0,981842
Barra 12	1,000038	0,979026
Barra 13	1,002698	0,977572
Barra 14	1,005510	0,976207
Barra 15	1,007422	0,974936
Barra 16	1,007778	0,974700
Barra 17	1,008292	0,974465
Barra 18	1,008302	0,974465
Barra 19	1,008892	0,974741
Barra 20	1,009272	0,974918
Barra 21	1,009554	0,974159
Barra 22	1,009585	0,974148
Barra 23	1,009791	0,974035
Barra 24	1,010239	0,973789
Barra 25	1,010723	0,973522
Barra 26	1,010923	0,973413
Barra 27	1,010893	0,973382
Barra 28	1,000099	0,998538
Barra 29	1,000242	0,998681
Barra 30	1,001239	0,999680
Barra 31	1,001345	0,999646
Barra 32	1,001874	0,999474
Barra 33	1,002301	0,999064
Barra 34	1,003467	0,998526
Barra 35	1,003360	0,998417
Barra 36	1,000103	0,998533
Barra 37	1,000303	0,998606
Barra 38	1,000677	0,998770
Barra 39	1,000755	0,998817
Barra 40	1,000760	0,998820
Barra 41	1,002267	0,998146
Barra 42	1,002913	0,997863

Barra 43	1,002958	0,997826
Barra 44	1,002968	0,997818
Barra 45	1,002984	0,997725
Barra 46	1,002985	0,997725
Barra 47	0,999963	0,998254
Barra 48	0,999282	0,997658
Barra 49	0,996945	0,995900
Barra 50	0,996655	0,995775
Barra 51	0,997408	0,986436
Barra 52	0,997726	0,986420
Barra 53	0,996597	0,984767
Barra 54	0,995903	0,983434
Barra 55	0,994751	0,981674
Barra 56	0,993704	0,980026
Barra 57	0,987282	0,971825
Barra 58	0,984125	0,967790
Barra 59	0,982598	0,966230
Barra 60	0,981181	0,964782
Barra 61	0,978466	0,960958
Barra 62	0,978233	0,960516
Barra 63	0,977802	0,959925
Barra 64	0,975690	0,957030
Barra 65	0,974831	0,956155
Barra 66	0,998671	0,981752
Barra 67	0,998670	0,981751
Barra 68	1,000265	0,978503
Barra 69	1,000264	0,978501

APÊNDICE I – VALORES DE GD MÉTODO NÃO ITERATIVO

		GD
	GD ELEV.	CONC.
	-30	-30
Barra 1	1,000000	1,000000
Barra 2	0,999790	0,999113
Barra 3	0,999538	0,998225
Barra 4	0,999393	0,997947
Barra 5	0,999331	0,997662
Barra 6	0,998231	0,992607
Barra 7	0,996726	0,987304
Barra 8	0,996413	0,986065
Barra 9	0,996230	0,985483
Barra 10	0,996427	0,981905
Barra 11	0,996369	0,980629
Barra 12	0,997147	0,977458
Barra 13	0,999048	0,975585
Barra 14	1,001072	0,973788
Barra 15	1,002280	0,972072
Barra 16	1,002504	0,971753
Barra 17	1,002807	0,971366
Barra 18	1,002814	0,971365
Barra 19	1,003254	0,971525
Barra 20	1,003537	0,971627
Barra 21	1,003697	0,970827
Barra 22	1,003723	0,970816
Barra 23	1,003894	0,970697
Barra 24	1,004265	0,970437
Barra 25	1,004666	0,970155
Barra 26	1,004831	0,970039
Barra 27	1,004801	0,970007
Barra 28	0,999548	0,998232
Barra 29	0,999662	0,998346
Barra 30	1,000530	0,999216
Barra 31	1,000620	0,999181
Barra 32	1,001072	0,999006
Barra 33	1,001404	0,998587
Barra 34	1,002379	0,998037
Barra 35	1,002270	0,997928
Barra 36	0,9 <mark>99551</mark>	0,9 <mark>98227</mark>
Barra 37	0,999703	0,998269
Barra 38	0,999967	0,998365
Barra 39	1,000019	0,998392
Barra 40	1,000022	0,998395
Barra 41	1,001076	0,997698

Barra 42	1,001529	0,997405
Barra 43	1,001556	0,997367
Barra 44	1,001563	0,997359
Barra 45	1,001555	0,997263
Barra 46	1,001555	0,997263
Barra 47	0,999364	0,997921
Barra 48	0,998636	0,997264
Barra 49	0,996176	0,995298
Barra 50	0,995862	0,995126
Barra 51	0,996447	0,986008
Barra 52	0,996731	0,985992
Barra 53	0,995611	0,984328
Barra 54	0,994901	0,982990
Barra 55	0,993732	0,981219
Barra 56	0,992665	0,979555
Barra 57	0,985600	0,970785
Barra 58	0,982080	0,966402
Barra 59	0,980427	0,964693
Barra 60	0,978853	0,963065
Barra 61	0,976048	0,959092
Barra 62	0,975800	0,958629
Barra 63	0,975351	0,958009
Barra 64	0,973142	0,954960
Barra 65	0,972253	0,954034
Barra 66	0,996456	0,980535
Barra 67	0,996455	0,980534
Barra 68	0,997286	0,976911
Barra 69	0,997285	0,976909

APÊNDICE J – ERRO PERCENTUAL

	GD ELEV.	GD CONC.
	-30	-30
Barra 1	0	0
Barra 2	0,02776	0,0150686
Barra 3	0,054859	0,0305176
Barra 4	0,059679	0,0330528
Barra 5	0,070012	0,037809
Barra 6	0,080473	0,036339
Barra 7	0,092844	0,0411873
Barra 8	0,096069	0,0432414
Barra 9	0,097604	0,0442855
Barra 10	0,197954	0,1125296
Barra 11	0,219232	0,1235184
Barra 12	0,289056	0,1601469
Barra 13	0,364002	0,2032731
Barra 14	0,441382	0,24778
Barra 15	0,51046	0,2937304
Barra 16	0,523352	0,3023962
Barra 17	0,544026	0,3179882
Barra 18	0,544312	0,3181178
Barra 19	0,558809	0,3299559
Barra 20	0,568211	0,3375222
Barra 21	0,58014	0,3419987
Barra 22	0,580586	0,3420431
Barra 23	0,583973	0,3427438
Barra 24	0,591338	0,3442651
Barra 25	0,599295	0,3458164
Barra 26	0,602618	0,3465788
Barra 27	0,602666	0,3467491
Barra 28	0,055058	0,0306848
Barra 29	0,057966	0,0335715
Barra 30	0,07081	0,0464307
Barra 31	0,072362	0,0465279
Barra 32	0,08004	0,0468179
Barra 33	0,08946	0,0477584
Barra 34	0,108465	0,0489231
Barra 35	0,108664	0,0490116
Barra 36	0,055203	0,0306702
Barra 37	0,060029	0,0337618
Barra 38	0,070977	0,0405781
Barra 39	0,073562	0,042503
Barra 40	0,073705	0,0425902
Barra 41	0,118789	0,0448975

Barra 42	0,138019	0,0458553
Barra 43	0,1398	0,0460257
Barra 44	0,140131	0,0460268
Barra 45	0,142487	0,0463059
Barra 46	0,142551	0,0463496
Barra 47	0,059888	0,0333774
Barra 48	0,064676	0,0395414
Barra 49	0,077113	0,0604201
Barra 50	0,079578	0,0652242
Barra 51	0,096318	0,0433912
Barra 52	0,099719	0,0433687
Barra 53	0,098906	0,0445439
Barra 54	0,100567	0,0451276
Barra 55	0,102487	0,0463964
Barra 56	0,104592	0,0480709
Barra 57	0,170318	0,107
Barra 58	0,207772	0,1434588
Barra 59	0,220909	0,1590782
Barra 60	0,237301	0,1779954
Barra 61	0,247153	0,1941737
Barra 62	0,248686	0,1964177
Barra 63	0,250686	0,1995547
Barra 64	0,261126	0,2163355
Barra 65	0,264503	0,2217938
Barra 66	0,221759	0,1239501
Barra 67	0,221764	0,123958
Barra 68	0,297805	0,1627152
Barra 69	0,29787	0,1626867